1
|
Cardinal MV, Enriquez GF, Gaspe MS, Fernández MDP, Capello V, Gürtler RE. Estimation of Trypanosoma cruzi infection in the main vector Triatoma infestans: accounting for imperfect detection using site-occupancy models. Parasit Vectors 2025; 18:58. [PMID: 39966871 PMCID: PMC11834302 DOI: 10.1186/s13071-025-06693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Vector infection prevalence is a key component of vectorial capacity and transmission risk. Optical microscopy observation (OM) of fecal drops has been the classic method for detecting Trypanosoma cruzi infection in triatomine bugs until the advent of polymerase chain reaction (PCR)-based techniques. However, agreement among OM- and PCR-based techniques has been highly heterogeneous. METHODS We used hierarchical site-occupancy models accounting for imperfect detection to estimate method-specific detection probabilities of T. cruzi infection in field-collected Triatoma infestans and to assess whether T. cruzi infection varied with triatomine developmental stage and collection ecotope. We also performed a scoping review of the literature on comparisons between OM and PCR for T. cruzi infection diagnosis in triatomines. Triatomines were collected before vector control interventions in Pampa del Indio houses (Argentine Chaco) and examined by OM. We amplified the variable regions of the kinetoplastid minicircle genome (vkDNA-PCR) in DNA extracted from the rectal ampoules of 64 OM-positive and 65 OM-negative T. infestans. RESULTS vkDNA-PCR detected T. cruzi infection in 59 (92.2%) OM-positive bugs and in 19 (29.2%) OM-negative triatomines in blind tests. The overall prevalence of infection, as determined by a positive test result by either vkDNA-PCR or OM, was 64.3% [95% confidence interval (95% CI) 55.8-72.1%]. Detection probability of T. cruzi infection by vkDNA-PCR (92%, 95% CI 83-97%) was substantially higher than for OM (76%, 95% CI 65-84%). Infection was minimal (26.2%) in peridomestic nymphs and maximal in domestic adult triatomines (81.7%). In the literature review encompassing 26 triatomine species from 11 countries, inter-method agreement ranged from 28.6% to 100%. The lowest agreement was observed in Rhodnius sp. and Panstrongylus lutzi and the highest among Triatoma sp., with wide variability in the protocols and outcomes of molecular diagnosis in comparison with OM. CONCLUSIONS Our study provides a synthesis on the different sources (both biological and technical) of variation of the outcomes of OM- and PCR-based diagnosis of T. cruzi infection in triatomines and identifies new research needs for diagnostic improvement.
Collapse
Affiliation(s)
- Marta Victoria Cardinal
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Int Güiraldes 2160, 2do piso, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina.
| | - Gustavo Fabián Enriquez
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Int Güiraldes 2160, 2do piso, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - María Sol Gaspe
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Int Güiraldes 2160, 2do piso, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| | | | - Victoria Capello
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Int Güiraldes 2160, 2do piso, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Int Güiraldes 2160, 2do piso, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
2
|
Ardiles-Ruesjas S, Lesmo V, González-Romero V, Cubilla Z, Chena L, Huber C, Rivas MJ, Saldaña P, Carrascosa A, Méndez S, Sanz S, Becker SL, Alonso-Padilla J, Losada I. Prevalence and diagnostic accuracy of different diagnostic tests for Chagas disease in an indigenous community of the Paraguayan Chaco. PLoS Negl Trop Dis 2025; 19:e0012861. [PMID: 39919113 DOI: 10.1371/journal.pntd.0012861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/12/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
INTRODUCTION Chagas disease (CD), caused by the protozoan Trypanosoma cruzi (T. cruzi), poses a major health challenge in Paraguay, especially in the resource-limited Chaco region. Rapid diagnostic tests (RDTs) are valuable tools to enhance diagnostic access. This study evaluates CD prevalence and risk factors in an indigenous community in the Paraguayan Chaco and validates the national RDT-based diagnostic algorithm for resource-limited settings against the recommended standard algorithm, which relies solely on conventional serological tests. METHODOLOGY A descriptive cross-sectional study was conducted in Casanillo, Presidente Hayes, Paraguay. In July 2023, a two-week field campaign was executed using a non-probability convenience sampling method targeting individuals aged over 9 months. Screening involved a single RDT, with positives confirmed via enzyme-linked immunosorbent assay (ELISA). Algorithm accuracy was validated externally at the National Reference Laboratory of Paraguay against the standard algorithm, which, in this study, included an ELISA and Hemagglutination test. Discordant cases were resolved with a second ELISA or Immunofluorescence. RESULTS The study involved 999 participants, with a median age of 26 years (IQR 12-45), and 51.1% were female. The RDT-based diagnostic algorithm showed 97.1% agreement (κ = 0.94, 95%CI: 0.90-0.98) with the standard algorithm. The RDT alone had 96.0% agreement (κ = 0.91, 95%CI: 0.87-0.96), while the confirmatory ELISA had 94.3% agreement (κ = 0.88, 95%CI: 0.83-0.93). The algorithm's sensitivity/specificity (95%CI) were 94.6% (89.2-97.8)/98.6% (96.1-99.7), with the RDT at 94.6% (89.2-97.8)/96.8% (93.6-98.7) and the ELISA at 96.9% (92.3-99.2)/92.7% (88.5-95.8). T.cruzi infection seroprevalence was 12.6% (95%CI: 9.56-16.52). Age, Sanapaná ethnicity, and awareness of CD vectors were significantly associated with infection odds. No significant associations were found with other typical CD risk factors, clinical history, or health habits. CONCLUSION The study underscores the high burden of T. cruzi infection in indigenous communities in the Paraguayan Chaco, urging immediate interventions for improved diagnosis and treatment. The combination of RDTs with conventional serology for diagnostic screening in resource-constrained settings proved useful, and its further use is encouraged.
Collapse
Affiliation(s)
- Sofia Ardiles-Ruesjas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Vidalia Lesmo
- National Chagas Disease Control Program, Asuncion, Paraguay
| | - Valeria González-Romero
- Teniente Irala Fernández Health Center, Teniente Primero Irala Fernández, Presidente Hayes, Paraguay
| | - Zully Cubilla
- Teniente Irala Fernández Health Center, Teniente Primero Irala Fernández, Presidente Hayes, Paraguay
| | - Lilian Chena
- Central Public Health Laboratory, Asunción, Paraguay
| | - Claudia Huber
- Central Public Health Laboratory, Asunción, Paraguay
| | - María José Rivas
- Teniente Irala Fernández Health Center, Teniente Primero Irala Fernández, Presidente Hayes, Paraguay
| | - Patricia Saldaña
- Teniente Irala Fernández Health Center, Teniente Primero Irala Fernández, Presidente Hayes, Paraguay
| | - Adrián Carrascosa
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Susana Méndez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sergi Sanz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrucken, Germany
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Irene Losada
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Cantillo-Barraza O, Gual-González L, Velásquez-Ortiz N, Medina Camargo MA, González P, Cruz-Saavedra L, Castillo A, Zuluaga S, Herrera G, Cowan H, Velez-Mira A, Patiño LH, Ramírez JD, Triana O, Nolan MS. Triatoma venosa and Panstrongylus geniculatus challenge the certification of interruption of vectorial Trypanosoma cruzi transmission by Rhodnius prolixus in eastern Colombia. PLoS Negl Trop Dis 2025; 19:e0012822. [PMID: 39869658 PMCID: PMC11785281 DOI: 10.1371/journal.pntd.0012822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 01/31/2025] [Accepted: 01/03/2025] [Indexed: 01/29/2025] Open
Abstract
Reactivation of Trypanosoma cruzi transmission by native vectors with different domiciliation capabilities is a major concern for Chagas disease control programs. T. cruzi transmission via intra-domestic Rhodnius prolixus was certified as interrupted by the Pan American Health Organization in Miraflores municipality (Boyacá, Colombia) in 2019. However, Triatoma venosa, a native vector infected with T. cruzi has been increasingly found inside human dwellings across rural areas. In this study, the aim was to describe the eco-epidemiological aspects of T. cruzi transmission in the rural area of Miraflores. For this, we designed a comprehensive, multi-faceted study in 6 rural villages and performed: (i) A cross-sectional serological and molecular study enrolling 155 people and 58 domestic dogs living within 80 households, (ii) a domestic entomological survey, (iii) a determination of the natural infection and blood meal source in collected triatomine bugs, and (iv) an evaluation of synanthropic mammal infection by parasitological and molecular tools. The T. cruzi seroprevalence rates in humans and dogs were 9.03% (14/155) and 22.4% (13/58), respectively. Most infected humans were adults between the ages of 55 and 85 years old. No evidence of T. cruzi DNA was found using qPCR in human blood samples, but we found high parasitemia levels in the infected dogs. In total, 38 triatomine bugs were collected inside dwellings and peridomestic areas: 68.4% (26/38) Triatoma venosa, 29% (11/38) Panstrongylus geniculatus, and 2.6% (1/38) P. rufotuberculatus. Natural infection prevalence was 88% (22/25) for T. venosa, 100% (12/12) for P. geniculatus, and 100% (1/1) P. rufotuberculatus: only TcI was found. No evidence of R. prolixus was found in the area. Two feeding sources were identified in T. venosa (humans and cats), while P. geniculatus fed on cows and bats. Lastly, seven D. marsupialis were captured in peridomestic areas, three were infected with T. cruzi (TcI). The results suggest the existence of T. cruzi transmission cycle between triatomines, dogs, and opossums representing a risk of infection for the human population in rural areas of Miraflores. Despite PAHO declaring Miraflores municipality, Colombia an area of T. cruzi transmission interruption in 2019, this study documents evidence of a secondary vector establishing in domestic settings. T. venosa entomological surveillance is warranted to evaluate prospective human transmission risk in an otherwise 'no-risk' perceived Chagas disease region.
Collapse
Affiliation(s)
- Omar Cantillo-Barraza
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Antioquia, Colombia
- Centro de Investigaciones en Microbiología y Biotecnología—UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Distrito Capital, Colombia
| | - Lídia Gual-González
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States of America
| | - Natalia Velásquez-Ortiz
- Centro de Investigaciones en Microbiología y Biotecnología—UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Distrito Capital, Colombia
| | | | - Paola González
- Programa de Control de Vectores, Secretaría de Salud de Boyacá, Tunja, Boyacá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología—UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Distrito Capital, Colombia
| | - Adriana Castillo
- Centro de Investigaciones en Microbiología y Biotecnología—UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Distrito Capital, Colombia
| | - Sara Zuluaga
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología—UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Distrito Capital, Colombia
| | - Hanson Cowan
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States of America
| | - Andrés Velez-Mira
- Unidad de Ecoepidemiología (PECET), Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología—UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Distrito Capital, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología—UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Distrito Capital, Colombia
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Omar Triana
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Melissa S. Nolan
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
4
|
Khan AA, Taylor MC, Fortes Francisco A, Jayawardhana S, Atherton RL, Olmo F, Lewis MD, Kelly JM. Animal models for exploring Chagas disease pathogenesis and supporting drug discovery. Clin Microbiol Rev 2024; 37:e0015523. [PMID: 39545730 PMCID: PMC11629624 DOI: 10.1128/cmr.00155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYInfections with the parasitic protozoan Trypanosoma cruzi cause Chagas disease, which results in serious cardiac and/or digestive pathology in 30%-40% of individuals. However, symptomatic disease can take decades to become apparent, and there is a broad spectrum of possible outcomes. The complex and long-term nature of this infection places a major constraint on the scope for experimental studies in humans. Accordingly, predictive animal models have been a mainstay of Chagas disease research. The resulting data have made major contributions to our understanding of parasite biology, immune responses, and disease pathogenesis and have provided a platform that informs and facilitates the global drug discovery effort. Here, we provide an overview of available animal models and illustrate how they have had a key impact across the field.
Collapse
Affiliation(s)
- Archie A. Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Richard L. Atherton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
5
|
de Sousa Leite L, de Rezende Feres VC, Scalize PS. Predictor Variables in the Spread of Chagas Disease in Rural Areas. Pathogens 2024; 13:394. [PMID: 38787245 PMCID: PMC11124446 DOI: 10.3390/pathogens13050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Over a hundred years ago after the discovery of Chagas disease (CD) in Brazil, the World Health Organization estimates a number of 6 to 7 million people infected by Trypanosoma cruzi worldwide. Therefore, the goal of this work was to identify variables related to the spread of infection by T. cruzi in humans living in rural areas, seeking predictor variables. A systematic review of the literature has been conducted, with a search in the Scopus platform, using the search string "Chagas disease" and "rural", resulting in 85 valid and analyzed scientific studies (1977 and 2022). Twenty-seven predictor variables have been acquired, and 19 of them have been grouped, such as: socioeconomic and educational, housing, environmental, sanitary, and cultural; and 8 variables related to T. cruzi seropositive individuals. The predictor variables yielded significant results (p-value < 0.05) in 59.5% of the cases (195/328), with a median of 66.7%. In other words, studies relating to 50% of the 27 variables showed significance equal to or greater than 66.7% of the time. The independent variables with the highest proportion of significant data (p-value < 0.05) were Education (87.6%), Intradomicile building (70%), Domestic animals (69.6%), and Triatomines (69.2%) in the households. Some variables reached 100%; however, few articles were found, indicating the need for further research, especially for Sanitation and Culture. It has been concluded that, in the several contexts found, the social vulnerability and lack of information led the individual to living in environments where inhabitability is inadequate, to perform limited work activity and develop habits and behaviors which impair them in an environmental insalubrity situation, favorable to the access of vectors and pathogens of anthropozoonoses such as CD.
Collapse
Affiliation(s)
- Liziana de Sousa Leite
- Post-Graduation Program in Environmental Sciences (CIAMB), Federal University of Goiás, Goiania 74605-170, Brazil;
| | | | - Paulo Sérgio Scalize
- Post-Graduation Program in Environmental Sciences (CIAMB) and the Post-Graduation Program in Sanitary and Environmental Engineering (PPGEAS), Federal University of Goiás, Goiania 74605-170, Brazil
| |
Collapse
|
6
|
Macchiaverna NP, Enriquez GF, Gaspe MS, Rodríguez-Planes LI, Martinez PR, Gürtler RE, Cardinal MV. Human Trypanosoma cruzi infection in the Argentinean Chaco: risk factors and identification of households with infected children for treatment. Parasit Vectors 2024; 17:41. [PMID: 38287434 PMCID: PMC10826042 DOI: 10.1186/s13071-024-06125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Chagas disease is a neglected tropical disease (NTD). Cost-effective strategies for large-scale implementation of diagnosis and etiological treatment are urgently needed to comply with NTD control goals. We determined the seroprevalence of Trypanosoma cruzi infection and associated risk factors in a well-defined rural population of Pampa del Indio municipality including creole and indigenous (Qom) households and developed two indices to identify houses harboring infected children. METHODS We serodiagnosed and administered a questionnaire to 1337 residents (48.2% of the listed population) in two sections of the municipality (named Areas II and IV) 6-9 years after deploying sustained vector control interventions. Multiple logistic regression models were used to evaluate the relationship between human infection and a priori selected predictors. Two risk indices were constructed based on environmental and serostatus variables, and we used spatial analysis to test whether households harboring T. cruzi-seropositive children were randomly distributed. RESULTS The global seroprevalence of T. cruzi infection was 24.8%. Human infection was positively and significantly associated with exposure time to triatomines, the household number of seropositive co-inhabitants, maternal seropositivity for T. cruzi, recent residence at the current house and the presence of suitable walls for triatomine colonization in the domicile. The pre-intervention mean annual force of infection (FOI) was 1.23 per 100 person-years. Creoles from Area IV exhibited the highest seroprevalence and FOI; Qom people from both areas displayed intermediate ones and creoles from Area II the lowest. Three hotspots of infected children were spatially associated with hotspots of triatomine abundance at baseline and persistent house infestation. No child born after vector control interventions was T. cruzi seropositive except for one putative transplacental case. Two simple risk indices (based on self-reported inhabiting an infested house and suitable walls for triatomines or maternal serostatus) identified 97.3-98.6% of the households with at least one T. cruzi-seropositive child. CONCLUSIONS We showed strong heterogeneity in the seroprevalence of T. cruzi infection within and between ethnic groups inhabiting neighboring rural areas. Developed indices can be used for household risk stratification and to improve access of rural residents to serodiagnosis and treatment and may be easily transferred to primary healthcare personnel.
Collapse
Affiliation(s)
- Natalia P Macchiaverna
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Gustavo F Enriquez
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - M Sol Gaspe
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Lucía I Rodríguez-Planes
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
- Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Onas 450, 9410, Ushuaia, Argentina
- Administración de Parques Nacionales, Dirección Regional Patagonia Austral, Ushuaia, Argentina
| | | | - Ricardo E Gürtler
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - M Victoria Cardinal
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
7
|
Avalos-Borges EE, Jiménez-Coello M, Chan-Pérez JI, Cigarroa-Toledo N, Garg NJ, Guillermo-Cordero L, Segura-Correa JC, Ortega-Pacheco A. Congenital Transmission of Trypanosoma cruzi in Naturally Infected Dogs. Vector Borne Zoonotic Dis 2023; 23:465-474. [PMID: 37339451 PMCID: PMC10625467 DOI: 10.1089/vbz.2022.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Background: Congenital transmission (CT) of Trypanosoma cruzi in dogs has not been clearly demonstrated, even though dogs are important reservoirs of this agent. Materials and Methods: Seventeen late pregnant dogs seropositive for T. cruzi were selected, and a total of 84 fetuses were obtained. Blood and heart tissues from the fetuses and dams, and placental tissue from dam were collected. All tissues were analyzed by quantitative polymerase chain reaction (qPCR) for T. cruzi DNA (TcDNA) and inflammatory infiltrate and pathology by histological examination. CT was determined when physical, histological, or molecular evidence of T. cruzi was detected in blood or tissues of the fetuses. Results: A general transmission frequency of 59% was found, and 0.20 ± 0.24 of fetuses per litter were infected. Dams that were qPCR positive for TcDNA in cardiac tissue or blood displayed a transmission frequency of 100% and 67%, respectively. The highest parasite burden was noted in dams that were positive for TcDNA in both blood (82E-01 ± 1.54E-01) and cardiac (5.28E+03 ± 8.85E+03) tissues. In fetuses, higher parasitic burden in blood and cardiac tissue was found in those carried by dams that were seropositive and qPCR positive for TcDNA in cardiac tissue and blood. No amastigote nests were recorded in the cardiac tissue of fetuses in the histopathological studies, but typical lesions of T. cruzi infection were identified in all fetuses where CT occurred. Conclusions: CT of T. cruzi occurred at a high frequency in naturally infected pregnant dogs from the endemic areas.
Collapse
Affiliation(s)
- Eduardo E. Avalos-Borges
- Doctorado Institucional en Ciencias Agropecuarias, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Matilde Jiménez-Coello
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Jose I. Chan-Pérez
- Centro de Investigaciones Regionales “Dr Hideyo Noguchi,” Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Nohemi Cigarroa-Toledo
- Centro de Investigaciones Regionales “Dr Hideyo Noguchi,” Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Nisha J. Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Leonardo Guillermo-Cordero
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Jose C. Segura-Correa
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Antonio Ortega-Pacheco
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Mexico
| |
Collapse
|
8
|
Gürtler RE, Enriquez GF, Gaspe MS, Macchiaverna NP, del Pilar Fernández M, Rodríguez-Planes LI, Provecho YM, Cardinal MV. The Pampa del Indio project: sustainable vector control and long-term declines in the prevalence and abundance of Triatoma infestans infected with Trypanosoma cruzi in the Argentine Chaco. Parasit Vectors 2023; 16:258. [PMID: 37528423 PMCID: PMC10394798 DOI: 10.1186/s13071-023-05861-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The Gran Chaco region is a major hotspot of Chagas disease. We implemented a 9-year program aimed at suppressing house infestation with Triatoma infestans and stopping vector-borne transmission to creole and indigenous (Qom) residents across Pampa del Indio municipality (Argentine Chaco). The aim of the present study was to assess the intervention effects on parasite-based transmission indices and the spatial distribution of the parasite, and test whether house-level variations in triatomine infection with Trypanosoma cruzi declined postintervention and were influenced by household ethnicity, persistent infestation linked to pyrethroid resistance and other determinants of bug infection. METHODS This longitudinal study assessed house infestation and bug infection with T. cruzi before and after spraying houses with pyrethroids and implemented systematic surveillance-and-response measures across four operational areas over the period 2007-2016. Live triatomines were individually examined for infection by optical microscopy or kinetoplast DNA (kDNA)-PCR and declared to be infected with T. cruzi when assessed positive by either method. RESULTS The prevalence of infection with T. cruzi was 19.4% among 6397 T. infestans examined. Infection ranged widely among the study areas (12.5-26.0%), household ethnicity (15.3-26.9%), bug ecotopes (1.8-27.2%) and developmental stages (5.9-27.6%), and decreased from 24.1% (baseline) to 0.9% (endpoint). Using random-intercept multiple logistic regression, the relative odds of bug infection strongly decreased as the intervention period progressed, and increased with baseline domestic infestation and bug stage and in Qom households. The abundance of infected bugs and the proportion of houses with ≥ 1 infected bug remained depressed postintervention and were more informative of area-wide risk status than the prevalence of bug infection. Global spatial analysis revealed sharp changes in the aggregation of bug infection after the attack phase. Baseline domestic infestation and baseline bug infection strongly predicted the future occurrence of bug infection, as did persistent domestic infestation in the area with multiple pyrethroid-resistant foci. Only 19% of houses had a baseline domestic infestation and 56% had ever had ≥ 1 infected bug. CONCLUSIONS Persistent bug infection postintervention was closely associated with persistent foci generated by pyrethroid resistance. Postintervention parasite-based indices closely agreed with human serosurveys at the study endpoint, suggesting transmission blockage. The program identified households and population subgroups for targeted interventions and opened new opportunities for risk prioritization and sustainable vector control and disease prevention.
Collapse
Affiliation(s)
- Ricardo Esteban Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Fabián Enriquez
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Sol Gaspe
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Lucía Inés Rodríguez-Planes
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
| | - Yael Mariana Provecho
- Ministerio de Salud de la Nación, Dirección de Control de Enfermedades Transmitidas por Vectores, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Alejandra A, Sol GM, Fabián EG, Paula MN, Esteban GR, Victoria CM. Marginal risk of domestic vector-borne Trypanosoma cruzi transmission after improved vector control of Triatoma infestans across a rural-to-urban gradient in the Argentine Chaco. Acta Trop 2023; 243:106933. [PMID: 37119837 DOI: 10.1016/j.actatropica.2023.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
The interruption of domestic vector-borne transmission of Trypanosoma cruzi in the Americas remains one of the main goals of the World Health Organization 2021-2030 road map for neglected tropical diseases. We implemented a longitudinal intervention program over 2015-2022 to suppress (peri)domestic Triatoma infestans in the municipality of Avia Terai, Chaco Province, Argentina and found that house infestation (3851 houses inspected) and triatomine abundance decreased over the first 2 years post-intervention (YPI), and remained stable thereafter associated to moderate pyrethroid resistant foci. Here we assessed selected components of transmission risk after interventions across the rural-to-urban gradient. We used multistage random sampling to select a municipality-wide sample of T. infestans. We examined 356 insects collected in 87 houses for T. cruzi infection using kDNA-PCR and identified their bloodmeal sources using an indirect ELISA. The overall prevalence of T. cruzi infection post-intervention was 1.7% (95% CI 0.7-3.6). Few houses (5.7%) (95% CI 2.5-12.8) harbored infected triatomines across the gradient. Infected triatomines were found in 5 peri-urban or rural dwellings over 1-4 years post-intervention. No infected insect was found in the urban area. The human blood index decreased from 66.2 at baseline to 42.8 at 1YPI and then increased to 92.9 at 4-5 YPI in the few infested domiciles detected. The percentage of houses with human-fed bugs displayed a similar temporal trend. Our results indicate marginal risks of domestic vector-borne transmission across the district after implementation of the intervention program. Ensuring sustainable vector surveillance coupled with human etiological diagnosis and treatment in hiperendemic areas like the Gran Chaco region, is urgently needed. 252 words.
Collapse
Affiliation(s)
- Alvedro Alejandra
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Gaspe María Sol
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Enriquez Gustavo Fabián
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Macchiaverna Natalia Paula
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Gürtler Ricardo Esteban
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Cardinal Marta Victoria
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Gürtler RE, Gaspe MS, Macchiaverna NP, Enriquez GF, Rodríguez-Planes LI, Fernández MDP, Provecho YM, Cardinal MV. The Pampa del Indio project: District-wide quasi-elimination of Triatoma infestans after a 9-year intervention program in the Argentine Chaco. PLoS Negl Trop Dis 2023; 17:e0011252. [PMID: 37093886 PMCID: PMC10159358 DOI: 10.1371/journal.pntd.0011252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/04/2023] [Accepted: 03/19/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND The elimination of Triatoma infestans, the main domestic vector of Trypanosoma cruzi, is lagging behind expectations in the Gran Chaco region. We implemented an insecticide-based intervention program and assessed its long-term effects on house infestation and bug abundance in a resource-constrained municipality (Pampa del Indio, northeastern Argentina) inhabited by creole and the Qom indigenous people (2007-2016). Key questions were whether district-wide data integration revealed patterns concealed at lower spatial levels; to what extent preintervention infestation and pyrethroid resistance challenged the effectiveness of insecticide-based control efforts, and how much control effort was needed to meet defined targets. METHODS Supervised vector control teams i) georeferenced every housing unit at baseline (1,546); ii) evaluated house infestation using timed-manual searches with a dislodging aerosol across four rural areas designated for district-wide scaling up; iii) sprayed with pyrethroid insecticide 92.7% of all houses; iv) periodically monitored infestation and promoted householder-based surveillance, and v) selectively sprayed the infested houses, totaling 1,823 insecticide treatments throughout the program. RESULTS Baseline house infestation (mean, 26.8%; range, 14.4-41.4%) and bug abundance plummeted over the first year postintervention (YPI). Timed searches at baseline detected 61.4-88.0% of apparent infestations revealed by any of the methods used. Housing dynamics varied widely among areas and between Qom and creole households. Preintervention triatomine abundance and the cumulative frequency of insecticide treatments were spatially aggregated in three large clusters overlapping with pyrethroid resistance, which ranged from susceptible to high. Persistent foci were suppressed with malathion. Aggregation occurred mainly at house compound or village levels. Preintervention domestic infestation and abundance were much greater in Qom than in creole households, whereas the reverse was recorded in peridomestic habitats. House infestation, rare (1.9-3.7%) over 2-6 YPI, averaged 0.66% (95% confidence interval, 0.28-1.29%) at endpoint. CONCLUSIONS Upscale integration revealed multiple coupled heterogeneities (spatial, sociodemographic and biological) that reflect large inequalities, hamper control efforts, and provide opportunities for targeted, sustainable disease control. High-coverage, professional insecticide spraying combined with systematic surveillance-and-response were essential ingredients to achieve the quasi-elimination of T. infestans within 5 YPI and concomitant transmission blockage despite various structural threats and constraints.
Collapse
Affiliation(s)
- Ricardo Esteban Gürtler
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - María Sol Gaspe
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Gustavo Fabián Enriquez
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Lucía Inés Rodríguez-Planes
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
| | - María Del Pilar Fernández
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Yael Mariana Provecho
- Ministerio de Salud de la Nación, Dirección de Control de Enfermedades Transmitidas por Vectores, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| |
Collapse
|
11
|
Mendicino D, Bottasso O. Chagas disease in children from the Gran Chaco region: A bibliographic appraisal. Trop Doct 2022; 52:560-562. [PMID: 35837732 DOI: 10.1177/00494755221103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the Gran Chaco region, the Pan American Health Organization (PAHO) declared the interruption of vector transmission of Chagas Disease in Paraguay and some district of Argentina.After a bibliographic search, by using the words "Chagas, prevalence, children, Chaco", on scientiphic articles indexed in Pubmed and Lilacs during the 2010-2021 period, we found nine studies which dealt with entomological data seroprevalence surveys of Chagas Disease in Argentine children and three studies in Bolivian children.More field studies need to be published to better understand the epidemiological situation in children from the region. Due to its social and ecological characteristics, the Gran Chaco region remains a hotspot for Chagas Disease affecting disproportionally rural communities and certain vulnerable ethnics groups.
Collapse
Affiliation(s)
- Diego Mendicino
- Centro de Investigaciones sobre Endemias Nacionales, Facultad de Bioquímica y Ciencias Biológicas, 199757Universidad Nacional del Litoral. CONICET, Ciudad Universitaria, Paraje El Pozo, CP 3000, Santa Fe, Argentina
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental, 466365CONICET-Universidad Nacional de Rosario, Suipacha 590, CP 2000, Rosario, Argentina
| |
Collapse
|
12
|
Gürtler RE, Laiño MA, Alvedro A, Enriquez GF, Macchiaverna NP, Gaspe MS, Cardinal MV. Treatment of dogs with fluralaner reduced pyrethroid-resistant Triatoma infestans abundance, Trypanosoma cruzi infection and human-triatomine contact in the Argentine Chaco. Parasit Vectors 2022; 15:257. [PMID: 35831874 PMCID: PMC9277862 DOI: 10.1186/s13071-022-05343-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Triatomine elimination efforts and the interruption of domestic transmission of Trypanosoma cruzi are hampered by pyrethroid resistance. Fluralaner, a long-lasting ectoparasiticide administered to dogs, substantially reduced site infestation and abundance of pyrethroid-resistant Triatoma infestans Klug (Heteroptera: Reduviidae) in an ongoing 10-month trial in Castelli (Chaco Province, Argentina). We assessed the effects of fluralaner on vector infection with T. cruzi and blood meal sources stratified by ecotope and quantified its medium-term effects on site infestation and triatomine abundance. Methods We conducted a placebo-controlled, before-and-after efficacy trial of fluralaner in 28 infested sites over a 22-month period. All dogs received either an oral dose of fluralaner (treated group) or placebo (control group) at 0 month post-treatment [MPT]. Placebo-treated dogs were rescue-treated with fluralaner at 1 MPT, as were all eligible dogs at 7 MPT. Site-level infestation and abundance were periodically assessed by timed manual searches with a dislodging aerosol. Vector infection was mainly determined by kDNA-PCR and blood meal sources were determined by enzyme-linked immunosorbent assay. Results In fluralaner-treated households, site infestation dropped from 100% at 0 MPT to 18–19% over the period 6–22 MPT while mean abundance plummeted from 5.5 to 0.6 triatomines per unit effort. In control households, infestation dropped similarly post-treatment. The overall prevalence of T. cruzi infection steadily decreased from 13.8% at 0–1 MPT (baseline) to 6.4% and subsequently 2.3% thereafter, while in domiciles, kitchens and storerooms it dropped from 17.4% to 4.7% and subsequently 3.3% thereafter. Most infected triatomines occurred in domiciles and had fed on humans. Infected-bug abundance plummeted after fluralaner treatment and remained marginal or nil thereafter. The human blood index of triatomines collected in domiciles, kitchens and storerooms highly significantly fell from 42.9% at baseline to 5.3–9.1% over the period 6–10 MPT, increasing to 36.8% at 22 MPT. Dog blood meals occurred before fluralaner administration only. The cat blood index increased from 9.9% at baseline to 57.9–72.7% over the period 6–10 MPT and dropped to 5.3% at 22 MPT, whereas chicken blood meals rose from 39.6% to 63.2–88.6%. Conclusion Fluralaner severely impacted infestation- and transmission-related indices over nearly 2 years, causing evident effects at 1 MPT, and deserves larger efficacy trials. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05343-2.
Collapse
Affiliation(s)
- Ricardo Esteban Gürtler
- Laboratory of Eco-Epidemiology, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina. .,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Mariano Alberto Laiño
- Laboratory of Eco-Epidemiology, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alejandra Alvedro
- Laboratory of Eco-Epidemiology, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Gustavo Fabián Enriquez
- Laboratory of Eco-Epidemiology, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Laboratory of Eco-Epidemiology, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - María Sol Gaspe
- Laboratory of Eco-Epidemiology, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Laboratory of Eco-Epidemiology, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina. .,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Baeck IM, Mando P, Virasoro BM, Martinez A, Zarate S, Valentini R, Lopez Saubidet I. Prevalence of Chagas Disease and Associated Factors in an Endemic Area of Northeastern Argentina. Am J Trop Med Hyg 2022; 107:tpmd210646. [PMID: 35405643 PMCID: PMC9294704 DOI: 10.4269/ajtmh.21-0646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/07/2021] [Indexed: 11/07/2022] Open
Abstract
Chagas disease caused by Trypanosoma cruzi, remains one of the leading public health problems in Latin America. The number of infections in nonendemic countries continues to rise as a consequence of migratory flows. Updated information on prevalence, especially in treatable stages, together with vector eradication programs are key factors in an attempt to control the disease. We aim to estimate the prevalence of T. cruzi infection in an endemic area of Argentina and to describe epidemiological and clinical factors related to the disease. This is a cross-sectional study in an endemic rural area of Argentina. Our target population was people between 10 and 20 years of age, collecting demographic, clinical, and electrocardiographic data and seroprevalence against T. cruzi. We included 460 subjects; 76.7% did not have drinking water; 49.3% reported the presence of Triatoma infestans at home; 79.1% had pets or birds; 72.6% lived close to a chicken coop; 24.6% lived in adobe houses; 27.8% lived in overcrowded conditions. Seroprevalence was 9.33%. In the multivariate analysis, the presence of Triatoma infestans at home (OR 2.08, P = 0.03) had an association with seropositivity. No relevant findings indicating acute or chronic organ involvement were detected. We found no correlation of right bundle branch block (RBBB) and Chagas disease in our population. None of the infected patients were previously aware of their condition, highlighting the importance of active surveillance to detect infection in a potentially treatable stage, especially in areas with difficult access to health programs.
Collapse
Affiliation(s)
- Inés María Baeck
- Department of Internal Medicine, CEMIC Center for Medical Education and Clinical Research “Norberto Quirno,” CABA, Argentina
| | - Pablo Mando
- Department of Internal Medicine, CEMIC Center for Medical Education and Clinical Research “Norberto Quirno,” CABA, Argentina
| | - Belén María Virasoro
- Department of Internal Medicine, CEMIC Center for Medical Education and Clinical Research “Norberto Quirno,” CABA, Argentina
| | - Alfredo Martinez
- Department of Clinical Biochemistry, CEMIC Center for Medical Education and Clinical Research “Norberto Quirno,” CABA, Argentina
| | - Soledad Zarate
- Department of Clinical Biochemistry, CEMIC Center for Medical Education and Clinical Research “Norberto Quirno,” CABA, Argentina
| | - Ricardo Valentini
- Department of Internal Medicine, CEMIC Center for Medical Education and Clinical Research “Norberto Quirno,” CABA, Argentina
| | - Ignacio Lopez Saubidet
- Department of Internal Medicine, CEMIC Center for Medical Education and Clinical Research “Norberto Quirno,” CABA, Argentina
- Fundación pastoral universitaria San Lucas, CABA, Argentina
| |
Collapse
|
14
|
Murphy N, Cardinal MV, Bhattacharyya T, Enriquez GF, Macchiaverna NP, Alvedro A, Freilij H, Martinez de Salazar P, Molina I, Mertens P, Gilleman Q, Gürtler RE, Miles MA. Assessing antibody decline after chemotherapy of early chronic Chagas disease patients. Parasit Vectors 2021; 14:543. [PMID: 34670602 PMCID: PMC8527601 DOI: 10.1186/s13071-021-05040-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chagas disease remains a significant public health problem in Latin America. There are only two chemotherapy drugs, nifurtimox and benznidazole, and both may have severe side effects. After complete chemotherapy of acute cases, seropositive diagnosis may revert to negative. However, there are no definitive parasitological or serological biomarkers of cure. METHODS Following a pilot study with seven Bolivian migrants to Spain, we tested 71 serum samples from chronic patients (mean age 12.6 years) inhabiting the Argentine Chaco region. Benznidazole chemotherapy (5-8 mg/kg day, twice daily for 60 days) was administered during 2011-2016. Subsequently, pre-and post-chemotherapy serum samples were analysed in pairs by IgG1 and IgG ELISA using two different antigens and Chagas Sero K-SeT rapid diagnostic tests (RDT). Molecular diagnosis by kDNA-PCR was applied to post-treatment samples. RESULTS Pilot data demonstrated IgG1 antibody decline in three of seven patients from Bolivia 1 year post-treatment. All Argentine patients in 2017 (averaging 5 years post-treatment), except one, were positive by conventional serology. All were kDNA-PCR-negative. Most (91.5%) pre-treatment samples were positive by the Chagas Sero K-SeT RDT, confirming the predominance of TcII/V/VI. IgG1 and IgG of Argentine patients showed significant decline in antibody titres post-chemotherapy, with either lysate (IgG, P = 0.0001, IgG1, P = 0.0001) or TcII/V/VI peptide antigen (IgG, P = 0.0001, IgG1, P = 0.0001). IgG1 decline was more discriminative than IgG. Antibody decline after treatment was also detected by the RDT. Incomplete treatment was associated with high IgG1 post-treatment titres against lysate (P = 0.013), as were IgG post-treatment titres to TcII/V/VI peptide (P = 0.0001). High pre-treatment IgG1 with lysate was associated with Qom ethnicity (P = 0.045). No associations were found between gender, age, body mass index and pre- or post-treatment antibody titres. CONCLUSIONS We show that following chemotherapy of early chronic Chagas disease, significant decline in IgG1 antibody suggests cure, whereas sustained or increased IgG1 is a potential indicator of treatment failure. Due to restricted sensitivity, IgG1 should not be used as a diagnostic marker but has promise, with further development, as a biomarker of cure. We show that following chemotherapy of early chronic Chagas disease, a significant decline in IgG1 antibody suggests cure, whereas sustained or increased IgG1 is a potential indicator of treatment failure. Due to restricted sensitivity, IgG1 should not be used as a diagnostic marker but has promise, with further development, as a biomarker of cure.
Collapse
Affiliation(s)
- Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - M Victoria Cardinal
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Gustavo F Enriquez
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Natalia P Macchiaverna
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Alejandra Alvedro
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Héctor Freilij
- Hopital de Niños "Dr. Ricardo Gutiérrez", CABA, Argentina
| | | | - Israel Molina
- Barcelona Institute for Global Health (IS Global), Barcelona, Spain
| | | | | | - Ricardo E Gürtler
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
15
|
Cantillo-Barraza O, Torres J, Hernández C, Romero Y, Zuluaga S, Correa-Cárdenas CA, Herrera G, Rodríguez O, Alvarado MT, Ramírez JD, Méndez C. The potential risk of enzootic Trypanosoma cruzi transmission inside four training and re-training military battalions (BITER) in Colombia. Parasit Vectors 2021; 14:519. [PMID: 34625109 PMCID: PMC8501693 DOI: 10.1186/s13071-021-05018-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Colombia's National Army is one of the largest military institutions in the country based on the number of serving members and its presence throughout the country. There have been reports of cases of acute or chronic cases of Chagas disease among active military personnel. These may be the result of military-associated activities performed in jungles and other endemic areas or the consequence of exposure to Trypanosoma cruzi inside military establishments/facilities located in endemic areas. The aim of the present study was to describe the circulation of T. cruzi inside facilities housing four training and re-training battalions [Battalions of Instruction, Training en Re-training (BITERs)] located in municipalities with historical reports of triatomine bugs and Chagas disease cases. An entomological and faunal survey of domestic and sylvatic environments was conducted inside each of these military facilities. METHODS Infection in working and stray dogs present in each BITER location was determined using serological and molecular tools, and T. cruzi in mammal and triatomine bug samples was determined by PCR assay. The PCR products of the vertebrate 12S rRNA gene were also obtained and subjected to Sanger sequencing to identify blood-feeding sources. Finally, we performed a geospatial analysis to evaluate the coexistence of infected triatomines and mammals with the military personal inside of each BITER installation. RESULTS In total, 86 specimens were collected: 82 Rhodnius pallescens, two Rhodnius prolixus, one Triatoma dimidiata and one Triatoma maculata. The overall T. cruzi infection rate for R. pallescens and R. prolixus was 56.1 and 100% respectively, while T. dimidiata and T. maculata were not infected. Eight feeding sources were found for the infected triatomines, with opossum and humans being the most frequent sources of feeding (85.7%). Infection was most common in the common opossum Didelphis marsupialis, with infection levels of 77.7%. Sylvatic TcI was the most frequent genotype, found in 80% of triatomines and 75% of D. marsupialis. Of the samples collected from dogs (n = 52), five (9.6%; 95% confidence interval: 3.20-21.03) were seropositive based on two independent tests. Four of these dogs were creole and one was a working dog. The spatial analysis revealed a sympatry between infected vectors and mammals with the military population. CONCLUSIONS We have shown a potential risk of spillover of sylvatic T. cruzi transmission to humans by oral and vectorial transmission in two BITER installations in Colombia. The results indicate that installations where 100,000 active military personnel carry out training activities should be prioritized for epidemiological surveillance of Chagas disease.
Collapse
Affiliation(s)
- Omar Cantillo-Barraza
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - Jeffer Torres
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Yanira Romero
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - Sara Zuluaga
- Grupo Biología Y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Camilo A Correa-Cárdenas
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omaira Rodríguez
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - María Teresa Alvarado
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Méndez
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia.
| |
Collapse
|
16
|
Song Y, Zhao Y, Pan K, Shen B, Fang R, Hu M, Zhao J, Zhou Y. Characterization and evaluation of a recombinant multiepitope peptide antigen MAG in the serological diagnosis of Toxoplasma gondii infection in pigs. Parasit Vectors 2021; 14:408. [PMID: 34404476 PMCID: PMC8369689 DOI: 10.1186/s13071-021-04917-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022] Open
Abstract
Background Toxoplasmosis caused by Toxoplasma gondii is a serious disease threatening human and animal health. People can be infected with T. gondii by ingesting raw pork contaminated with cysts or oocysts. Serological test is a sensitive and specific method usually used for large-scale diagnosis of T. gondii infection in humans and animals (such as pigs). Commercial pig Toxoplasma antibody ELISA diagnostic kits are expensive, which limits their use; moreover, the wide antigen composition used in these diagnostic kits is still unclear and difficult to standardize. The multiepitope peptide antigen is a novel diagnostic marker, and it has potential to be developed into more accurate and inexpensive diagnostic kits. Methods The synthetic multiepitope antigen (MAG) cDNA encoding a protein with epitopes from five T. gondii-dominant antigens (SAG1, GRA1, ROP2, GRA4, and MIC3) was designed, synthesized, and expressed in Escherichia coli BL21 (DE3) strain. The recombinant protein was detected through western blot with pig anti-T. gondii-positive and -negative serum, and then IgG enzyme-linked immunosorbent assay (ELISA) named MAG-ELISA was designed. The MAG-ELISA was evaluated in terms of specificity, sensitivity, and stability. The MAG-ELISA was also compared with a commercial PrioCHECK®Toxoplasma Ab porcine ELISA (PrioCHECK ELISA). Finally, the trend of pig anti-T. gondii IgG levels after artificial infection with RH tachyzoites was evaluated using MAG-ELISA and two other ELISA methods (rMIC3-ELISA and PrioCHECK ELISA). Results MAG antigen could be specifically recognized by pig anti-T. gondii-positive but not -negative serum. MAG-ELISA showed high diagnostic performance in terms of specificity (88.6%) and sensitivity (79.1%). MAG-ELISA could be used for detecting anti-T. gondii IgG in the early stage of T. gondii infection in pigs (at least 7 days after artificial infection). Conclusions Our results suggest that MAG antigen can be applied to specifically recognize anti-T. gondii IgG in pig, and MAG-ELISA has the potential for large-scale screening tests of T. gondii infection in pig farms and intensive industries. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04917-w.
Collapse
Affiliation(s)
- Yongle Song
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yongjuan Zhao
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ke Pan
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Bang Shen
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Min Hu
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Junlong Zhao
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yanqin Zhou
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China. .,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
17
|
Cardinal MV, Enriquez GF, Macchiaverna NP, Argibay HD, Fernández MDP, Alvedro A, Gaspe MS, Gürtler RE. Long-term impact of a ten-year intervention program on human and canine Trypanosoma cruzi infection in the Argentine Chaco. PLoS Negl Trop Dis 2021; 15:e0009389. [PMID: 33979344 PMCID: PMC8115854 DOI: 10.1371/journal.pntd.0009389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Interruption of domestic vector-borne transmission of Trypanosoma cruzi is still an unmet goal in several American countries. In 2007 we launched a long-term intervention program aimed to suppress house infestation with the main domestic vector in southern South America (Triatoma infestans) and domestic transmission in Pampa del Indio, a resource-constrained, hyperendemic municipality with 1446 rural houses inhabited by Creole and indigenous people, in the Argentine Chaco ecoregion. Here, we assessed whether the 10-year insecticide-based program combined with community mobilization blocked vector-borne domestic transmission of T. cruzi to humans and dogs. METHODS We carried out two municipality-wide, cross-sectional serosurveys of humans and dogs (considered sentinel animals) during 2016-2017 to compare with baseline data. We used a risk-stratified random sampling design to select 273 study houses; 410 people from 180 households and 492 dogs from 151 houses were examined for antibodies to T. cruzi using at least two serological methods. RESULTS The seroprevalence of T. cruzi in children aged <16 years was 2.5% in 2017 (i.e., 4- to 11-fold lower than before interventions). The mean annual force of child infection (λ) sharply decreased from 2.18 to 0.34 per 100 person-years in 2017. One of 102 children born after interventions was seropositive for T. cruzi; he had lifetime residence in an apparently uninfested house, no outside travel history, and his mother was T. cruzi-seropositive. No incident case was detected among 114 seronegative people of all ages re-examined serologically. Dog seroprevalence was 3.05%. Among native dogs, λ in 2016 (1.21 per 100 dog-years) was 5 times lower than at program onset. Six native adult dogs born after interventions and with stable lifetime residence were T. cruzi-seropositive: three had exposure to T. infestans at their houses and one was an incident case. CONCLUSIONS These results support the interruption of vector-borne transmission of T. cruzi to humans in rural Pampa del Indio. Congenital transmission was the most likely source of the only seropositive child born after interventions. Residual transmission to dogs was likely related to transient infestations and other transmission routes. Sustained vector control supplemented with human chemotherapy can lead to a substantial reduction of Chagas disease transmission in the Argentine Chaco.
Collapse
Affiliation(s)
- Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Gustavo Fabián Enriquez
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Hernán Darío Argibay
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - María del Pilar Fernández
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States for America
| | - Alejandra Alvedro
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - María Sol Gaspe
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| |
Collapse
|
18
|
Surveillance of Trypanosoma cruzi infection in Triatomine vectors, feral dogs and cats, and wild animals in and around El Paso county, Texas, and New Mexico. PLoS Negl Trop Dis 2021; 15:e0009147. [PMID: 33600455 PMCID: PMC7924784 DOI: 10.1371/journal.pntd.0009147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 03/02/2021] [Accepted: 01/14/2021] [Indexed: 01/03/2023] Open
Abstract
The causative agent of Chagas disease, Trypanosoma cruzi, is transmitted by triatomine vectors. The insect is endemic in the Americas, including the United States, where epidemiological studies are limited, particularly in the Southwestern region. Here, we have determined the prevalence of T. cruzi in triatomines, feral cats and dogs, and wild animals, the infecting parasite genotypes and the mammalian host bloodmeal sources of the triatomines at four different geographical sites in the U.S.-Mexico border, including El Paso County, Texas, and nearby cities in New Mexico. Using qualitative polymerase chain reaction to detect T. cruzi infections, we found 66.4% (n = 225) of triatomines, 45.3% (n = 95) of feral dogs, 39.2% (n = 24) of feral cats, and 71.4% (n = 7) of wild animals positive for T. cruzi. Over 95% of T. cruzi genotypes or discrete typing units (DTUs) identified were TcI and some TcIV. Furthermore, Triatoma rubida was the triatomine species most frequently (98.2%) collected in all samples analyzed. These findings suggest a high prevalence of T. cruzi infections among triatomines, and feral and wild animals in the studied sites. Therefore, our results underscore the urgent need for implementation of a systematic epidemiological surveillance program for T. cruzi infections in insect vectors, and feral and wild animals, and Chagas disease in the human population in the southwestern region of the United States. Chagas disease is caused by the parasite Trypanosoma cruzi and one of the major transmission routes is the contaminated feces of blood-feeding triatomine insect vectors, popularly known as kissing bugs. In recent years, this disease has become an important public health concern to the United States and other nonendemic regions of the world. Despite many studies about the prevalence of T. cruzi in triatomines, and domestic, feral and wild animals in central and southern Texas, there have been no studies in west Texas and New Mexico. In this study, we report the presence of triatomines in residences in El Paso County, TX, and surrounding communities in New Mexico (cities of Anthony and Las Cruces), as well as T. cruzi infections in feral and wild animals. Using two molecular techniques to analyze the bloodmeal source in triatomines, we detected 12 different mammalian bloodmeal sources, including human and canine. Finally, parasite genotyping showed that most (95%) of the samples belonged to the genotype TcI, which is prevalent in North America. Our findings indicate that the El Paso County and surrounding communities (>950,000 people) are high risk areas for T. cruzi transmission to humans, feral cats and dogs, and wild animals. Thus, there is an urgent necessity for a public health epidemiological surveillance program for T. cruzi infections in kissing bugs, feral and wild animals, and in the human population in the U.S.-Mexico border region.
Collapse
|
19
|
Ordóñez-Krasnowski PC, Lanati LA, Gaspe MS, Cardinal MV, Ceballos LA, Gürtler RE. Domestic host availability modifies human-triatomine contact and host shifts of the Chagas disease vector Triatoma infestans in the humid Argentine Chaco. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:459-469. [PMID: 32700806 DOI: 10.1111/mve.12463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Domestic animals may affect human-vector contact and parasite transmission rates. We investigated the relationships between host-feeding choices, site-specific host availability, bug nutritional status, stage and abundance of Triatoma infestans Klug (Heteroptera: Reduviidae) in rural houses of Pampa del Indio during spring. We identified the bloodmeal sources of 865 triatomines collected in 70 sites from four main ecotopes. The main sources in domiciles were human (65.9%), chicken (23.4%) and dog (22.4%); dog (64.4%, 35.3%) and chicken (33.1%, 75.4%) in kitchens and storerooms, respectively; and chicken (94.7%) in chicken coops. Using random-intercept logistic regression clustered by domicile, the fraction of human-fed triatomines strongly decreased with increasing proportions of chicken- and dog-fed bugs, dropping from 96.4% when no chicken or dog slept indoors at night to 59.4% when both did. The fraction of dog-fed bugs significantly decreased with increasing human and chicken blood indices, and marginally increased with an indoor-resting dog. Mixed blood meals occurred 3.62 times more often when a chicken or a dog slept indoors. Host blood source did not affect mean body weight adjusted for body length and bug stage. Indoor-resting chickens and dogs greatly modified human-bug contact rates, and may be targeted with long-lasting systemic insecticides to suppress infestation.
Collapse
Affiliation(s)
- P C Ordóñez-Krasnowski
- Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina
| | - L A Lanati
- Instituto Nacional de Diagnóstico e Investigación en la Enfermedad de Chagas Dr Mario Fatala Chaben, Buenos Aires, Argentina
| | - M S Gaspe
- Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - M V Cardinal
- Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - L A Ceballos
- Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina
- Experimental Zooprophylactic Institute of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - R E Gürtler
- Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
20
|
Barros FDNL, Sampaio Júnior FD, Costa SDM, Farias DMD, Moura MAO, Bezerra Júnior PS, Góes-Cavalcante G, Scofield A. First report of natural infection by Trypanosoma cruzi in secretions of the scent glands and myocardium of Philander opossum (Marsupialia: Didelphidae): Parasitological and clinicopathological findings. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 22:100463. [PMID: 33308748 DOI: 10.1016/j.vprsr.2020.100463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of American trypanosomiasis and can infect humans and different species of domestic and wild animals. The marsupials are important wild reservoirs of T. cruzi, aiding in the maintenance of this agent in sylvatic and peri-domestic environments. The objective of this study was to report the parasitological and clinicopathological findings of a natural infection by T. cruzi in one specimen of Philander opossum that originated from the Brazilian Amazon. The animal was captured in a forest fragment near a rural community with reports of human Chagas disease. T. cruzi infection was diagnosed by blood smear examinations, blood culture, scent glands secretion culture, histopathological examination, and nested-PCR. Positive samples were subjected to PCR to characterize the discrete typing units (DTUs) of T. cruzi. Characteristic trypomastigotes of T. cruzi were observed in the blood smear, and spheromastigotes, epimastigotes, and trypomastigotes were visualized in the cultures. Non-suppurative myocarditis associated with amastigote clusters was the principal histopathological finding. DNA from T. cruzi was detected in samples of blood, blood cultures, scent glands secretion cultures, cardiac muscles, and the spleen. The TcI and the TcII/V/VI group DTUs were detected in blood culture and scent glands secretion cultures. Infection by T. cruzi can cause myocarditis in P. opossum and DTUs TcI and TcII/V/VI group mixed infection can be detected in the acute phase. P. opossum can be a source of infection for triatomine vectors and has the potential source for direct transmission of T. cruzi by secretions from the scent glands. These data are important to improve the understanding of the complex enzootic transmission cycle of T. cruzi in the Brazilian Amazon.
Collapse
Affiliation(s)
- Flávia de Nazaré Leite Barros
- Laboratory of Animal Parasitology, Graduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Pará, Brazil
| | - Francisco Dantas Sampaio Júnior
- Laboratory of Animal Parasitology, Graduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Pará, Brazil
| | - Sandra de Mamedes Costa
- Laboratory of Animal Parasitology, Graduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Pará, Brazil
| | - Diana Maria de Farias
- Laboratory of Animal Parasitology, Graduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Pará, Brazil
| | - Márcio Alan Oliveira Moura
- Laboratory of Animal Pathology, Graduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Pará, Brazil
| | - Pedro Soares Bezerra Júnior
- Laboratory of Animal Pathology, Graduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Pará, Brazil
| | - Gustavo Góes-Cavalcante
- Laboratory of Animal Parasitology, Graduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Pará, Brazil
| | - Alessandra Scofield
- Laboratory of Animal Parasitology, Graduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Pará, Brazil.
| |
Collapse
|
21
|
Bern C, Messenger LA, Whitman JD, Maguire JH. Chagas Disease in the United States: a Public Health Approach. Clin Microbiol Rev 2019; 33:e00023-19. [PMID: 31776135 PMCID: PMC6927308 DOI: 10.1128/cmr.00023-19] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, usually transmitted by triatomine vectors. An estimated 20 to 30% of infected individuals develop potentially lethal cardiac or gastrointestinal disease. Sylvatic transmission cycles exist in the southern United States, involving 11 triatomine vector species and infected mammals such as rodents, opossums, and dogs. Nevertheless, imported chronic T. cruzi infections in migrants from Latin America vastly outnumber locally acquired human cases. Benznidazole is now FDA approved, and clinical and public health efforts are under way by researchers and health departments in a number of states. Making progress will require efforts to improve awareness among providers and patients, data on diagnostic test performance and expanded availability of confirmatory testing, and evidence-based strategies to improve access to appropriate management of Chagas disease in the United States.
Collapse
Affiliation(s)
- Caryn Bern
- University of California San Francisco School of Medicine, San Francisco, California, USA
| | | | - Jeffrey D Whitman
- University of California San Francisco School of Medicine, San Francisco, California, USA
| | - James H Maguire
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Fernández MDP, Gaspe MS, Sartor P, Gürtler RE. Human Trypanosoma cruzi infection is driven by eco-social interactions in rural communities of the Argentine Chaco. PLoS Negl Trop Dis 2019; 13:e0007430. [PMID: 31841558 PMCID: PMC6936860 DOI: 10.1371/journal.pntd.0007430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/30/2019] [Accepted: 10/25/2019] [Indexed: 01/11/2023] Open
Abstract
The transmission of Trypanosoma cruzi to humans is determined by multiple ecological, socio-economic and cultural factors acting at different scales. Their effects on human infection with T. cruzi have often been examined separately or using a limited set of ecological and socio-demographic variables. Herein, we integrated the ecological and social dimensions of human infection risk with the spatial distribution patterns of human and vector (Triatoma infestans) infection in rural communities of the Argentine Chaco composed of indigenous people (90% Qom) and a creole minority. We conducted serosurveys in 470 households aiming at complete population enumeration over 2012–2015. The estimated seroprevalence of T. cruzi prior to the implementation of an insecticide spraying campaign (2008) was 29.0% (N = 1,373 in 301 households), and was twice as large in Qom than creoles. Using generalized linear mixed models, human seropositive cases significantly increased with infected triatomine abundance, having a seropositive household co-inhabitant and household social vulnerability (a multidimensional index of poverty), and significantly decreased with increasing host availability in sleeping quarters (an index summarizing the number of domestic hosts for T. infestans). Vulnerable household residents were exposed to a higher risk of infection even at low infected-vector abundances. The risk of being seropositive increased significantly with house infestation among children from stable households, whereas both variables were not significantly associated among children from households exhibiting high mobility within the communities, possibly owing to less consistent exposures. Human infection was clustered by household and at a larger spatial scale, with hotspots of human and vector infection matching areas of higher social vulnerability. These results were integrated in a risk map that shows high-priority areas for targeted interventions oriented to suppress house (re)infestations, detect and treat infected children, and thus reduce the burden of future disease. Chagas disease is one of the main neglected tropical diseases (NTDs) affecting vulnerable communities in Latin America where transmission by triatomine vectors still occurs. Access to diagnosis and treatment is one of the remaining challenges for sustainable control of Chagas disease in endemic areas. In this study, we integrated the ecological and social determinants of human infection with the spatial component to identify individuals, households and geographic sectors at higher risk of infection. We found that human infection was more prevalent in indigenous people compared to creoles and increased with the abundance of infected vectors and with household social vulnerability (a multidimensional index of poverty). We also found that the social factors modulated the effect of the abundance of infected vectors: vulnerable-household residents were exposed to a higher risk of infection even at low infected-vector abundance, and human mobility within the area determined a lower and more variable exposure to the vector over time. These results were integrated in a risk map that showed high-priority areas, which can be used in designing cost-effective serological screening strategies adapted to resource-constrained areas.
Collapse
Affiliation(s)
- Maria del Pilar Fernández
- Universidad de Buenos Aires. Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
- Earth Institute, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Maria Sol Gaspe
- Universidad de Buenos Aires. Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Paula Sartor
- Universidad de Buenos Aires. Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina
- Ministerio de Salud Pública del Chaco, Resistencia, Chaco, Argentina
- Facultad de Ciencias Exactas, Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Corrientes, Argentina
| | - Ricardo E. Gürtler
- Universidad de Buenos Aires. Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
23
|
Insights from quantitative and mathematical modelling on the proposed WHO 2030 goals for Chagas disease. Gates Open Res 2019; 3:1539. [PMID: 31781687 PMCID: PMC6856696 DOI: 10.12688/gatesopenres.13069.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/22/2022] Open
Abstract
Chagas disease (CD) persists as one of the neglected tropical diseases (NTDs) with a particularly large impact in the Americas. The World Health Organization (WHO) recently proposed goals for CD elimination as a public health problem to be reached by 2030 by means of achieving intradomiciliary transmission interruption (IDTI), blood transfusion and transplant transmission interruption, diagnostic and treatment scaling-up and prevention and control of congenital transmission. The NTD Modelling Consortium has developed mathematical models to study
Trypanosoma cruzi transmission dynamics and the potential impact of control measures. Modelling insights have shown that IDTI is feasible in areas with sustained vector control programmes and no presence of native triatomine vector populations. However, IDTI in areas with native vectors it is not feasible in a sustainable manner. Combining vector control with trypanocidal treatment can reduce the timeframes necessary to reach operational thresholds for IDTI (<2% seroprevalence in children aged <5 years), but the most informative age groups for serological monitoring are yet to be identified. Measuring progress towards the 2030 goals will require availability of vector surveillance and seroprevalence data at a fine scale, and a more active surveillance system, as well as a better understanding of the risks of vector re-colonization and disease resurgence after vector control cessation. Also, achieving scaling-up in terms of access to treatment to the expected levels (75%) will require a substantial increase in screening asymptomatic populations, which is anticipated to become very costly as CD prevalence decreases. Further modelling work includes refining and extending mathematical models (including transmission dynamics and statistical frameworks) to predict transmission at a sub-national scale, and developing quantitative tools to inform IDTI certification, post-certification and re-certification protocols. Potential perverse incentives associated with operational thresholds are discussed. These modelling insights aim to inform discussions on the goals and treatment guidelines for CD.
Collapse
|
24
|
Murphy N, Macchiaverna NP, Victoria Cardinal M, Bhattacharyya T, Mertens P, Zeippen N, Gustin Y, Gilleman Q, Gürtler RE, Miles MA. Lineage-specific rapid diagnostic tests can resolve Trypanosoma cruzi TcII/V/VI ecological and epidemiological associations in the Argentine Chaco. Parasit Vectors 2019; 12:424. [PMID: 31522683 PMCID: PMC6746045 DOI: 10.1186/s13071-019-3681-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the protozoan agent of Chagas disease, is comprised of at least 6 genetic lineages (TcI-TcVI). Their geographical distribution, clinical associations and reservoir hosts are not fully elucidated, as genotyping is hampered due to the difficulty in isolating representative populations of organisms. Lineage-specific serological techniques may address these issues. METHODS Trypanosoma cruzi lineage-specific serological assays were performed on human, canine, feline and armadillo sera from the Gran Chaco in northern Argentina, a region of ongoing transmission. Synthetic peptides representing lineage-specific epitopes of the trypomastigote small surface antigen (TSSA) were used in ELISA, and the TcII/V/VI shared epitope peptide (TSSApep-II/V/VI) was used in the Chagas Sero K-SeT rapid diagnostic test (RDT). RESULTS Chagas Sero K-SeT RDT, using Protein G to detect human and canine IgG, was at least as sensitive as TSSApep-II/V/VI ELISA using specific secondary antibodies. For sera from humans TSSApep-II/V/VI seroprevalence by Chagas Sero K-SeT was 273/393 (69.5%), for dogs 48/73 (65.8%) and for armadillos 1/7 (14.3%); by ELISA for cats 5/19 (26.3%). The seroprevalence for humans was similar to that for Bolivian patients, amongst whom we previously observed an association of TSSApep-II/V/VI seropositivity with severity of cardiomyopathy. In humans, prevalence of TSSApep-II/V/VI recognition was associated with locality, and with increasing and decreasing age within the Qom and Creole populations, respectively. For dogs TSSApep-II/V/VI recognition was associated with being born before community-wide insecticide spraying (P = 0.05) and with Qom household (P < 0.001). CONCLUSIONS We show here that Chagas Sero K-SeT RDT can replace ELISA for TSSApep-II/V/VI serology of humans and dogs; for humans there were statistically significant associations between a positive Chagas Sero K-SeT RDT and being resident in Area IV, and for dogs association with Qom household or with being born before the mass spraying campaign; we also show that with cats the TcII/V/VI epitope can be detected by ELISA. We assessed the lineage distribution in an unprecedented 83% of the human T. cruzi-seropositive population. These results form the basis for more detailed studies, enabling rapid in-the-field surveillance of the distribution and clustering of these lineages among humans and mammalian reservoirs of T. cruzi infection.
Collapse
Affiliation(s)
- Niamh Murphy
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Natalia P. Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exacta y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - M. Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exacta y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Tapan Bhattacharyya
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | | | | - Ricardo E. Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exacta y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Michael A. Miles
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
25
|
Salm A, Gertsch J. Cultural perception of triatomine bugs and Chagas disease in Bolivia: a cross-sectional field study. Parasit Vectors 2019; 12:291. [PMID: 31182163 PMCID: PMC6558697 DOI: 10.1186/s13071-019-3546-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/30/2019] [Indexed: 01/09/2023] Open
Abstract
Background Chagas disease remains a major public health risk in Bolivia, particularly among rural indigenous communities. Here we studied the cultural perception of the triatomine vectors and Chagas disease among selected rural and urban ethnic groups from different socio-economic and geographical milieus. We focused on the indigenous communities in the Bolivian Chaco where the disease is hyperendemic. Methods A cross-sectional study using field observations and structured interviews was carried out among 480 informants in five different regions of Bolivia. Additional semi-structured interviews were conducted. Statistical analyses were performed to determine the correlation of socio-economic variables and indigenous Chagas disease knowledge systems. A total of 170 domestic Triatoma infestans vectors were collected and infection with Trypanosoma cruzi was analyzed by real-time PCR. Results Triatomine bugs were associated with Chagas disease in 70.2% (n = 480) of the responses (48.0% Ayoreo, 87.5% Chiquitano, 83.9% Guaraní, 72.2% Quechua, 46.1% La Paz citizens and 67.7% Santa Cruz citizens). Generally, indigenous informants have been educated on the association between triatomine bugs and Chagas disease by institutional anti-Chagas disease campaigns. While communities were largely aware of the vectors as a principal mode of disease transmission, rather unexpectedly, health campaigns had little influence on their prevention practices, apparently due to cultural constraints. Overall, 71.9% of the collected domestic vectors in the Chaco region were infected with T. cruzi, matching the high infection rates in the indigenous communities. Conclusions Among the Guaraní, Ayoreo and Quechua communities, the groups living in traditional houses have not integrated the scientific knowledge about Chagas disease transmission into their daily hygiene and continue to cohabit with T. infestans vectors hyperinfected with T. cruzi. An effective translation of Western disease concepts into traditional preventive measures is missing because asymptomatic infections are not generally perceived as threat by the communities. New participatory approaches involving existing ethnomedical knowledge systems could be a successful strategy in the control of T. cruzi infection.
Collapse
Affiliation(s)
- Andrea Salm
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
26
|
Leony LM, Freitas NEM, Del-Rei RP, Carneiro CM, Reis AB, Jansen AM, Xavier SCC, Gomes YM, Silva ED, Reis MG, Fraga DBM, Celedon PAF, Zanchin NIT, Dantas-Torres F, Santos FLN. Performance of recombinant chimeric proteins in the serological diagnosis of Trypanosoma cruzi infection in dogs. PLoS Negl Trop Dis 2019; 13:e0007545. [PMID: 31242195 PMCID: PMC6615644 DOI: 10.1371/journal.pntd.0007545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/09/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dogs are considered sentinels in areas of Trypanosoma cruzi transmission risk to humans. ELISA is generally the method of choice for diagnosing T. cruzi exposure in dogs, but its performance substantially depends on the antigenic matrix employed. In previous studies, our group has developed four chimeric antigens (IBMP-8.1, 8.2, 8.3, and 8.4) and evaluated their potential for diagnosing T. cruzi exposure in humans. For human sera, these chimeric antigens presented superior diagnostic performances as compared to commercial tests available in Brazil, Spain, and Argentina. Therefore, in this study we have evaluated the potential of these antigenic proteins for detection of anti-T. cruzi IgG antibodies in dog sera. METHODOLOGY/PRINCIPAL FINDINGS The IBMP-ELISA assays were optimized by checkerboard titration. Subsequently, the diagnostic potential was validated through analysis of ROC curves and the performance of the tests was determined using double entry tables. Cross-reactivity was also evaluated for babesiosis, ehrlichiosis, dirofilariosis, anaplasmosis, and visceral leishmaniasis. Best performance was shown by IBMP-8.3 and IBMP-8.4, although all four antigens demonstrated a high diagnostic performance with 46 positive and 149 negative samples tested. IBMP-8.3 demonstrated 100% sensitivity, followed by IBMP-8.4 (96.7-100%), IBMP-8.2 (73.3-87.5%), and IBMP-8.1 (50-100%). The highest specificities were achieved with IBMP-8.2 (100%) and IBMP-8.4 (100%), followed by IBMP-8.3 (96.7-97.5%) and IBMP 8.1 (89.1-100%). CONCLUSIONS/SIGNIFICANCE The use of chimeric antigenic matrices in immunoassays for anti-T. cruzi IgG antibody detection in sera of infected dogs was shown to be a promising tool for veterinary diagnosis and epidemiological studies. The chimeric antigens used in this work allowed also to overcome the common hurdles related to serodiagnosis of T. cruzi infection, especially regarding variation of efficiency parameters according to different strains and cross-reactivity with other infectious diseases.
Collapse
Affiliation(s)
- Leonardo M. Leony
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | | | | | - Claudia M. Carneiro
- Immunopathology Laboratory, Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Alexandre B. Reis
- Immunopathology Laboratory, Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Maria Jansen
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samanta C. C. Xavier
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yara M. Gomes
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Edmilson D. Silva
- Immunobiological Technology Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mitermayer G. Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
- Department of Pathology and Legal Medicine, Federal University of Bahia, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | | | | | | | | | - Fred L. N. Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| |
Collapse
|
27
|
Fernández MDP, Gaspe MS, Gürtler RE. Inequalities in the social determinants of health and Chagas disease transmission risk in indigenous and creole households in the Argentine Chaco. Parasit Vectors 2019; 12:184. [PMID: 31029147 PMCID: PMC6487000 DOI: 10.1186/s13071-019-3444-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/12/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The social determinants of health (SDHs) condition disease distribution and the ways they are handled. Socio-economic inequalities are closely linked to the occurrence of neglected tropical diseases, but empirical support is limited in the case of Chagas disease, caused by the protozoan Trypanosoma cruzi. Herein we assessed the relationship between key structural SDHs and the risk of T. cruzi vector-borne transmission in rural communities of the Argentine Chaco occupied by creoles and an indigenous group (Qom). We used multiple correspondence analysis to quantify the household-level socio-economic position (social vulnerability and assets indices), access to health and sanitation services, and domestic host availability. We identified the most vulnerable population subgroups by comparing their demographic profiles, mobility patterns and distribution of these summary indices, then assessed their spatial correlation and household-level effects on vector domiciliary indices as transmission risk surrogates. RESULTS Qom households had higher social vulnerability and fewer assets than creoles, as did local movers and migrant households compared with non-movers. We found significantly positive effects of social vulnerability and domestic host availability on infected Triatoma infestans abundance, after adjusting for ethnicity. Access to health and sanitation services had no effect on transmission risk. Only social vulnerability displayed significant global spatial autocorrelation up to 1 km. A hotspot of infected vectors overlapped with an aggregation of most vulnerable households. CONCLUSIONS This synthetic approach to assess socio-economic related inequalities in transmission risk provides key information to guide targeted vector control actions, case detection and treatment of Chagas disease, towards sustainability of interventions and greater reduction of health inequalities.
Collapse
Affiliation(s)
- María del Pilar Fernández
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Present Address: Earth Institute, Columbia University, New York, NY 10025 USA
| | - María Sol Gaspe
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ricardo E. Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|