1
|
Murcia-Cueto IS, Duarte-Rodríguez LZB, Jiménez-Leaño ÁP, Cantillo-Barraza O, Ospina CM, Patiño LH, Ramírez JD, Jaimes-Dueñez J. First report of Trypanosoma cruzi infection in urban hedgehog (Atelerix albiventris) in Colombia. Vet Parasitol Reg Stud Reports 2024; 55:101116. [PMID: 39326967 DOI: 10.1016/j.vprsr.2024.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Chagas disease (CD) is a zoonotic infection caused by the protozoan parasite Trypanosoma cruzi, affecting over seven million people worldwide. T. cruzi can infect more than 100 species of wild mammals, including opossums, armadillos, bats, carnivores, rodents, and primates, as well as domestic animals like dogs, cats, and exotic pets. This is the first report of T. cruzi infection in an "exotic pet" African hedgehog (Atelerix albiventris), in an endemic area for CD in Colombia. After the patient underwent euthanasia due to worsening clinical signs including diarrhea, thrombocytopenia, leukopenia, and hemiplegia, anatomopathological and histopathological examinations were conducted. Simultaneously, molecular diagnosis and genotyping of T. cruzi were performed using qPCR and Next Generation sequencing of the 18S rRNA gene, respectively. Anatomopathological examination revealed significant changes across various systems, including ulcerative hemorrhagic enteritis, left ventricular hypertrophy, lymphadenitis and diffuse meningeal edema. The main histopathological findings included mononuclear inflammatory reaction, congestion and hemorrhages in several organs, accompanied of amastigote cysts in cardiomyocytes. qPCR confirmed the presence of T. cruzi in heart, lymph node, brain, salivary gland, blood, and spleen. Regarding genotyping analyses, all organs were positive for TcI. This case confirms the susceptibility of A. albiventris to infection with T. cruzi and suggest a potential role for these pets as disseminators of T. cruzi infection in endemic areas. The ecological and epidemiological implications of these findings are discussed here.
Collapse
Affiliation(s)
- Ian Sebastián Murcia-Cueto
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Luz Zoraya Beatriz Duarte-Rodríguez
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Ángela Patricia Jiménez-Leaño
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Omar Cantillo-Barraza
- Grupo de Biología y Control de Enfermedades Infecciosas - BCEI, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Carlos M Ospina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jeiczon Jaimes-Dueñez
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia.
| |
Collapse
|
2
|
Ponce-Revello C, Quiroga N, San Juan E, Correa JP, Botto-Mahan C. Detection of Trypanosoma cruzi DNA in lizards: Using non-lethal sampling techniques in a sylvatic species with zoonotic reservoir potential in Chile. Vet Parasitol Reg Stud Reports 2024; 55:101113. [PMID: 39326965 DOI: 10.1016/j.vprsr.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Several reptile species have been described as hosts of Trypanosoma cruzi, the causative agent of Chagas disease, and therefore, they have become vertebrates of epidemiological interest. In recent decades, there has been a growing interest in animal welfare, especially in populations with small numbers where lethal sampling could have catastrophic consequences, and non-lethal methodologies have been developed for detecting zoonotic parasites. In this study, we compared three non-lethal sampling methodologies for detecting T. cruzi DNA in 21 captured specimens of the native lizard Liolaemus monticola, collected from the semiarid Mediterranean ecosystem of Chile. Specimens were subjected to xenodiagnosis (XD), tail clipping, and living syringe sampling procedures to evaluate whether lizards could serve as sentinel species for T. cruzi in endemic regions. To detect the protozoan, real-time PCR (qPCR) was performed on the DNA extracted from the samples (intestinal contents, tail tissues, and blood from living syringes). Trypanosoma cruzi DNA was detected in 12 of 21 lizards, considering all three methodologies. By XD, 12 specimens showed infection (57.1 %), and both living syringe and tail sampling methodologies detected only one infected lizard (4.8 %). Therefore, T. cruzi can be detected in lizards by qPCR using the three methodologies but XD is by far the most effective non-lethal detection methodology. The use of tail and living syringe methodologies showed a large underestimation; however, they might be options for monitoring the presence of T. cruzi in lizard populations when large sample sizes are available.
Collapse
Affiliation(s)
- Carla Ponce-Revello
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile.
| | - Nicol Quiroga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile
| | - Esteban San Juan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile
| | - Juana P Correa
- Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Urbano P, Hernández C, Ballesteros N, Vega L, Alvarado M, Velásquez-Ortiz N, Martínez D, Barragán K, Ramírez A, Páez-Triana L, Urrea V, Ramírez JD, González C. Exploring dietary differences among developmental stages of triatomines infected with Trypanosoma cruzi in different habitats. Int J Parasitol 2024; 54:559-568. [PMID: 38759833 DOI: 10.1016/j.ijpara.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/04/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Chagas disease affects millions of people in Colombia and worldwide, with its transmission influenced by ecological, environmental, and anthropogenic factors. There is a notable correlation between vector transmission cycles and the habitats of insect vectors of the parasite. However, the scale at which these cycles operate remains uncertain. While individual triatomine ecotopes such as palms provide conditions for isolated transmission cycles, recent studies examining triatomine blood sources in various habitats suggest a more intricate network of transmission cycles, linking wild ecotopes with human dwellings. This study aims to provide further evidence on the complexity of the scale of Trypanosoma cruzi transmission cycles, by exploring the different blood sources among developmental stages of infected triatomines in different habitats. We evaluated infection rates, parasite loads, feeding sources, and the distribution of Rhodnius prolixus insects in Attalea butyracea palms across three distinct habitats in Casanare, Colombia: peridomestics, pastures, and woodlands. Our results show that there is no clear independence in transmission cycles in each environment. Analyses of feeding sources suggest the movement of insects and mammals (primarily bats and didelphids) among habitats. A significant association was found between habitat and instar stages in collected R. prolixus. The N1 stage was correlated with pasture and woodland, while the N4 stage was related to pasture. Additionally, adult insects exhibited higher T. cruzi loads than N1, N2, and N3. We observed higher T. cruzi loads in insects captured in dwelling and pasture habitats, compared with those captured in woodland areas. Effective Chagas disease control strategies must consider the complexity of transmission cycles and the interplay between domestic and sylvatic populations of mammals and vectors.
Collapse
Affiliation(s)
- Plutarco Urbano
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia; Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia; Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Mateo Alvarado
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Davinzon Martínez
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Karen Barragán
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Vanessa Urrea
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Camila González
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
4
|
Benavides-Céspedes I, Ardila MM, Jiménez-Cotes G, Avendaño-Maldonado L, Lozano-Arias D, Garcia-Alzate R, Herrera L. Trypanosoma spp. infection in urban and wild ecotopes of the caribbean region in Colombia. Rev Peru Med Exp Salud Publica 2024; 41:156-163. [PMID: 39166638 PMCID: PMC11300683 DOI: 10.17843/rpmesp.2024.412.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/27/2024] [Indexed: 08/23/2024] Open
Abstract
Motivation for the study. The role of bats as hosts of Trypanosoma spp. in the Atlantic department in Colombia, as well as its taxonomic diversity has been poorly studied. Main findings. This is the first report of frequency of infection by Trypanosoma spp. in bats in the Atlántico Department in Colombia. Implications. The great adaptive capacity of bats to different ecological niches and its role as hosts of Trypanosoma spp. for wild and urban ecotopes represents a risk factor in transmission cycles of epidemiological importance. We conducted a study to evaluate the frequency of infection by Trypanosoma spp. in bats captured in wild and urban ecotopes in the Department of Atlántico in the Caribbean region of Colombia from March 2021 to May 2022. Bats were taxonomically identified, and sex, relative age, and reproductive conditions were determined. A blood sample was used for parasitological analysis and DNA extraction to amplify a region of the 18S rRNA. 125 bats were collected, with the most abundant families being Molossidae (62/125; 49.6%) and Phyllostomidae (43/125; 34.4%). Molossus molossus collected in wild habitats showed an infection frequency of 8.1% (5/61) and 4.1% (3/61) through parasitological and molecular analysis, respectively. In comparison, Noctilio albiventris collected in urban habitats showed an infection frequency of 16.6% (2/12) for both analyses. These findings represent the first records of M. molossus harboring trypanosomes for the Department of Atlántico and of N. albiventris harboring trypanosomes in Colombia.
Collapse
Affiliation(s)
- Iván Benavides-Céspedes
- Basic Sciences Faculty, Universidad del Atlántico, Puerto Colombia, Colombia.Universidad del AtlánticoBasic Sciences FacultyUniversidad del AtlánticoPuerto ColombiaColombia
| | - Marlon Mauricio Ardila
- Basic Sciences Faculty, Universidad del Atlántico, Puerto Colombia, Colombia.Universidad del AtlánticoBasic Sciences FacultyUniversidad del AtlánticoPuerto ColombiaColombia
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile.Universidad de ConcepciónDepartamento de Patología y Medicina PreventivaFacultad de Ciencias VeterinariasUniversidad de ConcepciónChillánChile
| | - Geovanny Jiménez-Cotes
- Basic Sciences Faculty, Universidad del Atlántico, Puerto Colombia, Colombia.Universidad del AtlánticoBasic Sciences FacultyUniversidad del AtlánticoPuerto ColombiaColombia
| | - Luis Avendaño-Maldonado
- Basic Sciences Faculty, Universidad del Atlántico, Puerto Colombia, Colombia.Universidad del AtlánticoBasic Sciences FacultyUniversidad del AtlánticoPuerto ColombiaColombia
| | - Daisy Lozano-Arias
- Basic and Clinical Research Group in Health Sciences, Health Sciences Faculty, Fundación Universitaria San Martín, Puerto Colombia, Colombia.Basic and Clinical Research Group in Health SciencesHealth Sciences FacultyFundación Universitaria San MartínPuerto ColombiaColombia
| | - Roberto Garcia-Alzate
- Basic Sciences Faculty, Universidad del Atlántico, Puerto Colombia, Colombia.Universidad del AtlánticoBasic Sciences FacultyUniversidad del AtlánticoPuerto ColombiaColombia
| | - Leidi Herrera
- Center for Ecology and Evolution, Institute of Zoology and Tropical Ecology (IZET), Faculty of Sciences, Universidad Central de Venezuela, Caracas, Venezuela.Universidad Central de VenezuelaCenter for Ecology and Evolution, Institute of Zoology and Tropical EcologyFaculty of SciencesUniversidad Central de VenezuelaCaracasVenezuela
- Instituto en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay.Universidad Nacional de AsunciónInstituto en Ciencias de la SaludUniversidad Nacional de AsunciónParaguay
| |
Collapse
|
5
|
da Silva LRS, Oliveira-Correia JPS, Araújo FJDF, Galvão C, Silva MBA, de Oliveira JB. Entomological indicators and food sources of triatomines in the Brazilian semi-arid region. Rev Soc Bras Med Trop 2024; 57:e004132024. [PMID: 39166597 PMCID: PMC11329277 DOI: 10.1590/0037-8682-0573-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Triatomines are biological vectors of Trypanosoma cruzi, the etiological agent of Chagas Disease (CD) and have various mammalian hosts. This study evaluated the entomological indicators and food sources of triatomines in Petrolina in the semi-arid region of Brazil, where CD is endemic. METHODS Triatomines were captured indoors and outdoors through an active search and entomological indices (household and natural infections) were calculated. Parasitological analyses were performed through microscopic visualization using Giemsa-stained insect feces, and DNA sequencing was employed to identify food sources from the gut contents of 82 insects (9.05%) that were better preserved. RESULTS We captured triatomines (906) in peridomicile (807) and intradomicile (99): Triatoma brasiliensis (84.7%, 767 specimens), Triatoma spp. (8.2%, 74 specimens), T. pseudomaculata (6.5%, 59 specimens), Rhodnius spp. (0.4%, four specimens), R. nasutus (0.1%, one specimen), and T. sordida (0.1%, one specimen). The household infestation index is 11.8%. Thirty-five triatomines were infected (33 T. brasiliensis and two T. pseudomaculata), corresponding to a natural infection index of 3.8%. The identified food sources were human T. pseudomaculata and T. brasiliensis, dogs for T. brasiliensis and rodents (Mus musculus) for T. brasiliensis. CONCLUSIONS The results reinforce the need to intensify CD diagnosis, surveillance, and control actions, as an increase in entomological indices was recorded. Blood from humans and domestic and synanthropic animals was detected in the infected triatomines, suggesting a risk of CD vector transmission in Petrolina. As CD is a zoonosis, multidisciplinary and intersectoral CD surveillance must be conducted in the context of the One Health.
Collapse
Affiliation(s)
| | - João Paulo Sales Oliveira-Correia
- Instituto Oswaldo Cruz, Fiocruz, Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Rio de Janeiro, RJ, Brasil
| | | | - Cleber Galvão
- Instituto Oswaldo Cruz, Fiocruz, Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Rio de Janeiro, RJ, Brasil
| | - Maria Beatriz Araújo Silva
- Universidade de Pernambuco, Faculdade de Enfermagem Nossa Senhora das Graças, Recife, PE, Brasil
- Secretaria Estadual de Saúde de Pernambuco, Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral, Recife, PE, Brasil
| | - Jaqueline Bianque de Oliveira
- Universidade Federal Rural de Pernambuco, Programa de Pós-graduação em Biociência Animal, Recife, PE, Brasil
- Universidade Federal Rural de Pernambuco, Laboratório de Parasitologia, Recife, PE, Brasil
| |
Collapse
|
6
|
Ricardo-Caldera D, Espitia-Pérez L, Avilés-Vergara PA, Benítez ÁJ, Chacón-Pacheco J, Ballesteros-Correa J, Negrette-Oquendo A, Soto-De León S, Tovar-Acero C. Trypanosoma cruzi in domestic and wild mammals in the northeast region of Colombia. Int J Parasitol Parasites Wildl 2024; 24:100940. [PMID: 38708188 PMCID: PMC11067360 DOI: 10.1016/j.ijppaw.2024.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Trypanosoma cruzi hosts can serve as a source of infection for animals, vectors, and humans, contributing to the establishment of Chagas disease (CD) in a given area. Traditionally, the Department of Córdoba has not been considered a transmission area for CD; however, the report of several acute cases of Chagas disease highlights the importance of studying the dynamics of disease transmission in this region. This study aimed to detect T. cruzi in domestic and wild mammals in the department of Córdoba. In 2017, a cross-sectional descriptive study was conducted in six villages in two municipalities in the department of Córdoba. Blood samples from dogs living in the zones were collected in EDTA vacutainer tubes for domestic mammals. Wild mammals were collected using Sherman and Tomahawk traps and mist nets in crops and peridomiciles. T. cruzi DNA was detected using the kinetoplast DNA (kDNA) variable region and the tandem repeat satellite region of T. cruzi as molecular targets. We sampled 168 dogs and 146 wild mammals. The detected prevalence of T. cruzi was 6.37%; the TcI lineage was found in D. marsupialis, H. anomalus, and one canine. A specimen of D. marsupialis with TcI and TcII lineages was also identified. T. cruzi DNA was detected in domestic and wild animals in the study area, indicating the circulation of the parasite in peridomestic environments. D. marsupialis may represent an important host in maintaining this region's wild and domestic cycle.
Collapse
Affiliation(s)
- Dina Ricardo-Caldera
- Grupo de investigación en Enfermedades Tropicales y Resistencia Bacteriana, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería, Colombia
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería, Colombia
| | - Paula A. Avilés-Vergara
- Grupo de investigación en Enfermedades Tropicales y Resistencia Bacteriana, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería, Colombia
| | - Álvaro J. Benítez
- Grupo de investigación en Enfermedades Tropicales y Resistencia Bacteriana, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería, Colombia
- Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Julio Chacón-Pacheco
- Grupo de Investigación Biodiversidad Unicórdoba, Universidad de Córdoba, Montería, Colombia
- Laboratorio de Ecología Funcional Unidad de Ecología y Sistemática (UNESIS), Laboratorio de Ecología Funcional, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Ana Negrette-Oquendo
- Grupo de investigación en Enfermedades Tropicales y Resistencia Bacteriana, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería, Colombia
| | - Sara Soto-De León
- Grupo de investigación en Enfermedades Tropicales y Resistencia Bacteriana, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería, Colombia
| | - Catalina Tovar-Acero
- Grupo de investigación en Enfermedades Tropicales y Resistencia Bacteriana, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería, Colombia
| |
Collapse
|
7
|
Martinez Ibarra JA, Martinez BO, Rodas Martinez AZ, Flores RA, Garcia CIM, Franco ER, Villalobos G, Martinez Hernandez F. Trypanosoma cruzi in Wild and Synanthropic Mammals in Two Regions of Mexico: A Fieldwork and Genetic Discrete Typing Unit Review. Vector Borne Zoonotic Dis 2024; 24:499-509. [PMID: 38836751 DOI: 10.1089/vbz.2023.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Background: Marsupials and rodents are the most important wild and synanthropic hosts of Trypanosoma cruzi due to the high frequency of infection, maintenance of diverse genetic populations of the parasite, and their close proximity to interact with both transmission cycles, sylvatic and peridomestic. Our aim was to identify the discrete typing units (DTU) of T. cruzi from different wild and synanthropic hosts in two regions of Mexico and to carry out a review of historical data focusing on current knowledge on the diversity and T. cruzi DTUs of host species. Materials and Methods: One hundred fifteen samples were obtained from two areas in Tabasco and Nayarit state. The presence of T. cruzi was evaluated by PCR. Results: The 12.6% (12/95) of samples from Tabasco and 65% (13/20) from Nayarit were found to be positive for parasite DNA. All the sequences analyzed were grouped in T. cruzi DTU I; low nucleotide diversity was observed in Tabasco (π = 0.00566, and ϴ = 0.00632), while high genetic diversity was observed in Nayarit sequences, up to 8.63 (π) to 11.10 (ϴ) times greater than Tabasco sequences. Genetic flow and migration between Tabasco, and Nayarit were scarce (FST = 0.37329 and Nm = 0.42), and genetic exchange was observed only between nearby areas. The bibliographic review of hosts in Mexico, together with our data, shows a heterogeneous T. cruzi prevalence in Chiroptera and domestic animals. For Atelidae and Canids, prevalence is generally below 25%. However, a high prevalence, greater than 25% and up to 100%, was recorded in Didelphimorphia, and Rodentia. Few studies in regions of Mexico have been described as infected with the parasite; in these, the genetic group with the highest prevalence is the DTU I. Conclusion: Marsupials and rodents are important reservoirs of T. cruzi; DTU I was frequently reported; however, recent genetic and reservoir studies have demonstrated the presence of greater diversity of genetic groups.
Collapse
Affiliation(s)
| | - Brizia Oria Martinez
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González," Mexico City, Mexico
| | | | - Rafael Avila Flores
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | | | - Emilio Rendon Franco
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Guiehdani Villalobos
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Fernando Martinez Hernandez
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González," Mexico City, Mexico
| |
Collapse
|
8
|
Gómez-Bravo A, Cirignoli S, Wehrendt D, Schijman A, León CM, Flores-Chaves M, Nieto J, Kieran TJ, Abril M, Guhl F. Zoonotic Cycle of American Trypanosomiasis in an Endemic Region of the Argentine Chaco, Factors That Influenced a Paradigm Shift. INSECTS 2024; 15:471. [PMID: 39057204 PMCID: PMC11277326 DOI: 10.3390/insects15070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), is a highly complex zoonosis that is present throughout South America, Central America, and Mexico. The transmission of this disease is influenced by various factors, including human activities like deforestation and land use changes, which may have altered the natural transmission cycles and their connection to the environment. In this study conducted in the Argentine Chaco region, we examined the transmission dynamics of T. cruzi by collecting blood samples from wild and domestic animals, as well as triatomine bugs from human dwellings, across five sites of varying anthropic intervention. Samples were analyzed for T. cruzi infection via qPCR, and we additionally examined triatomines for bloodmeal analysis via NGS amplicon sequencing. Our analysis revealed a 15.3% infection rate among 20 wild species (n = 123) and no T. cruzi presence in 9 species of domestic animals (n = 1359) or collected triatomines via qPCR. Additionally, we found chicken (34.28%), human (21.59%), and goat (19.36%) as the predominant bloodmeal sources across all sites. These findings suggest that anthropic intervention and other variables analyzed may have directly impacted the spillover dynamics of T. cruzi's sylvatic cycle and potentially reduced its prevalence in human habitats.
Collapse
Affiliation(s)
- Andrea Gómez-Bravo
- Fundación Mundo Sano, Buenos Aires C1061ABC, Argentina; (A.G.-B.); (M.F.-C.); (M.A.)
| | - Sebastián Cirignoli
- Centro de Investigaciones del Bosque Atlántico, Puerto Iguazú N3370AIA, Argentina;
- Administración de Parques Nacionales, Parque Nacional Iberá, Mercedes W3470, Argentina
| | - Diana Wehrendt
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Buenos Aires C1428ADN, Argentina; (D.W.); (A.S.)
| | - Alejandro Schijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Buenos Aires C1428ADN, Argentina; (D.W.); (A.S.)
| | - Cielo M. León
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Universidad de los Andes, Bogotá 111711, Colombia;
| | - María Flores-Chaves
- Fundación Mundo Sano, Buenos Aires C1061ABC, Argentina; (A.G.-B.); (M.F.-C.); (M.A.)
- Unidad de Leishmaniasis y Enfermedad de Chagas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain;
| | - Javier Nieto
- Unidad de Leishmaniasis y Enfermedad de Chagas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain;
| | - Troy J. Kieran
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA;
| | - Marcelo Abril
- Fundación Mundo Sano, Buenos Aires C1061ABC, Argentina; (A.G.-B.); (M.F.-C.); (M.A.)
| | - Felipe Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Universidad de los Andes, Bogotá 111711, Colombia;
| |
Collapse
|
9
|
Langston H, Fortes Francisco A, Doidge C, Roberts CH, Khan AA, Jayawardhana S, Taylor MC, Kelly JM, Lewis MD. Dynamics of Trypanosoma cruzi infection in hamsters and novel association with progressive motor dysfunction. PLoS Negl Trop Dis 2024; 18:e0012278. [PMID: 38905323 PMCID: PMC11221660 DOI: 10.1371/journal.pntd.0012278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/03/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Chagas disease is a zoonosis caused by the protozoan parasite Trypanosoma cruzi. Clinical outcomes range from long-term asymptomatic carriage to cardiac, digestive, neurological and composite presentations that can be fatal in both acute and chronic stages of the disease. Studies of T. cruzi in animal models, principally mice, have informed our understanding of the biological basis of this variability and its relationship to infection and host response dynamics. Hamsters have higher translational value for many human infectious diseases, but they have not been well developed as models of Chagas disease. We transposed a real-time bioluminescence imaging system for T. cruzi infection from mice into female Syrian hamsters (Mesocricetus auratus). This enabled us to study chronic tissue pathology in the context of spatiotemporal infection dynamics. Acute infections were widely disseminated, whereas chronic infections were almost entirely restricted to the skin and subcutaneous adipose tissue. Neither cardiac nor digestive tract disease were reproducible features of the model. Skeletal muscle had only sporadic parasitism in the chronic phase, but nevertheless displayed significant inflammation and fibrosis, features also seen in mouse models. Whereas mice had normal locomotion, all chronically infected hamsters developed hindlimb muscle hypertonia and a gait dysfunction resembling spastic diplegia. With further development, this model may therefore prove valuable in studies of peripheral nervous system involvement in Chagas disease.
Collapse
Affiliation(s)
- Harry Langston
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ciaran Doidge
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chrissy H. Roberts
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Archie A. Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Mosley IA, Auckland LD, Light JE, Hamer SA. Apparent absence of Trypanosoma cruzi in Mexican free-tailed bats (Tadarida brasiliensis) from Texas, USA. Vet Parasitol Reg Stud Reports 2024; 51:101031. [PMID: 38772647 DOI: 10.1016/j.vprsr.2024.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
The Mexican free-tailed bat (Tadarida brasiliensis) is one of the most abundant mammals in North America. Mexican free-tailed bats have a wide geographic range stretching from northern South America to the western United States. Bats are theorized to be the original hosts for Trypanosoma cruzi -the causative agent of Chagas disease- and can serve as a source of infection to triatomine insect vectors that feed upon them. Chagas disease is a neglected tropical disease across the Americas where triatomines are present, including the southern United States, where Texas reports this highest number of locally-acquired human cases. To learn more about the role of bats in the ecology of Chagas disease in Texas, we surveyed a colony of Mexican free-tailed bats from Brazos County, Texas, for T. cruzi using carcasses salvaged after an extreme weather event. A total of 283 Mexican free-tailed bats collected in February 2021 were dissected and DNA from the hearts and kidneys was used for T. cruzi detection via qPCR. None of the bat hearts or kidneys tested positive for T. cruzi; this sample size affords 95% confidence that the true prevalence of T. cruzi in this population does not exceed 1%. Future sampling of multiple bat species as well as migrant and resident colonies of Mexican free-tailed bats across different times of the year over a broader geographic range would be useful in learning more about the role of bats in the ecology of Chagas disease in Texas.
Collapse
Affiliation(s)
- Ilana A Mosley
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lisa D Auckland
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jessica E Light
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
11
|
Torres JM, de Oliveira CE, Santos FM, Sano NY, Martinez ÉV, Alves FM, Tavares LER, Roque ALR, Jansen AM, Herrera HM. Trypanosomatid diversity in a bat community of an urban area in Campo Grande, Mato Grosso do Sul, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105563. [PMID: 38301855 DOI: 10.1016/j.meegid.2024.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Bats have a long evolutionary history with trypanosomatids, but the role of these flying mammals on parasite transmission cycles in urban areas, especially for Trypanosoma and Leishmania species, remains poorly known. The objective of this study was to evaluate the species richness of trypanosomatids parasitizing a bat community in Campo Grande (CG), a state capital within the Cerrado of the Brazilian Midwest. We evaluated 237 bats of 13 species by means of hemoculture and molecular detection in spleen samples. The bat community of CG appears to participate in the transmission cycles of various species of trypanosomatids. We report an overall trypanosomatid detection rate of 34.2% (n = 81), involving 11 out of 13 sampled bat species. We identified six species of trypanosomatids from 61 bats by analyzing SSU rRNA and/or kDNA: Trypanosoma cruzi DTU TcI, T. c. marinkellei, T. dionisii, Leishmania infantum, L. amazonensis, and T. janseni, with this latter being detected by hemoculture for the first time in a bat species. We also detected a Molecular Operational Taxonomic Unit, Trypanosoma sp. DID, in the phyllostomids Glossophaga soricina and Platyrrhinus lineatus. The highest trypanosomatid richness was observed for Sturnira lilium, which hosted three species: L. infantum, T. dionisii and T. janseni. Given that visceral leishmaniasis is endemic in CG, special focus should be placed on L. infantum. Moreover, L. amazonensis and T. cruzi warrant attention, since these are zoonotic parasites responsible for human cases of tegumentary leishmaniasis and Chagas disease, respectively. In this respect, we discuss how bat communities may influence the Leishmania spp. transmission in endemic areas.
Collapse
Affiliation(s)
- Jaire Marinho Torres
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| | | | - Filipe Martins Santos
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| | - Nayara Yoshie Sano
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| | - Érica Verneque Martinez
- Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva s/n - Pioneiros, Campo Grande, MS, Brazil
| | - Fernanda Moreira Alves
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Manguinhos Rio de Janeiro 4365, RJ, Brazil
| | - Luiz Eduardo Roland Tavares
- Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva s/n - Pioneiros, Campo Grande, MS, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Manguinhos Rio de Janeiro 4365, RJ, Brazil
| | - Ana Maria Jansen
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil; Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Manguinhos Rio de Janeiro 4365, RJ, Brazil
| | - Heitor Miraglia Herrera
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| |
Collapse
|
12
|
Almeida CE, Máximo MM, Pires-Silva D, Takiya DM, Valença-Barbosa C, Viana MC, Reigada C, Iñiguez AM, Harry M, Folly-Ramos E. From molecules to ecosystems: Insights into a network of interactions for a Chagas disease outbreak using Triatoma brasiliensis as natural samplers. Acta Trop 2024; 251:107107. [PMID: 38190930 DOI: 10.1016/j.actatropica.2023.107107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Exploring the dynamics of disease transmission involves an understanding of complex interactions within the eco-epidemiologic framework. In the context of Chagas disease (CD), elements are mainly represented by the interactions among the pathogen, insect vector, host, humans and the environment. We performed quantitative and qualitative analyses on a dataset derived from 98 Triatoma brasiliensis infected by trypanosomatids, which were linked to a CD outbreak in the semi-arid region of northeastern Brazil. We extracted invertebrate-derived DNA (iDNA) from these insects, comprising 18 populations around the outbreak area, each indicative of various strata of anthropogenic influence. Food source (FS) diversity, representing potential parasite reservoirs, was determined through mitochondrial gene (cyt b) sequencing of vertebrates, and parasite genotyping was accessed using fluorescent amplified fragment barcodes (FFLB) of trypanosomatids. We also assessed the residents' awareness of breeding sites for CD vectors in the inspected houses. The quantification of Trypanosoma cruzi was estimated via real-time PCR and is denominated here as the average parasite load (PL) per insect (T. cruzi/intestinal unit). We aimed to address vector-parasite-host-environment interactions that were discussed based on their significance among the components. Notably, among the significant interactions, we observed that the PL in the insects was significantly influenced by FS. Infected insects that fed on the classic reservoir, Didelphis albiventris, and Galea spixii exhibited higher PLs, compared to those that fed on Kerodon rupestris (p < 0.04)-a primary host. While D. albiventris is already recognized as a synanthropic species, we propose that G. spixii may also be undergoing a synanthropic process. Conversely, domestic cats are frequently identified as FS in infected insects from the sylvatic environment, suggesting a possible change in their behavior towards a wild state. Therefore, we propose that neglected anthropogenic actions have facilitated the reciprocal (sylvatic-peridomestic) circulation of T. cruzi-especially noted for TcI because it was predominant in insects found in peridomestic environments. Residents are often unaware of the existence of insect breeding grounds near their homes, particularly when it involves the storage of materials without planning for use, such as piles of tiles, bricks and wood. Although indirect inferences about the interaction among vector-parasite-host-environment are still incipient, we highlight the potential use of vectors as natural samplers of biological and ecological components in transmitting the disease.
Collapse
Affiliation(s)
- Carlos E Almeida
- Universidade Federal da Paraíba (UFPB), Campus IV, Rio Tinto, Brasil; Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil.
| | - Milena M Máximo
- Universidade Federal da Paraíba (UFPB), Campus IV, Rio Tinto, Brasil
| | | | - Daniela M Takiya
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | | | - Maria C Viana
- Universidade de Campinas (UNICAMP), Campinas, Brasil; Instituto Nacional de Câncer, Rio de Janeiro, Brasil
| | | | | | - Myriam Harry
- Université Paris-Saclay, CNRS, IRD, UMR EGCE, Evolution, Génomes, Comportement et Ecologie, IDEEV, Gif-sur-Yvette, France
| | | |
Collapse
|
13
|
Rengifo-Correa L, Rodríguez-Moreno Á, Becker I, Falcón-Lezama JA, Tapia-Conyer R, Sánchez-Montes S, Suzán G, Stephens CR, González-Salazar C. Risk of a vector-borne endemic zoonosis for wildlife: Hosts, large-scale geography, and diversity of vector-host interactions for Trypanosoma cruzi. Acta Trop 2024; 251:107117. [PMID: 38184291 DOI: 10.1016/j.actatropica.2024.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Drivers for wildlife infection are multiple and complex, particularly for vector-borne diseases. Here, we studied the role of host competence, geographic area provenance, and diversity of vector-host interactions as drivers of wild mammal infection risk to Trypanosoma cruzi, the aetiological agent of Chagas disease. We performed a systematic sampling of wild mammals in 11 states of Mexico, from 2017 to 2018. We tested the positivity of T. cruzi with the Tc24 marker in tissues samples for 61 wild mammal species (524 specimens sampled). 26 mammal species were positive for T. cruzi, of which 11 are new hosts recorded in Mexico 75 specimens were positive and 449 were negative for T. cruzi infection, yielding an overall prevalence of 14.3%. The standardized infection risk of T. cruzi of our examined specimens was similar, no matter the host species or their geographic origins. Additionally, we used published data of mammal positives for T. cruzi to complement records of T. cruzi infection in wild mammals and inferred a trophic network of Triatoma spp. (vectors) and wild mammal species in Mexico, using spatial data-mining modelling. Infection with T. cruzi was not homogeneously distributed in the inferred trophic network. This information allowed us to develop a predictive model for T. cruzi infection risk for wild mammals in Mexico, considering risk as a function of the diversity of vector-host spatial associations in a large-scale geographic context, finding that the addition of competent vectors to a multi-host parasite system amplifies host infection risk. The diversity of vector-host interactions per se constitutes a relevant driver of infection risk because hosts and vectors are not isolated from each other.
Collapse
Affiliation(s)
- Laura Rengifo-Correa
- C3-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Santander, Colombia
| | - Ángel Rodríguez-Moreno
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Jorge Abelardo Falcón-Lezama
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Roberto Tapia-Conyer
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sokani Sánchez-Montes
- Facultad de Ciencias Biológicas y Agropecuarias Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano 92870, Mexico
| | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Christopher R Stephens
- C3-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; ICN-Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Constantino González-Salazar
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
14
|
Loshouarn H, Guarneri AA. The interplay between temperature, Trypanosoma cruzi parasite load, and nutrition: Their effects on the development and life-cycle of the Chagas disease vector Rhodnius prolixus. PLoS Negl Trop Dis 2024; 18:e0011937. [PMID: 38306403 PMCID: PMC10866482 DOI: 10.1371/journal.pntd.0011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/14/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi transmitted by blood-sucking insects of the subfamily Triatominae, is a major neglected tropical disease affecting 6 to 7 million of people worldwide. Rhodnius prolixus, one of the most important vectors of Chagas disease in Latin America, is known to be highly sensitive to environmental factors, including temperature. This study aimed to investigate the effects of different temperatures on R. prolixus development and life-cycle, its relationship with T. cruzi, and to gather information about the nutritional habits and energy consumption of R. prolixus. We exposed uninfected and infected R. prolixus to four different temperatures ranging from 24°C to 30°C, and monitored their survival, developmental rate, body and blood meal masses, urine production, and the temporal dynamics of parasite concentration in the excreted urine of the triatomines over the course of their development. Our results demonstrate that temperature significantly impacts R. prolixus development, life-cycle and their relationship with T. cruzi, as R. prolixus exposed to higher temperatures had a shorter developmental time and a higher mortality rate compared to those exposed to lower temperatures, as well as a lower ability to retain weight between blood meals. Infection also decreased the capacity of the triatomines to retain weight gained by blood-feeding to the next developmental stage, and this effect was proportional to parasite concentration in excreted urine. We also showed that T. cruzi multiplication varied depending on temperature, with the lowest temperature having the lowest parasite load. Our findings provide important insights into the potential impact of climate change on the epidemiology of Chagas disease, and can contribute to efforts to model the future distribution of this disease. Our study also raises new questions, highlighting the need for further research in order to understand the complex interactions between temperature, vector biology, and parasite transmission.
Collapse
Affiliation(s)
- Henri Loshouarn
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | - Alessandra A. Guarneri
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Bilheiro AB, Costa GDS, Araújo MS, Ribeiro WAR, Finamore-Araújo P, Moreira OC, Medeiros JF, Fontes G, Camargo LMA. Detection and Genotyping of Trypanosoma cruzi Samples in Species of Genus Rhodnius from Different Environments in the Brazilian Amazon. Vector Borne Zoonotic Dis 2024; 24:95-103. [PMID: 38165392 DOI: 10.1089/vbz.2023.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Background: In the Amazon region, several species of triatomines occur in the natural environments. Among them, species of the genus Rhodnius are a risk to human populations due to their high rates of infection with Trypanosoma cruzi. The aim of this study was to identify the T. cruzi genotypes in Rhodnius specimens and their relationship with sylvatic hosts from different environments in the Brazilian Amazon. Methods: A total of 492 triatomines were collected from the municipalities of Monte Negro, Rondônia state, and Humaitá, Amazonas state, 382 of them being nymphs and 110 adults. Genotyping of T. cruzi in six discrete typing units (DTUs) was performed using conventional multilocus PCR. The triatomines that were positive for T. cruzi and engorged with blood were also targeted for amplification of the cytochrome B (cytB) gene to identify bloodmeal sources. Results: Of the 162 positive samples, the identified DTUs were TcI (87.65%) and TcIV (12.35%). It was observed that 102 specimens were engorged with a variety of bloodmeals. Triatomines infected with TcI were associated with DNA of all identified vertebrates, except Plecturocebus brunneus. TcIV was detected in triatomines that fed on Coendou prehensilis, Didelphis marsupialis, Mabuya nigropunctata, P. brunneus, Pithecia irrorata, Sapajus apella, and Tamandua tetradactyla. Conclusion: Results highlight the need to understand the patterns of T. cruzi genotypes in Rhodnius spp. and their association with sylvatic hosts to better elucidate their role in the transmission of Chagas disease in the Amazon region.
Collapse
Affiliation(s)
- Adriana Benatti Bilheiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de São João del Rei, Divinópolis, MG, Brazil
| | - Glaucilene da Silva Costa
- Laboratório de Saúde Pública-LACEN, Núcleo de Biologia Animal e Entomologia Médica, Porto Velho, RO, Brazil
| | - Maisa Silva Araújo
- Fundação Oswaldo Cruz/Fiocruz Rondônia, Porto Velho, RO, Brazil
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM)/Secretaria de Estado da Saúde de Rondônia, Porto Velho, RO, Brazil
| | | | - Paula Finamore-Araújo
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz/IOC, Rio de Janeiro, RJ, Brazil
| | - Otacílio C Moreira
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz/IOC, Rio de Janeiro, RJ, Brazil
| | - Jansen Fernandes Medeiros
- Fundação Oswaldo Cruz/Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental INCT-EPIAMO, Porto Velho, RO, Brazil
| | - Gilberto Fontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de São João del Rei, Divinópolis, MG, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental INCT-EPIAMO, Porto Velho, RO, Brazil
| | - Luís Marcelo Aranha Camargo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de São João del Rei, Divinópolis, MG, Brazil
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM)/Secretaria de Estado da Saúde de Rondônia, Porto Velho, RO, Brazil
- Instituto de Ciências Biomédicas 5, Universidade de São Paulo (ICB-5, USP), Monte Negro, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental INCT-EPIAMO, Porto Velho, RO, Brazil
| |
Collapse
|
16
|
de Sousa AS, Vermeij D, Ramos AN, Luquetti AO. Chagas disease. Lancet 2024; 403:203-218. [PMID: 38071985 DOI: 10.1016/s0140-6736(23)01787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 01/15/2024]
Abstract
Chagas disease persists as a global public health problem due to the high morbidity and mortality burden. Despite the possibility of a cure and advances in transmission control, epidemiological transformations, such as urbanisation and globalisation, and the emerging importance of oral and vertical transmission mean that Chagas disease should be considered an emerging disease, with new cases occurring worldwide. Important barriers to diagnosis, treatment, and care remain, resulting in repressed numbers of reported cases, which in turn leads to inadequate public policies. The validation of new diagnostic tools and treatment options is needed, as existing tools pose serious limitations to access to health care. Integrated models of surveillance, with community and intersectional participation, embedded in the concept of One Health, are essential for control. In addition, mitigation strategies for the main social determinants of health, including difficulties imposed by migration, are important to improve access to comprehensive health care in a globalised scenario.
Collapse
Affiliation(s)
- Andréa Silvestre de Sousa
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Department of Internal Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Debbie Vermeij
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alberto Novaes Ramos
- Department of Community Health, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alejandro O Luquetti
- Center of Studies for Chagas Disease, Hospital das Clínicas, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
17
|
Beatty NL, Arango-Ferreira C, Gual-Gonzalez L, Zuluaga S, Nolan MS, Cantillo-Barraza O. Oral Chagas Disease in Colombia-Confirmed and Suspected Routes of Transmission. Trop Med Infect Dis 2024; 9:14. [PMID: 38251211 PMCID: PMC10819552 DOI: 10.3390/tropicalmed9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Chagas disease (CD) remains endemic throughout many regions of Colombia despite implementing decades of vector control strategies in several departments. Some regions have had a significant decrease in vectorial transmission, but the oral ingestion of Trypanosoma cruzi through consumption of contaminated food and drink products is increasingly described. This form of transmission has important public health relevance in Colombia due to an increase in reported acute CD cases and clinical manifestations that often lead to significant morbidity and mortality. Oral CD in Colombia has been associated with the consumption of contaminated fruit juices, such as palm wine, sugar cane, or tangerine juice and water for consumption, or contaminated surfaces where food has been prepared. Another interesting route of oral transmission includes ingestion of unbeknownst infected armadillos' blood, which is related to a traditional medicine practice in Colombia. Some earlier reports have also implemented consumption of infected bush meat as a source, but this is still being debated. Within the Amazon Basin, oral transmission is now considered the principal cause of acute CD in these regions. Furthermore, new cases of acute CD are now being seen in departments where CD has not been documented, and triatomine vectors are not naturally found, thus raising suspicion for oral transmission. The oral CD could also be considered a food-borne zoonosis, and odoriferous didelphid secretions have been implemented in contaminating the human dwelling environment, increasing the risk of consumption of infectious metacyclic trypomastigotes. In this article, we will discuss the complex transmission dynamics of oral CD in Colombia and further examine the unique clinical manifestations of this route of infection. New insights into the oral transmission of Trypanosoma cruzi are being discovered in Colombia, which can help bring increased awareness and a better understanding of this neglected tropical disease to reduce the burden of CD throughout Latin America.
Collapse
Affiliation(s)
- Norman L. Beatty
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Catalina Arango-Ferreira
- Departamento de Pediatría, Hospital San Vicente Fundación, Medellín 050010, Colombia;
- Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
| | - Lídia Gual-Gonzalez
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (L.G.-G.); (M.S.N.)
| | - Sara Zuluaga
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Melissa S. Nolan
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (L.G.-G.); (M.S.N.)
| | - Omar Cantillo-Barraza
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
18
|
Ferreira AZL, de Araújo CN, Cardoso ICC, de Souza Mangabeira KS, Rocha AP, Charneau S, Santana JM, Motta FN, Bastos IMD. Metacyclogenesis as the Starting Point of Chagas Disease. Int J Mol Sci 2023; 25:117. [PMID: 38203289 PMCID: PMC10778605 DOI: 10.3390/ijms25010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024] Open
Abstract
Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular stages. To ensure its survival in these diverse environments, T. cruzi undergoes extreme morphological and molecular changes. The metacyclic trypomastigote (MT) form, which arises from the metacyclogenesis (MTG) process in the triatomine hindgut, serves as a crucial link between the insect and human hosts and can be considered the starting point of Chagas disease. This review provides an overview of the current knowledge regarding the parasite's life cycle, molecular pathways, and mechanisms involved in metabolic and morphological adaptations during MTG, enabling the MT to evade the immune system and successfully infect human cells.
Collapse
Affiliation(s)
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | - Isabela Cunha Costa Cardoso
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Amanda Pereira Rocha
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Flávia Nader Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
19
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
20
|
Malysheva MN, Ganyukova AI, Frolov AO, Chistyakov DV, Kostygov AY. The Mite Steatonyssus periblepharus Is a Novel Potential Vector of the Bat Parasite Trypanosoma dionisii. Microorganisms 2023; 11:2906. [PMID: 38138050 PMCID: PMC10745657 DOI: 10.3390/microorganisms11122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma dionisii, for which only bat bugs (Cimicidae) had previously been demonstrated as vectors, was, for the first time, detected in the gamasine mite Steatonyssus periblepharus in Russia. The molecular phylogenetic analysis indicated that trypanosomes found in these mites belong to the "clade A" of T. dionisii, which, based on genetic distances, can be considered as a species separate from the sister clade B, and according to available data also has a distinct geographic distribution. The presence of developmental forms of T. dionisii resembling those previously described during the development of this trypanosome in cimicids suggests that S. periblepharus is a novel vector of the studied trypanosome.
Collapse
Affiliation(s)
- Marina N. Malysheva
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia; (M.N.M.); (A.I.G.); (A.O.F.)
| | - Anna I. Ganyukova
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia; (M.N.M.); (A.I.G.); (A.O.F.)
| | - Alexander O. Frolov
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia; (M.N.M.); (A.I.G.); (A.O.F.)
| | - Dmitriy V. Chistyakov
- Department of Vertebrate Zoology, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Alexei Yu. Kostygov
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia; (M.N.M.); (A.I.G.); (A.O.F.)
| |
Collapse
|
21
|
Fesser A, Beilstein S, Kaiser M, Schmidt RS, Mäser P. Trypanosoma cruzi STIB980: A TcI Strain for Drug Discovery and Reverse Genetics. Pathogens 2023; 12:1217. [PMID: 37887733 PMCID: PMC10610277 DOI: 10.3390/pathogens12101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Since the first published genome sequence of Trypanosoma cruzi in 2005, there have been tremendous technological advances in genomics, reverse genetics, and assay development for this elusive pathogen. However, there is still an unmet need for new and better drugs to treat Chagas disease. Here, we introduce a T. cruzi assay strain that is useful for drug research and basic studies of host-pathogen interactions. T. cruzi STIB980 is a strain of discrete typing unit TcI that grows well in culture as axenic epimastigotes or intracellular amastigotes. We evaluated the optimal parameters for genetic transfection and constructed derivatives of T. cruzi STIB980 that express reporter genes for fluorescence- or bioluminescence-based drug efficacy testing, as well as a Cas9-expressing line for CRISPR/Cas9-mediated gene editing. The genome of T. cruzi STIB980 was sequenced by combining short-read Illumina with long-read Oxford Nanopore technologies. The latter served as the primary assembly and the former to correct mistakes. This resulted in a high-quality nuclear haplotype assembly of 28 Mb in 400 contigs, containing 10,043 open-reading frames with a median length of 1077 bp. We believe that T. cruzi STIB980 is a useful addition to the antichagasic toolbox and propose that it can serve as a DTU TcI reference strain for drug efficacy testing.
Collapse
Affiliation(s)
- Anna Fesser
- Swiss Tropical and Public Health Institute, Department Medical Parasitology and Infection Biology, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Sabina Beilstein
- Swiss Tropical and Public Health Institute, Department Medical Parasitology and Infection Biology, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Department Medical Parasitology and Infection Biology, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Department Medical Parasitology and Infection Biology, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Department Medical Parasitology and Infection Biology, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
22
|
Fiatsonu E, Deka A, Ndeffo-Mbah ML. Effectiveness of Systemic Insecticide Dog Treatment for the Control of Chagas Disease in the Tropics. BIOLOGY 2023; 12:1235. [PMID: 37759635 PMCID: PMC10525078 DOI: 10.3390/biology12091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Chagas disease, caused by Trypanosoma cruzi and transmitted by triatomines, can lead to severe cardiac issues and mortality in many mammals. Recent studies have shown that systemic insecticide treatment of dogs is highly effective in killing triatomines. Here, we assessed the impact of dog treatment on T. cruzi transmission. We developed a mathematical model of T. cruzi transmission among triatomines, dogs, humans, and rodents. We used the model to evaluate the impact of dog treatment regimens on T. cruzi transmission dynamics to determine their effectiveness in reducing T. cruzi infection among hosts. We show that a 3-month treatment regimen may reduce T. cruzi incidence among humans by 59-80% in a high transmission setting, and 26-82% in a low transmission setting. An annual treatment may reduce incidence among humans by 49-74% in a high transmission setting, and by 11-76% in a low transmission setting. However, dog treatment may substantially increase T. cruzi prevalence among dogs if dog consumption of dead triatomines increases. Our model indicates that dog treatment may reduce T. cruzi infections among humans, but it may increase infections in dogs. Therefore, a holistic approach targeting different hosts is necessary for Chagas elimination.
Collapse
Affiliation(s)
- Edem Fiatsonu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845, USA; (A.D.); (M.L.N.-M.)
| | - Aniruddha Deka
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845, USA; (A.D.); (M.L.N.-M.)
| | - Martial L. Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845, USA; (A.D.); (M.L.N.-M.)
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
23
|
Testai R, Ferreira de Siqueira M, Rocha DSB, Roque ALR, Jansen AM, Xavier SCDC. Space-environment relationship in the identification of potential areas of expansion of Trypanosoma cruzi infection in Didelphis aurita in the Atlantic Rainforest. PLoS One 2023; 18:e0288595. [PMID: 37506103 PMCID: PMC10381050 DOI: 10.1371/journal.pone.0288595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Ecological Niche Modeling is widely used for animals, but rarely for understanding the parasite ecology. Trypanosoma cruzi is a heterogeneous and widely dispersed multi-host parasite. Didelphis aurita is a generalist species, both in terms of diet and environments. We modeled the D. aurita niche and T. cruzi infection in the Brazilian Atlantic Rainforest, using the models of two common vector species (Triatoma vitticeps and Panstrongylus megistus) as biotic variables, predicting their occurrence. Records of T. cruzi infected and non-infected D. aurita were analyzed through climate and landscape approaches by the Ecoland method. Models for each triatomine species and infected and noninfected D. aurita were produced considering climate and landscape: resolution of ~1km2 selected by Pearson's correlation [-0.7≤α≤0.7]. For modeling, seven algorithms available in ModleR package were used. True Skill Statistic was used to evaluate the models' performance (≥ 0.7). T. vitticeps indicates that there is a spatial dependence with warm areas in the southeastern region while P. megistus presented a distribution with high environmental suitability concentrated in the Southeast. High values of climatic suitability, landscape and potential presence of T. vitticeps and P. megistus were considered necessary, but not sufficient for the presence of D. aurita infected by T. cruzi. Climate models showed an ecological niche with suitability variations homogeneous, and landscape models showed a distribution of habitat conditions along the biome, with a fragmented profile and heterogeneous between locations. Ecoland demonstrated that D. aurita has different degrees of impact on its role in the enzootic cycle in different locations of the Atlantic Rainforest. Associating the models with the Ecoland method allowed the recognition of areas where D. aurita are important T. cruzi reservoirs. Areas of high suitability for the presence of marsupials are a necessary, but not sufficient for D. aurita to act as a reservoir for T. cruzi.
Collapse
Affiliation(s)
- Raphael Testai
- Laboratory of Tripanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- The Graduate Program in Computational and Systems Biology of the Instituto Oswaldo Cruz (PGBCS/IOC/Fiocruz), Rio de Janeiro/RJ, Brazil
| | | | | | - Andre Luiz Rodrigues Roque
- Laboratory of Tripanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratory of Tripanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
24
|
De Fuentes-Vicente JA, Santos-Hernández NG, Ruiz-Castillejos C, Espinoza-Medinilla EE, Flores-Villegas AL, de Alba-Alvarado M, Cabrera-Bravo M, Moreno-Rodríguez A, Vidal-López DG. What Do You Need to Know before Studying Chagas Disease? A Beginner's Guide. Trop Med Infect Dis 2023; 8:360. [PMID: 37505656 PMCID: PMC10383928 DOI: 10.3390/tropicalmed8070360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Chagas disease is one of the most important tropical infections in the world and mainly affects poor people. The causative agent is the hemoflagellate protozoan Trypanosoma cruzi, which circulates among insect vectors and mammals throughout the Americas. A large body of research on Chagas disease has shown the complexity of this zoonosis, and controlling it remains a challenge for public health systems. Although knowledge of Chagas disease has advanced greatly, there are still many gaps, and it is necessary to continue generating basic and applied research to create more effective control strategies. The aim of this review is to provide up-to-date information on the components of Chagas disease and highlight current trends in research. We hope that this review will be a starting point for beginners and facilitate the search for more specific information.
Collapse
Affiliation(s)
- José A De Fuentes-Vicente
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | - Nancy G Santos-Hernández
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | - Christian Ruiz-Castillejos
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | | | - A Laura Flores-Villegas
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Margarita Cabrera-Bravo
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Adriana Moreno-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
| | - Dolores G Vidal-López
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| |
Collapse
|
25
|
Morales ME, Campo Verde Arbocco F, Muñoz-San Martín C, Abba AM, Ríos TA, Cassini GH, Cattan PE, Jahn GA, Superina M. High Trypanosoma cruzi prevalence in armadillo (Zaedyus pichiy; Xenarthra: Chlamyphoridae) populations from Mendoza, Argentina. Parasitol Res 2023; 122:1593-1604. [PMID: 37184599 DOI: 10.1007/s00436-023-07861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Armadillos are considered important reservoir hosts for Trypanosoma cruzi, the causative agent of Chagas disease. The first report of T. cruzi infection in pichis (Zaedyus pichiy), a small armadillo species endemic to central Argentina and Chile, dates back to 1935. However, more recent reports on T. cruzi in this species are scarce. The objective of this study was to assess T. cruzi infection and parasite load in Z. pichiy from Mendoza Province, an area endemic to human Chagas disease. Blood samples were obtained in 2014-2016 from pichis from Lavalle (low Monte), Malargüe (Patagonian steppe), and San Carlos (ecotone) departments, Mendoza Province, Argentina. The detection and quantification of T. cruzi was performed through qPCR amplification using satellite primers. Of the 265 analyzed samples, 201 (76%) were positive for T. cruzi. Parasite loads varied between < 0.1-55.8 parasite-equivalents/mL (par-eq/mL), with a median of 1.1 par-eq/mL in quantifiable samples. The prevalence was similar in Malargüe and Lavalle (85-94%), but significantly lower in pichis from San Carlos (50%). Animals from Lavalle captured after hibernation had significantly higher parasite loads (median 2.0 par-eq/mL). In Malargüe, T. cruzi infection and parasite loads were significantly lower before than after hibernation in 2016. The high prevalence and low median parasite load suggest a chronic and persistent infection of T. cruzi in pichis. Regional differences and a marked increase in precipitation during 2015-2016 could have influenced annual and seasonal infection rates of this vector-borne disease.
Collapse
Affiliation(s)
- Melisa E Morales
- Laboratorio de Medicina Y Endocrinología de La Fauna Silvestre, IMBECU, UNCuyo - CONICET, Av. Dr. Adrian Ruiz Leal S/N, Parque General San Martín, Mendoza, Argentina
| | - Fiorella Campo Verde Arbocco
- Laboratorio de Reproducción Y Lactancia, IMBECU, UNCuyo - CONICET, Mendoza, Argentina
- Universidad de Mendoza, Mendoza, Argentina
| | - Catalina Muñoz-San Martín
- Facultad de Ciencias Médicas, Escuela de Medicina Veterinaria, Universidad Bernardo O'Higgins, Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias Y Agronómicas, Universidad de Las Américas, Campus Providencia, Santiago, Chile
| | - Agustín M Abba
- CEPAVE, Universidad Nacional de La Plata - CONICET, La Plata, Argentina
| | - Tatiana A Ríos
- CEPAVE, Universidad Nacional de La Plata - CONICET, La Plata, Argentina
| | - Guillermo H Cassini
- División Mastozoología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-BR - CONICET), Av. Angel Gallardo 490, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján (UNLu), Ruta 5 Y Av. Constitución, Luján (B), 6700, Buenos Aires, Argentina
| | - Pedro E Cattan
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias Y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Graciela A Jahn
- Laboratorio de Reproducción Y Lactancia, IMBECU, UNCuyo - CONICET, Mendoza, Argentina
| | - Mariella Superina
- Laboratorio de Medicina Y Endocrinología de La Fauna Silvestre, IMBECU, UNCuyo - CONICET, Av. Dr. Adrian Ruiz Leal S/N, Parque General San Martín, Mendoza, Argentina.
| |
Collapse
|
26
|
Santos F, Magalhaes-Junior JT, de Oliveira Carneiro I, Lambert SM, da Silva Souza BMP, de Pauda AD, de Freitas MP, Franke CR. Wild mammals involved in the transmission of Trypanosoma cruzi and food sources of Triatoma sherlocki in an endemic region of northeastern Brazil. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:396-406. [PMID: 36632712 DOI: 10.1111/mve.12641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/22/2022] [Indexed: 05/18/2023]
Abstract
The present study, carried out in the municipality of Gentio do Ouro, Bahia, Brazil aimed to evaluate which wild mammals may be involved in the transmission of T. cruzi and which are the blood sources for triatomines collected in the study area. PCR analysis of 31 wild mammals captured revealed T. cruzi infection in 6.4% (2/31): one specimen of the opossum Didelphis albiventris (1/3) and one of the rodent Kerodon rupestris (1/5); despite being more frequent in the area, no specimen of the rodent Thrichomys sp. (0/23) was infected. A total of 169 triatomines were captured. The conclusive detection of food sources was possible only for Triatoma sherlocki Papa et al., 2002 (n = 56), with evidence for: K. rupestris (35.7%), Gallus (17.9%), D. albiventris (14.3%), Homo sapiens (14.3%), Tropidurus hispidus (7.1%), Leopardus geoffroyi (5.3%), Conepatus semistriatus (1.8%), Thrichomys inermis (1.8%) and Rattus norvegicus (1.8%). Triatomines of the species T. sherlocki showed food eclecticism, including feeding on humans, with some of them being captured at dwellings. These facts make this triatomine a potential link for the transmission of T. cruzi between wild and anthropic environments, highlighting a latent risk of the reemergence of Chagas disease outbreaks.
Collapse
Affiliation(s)
- Flavia Santos
- Programa de Pós-graduação em Ciência Animal nos Trópicos, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia-UFBA, Salvador, Bahia, Brazil
- Centro Multidisciplinar do Campus de Barra (CMB), da Universidade Federal do Oeste da Bahia-UFOB, Barra, Bahia, Brazil
| | - Jairo Torres Magalhaes-Junior
- Centro Multidisciplinar do Campus de Barra (CMB), da Universidade Federal do Oeste da Bahia-UFOB, Barra, Bahia, Brazil
| | - Ianei de Oliveira Carneiro
- Campus Professor Barros, Universidade Salvador, Salvador, Bahia, Brazil
- Programa de Pós-graduação em Saúde Coletiva, Instituto de Saúde Coletiva (ISC), Universidade Federal da Bahia - UFBA, Salvador, Bahia, Brazil
| | - Sabrina Mota Lambert
- Laboratório de Biologia Celular e Molecular (LBCM) do Hospital de Medicina Veterinária Prof. Renato Rodemburg de Medeiros Neto (HOSPMEV), Universidade Federal da Bahia - UFBA, Salvador, Bahia, Brazil
| | - Bárbara Maria Paraná da Silva Souza
- Laboratório de Biologia Celular e Molecular (LBCM) do Hospital de Medicina Veterinária Prof. Renato Rodemburg de Medeiros Neto (HOSPMEV), Universidade Federal da Bahia - UFBA, Salvador, Bahia, Brazil
| | - Alini Dias de Pauda
- Centro Multidisciplinar do Campus de Barra (CMB), da Universidade Federal do Oeste da Bahia-UFOB, Barra, Bahia, Brazil
| | - Marcondes Pessoa de Freitas
- Centro Multidisciplinar do Campus de Barra (CMB), da Universidade Federal do Oeste da Bahia-UFOB, Barra, Bahia, Brazil
| | - Carlos Roberto Franke
- Programa de Pós-graduação em Ciência Animal nos Trópicos, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia-UFBA, Salvador, Bahia, Brazil
| |
Collapse
|
27
|
de Oliveira MM, Ferrando CPR, Gómez-Hernández C, de Oliveira KR, Araújo IAC, Ribeiro PVA, Mineo TWP, Leiner NO, Mineo JR, da Silva SM. Prevalence of Trypanosoma lainsoni and its effects of parasitism on the health of non-volant small mammals from the Brazilian Cerrado. Parasitol Res 2023:10.1007/s00436-023-07851-1. [PMID: 37129625 DOI: 10.1007/s00436-023-07851-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Small mammals are important hosts and/or reservoirs of Trypanosoma spp. This study aimed to verify the prevalence of Trypanosoma spp. in non-volant small mammals from the Brazilian Cerrado and to test the effects of T. lainsoni on the neutrophil/lymphocyte ratio (N/L) and body condition in rodent and marsupial populations. For this, we collected blood samples of 293 individuals captured in five forest fragments between 2019 and 2020. Blood was used to prepare the blood smears and packed on filter paper for DNA extraction. Generalized linear models were performed to test the effects of T. lainsoni on host health. The DNA was submitted to nested PCR targeting the Trypanosoma spp. 18S rRNA gene. From blood smears analyzed by microscopy, we obtained a positivity rate of 7.2% for Trypanosoma spp. About 31.1% of Gracilinanus agilis, Didelphis albiventris, and Rhipidomys macrurus samples were positive in nested PCR. From the obtained sequences, 83.3% were genetically identical to T. lainsoni and about 11% to T. cruzi TcI. In addition, we reported the infection of T. lainsoni in Hylaeamys megacephalus. We suggest that T. lainsoni does not influence the body condition and N/L ratio for either G. agilis or R. macrurus. Overall, our results expand the host list of T. lainsoni and demonstrate the infection of small mammals by T. cruzi TcI in peri-urban areas.
Collapse
Affiliation(s)
- Marco Miguel de Oliveira
- Institute of Biomedical Sciences, Department of Parasitology, Leishmania Bioassays Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Claire Pauline Röpke Ferrando
- Institute of Biology, Department of Zoology, Mammal Ecology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - César Gómez-Hernández
- Immunology Laboratory, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Karine Rezende de Oliveira
- Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlândia, Ituiutaba, Minas Gerais, Brazil
| | - Iasmin Aparecida Cunha Araújo
- Institute of Biomedical Sciences, Department of Parasitology, Leishmania Bioassays Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Paulo Vitor Alves Ribeiro
- Institute of Biomedical Sciences, Department of Parasitology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Tiago Wilson Patriarca Mineo
- Institute of Biomedical Sciences, Department of Immunology, Immunoparasitology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Natália Oliveira Leiner
- Institute of Biology, Department of Zoology, Mammal Ecology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - José Roberto Mineo
- Institute of Biomedical Sciences, Department of Immunology, Immunoparasitology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Sydnei Magno da Silva
- Institute of Biomedical Sciences, Department of Parasitology, Leishmania Bioassays Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
28
|
Fiatsonu E, Busselman RE, Hamer GL, Hamer SA, Ndeffo-Mbah ML. Effectiveness of fluralaner treatment regimens for the control of canine Chagas disease: A mathematical modeling study. PLoS Negl Trop Dis 2023; 17:e0011084. [PMID: 36693084 PMCID: PMC9897538 DOI: 10.1371/journal.pntd.0011084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/03/2023] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Canine Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and transmitted by insect triatomine vectors known as kissing bugs. The agent can cause cardiac damage and long-term heart disease and death in humans, dogs, and other mammals. In laboratory settings, treatment of dogs with systemic insecticides has been shown to be highly efficacious at killing triatomines that feed on treated dogs. METHOD We developed compartmental vector-host models of T. cruzi transmission between the triatomine and dog population accounting for the impact of seasonality and triatomine migration on disease transmission dynamics. We considered a single vector-host model without seasonality, and model with seasonality, and a spatially coupled model. We used the models to evaluate the effectiveness of the insecticide fluralaner with different durations of treatment regimens for reducing T. cruzi infection in different transmission settings. RESULTS In low and medium transmission settings, our model showed a marginal difference between the 3-month and 6-month regimens for reducing T. cruzi infection among dogs. The difference increases in the presence of seasonality and triatomine migration from a sylvatic transmission setting. In high transmission settings, the 3-month regimen was substantially more effective in reducing T. cruzi infections in dogs than the other regimens. Our model showed that increased migration rate reduces fluralaner effectiveness in all treatment regimens, but the relative reduction in effectiveness is minimal during the first years of treatment. However, if an additional 10% or more of triatomines killed by dog treatment were eaten by dogs, treatment could increase T. cruzi infections in the dog population at least during the first year of treatment. CONCLUSION Our analysis shows that treating all peridomestic dogs every three to six months for at least five years could be an effective measure to reduce T. cruzi infections in dogs and triatomines in peridomestic transmission settings. However, further studies at the local scale are needed to better understand the potential impact of routine use of fluralaner treatment on increasing dogs' consumption of dead triatomines.
Collapse
Affiliation(s)
- Edem Fiatsonu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Rachel E. Busselman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Gabriel L. Hamer
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Martial L. Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Deciphering Diets and Lifestyles of Prehistoric Humans through Paleoparasitology: A Review. Genes (Basel) 2023; 14:genes14020303. [PMID: 36833230 PMCID: PMC9957072 DOI: 10.3390/genes14020303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Parasites have affected and coevolved with humans and animals throughout history. Evidence of ancient parasitic infections, particularly, reside in archeological remains originating from different sources dating to various periods of times. The study of ancient parasites preserved in archaeological remains is known as paleoparasitology, and it initially intended to interpret migration, evolution, and dispersion patterns of ancient parasites, along with their hosts. Recently, paleoparasitology has been used to better understand dietary habits and lifestyles of ancient human societies. Paleoparasitology is increasingly being recognized as an interdisciplinary field within paleopathology that integrates areas such as palynology, archaeobotany, and zooarchaeology. Paleoparasitology also incorporates techniques such as microscopy, immunoassays, PCR, targeted sequencing, and more recently, high-throughput sequencing or shotgun metagenomics to understand ancient parasitic infections and thus interpret migration and evolution patterns, as well as dietary habits and lifestyles. The present review covers the original theories developed in the field of paleoparasitology, as well as the biology of some parasites identified in pre-Columbian cultures. Conclusions, as well as assumptions made during the discovery of the parasites in ancient samples, and how their identification may aid in better understanding part of human history, ancient diet, and lifestyles are discussed.
Collapse
|
30
|
Alves FM, Lisboa CV, Dario MA, Novaes RLM, Tiepolo LM, Moratelli R, Jansen AM. Old Methods, New Insights: Reviewing Concepts on the Ecology of Trypanosomatids and Bodo sp. by Improving Conventional Diagnostic Tools. Pathogens 2023; 12:71. [PMID: 36678419 PMCID: PMC9864408 DOI: 10.3390/pathogens12010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Mixed infections by different Trypanosoma species or genotypes are a common and puzzling phenomenon. Therefore, it is critical to refine the diagnostic techniques and to understand to what extent these methods detect trypanosomes. We aimed to develop an accessible strategy to enhance the sensitivity of the hemoculture, as well as to understand the limitations of the hemoculture and the blood clot as a source of parasitic DNA. We investigated trypanosomatid infections in 472 bats by molecular characterization (18S rDNA gene) of the DNA obtained from the blood clot and, innovatively, from three hemoculture sample types: the amplified flagellates ("isolate"), the pellet of the culture harvested in its very initial growth stage ("first aliquot"), and the pellet of non-grown cultures with failure of amplification ("sediment"). We compared (a) the characterization of the flagellates obtained by first aliquots and isolates; and (b) the performance of the hemoculture and blood clot for trypanosomatid detection. We observed: (i) a putative new species of Bodo in Artibeus lituratus; (ii) the potential of Trypanosoma cruzi selection in the hemoculture; (iii) that the first aliquots and sediments overcome the selective pressure of the hemoculture; and (iv) that the blood clot technique performs better than the hemoculture. However, combining these methods enhances the detection of single and mixed infections.
Collapse
Affiliation(s)
- Fernanda Moreira Alves
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Cristiane Varella Lisboa
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Maria Augusta Dario
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | | | - Liliani Marilia Tiepolo
- Laboratory for Analysis and Monitoring of the Atlantic Forest, Coastal Campus, Federal University of Paraná, Matinhos 83260-000, Brazil
| | - Ricardo Moratelli
- Oswaldo Cruz Foundation, Fiocruz Atlantic Forest, Rio de Janeiro 22713-375, Brazil
| | - Ana Maria Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
31
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
32
|
de Araújo-Neto VT, Barbosa-Silva AN, Medeiros Honorato NR, Sales LML, de Cassia Pires R, do Nascimento Brito CR, da Matta Guedes PM, da Cunha Galvão LM, da Câmara ACJ. Molecular identification of Trypanosoma cruzi in domestic animals in municipalities of the State of Rio Grande do Norte, Brazil. Parasitol Res 2023; 122:207-215. [PMID: 36404367 DOI: 10.1007/s00436-022-07719-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/05/2022] [Indexed: 11/22/2022]
Abstract
Trypanosoma cruzi, the etiologic agent of American trypanosomiasis, is a vector-borne zoonotic parasite which has been little studied regarding its infection in domestic animals. In this study, we evaluated the occurrence of natural infection by T. cruzi in farm animals using molecular markers and phylogenetic analysis in blood clot samples of 60 sheep (Ovis aires), 22 goats (Capra hircus), and 14 horses (Equus caballus) in eight municipalities located in an infection risk area in the state of Rio Grande do Norte (RN), Northeast Region of Brazil. Trypanosoma spp. infection was identified by amplifying the rRNA 18S SSU gene in 48.9% of the samples. The SH022 sample showed 99.8% similarity with the Y strain of T. cruzi in phylogeny, grouped in the DTU II clade. Blood clots of sheep, goats, and horses detected T. cruzi kDNA in 28.3% (17/60), 22.7% (5/22), and 15.4% (2/14) of the samples, respectively. These animals were distributed in the three studied mesoregions throughout the state of RN. The identification of natural infection in domestic animals contributes to expand the epidemiological transmission scenario in an area where T. brasiliensis is the main vector.
Collapse
Affiliation(s)
| | | | - Nathan Ravi Medeiros Honorato
- Graduate Program in Parasitology, Federal University of Minas Gerais, Belo Horizonte, Belo Horizonte, 31270-901, Brazil
| | | | - Renata de Cassia Pires
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil
| | | | | | - Lúcia Maria da Cunha Galvão
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil.,Graduate Program in Parasitology, Federal University of Minas Gerais, Belo Horizonte, Belo Horizonte, 31270-901, Brazil
| | - Antonia Claudia Jácome da Câmara
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil. .,Graduate Program in Parasite Biology, Federal University of Rio Grande Do Norte, Natal, 59064-741, Brazil.
| |
Collapse
|
33
|
Castillo-Castañeda AC, Patiño LH, Zuñiga MF, Cantillo-Barraza O, Ayala MS, Segura M, Bautista J, Urbano P, Jaimes-Dueñez J, Ramírez JD. An overview of the trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites infecting several mammal species in Colombia. Parasit Vectors 2022; 15:471. [PMID: 36522757 PMCID: PMC9756507 DOI: 10.1186/s13071-022-05595-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Trypanosomatids are among the most critical parasites for public health due to their impact on human, animal, and plant health. Diseases associated with these pathogens manifest mainly in poor and vulnerable populations, where social, environmental, and biological factors modulate the case incidence and geographical distribution. METHODS We used Sanger and amplicon-based next-generation sequencing (NGS) in samples from different mammals to identify trypanosomatid infections in several departments in Colombia. A total of 174 DNA samples (18 humans, 83 dogs, and 73 wild mammals) were analyzed by conventional PCR using a fragment of the heat shock protein 70 (Hsp70) gene and Sanger sequenced the positive samples. Twenty-seven samples were sent for amplicon-based NGS using the same gene fragment. Data obtained were used to perform diversity analyses. RESULTS One hundred and thirteen samples were positive for PCR by Hsp70 fragment; these corresponded to 22.1% Leishmania spp., 18.6% L. amazonensis, 9.7% L. braziliensis, 14.2% L. infantum, 8% L. panamensis, and 27.4% Trypanosoma cruzi. Comparison of the identified species by the two sequencing technologies used resulted in 97% concordance. Alpha and beta diversity indices were significant, mainly for dogs; there was an interesting index of coinfection events in the analyzed samples: different Leishmania species and the simultaneous presence of T. cruzi and even T. rangeli in one of the samples analyzed. Moreover, a low presence of L. braziliensis was observed in samples from wild mammals. Interestingly, to our knowledge, this is the first report of Leishmania detection in Hydrochaeris hydrochaeris (capybara) in Colombia. CONCLUSIONS The Hsp70 fragment used in this study is an optimal molecular marker for trypanosomatid identification in many hosts and allows the identification of different species in the same sample when amplicon-based sequencing is used. However, the use of this fragment for molecular diagnosis through conventional PCR should be carefully interpreted because of this same capacity to identify several parasites. This point is of pivotal importance in highly endemic countries across South America because of the co-circulation of different genera from the Trypanosomatidae family. The findings show an interesting starting point for One Health approaches in which coevolution and vector-host interactions can be studied.
Collapse
Affiliation(s)
- Adriana C. Castillo-Castañeda
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz H. Patiño
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Maria Fernanda Zuñiga
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omar Cantillo-Barraza
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia ,grid.412881.60000 0000 8882 5269Grupo de Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Colombia
| | - Martha S. Ayala
- grid.419226.a0000 0004 0614 5067Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Maryi Segura
- grid.419226.a0000 0004 0614 5067Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Jessica Bautista
- grid.419226.a0000 0004 0614 5067Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de La Orinoquía, Universidad Internacional del Trópico Americano (Unitropico), Yopal, Colombia
| | - Jeiczon Jaimes-Dueñez
- grid.442158.e0000 0001 2300 1573Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Juan David Ramírez
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia ,grid.59734.3c0000 0001 0670 2351Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
34
|
First Molecular Identification of Trypanosomes and Absence of Babesia sp. DNA in Faeces of Non-Human Primates in the Ecuadorian Amazon. Pathogens 2022; 11:pathogens11121490. [PMID: 36558823 PMCID: PMC9785249 DOI: 10.3390/pathogens11121490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Trypanosomes are a group of pathogens distributed in the continents of Africa, America, Asia and Europe, and they affect all vertebrates including the neotropical primate group. Information about the trypanosome's diversity, phylogeny, ecology and pathology in non-human primates (NHPs) from the neotropical region is scarce. The objective of the study was to identify Trypanosoma and Babesia molecularly in NHPs under the phylogenetic species concept. We extracted DNA from a total of 76 faecal samples collected between 2019 and 2021, from a total of 11 non-human primate species of which 46 are from captive NHPs and 30 are free-living NHPs in the Western Amazon region of Ecuador. We did not detect DNA of Babesia sp. by polymerase chain reaction test in any of the faecal samples. However, the nested-PCR-based method revealed Trypanosoma parasites by ITS gene amplification in two faecal samples; one for the species Leontocebus lagonotus (from the captive population) and a second one for Cebus albifrons (from the free-ranging population). Maximum parsimony and likelihood methods with the Kimura2+G+I model inferred the evolutionary history of the two records, which showed an evolutionary relationship with the genus Trypanosoma. Two sequences are monophyletic with Trypanosoma. However, the number of sequences available in GenBank for their species identification is limited. The two samples present different molecular identifications and evolutionary origins in the tree topology. We are most likely referring to two different species, and two different localities of infection. We suggest that health management protocols should be implemented to prevent the transmission of blood-borne pathogens such as Trypanosoma sp. among captive populations. In addition, these protocols also protect the personnel of wildlife rehabilitation centers working in close proximity to NHPs and vice versa.
Collapse
|
35
|
André MR, Calchi AC, Perles L, Gonçalves LR, Uccella L, Lemes JRB, Nantes WAG, Santos FM, Porfírio GEDO, Barros-Battesti DM, Herrera HM, Machado RZ. Novel Ehrlichia and Hepatozoon genotypes in white-eared opossums (Didelphis albiventris) and associated ticks from Brazil. Ticks Tick Borne Dis 2022; 13:102022. [PMID: 35973262 DOI: 10.1016/j.ttbdis.2022.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 10/31/2022]
Abstract
White-eared opossums (Didelphis albiventris) are well adapted to anthropized areas. The increased contact with domestic animals and humans mediates the transmission of arthropod-borne pathogens. Despite the worldwide occurrence of tick-borne Anaplasmataceae and Hepatozoidae species in a variety of vertebrates, few studies reported serological evidence or molecular detection of theses agentes in marsupials. Up to now, while Ehrlichia/Anaplasma spp. have only been detected in marsupials from Brazil, Hepatozoon spp. have been reported in marsupials from Chile, Australia and Brazil. The present work aimed to investigate, using molecular techniques and blood smear analysis, the presence of Ehrlichia spp., Anaplasma spp., and Hepatozoon sp. in the blood and ticks collected from D. albiventris in urban forest fragments from midwestern Brazil. Between May and December 2017, 43 D. albiventris (27 males and 16 females) were captured for blood and tick collection in the city of Campo Grande, state of Mato Grosso do Sul, midwestern Brazil. Ticks (46 Amblyomma dubitatum nymphs and 24 Amblyomma spp. larvae) were collected from 14 out 43 (32.5%) of the white-eared opossums. Panoptic-stained blood smears were performed using peripheral blood (tail tip) of the captured opossums. DNA extracted from blood and tick samples were subjected to PCR/qPCR assays for Anaplasmataceae agents (rrs, gltA, groEL, sodB, and dsb genes, and 23S-5S intergenic region) and Hepatozoon spp. (18S rRNA gene), followed by Sanger sequencing, BLASTn and phylogenetic analyses. An inclusion resembling Ehrlichia morulae was found in a white-eared opossum's monocyte from a blood smear stained with Panoptic. Five (11.63% [5/43]) white-eared opossums' blood samples and 7 (25% [7/28]) tick samples (2 pools of Amblyomma spp. larvae and 5 pools of A. dubitatum nymphs) were positive for Anaplasmataceae via a PCR assay targeting the conserved rrs gene. Phylogenetic analysis based on the rrs gene positioned three sequences obtained from opossums and ticks together as a subclade within the Ehrlichia canis clade. However, all samples were negative in a qPCR assay specific for E. canis based on the dsb gene. Phylogenetic analyses positioned the gltA and 23S-5S ITS sequences obtained from opossums' blood samples in a separate clade from the other validated Ehrlichia species. One (2.3% [1/43]) opossum blood sample was positive for the 18S rRNA gene of Hepatozoon sp. The phylogenetic analysis positioned the Hepatozoon sp. sequence obtained from a D. albiventris specimen in a clade with a sequence previously detected in a black storm petrel (Oceanodroma melania) from Mexico. All the other sequences of Hepatozoon sp. previously detected in marsupials from Brazil were positioned in a separated clade. The present work showed the occurrence of putative novel genotypes of Ehrlichia sp. and Hepatozoon sp. in white-eared opossums and associated A. dubitatum ticks from midwestern Brazil.
Collapse
Affiliation(s)
- Marcos Rogério André
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil.
| | - Ana Cláudia Calchi
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Livia Perles
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Luiz Ricardo Gonçalves
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Lucas Uccella
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Jhessye Rafaela Batista Lemes
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Wesley Arruda Gimenes Nantes
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Filipe Martins Santos
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Grasiela Edith de Oliveira Porfírio
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Darci Moraes Barros-Battesti
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Heitor Miraglia Herrera
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rosangela Zacarias Machado
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| |
Collapse
|
36
|
Depickère S, Villacís AG, Santillán-Guayasamín S, Callapa Rafael JE, Brenière SF, Revollo Zepita S. Rhodnius (Stål, 1859) (Hemiptera, Triatominae) genus in Bolivian Amazonia: a risk for human populations? PARASITES & VECTORS 2022; 15:307. [PMID: 36038947 PMCID: PMC9426019 DOI: 10.1186/s13071-022-05423-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
Background Chagas disease, one of the most important neglected tropical diseases in the countries of Latin America, is considered to be a particularly important public health concern in the Amazon region due to increases in the number of outbreaks of acute Chagas disease and increased local transmission in the last 20 years. However, relative to other countries, in Bolivia there is little information available on its transmission in the Amazon region. The aim of this study was to investigate the infestation of palm trees, the main habitat of Triatominae in the region, in several localities, to evaluate the danger they represent to inhabitants. Methods Triatominae were collected using live bait traps left overnight in six localities in Pando and Beni Departments, Bolivia. DNA extraction and sequencing were used to establish the Triatominae species (Cytb, 16S and 28S-D2 gene fragments), and the blood meal sources (Cytb fragment). Trypanosoma sp. infection was analyzed by sequencing gene fragments (GPX, GPI, HMCOAR, LAP, PDH and COII) or by mini-exon multiplex PCR. Results A total of 325 Rhodnius were captured (97.3% of nymphs) from the 1200 traps placed in 238 palm trees and 32 burrows/ground holes. Sequence analyses on DNA extracted from 114 insects and phylogeny analysis identified two triatomine species: Rhodnius stali (17%) and Rhodnius montenegrensis (equated to Rhodnius robustus II, 83%). These were found in palm trees of the genera Attalea (69%), Astrocaryum (13%), Copernicia (12%), Euterpe (2%) and Acrocomia (1%). The infection rate was around 30% (165 analyzed insects), with 90% of analyzed insects infected by Trypanosoma cruzi (only the TcI discrete typing unit was detected), 3% infected by Trypanosoma rangeli (first time found in Bolivian Triatominae) and 7% infected by mixed T. cruzi (TcI)-T. rangeli. Rhodnius specimens fed on Didelphidae, rodents, gecko and humans. Conclusions The results of this study highlight the epidemiological importance of Rhodnius in the Bolivian Amazon region. The huge geographical distribution of Rhodnius and their proximity to the human dwellings, high infection rate and frequent meals on the human population highlight a risk of transmission of Chagas disease in the region. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05423-3.
Collapse
|
37
|
Romanelli M, Amaral M, Thevenard F, Santa Cruz LM, Regasini LO, Migotto AE, Lago JHG, Tempone AG. Mitochondrial Imbalance of Trypanosoma cruzi Induced by the Marine Alkaloid 6-Bromo-2'-de- N-Methylaplysinopsin. ACS OMEGA 2022; 7:28561-28570. [PMID: 35990437 PMCID: PMC9387129 DOI: 10.1021/acsomega.2c03395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/09/2023]
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects seven million people worldwide and lacks effective treatments. Using bioactivity-guided fractionation, NMR, and electrospray ionization-high resolution mass spectrometry (ESI-HRMS) spectral analysis, the indole alkaloid 6-bromo-2'-de-N-methylaplysinopsin (BMA) was isolated and chemically characterized from the marine coral Tubastraea tagusensis. BMA was tested against trypomastigotes and intracellular amastigotes of T. cruzi, resulting in IC50 values of 62 and 5.7 μM, respectively, with no mammalian cytotoxicity. The mechanism of action studies showed that BMA induced no alterations in the plasma membrane permeability but caused depolarization of the mitochondrial membrane potential, reducing ATP levels. Intracellular calcium levels were also reduced after the treatment, which was associated with pH alteration of acidocalcisomes. Using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF)/MS analysis, alterations of mass spectral signals were observed after treatment with BMA, suggesting a different mechanism from benznidazole. In silico pharmacokinetic-pharmacodynamic (PKPD) parameters suggested a drug-likeness property, supporting the promising usefulness of this compound as a new hit for optimizations.
Collapse
Affiliation(s)
- Maiara
M. Romanelli
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| | - Maiara Amaral
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| | - Fernanda Thevenard
- Centre
of Natural Sciences and Humanities, Federal
University of ABC (UFABC), Avenida dos Estados 5001, Santo Andre, SP 09210-580, Brazil
| | - Lucas M. Santa Cruz
- Department
of Organic Contaminants, Instituto Adolfo
Lutz, Av Dr Arnaldo 355, São Paulo, SP 01246-000, Brazil
| | - Luis O. Regasini
- Department
of Chemistry and Environmental Sciences, Institute of Biosciences,
Humanities and Exact Sciences, Universidade
Estadual Paulista, R. Cristóvão Colombo 2265, São
Jose do Rio Preto, SP 15054-000, Brazil
| | - Alvaro E. Migotto
- Centre
for Marine Biology, Universidade de São
Paulo, Rodovia Manoel Hypólito do Rego, Km 131, São Sebastião, São Paulo, SP 11600-000, Brazil
| | - João Henrique G. Lago
- Centre
of Natural Sciences and Humanities, Federal
University of ABC (UFABC), Avenida dos Estados 5001, Santo Andre, SP 09210-580, Brazil
| | - Andre G. Tempone
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| |
Collapse
|
38
|
de Arias AR, Monroy C, Guhl F, Sosa-Estani S, Santos WS, Abad-Franch F. Chagas disease control-surveillance in the Americas: the multinational initiatives and the practical impossibility of interrupting vector-borne Trypanosoma cruzi transmission. Mem Inst Oswaldo Cruz 2022; 117:e210130. [PMID: 35830010 PMCID: PMC9261920 DOI: 10.1590/0074-02760210130] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022] Open
Abstract
Chagas disease (CD) still imposes a heavy burden on most Latin American countries. Vector-borne and mother-to-child transmission cause several thousand new infections per year, and at least 5 million people carry Trypanosoma cruzi. Access to diagnosis and medical care, however, is far from universal. Starting in the 1990s, CD-endemic countries and the Pan American Health Organization-World Health Organization (PAHO-WHO) launched a series of multinational initiatives for CD control-surveillance. An overview of the initiatives’ aims, achievements, and challenges reveals some key common themes that we discuss here in the context of the WHO 2030 goals for CD. Transmission of T. cruzi via blood transfusion and organ transplantation is effectively under control. T. cruzi, however, is a zoonotic pathogen with 100+ vector species widely spread across the Americas; interrupting vector-borne transmission seems therefore unfeasible. Stronger surveillance systems are, and will continue to be, needed to monitor and control CD. Prevention of vertical transmission demands boosting current efforts to screen pregnant and childbearing-aged women. Finally, integral patient care is a critical unmet need in most countries. The decades-long experience of the initiatives, in sum, hints at the practical impossibility of interrupting vector-borne T. cruzi transmission in the Americas. The concept of disease control seems to provide a more realistic description of what can in effect be achieved by 2030.
Collapse
Affiliation(s)
| | - Carlota Monroy
- Universidad de San Carlos, Laboratorio de Entomología y Parasitología Aplicadas, Ciudad de Guatemala, Guatemala
| | - Felipe Guhl
- Universidad de los Andes, Facultad de Ciencias, Centro de Investigaciones en Microbiología y Parasitología Tropical, Bogotá, Colombia
| | - Sergio Sosa-Estani
- Drugs for Neglected Diseases initiative Latin America, Rio de Janeiro, RJ, Brasil.,Centro de Investigaciones en Epidemiología y Salud Pública, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Walter Souza Santos
- Ministério da Saúde, Secretaria de Vigilância em Saúde, Instituto Evandro Chagas, Laboratório de Epidemiologia das Leishmanioses, Ananindeua, PA, Brasil
| | - Fernando Abad-Franch
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Medicina Tropical, Brasília, DF, Brasil
| |
Collapse
|
39
|
Dario MA, Furtado C, Lisboa CV, de Oliveira F, Santos FM, D’Andrea PS, Roque ALR, Xavier SCDC, Jansen AM. Trypanosomatid Richness Among Rats, Opossums, and Dogs in the Caatinga Biome, Northeast Brazil, a Former Endemic Area of Chagas Disease. Front Cell Infect Microbiol 2022; 12:851903. [PMID: 35795183 PMCID: PMC9251133 DOI: 10.3389/fcimb.2022.851903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Parasites are important components of the immense n-dimensional trophic network that connects all living beings because they, among others, forge biodiversity and deeply influence ecological evolution and host behavior. In this sense, the influence of Trypanosomatidae remains unknown. The aim of this study was to determine trypanosomatid infection and richness in rats, opossums, and dogs in the semiarid Caatinga biome. We submitted DNA samples from trypanosomatids obtained through axenic cultures of the blood of these mammals to mini exon multiplex-PCR, Sanger, and next-generation sequencing targeting the 18S rDNA gene. Phylogenetic analyses were performed to identify genetic diversity in the Trypanosomatidae family. Shannon, Simpson, equability, and beta-diversity indices were calculated per location and per mammalian host. Dogs were surveyed for trypanosomatid infection through hemocultures and serological assays. The examined mammal species of this area of the Caatinga biome exhibited an enormous trypanosomatid species/genotypes richness. Ten denoised Operational Taxonomic Units (ZOTUs), including three species (Trypanosoma cruzi, Trypanosoma rangeli and Crithidia mellificae) and one Trypanosoma sp. five genotypes/lineages (T. cruzi DTU TcI, TcII, and TcIV; T. rangeli A and B) and four DTU TcI haplotypes (ZOTU1, ZOTU2, ZOTU5, and ZOTU10 merged), as well as 13 Amplicon Sequence Variants (ASVs), including five species (T. cruzi, T. rangeli, C. mellificae, Trypanosoma dionisii, and Trypanosoma lainsoni), five genotypes/lineages (same as the ZOTUs) and six DTU TcI haplotypes (ASV, ASV1, ASV2, ASV3, ASV5 and ASV13), were identified in single and mixed infections. We observed that trypanosomatids present a broad host spectrum given that species related to a single host are found in other mammals from different taxa. Concomitant infections between trypanosomatids and new host-parasite relationships have been reported, and this immense diversity in mammals raised questions, such as how this can influence the course of the infection in these animals and its transmissibility. Dogs demonstrated a high infection rate by T. cruzi as observed by positive serological results (92% in 2005 and 76% in 2007). The absence of positive parasitological tests confirmed their poor infectivity potential but their importance as sentinel hosts of T. cruzi transmission.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Maria Augusta Dario,
| | - Carolina Furtado
- Genetic Laboratory, National Cancer Institute, Rio de Janeiro, Brazil
| | - Cristiane Varella Lisboa
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Felipe de Oliveira
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Filipe Martins Santos
- Environmental Sciences and Agricultural Sustainability Postgraduation, Dom Bosco Catholic University, Campo Grande, Brazil
| | - Paulo Sérgio D’Andrea
- Wild Mammal Reservoirs Biology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - André Luiz Rodrigues Roque
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Ana Maria Jansen
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Nascimento KCS, Souza SMDO, Fagundes A, Silva RMM, de Oliveira Junior FOR, Corte-Real S, da Silva Barros JH. Aflagellar Epimastigote of Trypanosoma caninum: Biological and Ultrastructural Study of this Atypical Evolutionary Form. Acta Parasitol 2022; 67:912-920. [PMID: 35380402 DOI: 10.1007/s11686-022-00540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Trypanosoma caninum exhibits atypical epimastigote forms under axenic conditions. This study aimed to analyze this evolutionary form under different cultivation conditions and provide more information about this evolutionary form. METHODS We selected a T. caninum isolate with a high percentage of aflagellar epimastigote forms in axenic cultures. Two separate growth curves were generated for T. caninum cultured in Schneider axenic medium and co-cultured with the DH82 cell line, followed by analysis and quantification of evolutionary forms using bright field microscopy. In addition, ultrastructural analysis of T. caninum was performed under both cultivation conditions. RESULTS The growth curves of T. caninum under axenic and co-cultivation conditions exhibited similar profiles. However, in the axenic culture, the number of parasites was three times higher at the peak of the exponential phase than in the co-culture. In contrast to that in the axenic culture, in which only the epimastigote forms were observed along the entire curve, during co-cultivation with the DH82 cell line, differentiation was observed for the trypomastigote and spheromastigote forms in low proportions. These results demonstrated that when cultured alone, the T. caninum isolate preserved the aflagellar epimastigote form, but in the presence of DH82 canine macrophages, they differentiated into evolutionary forms, particularly trypomastigote forms. Moreover, this study is the first to describe the presence of lipid bodies, structure described as the parasite's nutritional reserve, throughout the body of T. caninum. CONCLUSIONS These findings describe biological and ultrastructural aspects of epimastigote aflagellar and suggest that this evolutionary form may be involved in the biological cycle of T. caninum, still unknown.
Collapse
Affiliation(s)
| | | | - Aline Fagundes
- Clinical Research and Surveillance in Leishmaniasis Laboratory, Infectology National Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roger Magno Macedo Silva
- Rudolf Barth Electron Microscopy Platform, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Suzana Corte-Real
- Structural Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
41
|
Matos GM, Lewis MD, Talavera-López C, Yeo M, Grisard EC, Messenger LA, Miles MA, Andersson B. Microevolution of Trypanosoma cruzi reveals hybridization and clonal mechanisms driving rapid genome diversification. eLife 2022; 11:75237. [PMID: 35535495 PMCID: PMC9098224 DOI: 10.7554/elife.75237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Protozoa and fungi are known to have extraordinarily diverse mechanisms of genetic exchange. However, the presence and epidemiological relevance of genetic exchange in Trypanosoma cruzi, the agent of Chagas disease, has been controversial and debated for many years. Field studies have identified both predominantly clonal and sexually recombining natural populations. Two of six natural T. cruzi lineages (TcV and TcVI) show hybrid mosaicism, using analysis of single-gene locus markers. The formation of hybrid strains in vitro has been achieved and this provides a framework to study the mechanisms and adaptive significance of genetic exchange. Using whole genome sequencing of a set of experimental hybrids strains, we have confirmed that hybrid formation initially results in tetraploid parasites. The hybrid progeny showed novel mutations that were not attributable to either (diploid) parent showing an increase in amino acid changes. In long-term culture, up to 800 generations, there was a variable but gradual erosion of progeny genomes towards triploidy, yet retention of elevated copy number was observed at several core housekeeping loci. Our findings indicate hybrid formation by fusion of diploid T. cruzi, followed by sporadic genome erosion, but with substantial potential for adaptive evolution, as has been described as a genetic feature of other organisms, such as some fungi.
Collapse
Affiliation(s)
- Gabriel Machado Matos
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianopolis, Brazil.,Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Michael D Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Talavera-López
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.,Institute of Computational Biology, Computational Health Centre, Helmholtz Munich, Munich, Germany
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Edmundo C Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - Louisa A Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
42
|
Alarcón de Noya B, Díaz-Bello Z, Ruiz-Guevara R, Noya O. Chagas Disease Expands Its Epidemiological Frontiers From Rural to Urban Areas. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.799009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The infection with the hemoflagellate parasite Trypanosoma cruzi originates from America where the wildlife cycle remains to alternate between mammals and hematophagous triatomines. Transmission through contamination of the bite site by vector feces containing highly infectious forms of parasite or direct ingestion of T. cruzi-infected triatomines appear to be the dominant transmission mechanisms. Man joins the transmission when he enters this wild environment or takes the leaves of palms carrying vectors to build houses. Rural Chagas disease develops associated with populations of low economic resources, with infection and reinfection of vector bites since childhood, and the consequent evolution toward chronic cases in adults, when there is little therapeutic benefit to infected people. The progressive migration of people from rural to urban areas and the adaptation of vectors to the peripheries of cities due to displacement caused by deforestation or urbanization that has favored the presence of enzootic cycles with Panstrongylus geniculatus as the most widely distributed species and mammals (synanthropic and domestic) allow vector transmission by ingestion of food contaminated with excrements containing infectious trypomastigotes as the dominant transmission mechanism in the urban environment. Human-to-human transmissions through vertical mother–child infection, transfusions, organ transplants, and the possibility of sexual transmission, transform the epidemiology and the clinical evolution of Chagas disease in the urban environment. Vectors of American trypanosomiasis are no longer restricted to the endemic area, but its presence has been demonstrated in nonendemic areas of the United States, Asia, and other latitudes. The worldwide plague of bedbugs (Cimex lectularius) threatens the possibility of expansion of transmission since they are vectors susceptible to infection, transmission to mammals, trans-stadial penetration, and not being affected by T. cruzi infection at least experimentally. These factors, added to the presence of an unknown number of migrating Latin American asymptomatic carriers together with the presence of triatomines in other continents, have initiated the globalization of a pathology originating in the American continent. Only with an integrative approach, based on new and better tolerated and efficient drugs, vaccines and residual action insecticides, all of them included in an epidemiological surveillance program.
Collapse
|
43
|
Worldwide Control and Management of Chagas Disease in a New Era of Globalization: a Close Look at Congenital Trypanosoma cruzi Infection. Clin Microbiol Rev 2022; 35:e0015221. [PMID: 35239422 PMCID: PMC9020358 DOI: 10.1128/cmr.00152-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Population movements have turned Chagas disease (CD) into a global public health problem. Despite the successful implementation of subregional initiatives to control vectorial and transfusional Trypanosoma cruzi transmission in Latin American settings where the disease is endemic, congenital CD (cCD) remains a significant challenge. In countries where the disease is not endemic, vertical transmission plays a key role in CD expansion and is the main focus of its control. Although several health organizations provide general protocols for cCD control, its management in each geopolitical region depends on local authorities, which has resulted in a multitude of approaches. The aims of this review are to (i) describe the current global situation in CD management, with emphasis on congenital infection, and (ii) summarize the spectrum of available strategies, both official and unofficial, for cCD prevention and control in countries of endemicity and nonendemicity. From an economic point of view, the early detection and treatment of cCD are cost-effective. However, in countries where the disease is not endemic, national health policies for cCD control are nonexistent, and official regional protocols are scarce and restricted to Europe. Countries of endemicity have more protocols in place, but the implementation of diagnostic methods is hampered by economic constraints. Moreover, most protocols in both countries where the disease is endemic and those where it is not endemic have yet to incorporate recently developed technologies. The wide methodological diversity in cCD diagnostic algorithms reflects the lack of a consensus. This review may represent a first step toward the development of a common strategy, which will require the collaboration of health organizations, governments, and experts in the field.
Collapse
|
44
|
The influence of abiotic and biotic variables on the patent parasitemias of Trypanosoma spp. in Thrichomys fosteri (Rodentia: Echimyidae) in the southern Pantanal. Parasitol Res 2022; 121:1719-1724. [DOI: 10.1007/s00436-022-07522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
45
|
Julião GR, Bragança MAH, Torres PG, Lima L, Neves RDA, Nobre JMS, Vergara-Meza JG, Basano SDA, Moraes FA, Baldez MADG, Tada MS, Lima AAD, Costa JDN, Gil LHS, Cunha AEFLD, Camargo EP, Teixeira MMG. Acute Chagas Disease Caused by Trypanosoma cruzi TcIV and Transmitted by Panstrongylus geniculatus: Molecular Epidemiological Insights Provided by the First Documented Autochthonous Case in Rondônia, Southwestern Amazonia, Brazil. Vector Borne Zoonotic Dis 2022; 22:244-251. [DOI: 10.1089/vbz.2021.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Genimar Rebouças Julião
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Laboratório de Entomologia-I, Porto Velho, Brasil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Fiocruz Rondônia, Porto Velho, Brasil
| | | | | | - Luciana Lima
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Fiocruz Rondônia, Porto Velho, Brasil
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | | | | | - José Gabriel Vergara-Meza
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Fiocruz Rondônia, Porto Velho, Brasil
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Sérgio de Almeida Basano
- Centro de Medicina Tropical de Rondônia, Porto Velho, Brasil
- Centro Universitário São Lucas, Porto Velho, Brasil
| | | | | | - Mauro Shugiro Tada
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Fiocruz Rondônia, Porto Velho, Brasil
- Centro de Pesquisa em Medicina Tropical de Rondônia, Porto Velho, Brasil
- Instituto de Pesquisa em Patologias Tropicais de Rondônia, Porto Velho, Brasil
| | - Alzemar Alves de Lima
- Centro Universitário São Lucas, Porto Velho, Brasil
- Centro de Pesquisa em Medicina Tropical de Rondônia, Porto Velho, Brasil
| | - Joana D'Arc Neves Costa
- Agência Estadual de Vigilância em Saúde de Rondônia, Porto Velho, Brasil
- Centro de Pesquisa em Medicina Tropical de Rondônia, Porto Velho, Brasil
| | | | | | - Erney Plessmann Camargo
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Fiocruz Rondônia, Porto Velho, Brasil
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Marta Maria Geraldes Teixeira
- Instituto Nacional de Epidemiologia da Amazônia Ocidental—INCT EpiAmO, Fiocruz Rondônia, Porto Velho, Brasil
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
46
|
Pineda VJ, González KA, Perea M, Rigg C, Calzada JE, Chaves LF, Vásquez V, Samudio F, Gottdenker N, Saldaña A. Surveillance and genotype characterization of zoonotic trypanosomatidae in Didelphis marsupialis in two endemic sites of rural Panama. Int J Parasitol Parasites Wildl 2022; 17:20-25. [PMID: 34917470 PMCID: PMC8668424 DOI: 10.1016/j.ijppaw.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022]
Abstract
Didelphis marsupialis has been reported as a competent reservoir for trypanosomatid parasites infections. The aim of this study was to measure Trypanosoma cruzi, T. rangeli, and Leishmania spp. infection rates and to characterize discrete typing units (DTUs) of T. cruzi in D. marsupialis from two Chagas disease endemic sites in Panama. Blood from 57 wild-caught D. marsupialis were examined from two rural communities, Las Pavas (N = 18) and Trinidad de las Minas (N = 39). Twenty-two (38.60%) opossums were positive for flagellates by general hemoculture. T. cruzi infection was confirmed by positive hemoculture and/or kDNA based PCR performed in 31/57 (54.39%) blood samples from opossums. T. rangeli infection was confirmed by hemoculture and/or TrF/R2-Primer PCR assay applied on 12/57 (21.05%) blood samples. Nine (15.79%) D. marsupialis harbored T. cruzi/T. rangeli coinfections. All opossums tested negative for Leishmania spp. by PCR assays based on kDNA and HSP70 gene amplification. There was a significant association between T. cruzi infection and site (Fisher exact test, p = 0.02), with a higher proportion of T. cruzi infected opossums in Las Pavas (77.78%, n = 14/18) compared to Trinidad de las Minas (43.59%, n = 17/39). A significant association was found between habitat type and T. cruzi infection in opossums across both communities, (X2 = 6.91, p = 0.01, df = 1), with a higher proportion of T. cruzi infection in opossums captured in forest remnants (76%, 19/25) compared to peridomestic areas (37.5%, 12/32). T. rangeli detection, but not T. cruzi detection, may be improved by culture followed by PCR. TcI was the only DTU detected in 22 T. cruzi samples using conventional and real-time PCR. Eight T. rangeli positive samples were characterized as KP1(-)/lineage C. Trypanosome infection data from this common synanthropic mammal provides important information for improved surveillance and management of Chagas disease in endemic regions of Panama. Trypanosoma cruzi infection is common in Didelphis marsupialis from the studied sites. T. rangeli infection was confirmed in many opossums. All opossums tested negative for Leishmania infection. A higher proportion of T. cruzi infected opossums came from forest remnants. T. cruzi parasites were characterized as TcI and T. rangeli as KP1(-)/lineage C.
Collapse
Affiliation(s)
- Vanessa J. Pineda
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Avenida Justo Arosemena, Panama, Panama
| | - Kadir A. González
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Avenida Justo Arosemena, Panama, Panama
| | - Milixa Perea
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Avenida Justo Arosemena, Panama, Panama
| | - Chystrie Rigg
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Avenida Justo Arosemena, Panama, Panama
| | - José E. Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Avenida Justo Arosemena, Panama, Panama
- Facultad de Medicina Veterinaria, Universidad de Panamá, Panama
| | - Luis F. Chaves
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Avenida Justo Arosemena, Panama, Panama
| | - Vanessa Vásquez
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Avenida Justo Arosemena, Panama, Panama
| | - Franklyn Samudio
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Avenida Justo Arosemena, Panama, Panama
| | - Nicole Gottdenker
- Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA
- Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
- Corresponding author. Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Avenida Justo Arosemena, Panama, Panama
- Centro de Investigación y Diagnóstico de Enfermedades Parasitarias (CIDEP), Facultad de Medicina, Universidad de Panamá, Panama
- Corresponding author. Instituto Conmemorativo Gorgas de Estudios de la Salud, Avenida Justo Arosemena, Calle 35, Calidonia, 0816-02593, Panama.
| |
Collapse
|
47
|
Guimarães RCS, Marialva EF, Feijó JA, Pereira-Silva JW, Martins-Campos KM, Gontijo CMF, Pereira AAS, Rios-Velasquez CM, Pessoa FAC. Trypanosomatids in Phlebotomine Sand Flies (Diptera: Phlebotominae) From Anthropic and Sinantropic Landscapes in a Rural Settlement in the Brazilian Amazon. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:681-692. [PMID: 35022773 DOI: 10.1093/jme/tjab208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 06/14/2023]
Abstract
Trypanosomatids (Kinetoplastida:Trypanosomatidae) protozoa are a diverse group of obligate parasites. The genera Trypanosoma and Leishmania are the most studied because of their medical importance. This work aims to evaluate the effects of anthropization processes on the composition of the phlebotomine sand fly fauna and the natural infection by Trypanosomatids, with emphasis on Leishmania. At all 3,186 sand flies were collected, distributed in 13 genera and 52 species, being Ny. umbratilis the most abundant species. There was no difference in the diversity between canopy and soil environments. The species abundance and richness were higher in the forest environment while species diversity and evenness were highest in the forest edge. The ITS1 region was used by PCR-RFLP to identify the fragment profiles of Leishmania species, followed by genetic sequencing. Here were analyzed 100 pools of female sand flies, being six positive for DNA parasite. PCR-RFLP fragment patterns similar to Endotrypanum sp. were observed in Nyssomyia anduzei, Psychodopygus amazonensis and Lutzomyia gomezi, and those fragments similar to Leishmania (Leishmania) amazonensis were observed in Bichromomyia flaviscutellata. ITS1 sequencing confirmed the presence of Leishmania sp. in Bi. flaviscutellata, and Leishmania (Viannia) naiffi in Ny. anduzei, Psychodopygus amazonensis, and Lu. gomezi. This is the first record of Lu. gomezi and Ps. amazonensis infection by L. naiffi in the State of Amazonas. These results show the trypanosomatid infection in sandflies from different landscapes in a rural settlement, and the finding of species infected with L.(V.) naiffi suggest that they can develop a role in the transmission cycle of leishmaniasis.
Collapse
Affiliation(s)
- R C S Guimarães
- Programa de Pós-Graduação em Condições de Vida e Situações de Saúde na Amazônia - PPGVIDA. Instituto Leônidas e Maria Deane - ILMD Fiocruz Amazônia, Rua Teresina, 476 Adrianópolis, Manaus, Amazonas, Brasil
| | - E F Marialva
- Laboratório de Ecologia de Doenças Transmissíveis na Amazonia - EDTA Instituto Leônidas e Maria Deane - ILMD Fiocruz Amazônia, Rua Teresina, 476 Adrianópolis, Manaus, Amazonas, Brasil
| | - J A Feijó
- Laboratório de Ecologia de Doenças Transmissíveis na Amazonia - EDTA Instituto Leônidas e Maria Deane - ILMD Fiocruz Amazônia, Rua Teresina, 476 Adrianópolis, Manaus, Amazonas, Brasil
| | - J W Pereira-Silva
- Laboratório de Ecologia de Doenças Transmissíveis na Amazonia - EDTA Instituto Leônidas e Maria Deane - ILMD Fiocruz Amazônia, Rua Teresina, 476 Adrianópolis, Manaus, Amazonas, Brasil
| | - K M Martins-Campos
- Laboratório de Ecologia de Doenças Transmissíveis na Amazonia - EDTA Instituto Leônidas e Maria Deane - ILMD Fiocruz Amazônia, Rua Teresina, 476 Adrianópolis, Manaus, Amazonas, Brasil
| | - C M F Gontijo
- Grupo de Estudos em Leishmanioses, Centro de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brasil
| | - A A S Pereira
- Grupo de Estudos em Leishmanioses, Centro de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brasil
| | - C M Rios-Velasquez
- Laboratório de Ecologia de Doenças Transmissíveis na Amazonia - EDTA Instituto Leônidas e Maria Deane - ILMD Fiocruz Amazônia, Rua Teresina, 476 Adrianópolis, Manaus, Amazonas, Brasil
| | - F A C Pessoa
- Laboratório de Ecologia de Doenças Transmissíveis na Amazonia - EDTA Instituto Leônidas e Maria Deane - ILMD Fiocruz Amazônia, Rua Teresina, 476 Adrianópolis, Manaus, Amazonas, Brasil
| |
Collapse
|
48
|
Molecular Detection of Trypanosoma kaiowa in Tabanus triangulum (Diptera: Tabanidae) from the Coastal Plain of Rio Grande do Sul, Southern Brazil. Acta Parasitol 2022; 67:518-522. [PMID: 34196921 DOI: 10.1007/s11686-021-00440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The species of the genus Trypanosoma are carried and transmitted by horseflies parasitizing a high diversity of vertebrates. In the Coastal Plain of Rio Grande do Sul, southern Brazil, Tabanus triangulum is the most abundant species and, similarly to the other species of horseflies, there is little knowledge about its vector competence. Therefore, this study aimed to screen the field-collected T. triangulum for the presence of Trypanosoma, to estimate infectivity. METHODS Horseflies were sampled by the Malaise trap in the forest fragments at the coastal plain and DNA was extracted from whole body flies. The Polymerase Chain Reaction was performed. RESULTS Horseflies presented amplification of 18S ribosomal gene-specific of Trypanosoma species. DNA sequencing and phylogenetic analysis positioned the strains in the Kaiowa clade with Trypanosoma kaiowa, associated with the crocodilian clade of Trypanosoma. CONCLUSION This study represents the first report of the presence of the Tr. kaiowa in T. triangulum and the expansion of the parasite's range further south in South America.
Collapse
|
49
|
Rodrigues ES, Santos GQ, da Silva MV, Barros JHS, Bernardo AR, Diniz RL, Rubim NM, Roque ALR, Jansen AM, Silva ED, Xavier SCC. Chagas Immunochromatographic Rapid Test in the Serological Diagnosis of Trypanosoma cruzi Infection in Wild and Domestic Canids. Front Cell Infect Microbiol 2022; 12:835383. [PMID: 35273924 PMCID: PMC8902141 DOI: 10.3389/fcimb.2022.835383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Canis lupus familiaris (domestic dog) represents a reliable sentinel for the occurrence of a well-established transmission cycle of Trypanosoma cruzi among wild mammals in the surroundings and, consequently, where the risk of human infection exists. Serological diagnosis is the chosen method to identify T. cruzi infection in dogs that, in Brazil, rarely present positive parasitological tests. The use of recombinant chimeric parasitic antigens results in a sensitive and specific serological diagnostic test in contrast to the use of crude T. cruzi antigens. Our objective was to evaluate the Chagas/Bio-Manguinhos Lateral Flow Immunochromatographic Rapid Test (Chagas-LFRT) for the diagnosis of T. cruzi infection in domestic dogs and the potential of application of this diagnostic platform to wild canid species. Two recombinant proteins (IBMP-8.1 and IBMP-8.4) that displayed the best performance in the enzyme immunoassay (ELISA) in previous studies were tested in a platform with two diagnostic bands. A panel of 281 dog serum samples was evaluated: 133 positive for T. cruzi by serological diagnosis, including 20 samples with positive blood cultures belonging to different discrete typing units (DTUs); 129 negative samples; and 19 samples from dogs infected by other trypanosomatids: Leishmania infantum, Trypanosoma rangeli, Trypanosoma caninum and Crithidia mellificae, in addition to samples infected by Anaplasma platys, Dirofilaria immitis and Erlichia sp. that were employed to evaluate eventual cross-reactions. We also evaluated the Chagas-LFRT to detect T. cruzi infection in 9 serum samples from six wild canid species. We observed that the intensity pattern of the bands was directly proportional to the serological titer observed in IFAT. The sensitivity was 94%, the specificity was 91% according to the ROC curve, and the defined cutoff was an optical density of 4.8. The agreement obtained was considered substantial by the kappa analysis (84%). From T. cruzi positive hemoculture samples, 88.9% were positive by Chagas-LFRT. The test was efficient in recognizing infections by five of the six T. cruzi DTUs. Cross-reactions were not observed in infections by L. infantum, T. rangeli, T. caninum and D. immitis; however, they were observed in sera of dogs infected by Crithidia mellificae, Anaplasma sp. and Erlichia sp. A strong reaction was observed when serum samples from wild canids were submitted to the Protein A affinity test, confirming its applicability for these species. This test will allow rapid preventive actions in areas with high risk to the emergence of Chagas disease in a safer, reliable, low-cost and immediate manner, without the need for more complex laboratory tests.
Collapse
Affiliation(s)
- Esthefany S. Rodrigues
- Laboratory of Tripanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Institutional Program for Initiation Scholarships in Technological Development and Innovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro, Brazil
| | - Gilbert Q. Santos
- Pedagogical Coordination Section, Army Complementary Training School and Salvador Military College, EsFCEx, Salvador, Brazil
| | - Marlon Vicente da Silva
- Laboratory of Tripanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Juliana H. S. Barros
- Laboratory of Tripanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Aline R. Bernardo
- Diagnostic Technology Laboratory, Immunobiological Technology Institute (Bio-Manguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Rafaela L. Diniz
- Diagnostic Technology Laboratory, Immunobiological Technology Institute (Bio-Manguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Nara M. Rubim
- Diagnostic Technology Laboratory, Immunobiological Technology Institute (Bio-Manguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - André L. R. Roque
- Laboratory of Tripanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Chagas Disease Translational Research Program, Fio-Chagas, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratory of Tripanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Edimilson D. Silva
- Diagnostic Technology Laboratory, Immunobiological Technology Institute (Bio-Manguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Samanta C. C. Xavier
- Laboratory of Tripanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Chagas Disease Translational Research Program, Fio-Chagas, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, Brazil
- *Correspondence: Samanta C. C. Xavier,
| |
Collapse
|
50
|
Dario MA, Lisboa CV, Xavier SCDC, D’Andrea PS, Roque ALR, Jansen AM. Trypanosoma Species in Small Nonflying Mammals in an Area With a Single Previous Chagas Disease Case. Front Cell Infect Microbiol 2022; 12:812708. [PMID: 35223545 PMCID: PMC8873152 DOI: 10.3389/fcimb.2022.812708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022] Open
Abstract
Trypanosomatids are hemoflagellate parasites that even though they have been increasingly studied, many aspects of their biology and taxonomy remain unknown. The aim of this study was to investigate the Trypanosoma sp. transmission cycle in nonflying small mammals in an area where a case of acute Chagas disease occurred in Mangaratiba municipality, Rio de Janeiro state. Three expeditions were conducted in the area: the first in 2012, soon after the human case, and two others in 2015. Sylvatic mammals were captured and submitted to blood collection for trypanosomatid parasitological and serological exams. Dogs from the surrounding areas where the sylvatic mammals were captured were also tested for T. cruzi infection. DNA samples were extracted from blood clots and positive hemocultures, submitted to polymerase chain reaction targeting SSU rDNA and gGAPDH genes, sequenced and phylogenetic analysed. Twenty-one wild mammals were captured in 2012, mainly rodents, and 17 mammals, mainly marsupials, were captured in the two expeditions conducted in 2015. Only four rodents demonstrated borderline serological T. cruzi test (IFAT), two in 2012 and two in 2015. Trypanosoma janseni was the main Trypanosoma species identified, and isolates were obtained solely from Didelphis aurita. In addition to biological differences, molecular differences are suggestive of genetic diversity in this flagellate species. Trypanosoma sp. DID was identified in blood clots from D. aurita in single and mixed infections with T. janseni. Concerning dogs, 12 presented mostly borderline serological titers for T. cruzi and no positive hemoculture. In blood clots from 11 dogs, T. cruzi DNA was detected and characterized as TcI (n = 9) or TcII (n = 2). Infections by Trypanosoma rangeli lineage E (n = 2) and, for the first time, Trypanosoma caninum, Trypanosoma dionisii, and Crithidia mellificae (n = 1 each) were also detected in dogs. We concluded that despite the low mammalian species richness and degraded environment, a high Trypanosoma species richness species was being transmitted with the predominance of T. janseni and not T. cruzi, as would be expected in a locality of an acute case of Chagas disease.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Maria Augusta Dario,
| | - Cristiane Varella Lisboa
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Paulo Sérgio D’Andrea
- Laboratory of Biology and Parasitology of Wild Reservoir Mammals, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - André Luiz Rodrigues Roque
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|