1
|
Ahmed U, Gew LT, Siddiqui R, Khan NA, Alharbi AM, Alhazmi A, Anwar A. Metal Oxide Nanoparticles Exhibit Anti-Acanthamoeba castellanii Properties by Inducing Necrotic Cell Death. Acta Parasitol 2024; 69:1717-1723. [PMID: 39153011 DOI: 10.1007/s11686-024-00891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE The treatment of amoebic infections is often problematic, largely due to delayed diagnosis, amoebae transformation into resistant cyst form, and lack of availability of effective chemotherapeutic agents. Herein, we determined anti-Acanthamoeba castellanii properties of three metal oxide nanoparticles (TiO2, ZrO2, and Al2O3). METHODS Amoebicidal assays were performed to determine whether metal oxide nanoparticles inhibit amoebae viability. Encystation assays were performed to test whether metal oxide nanoparticles inhibit cyst formation. By measuring lactate dehydrogenase release, cytotoxicity assays were performed to determine human cell damage. Hoechst 33342/PI staining was performed to determine programmed cell death (apoptosis) and necrosis in A. castellanii. RESULTS TiO2-NPs significantly inhibited amoebae viability as observed through amoebicidal assays, as well as inhibited their phenotypic transformation as evident using encystation assays, and showed limited human cell damage as observed by measuring lactate dehydrogenase assays. Furthermore, TiO2-NPs altered parasite membranes and resulted in necrotic cell death as determined using double staining cell death assays with Hoechst33342/Propidium iodide (PI) observed through chromatin condensation. These findings suggest that TiO2-NPs offers a potential viable avenue in the rationale development of therapeutic interventions against Acanthamoeba infections.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Lai Ti Gew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, Edinburgh, EH14 4AS, UK
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| | - Ahmad M Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ayman Alhazmi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Ahmed U, Ong SK, Tan KO, Khan KM, Khan NA, Siddiqui R, Alawfi BS, Anwar A. Alpha-Mangostin and its nano-conjugates induced programmed cell death in Acanthamoeba castellanii belonging to the T4 genotype. Int Microbiol 2024; 27:1063-1081. [PMID: 38015290 DOI: 10.1007/s10123-023-00450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Acanthamoeba are free living amoebae that are the causative agent of keratitis and granulomatous amoebic encephalitis. Alpha-Mangostin (AMS) is a significant xanthone; that demonstrates a wide range of biological activities. Here, the anti-amoebic activity of α-Mangostin and its silver nano conjugates (AMS-AgNPs) were evaluated against pathogenic A. castellanii trophozoites and cysts in vitro. Amoebicidal assays showed that both AMS and AMS-AgNPs inhibited the viability of A. castellanii dose-dependently, with an IC50 of 88.5 ± 2.04 and 20.2 ± 2.17 μM, respectively. Both formulations inhibited A. castellanii-mediated human keratinocyte cell cytopathogenicity. Functional assays showed that both samples caused apoptosis through the mitochondrial pathway and reduced mitochondrial membrane potential and ATP production, while increasing reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome-c reductase in the cytosol. Whole transcriptome sequencing of A. castellanii showed the expression of 826 genes, with 447 genes being up-regulated and 379 genes being down-regulated post treatment. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority of genes were linked to apoptosis, autophagy, RAP1, AGE-RAGE and oxytocin signalling pathways. Seven genes (PTEN, H3, ARIH1, SDR16C5, PFN, glnA GLUL, and SRX1) were identified as the most significant (Log2 (FC) value 4) for molecular mode of action in vitro. Future in vivo studies with AMS and nanoconjugates are needed to realize the clinical potential of this work.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Bader Saleem Alawfi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, 42353, Madinah, Saudi Arabia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Singh D, Sharma P, Pant S, Dave V, Sharma R, Yadav R, Prakash A, Kuila A. Ecofriendly fabrication of cobalt nanoparticles using Azadirachta indica (neem) for effective inhibition of Candida-like fungal infection in medicated nano-coated textile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46575-46590. [PMID: 37286837 DOI: 10.1007/s11356-023-28061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
This study involves the formulation of cobalt nanoparticles by means of ethanolic Azadirachta indica (neem) extract (CoNP@N). Later, the formulated buildup was incorporated into cotton fabric in order to mitigate antifungal infection. Optimization of the formulation was carried out by considering the effect of plant concentration, temperature, and revolutions per minute (rpm) used, through design of the experiment (DOE), response surface methodology (RSM), and ANOVA of the synthetic procedure. Hence, graph was potted with the aid of effecting parameters and the related factors (size of particle and zeta potential). Further characterization of nanoparticles was performed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was considered for the detection of functional groups. The structural property of CoNP@N was calculated with the aid of powder X-ray diffraction (PXRD). The surface property was measured with the use of a surface area analyzer (SAA). The values of Inhibition concentration (IC50) and zone of inhibition (ZOI), were calculated, so as to determine the antifungal property against both the strains (Candida albicans, MTCC 227and Aspergillus niger, MTCC 8652). The further nano-coated cloth was subjected to a durability test, and hence the cloth was washed (through the purpose of time 0; 10; 25; and 50 washing cycles), and then its anti-fungal operation to a couple of strains was retained. Primarily, 51 μg/ml of cobalt nanoparticles incorporated on the cloth was retained but after 50 washing cycles in 500 ml of purified water, the cloth showed more efficiency contrary to C. albicans than towards A. niger.
Collapse
Affiliation(s)
- Devsuni Singh
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Prashansa Sharma
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Home Science, Mahila Mahavidyala, Banaras Hindu University, Varanasi, 221005, India
| | - Suman Pant
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Vivek Dave
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, 824236, India
| | - Rekha Sharma
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Rakesh Yadav
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- National Forensic Science University, Tripura Campus, Agartala, 799006, India
| | - Anand Prakash
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India.
| |
Collapse
|
4
|
Mishra S, Garg P, Srivastava S, Srivastava P. Br - nanoconjugate enhances the antibacterial efficacy of nimboloide against Flavobacterium columnare infection in Labeo rohita: A nanoinformatics approach. Microb Pathog 2024; 189:106575. [PMID: 38423405 DOI: 10.1016/j.micpath.2024.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The bacterial pathogen, Flavobacterium columnare causes columnaris disease in Labeo rohita globally. Major effects of this bacterial infection include skin rashes and gill necrosis. Nimbolide, the key ingredient of the leaf extract of Azadirachta indica possesses anti-bacterial properties effective against many microorganisms. Nano-informatics plays a promising role in drug development and its delivery against infections caused by multi-drug-resistant bacteria. Currently, studies in the disciplines of dentistry, food safety, bacteriology, mycology, virology, and parasitology are being conducted to learn more about the wide anti-virulence activity of nimbolide. METHODS The toxicity of nimbolide was predicted to determine its dosage for treating bacterial infection in Labeo rohita. Further, comparative 3-D structure prediction and docking studies are done for nimbolide conjugated nanoparticles with several key target receptors to determine better natural ligands against columnaris disease. The nanoparticle conjugates are being designed using in-silico approaches to study molecular docking interactions with the target receptor. RESULTS Bromine conjugated nimbolide shows the best molecular interaction with the target receptors of selected species ie L rohita. Nimbolide comes under the class III level of toxic compound so, attempts are made to reduce the dosage of the compound without compromising its efficiency. Further, bromine is also used as a common surfactant and can eliminate heavy metals from wastewater. CONCLUSION The dosage of bromine-conjugated nimbolide can be reduced to a non-toxic level and thus the efficiency of the Nimbolide can be increased. Moreover, it can be used to synthesize nanoparticle composites which have potent antibacterial activity towards both gram-positive and gram-negative bacteria. This material also forms a good coating on the surface and kills both airborne and waterborne bacteria.
Collapse
Affiliation(s)
- Sanjana Mishra
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India.
| |
Collapse
|
5
|
Haapanen S, Barker H, Carta F, Supuran CT, Parkkila S. Novel Drug Screening Assay for Acanthamoeba castellanii and the Anti-Amoebic Effect of Carbonic Anhydrase Inhibitors. J Med Chem 2024; 67:152-164. [PMID: 38150360 PMCID: PMC10788897 DOI: 10.1021/acs.jmedchem.3c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Acanthamoeba castellanii is an amoeba that inhabits soil and water in every part of the world. Acanthamoeba infection of the eye causes keratitis and can lead to a loss of vision. Current treatment options are only moderately effective, have multiple harmful side effects, and are tedious. In our study, we developed a novel drug screening method to define the inhibitory properties of potential new drugs against A. castellanii in vitro. We found that the clinically used carbonic anhydrase inhibitors, acetazolamide, ethoxzolamide, and dorzolamide, have promising antiamoebic properties.
Collapse
Affiliation(s)
- Susanna Haapanen
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
| | - Harlan Barker
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
- Fimlab
Ltd, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Fabrizio Carta
- Neurofarba
Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Claudiu T. Supuran
- Neurofarba
Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Seppo Parkkila
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
- Fimlab
Ltd, Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
6
|
Ahmed U, Sivasothy Y, Khan KM, Khan NA, Wahab SMA, Awang K, Othman MA, Anwar A. Malabaricones from the fruit of Myristica cinnamomea King as potential agents against Acanthamoeba castellanii. Acta Trop 2023; 248:107033. [PMID: 37783284 DOI: 10.1016/j.actatropica.2023.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Yasodha Sivasothy
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Siti Mariam Abdul Wahab
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muhamad Aqmal Othman
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia.
| |
Collapse
|
7
|
Ahmed U, Ong SK, Khan KM, Siddiqui R, Khan NA, Shaikh MF, Alawfi BS, Anwar A. Effect of embelin on inhibition of cell growth and induction of apoptosis in Acanthamoeba castellanii. Arch Microbiol 2023; 205:360. [PMID: 37898989 DOI: 10.1007/s00203-023-03698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Acanthamoeba castellanii is the causative agent of fatal encephalitis and blinding keratitis. Current therapies remain a challenge, hence there is a need to search for new therapeutics. Here, we tested embelin (EMB) and silver nanoparticles doped with embelin (EMB-AgNPs) against A. castellanii. Using amoebicidal assays, the results revealed that both compounds inhibited the viability of Acanthamoeba, having an IC50 of 27.16 ± 0.63 and 13.63 ± 1.08 μM, respectively, while causing minimal cytotoxicity against HaCaT cells in vitro. The findings suggest that both samples induced apoptosis through the mitochondria-mediated pathway. Differentially expressed genes analysis showed that 652 genes were uniquely expressed in treated versus untreated cells, out of which 191 were significantly regulated in the negative control vs. conjugate. Combining the analysis, seven genes (ARIH1, RAP1, H3, SDR16C5, GST, SRX1, and PFN) were highlighted as the most significant (Log2 (FC) value ± 4) for the molecular mode of action in vitro. The KEGG analysis linked most of the genes to apoptosis, the oxidative stress signaling pathway, cytochrome P450, Rap1, and the oxytocin signaling pathways. In summary, this study provides a thorough framework for developing therapeutic agents against microbial infections using EMB and EMB-AgNPs.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, Australia
| | - Bader Saleem Alawfi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, 42353, Madinah, Saudi Arabia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia.
| |
Collapse
|
8
|
Gautam S, Das DK, Kaur J, Kumar A, Ubaidullah M, Hasan M, Yadav KK, Gupta RK. Transition metal-based nanoparticles as potential antimicrobial agents: recent advancements, mechanistic, challenges, and future prospects. DISCOVER NANO 2023; 18:84. [PMID: 37382784 DOI: 10.1186/s11671-023-03861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Bacterial transmission is considered one of the potential risks for communicable diseases, requiring promising antibiotics. Traditional drugs possess a limited spectrum of effectiveness, and their frequent administration reduces effectiveness and develops resistivity. In such a situation, we are left with the option of developing novel antibiotics with higher efficiency. In this regard, nanoparticles (NPs) may play a pivotal role in managing such medical situations due to their distinct physiochemical characteristics and impressive biocompatibility. Metallic NPs are found to possess extraordinary antibacterial effects that are useful in vitro as well as in vivo as self-modified therapeutic agents. Due to their wide range of antibacterial efficacy, they have potential therapeutic applications via diverse antibacterial routes. NPs not only restrict the development of bacterial resistance, but they also broaden the scope of antibacterial action without binding the bacterial cell directly to a particular receptor with promising effectiveness against both Gram-positive and Gram-negative microbes. This review aimed at exploring the most relevant types of metal NPs employed as antimicrobial agents, particularly those based on Mn, Fe, Co, Cu, and Zn metals, and their antimicrobial mechanisms. Further, the challenges and future prospects of NPs in biological applications are also discussed.
Collapse
Affiliation(s)
- Sonali Gautam
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Uttar Pradesh, Mathura, 281406, India
| | - Dipak Kumar Das
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Uttar Pradesh, Mathura, 281406, India
| | - Jasvinder Kaur
- Department of Chemistry, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Uttar Pradesh, Mathura, 281406, India.
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mudassir Hasan
- Department of Chemical Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Ram K Gupta
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, Pittsburg, KS, 66762, USA
| |
Collapse
|
9
|
Siddiqui R, Makhlouf Z, Akbar N, Khamis M, Ibrahim T, Khan AS, Khan NA. Antiamoebic properties of Methyltrioctylammonium chloride based deep eutectic solvents. Cont Lens Anterior Eye 2023; 46:101758. [PMID: 36243521 DOI: 10.1016/j.clae.2022.101758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE This aim of this study was to assess anti-parasitic properties of deep eutectic solvents against eye pathogen, Acanthamoeba, often associated with the use of contact lens. METHODS Assays were performed to investigate the effects of various Methyltrioctylammonium chloride-based deep eutectic solvents on Acanthamoeba castellanii, comprising amoebicidal assays, encystment assays, excystment assays, cytotoxicity assays by measuring lactate dehydrogenase release from human cells, and cytopathogenicity assays to determine parasite-mediated host cell death. RESULTS In a 2 h incubation period, DES-B, DES-C, DES-D, and DES-E exhibited up to 85 % amoebicidal activity at micromolar doses, which was enhanced further following 24 h incubation. When tested in encystment assays, selected deep eutectic solvents abolished cyst formation and were able to block excystment of A. castellanii. All solvents exhibited minimal human cell cytotoxicity except DES-D. Finally, all tested deep eutectic solvents inhibited amoeba-mediated cytopathogenicity, except DES-B. CONCLUSIONS Deep eutectic solvents show potent antiamoebic effects. These findings are promising and could lead to the development of novel contact lens disinfectants, as well as opening several avenues to explore the molecular mechanisms, various doses and incubation periods, and use of different bases against Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates; Istinye Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Mustafa Khamis
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amir Sada Khan
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates; Department of Chemistry, University of Science & Technology, Banuu 28100, Khyber Pakhtunkhwa, C
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University, City, Sharjah 27272, United Arab Emirates; Istinye Faculty of Medicine, Istinye University, Istanbul, Turkey..
| |
Collapse
|
10
|
Ahmed U, Manzoor M, Qureshi S, Mazhar M, Fatima A, Aurangzeb S, Hamid M, Khan KM, Khan NA, Rashid Y, Anwar A. Anti-amoebic effects of synthetic acridine-9(10H)-one against brain-eating amoebae. Acta Trop 2023; 239:106824. [PMID: 36610529 DOI: 10.1016/j.actatropica.2023.106824] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Pathogenic A. castellanii and N. fowleri are opportunistic free-living amoebae. Acanthamoeba spp. are the causative agents of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK), whereas Naegleria fowleri causes a very rare but severe brain infection called primary amebic meningoencephalitis (PAM). Acridinone is an important heterocyclic scaffold and both synthetic and naturally occurring derivatives have shown various valuable biological properties. In the present study, ten synthetic Acridinone derivatives (I-X) were synthesized and assessed against both amoebae for anti-amoebic and cysticidal activities in vitro. In addition, excystation, encystation, cytotoxicity, host cell pathogenicity was also performed in-vitro. Furthermore, molecular docking studies of these compounds with three cathepsin B paralogous enzymes of N. fowleri were performed in order to predict the possible docking mode with pathogen. Compound VII showed potent anti-amoebic activity against A. castellanii with IC50 53.46 µg/mL, while compound IX showed strong activity against N. fowleri in vitro with IC50 72.41 µg/mL. Compounds II and VII showed a significant inhibition of phenotypic alteration of A. castellanii, while compound VIII significantly inhibited N. fowleri cysts. Cytotoxicity assessment showed that these compounds caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reduced the cytopathogenicity of Acanthamoeba to HaCaT cells. Moreover, Cathepsin B protease was investigated in-silico as a new molecular therapeutic target for these compounds. All compounds showed potential interactions with the catalytic residues. These results showed that acridine-9(10H)-one derivatives, in particular compounds II, VII, VIII and IX hold promise in the development of therapeutic agents against these free-living amoebae.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Mehwish Manzoor
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sehrish Qureshi
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Muzna Mazhar
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Arj Fatima
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Sana Aurangzeb
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Mehwish Hamid
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, University City, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Yasmeen Rashid
- Department of Biochemistry, University of Karachi, Karachi, Pakistan.
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
11
|
Maciver SK, Abdelnasir S, Anwar A, Siddiqui R, Khan NA. Modular nanotheranostic agents for protistan parasitic diseases: Magic bullets with tracers. Mol Biochem Parasitol 2023; 253:111541. [PMID: 36603708 DOI: 10.1016/j.molbiopara.2022.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Protistan parasitic infections contribute significantly to morbidity and mortality, causing more than 2 billion human infections annually. However, current treatments are often limited; due to ineffective drugs and drug resistance, thus better options are urgently required. In the present context, theranostics agents are those that offer simultaneous detection, diagnosis and even treatment of protistan parasitic diseases. "Nanotheranostics" is the term used to describe such agents, that are around 100 nm or less in size. Anti-parasitic activity of nanoparticles (NPs) has been reported, and many have useful intrinsic imaging properties, but it is perhaps their multifunctional nature that offers the greatest potential. NPs may be used as adapters onto which various subunits with different functions may be attached. These subunits may facilitate targeting parasites, coupled with toxins to eradicate parasites, and probe subunits for detection of particles and/or parasites. The modular nature of nano-platforms promises a "mix and match" approach for the construction of tailored agents by using combinations of these subunits against different protistan parasites. Even though many of the subunits have shown promise alone, these have not yet been put together convincingly enough to form working theranostics against protistan parasites. Although the clinical application of nanotheranostics to protistan parasitic infections in humans requires more research, we conclude that they offer not just a realisation of Paul Ehrlich's long imagined "magic bullet" concept, but potentially are magic bullets combined with tracer bullets.
Collapse
Affiliation(s)
- Sutherland Kester Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Sumayah Abdelnasir
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia.
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
12
|
Metal nanoparticles against multi-drug-resistance bacteria. J Inorg Biochem 2022; 237:111938. [PMID: 36122430 DOI: 10.1016/j.jinorgbio.2022.111938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023]
Abstract
Antimicrobial-resistant (AMR) bacterial infections remain a significant public health concern. The situation is exacerbated by the rapid development of bacterial resistance to currently available antimicrobials. Metal nanoparticles represent a new perspective in treating AMR due to their unique mechanisms, such as disrupting bacterial cell membrane potential and integrity, biofilm inhibition, reactive oxygen species (ROS) formation, enhancing host immune responses, and inhibiting RNA and protein synthesis by inducing intracellular processes. Metal nanoparticles (MNPs) properties such as size, shape, surface functionalization, surface charges, and co-encapsulated drug delivery capability all play a role in determining their potential against multidrug-resistant bacterial infections. Silver, gold, zinc oxide, selenium, copper, cobalt, and iron oxide nanoparticles have recently been studied extensively against multidrug-resistant bacterial infections. This review aims to provide insight into the size, shape, surface properties, and co-encapsulation of various MNPs in managing multidrug-resistant bacterial infections.
Collapse
|
13
|
Ma Y, Lin W, Ruan Y, Lu H, Fan S, Chen D, Huang Y, Zhang T, Pi J, Xu JF. Advances of Cobalt Nanomaterials as Anti-Infection Agents, Drug Carriers, and Immunomodulators for Potential Infectious Disease Treatment. Pharmaceutics 2022; 14:pharmaceutics14112351. [PMID: 36365168 PMCID: PMC9696703 DOI: 10.3390/pharmaceutics14112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.
Collapse
Affiliation(s)
- Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
14
|
Sidorowicz A, Margarita V, Fais G, Pantaleo A, Manca A, Concas A, Rappelli P, Fiori PL, Cao G. Characterization of nanomaterials synthesized from Spirulina platensis extract and their potential antifungal activity. PLoS One 2022; 17:e0274753. [PMID: 36112659 PMCID: PMC9481030 DOI: 10.1371/journal.pone.0274753] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Nowadays, fungal infections increase, and the demand of novel antifungal agents is constantly rising. In the present study, silver, titanium dioxide, cobalt (II) hydroxide and cobalt (II,III) oxide nanomaterials have been synthesized from Spirulina platensis extract. The synthesis mechanism has been studied using GCMS and FTIR thus confirming the involvement of secondary metabolites, mainly amines. The obtained products have been analysed using XRD, SEM, TGA and zeta potential techniques. The findings revealed average crystallite size of 15.22 nm with 9.72 nm for oval-shaped silver nanoparticles increasing to 26.01 nm and 24.86 nm after calcination and 4.81 nm for spherical-shaped titanium dioxide nanoparticles which decreased to 4.62 nm after calcination. Nanoflake shape has been observed for cobalt hydroxide nanomaterials and for cobalt (II, III) oxide with crystallite size of 3.52 nm and 13.28 nm, respectively. Silver nanoparticles showed the best thermal and water dispersion stability of all the prepared structures. Once subjected to three different Candida species (C. albicans, C. glabrata, and C. krusei) silver nanoparticles and cobalt (II) hydroxide nanomaterials showed strong antifungal activity at 50 μg/mL with minimum inhibitory concentration (MIC) values. After light exposition, MIC values for nanomaterials decreased (to 12.5 μg/mL) for C. krusei and increased (100 μg/mL) for C. albicans and C. glabrata.
Collapse
Affiliation(s)
- Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, Cagliari, Italy
| | | | - Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, Cagliari, Italy
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessia Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, Cagliari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control, Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control, Sassari, Italy
- * E-mail: (PLF); (GC)
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, Cagliari, Italy
- * E-mail: (PLF); (GC)
| |
Collapse
|
15
|
Siddiqui R, Boghossian A, Akbar N, Khan NA. A one health approach versus Acanthamoeba castellanii, a potential host for Morganella morganii. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:781-788. [PMID: 35794501 PMCID: PMC9261161 DOI: 10.1007/s10123-022-00261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Acanthamoeba castellanii, known as the “Trojan horse of the microbial world,” is known to host a variety of microorganisms including viruses, yeasts, protists, and bacteria. Acanthamoeba can act as a vector and may aid in the transmission of various bacterial pathogens to potential hosts and are found in a variety of places, thus impacting the health of humans, animals, and the environment. These are interconnected in a system known as “one health.” With the global threat of antibiotic resistance, bacteria may avoid harsh conditions, antibiotics, and disinfectants by sheltering within Acanthamoeba. In this study, Acanthamoeba castellanii interaction with Morganella morganii, a Gram-negative bacterium was studied. Escherichia coli K1 interaction with Acanthamoeba was carried out as a control. Association, invasion, and survival assays were accomplished. Morganella morganii was found to associate, invade, and survive within Acanthamoeba castellanii. Additionally, Escherichia coli K1 was also found to associate, invade, and survive within the Acanthamoeba at a higher number in comparison to Morganella morganii. For the first time, we have shown that Morganella morganii interact, invade, and survive within Acanthamoeba castellanii, suggesting that Acanthamoeba may be a potential vector in the transmission of Morganella morganii to susceptible hosts. Taking a one health approach to tackle and develop disinfectants to target Acanthamoeba is warranted, as the amoebae may be hosting various microbes such as multiple drug-resistant bacteria and even viruses such as the novel coronavirus.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, 26666, Sharjah, United Arab Emirates
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, 26666, Sharjah, United Arab Emirates
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, 26666, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
16
|
Padzik M, Chomicz L, Bluszcz J, Maleszewska K, Grobelny J, Conn DB, Hendiger EB. Tannic Acid-Modified Silver Nanoparticles in Conjunction with Contact Lens Solutions Are Useful for Progress against the Adhesion of Acanthamoeba spp. to Contact Lenses. Microorganisms 2022; 10:microorganisms10061076. [PMID: 35744595 PMCID: PMC9230222 DOI: 10.3390/microorganisms10061076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Acanthamoeba spp. are amphizoic amoebae that are widely distributed in the environment and capable of entering the human body. They can cause pathogenic effects in different tissues and organs, including Acanthamoeba keratitis (AK), which may result in a loss of visual acuity and blindness. The diagnostics, treatment, and prevention of AK are still challenging. More than 90% of AK cases are related to the irresponsible wearing of contact lenses. However, even proper lens care does not sufficiently protect against this eye disease, as amoebae have been also found in contact lens solutions and contact lens storage containers. The adhesion of the amoebae to the contact lens surface is the first step in developing this eye infection. To limit the incidence of AK, it is important to enhance the anti-adhesive activity of the most popular contact lens solutions. Currently, silver nanoparticles (AgNPs) are used as modern antimicrobial agents. Their effectiveness against Acanthamoeba spp., especially with the addition of plant metabolites, such as tannic acid, has been confirmed. Here, we present the results of our further studies on the anti-adhesion potential of tannic acid-modified silver nanoparticles (AgTANPs) in combination with selected contact lens solutions against Acanthamoeba spp. on four groups of contact lenses. The obtained results showed an increased anti-adhesion activity of contact lens solutions in conjunction with AgTANPs with a limited cytotoxicity effect compared to contact lens solutions acting alone. This may provide a benefit in improving the prevention of amoebae eye infections. However, there is still a need for further studies on different pathogenic strains of Acanthamoeba in order to assess the adhesion of the cysts to the contact lens surface and to reveal a more comprehensive picture of the activity of AgTANPs and contact lens solutions.
Collapse
Affiliation(s)
- Marcin Padzik
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
- Correspondence:
| | - Lidia Chomicz
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| | - Julita Bluszcz
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| | - Karolina Maleszewska
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Street, 90-236 Lodz, Poland;
| | - David Bruce Conn
- Department of Invertebrate Zoology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA; or
- One Health Center, School of Mathematical and Natural Sciences, Berry College, Mount Berry, GA 30149, USA
| | - Edyta B. Hendiger
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| |
Collapse
|
17
|
Acute toxicity of C60–Cis-Pt nanocomplex in vivo. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Chu KB, Lee HA, Pflieger M, Fischer F, Asfaha Y, Alves Avelar LA, Skerhut A, Kassack MU, Hansen FK, Schöler A, Kurz T, Kim MJ, Moon EK, Quan FS. Antiproliferation and Antiencystation Effect of Class II Histone Deacetylase Inhibitors on Acanthamoeba castellanii. ACS Infect Dis 2022; 8:271-279. [PMID: 34994538 DOI: 10.1021/acsinfecdis.1c00390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acanthamoeba is a ubiquitous and free-living protozoan pathogen responsible for causing Acanthamoeba keratitis (AK), a severe corneal infection inflicting immense pain that can result in permanent blindness. A drug-based treatment of AK has remained arduous because Acanthamoeba trophozoites undergo encystment to become highly drug-resistant cysts upon exposure to harsh environmental conditions such as amoebicidal agents (e.g., polyhexanide, chloroquine, and chlorohexidine). As such, drugs that block the Acanthamoeba encystation process could result in a successful AK treatment. Histone deacetylase inhibitors (HDACi) have recently emerged as novel therapeutic options for treating various protozoan and parasitic diseases. Here, we investigated whether novel HDACi suppress the proliferation and encystation of Acanthamoeba. Synthetic class II HDACi FFK29 (IIa selective) and MPK576 (IIb selective) dose-dependently decreased the viability of Acanthamoeba trophozoites. While these HDACi demonstrated a negligible effect on the viability of mature cysts, Acanthamoeba encystation was significantly inhibited by these HDACi. Apoptosis was slightly increased in trophozoites after a treatment with these HDACi, whereas cysts were unaffected by the HDACi exposure. The viability of human corneal cells was not affected by HDACi concentrations up to 10 μmol/L. In conclusion, these synthetic HDACi demonstrated potent amoebicidal effects and inhibited the growth and encystation of Acanthamoeba, thus highlighting their enormous potential for further development.
Collapse
Affiliation(s)
- Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, 02447 Seoul, South Korea
| | - Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, 02447 Seoul, South Korea
| | - Marc Pflieger
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Leandro A. Alves Avelar
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Alexander Skerhut
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Finn K Hansen
- Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Min-Jeong Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, 02447 Seoul, South Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University, School of Medicine, 02447 Seoul, South Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, 02447 Seoul, South Korea
- Department of Medical Zoology, Kyung Hee University, School of Medicine, 02447 Seoul, South Korea
| |
Collapse
|
19
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121 DOI: 10.12688/f1000research.126227.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of the agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results obtained provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
20
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121.3 DOI: 10.12688/f1000research.126227.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
21
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121 DOI: 10.12688/f1000research.126227.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
22
|
Abass AA, Abdulridha WM, Alaarage WK, Abdulrudha NH, Haider J. Evaluating the antibacterial effect of cobalt nanoparticles against multi-drug resistant pathogens. J Med Life 2021; 14:823-833. [PMID: 35126754 PMCID: PMC8811680 DOI: 10.25122/jml-2021-0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022] Open
Abstract
This study aimed to estimate the effect of cobalt nanoparticles (Co NPs) with different concentrations against multidrug-resistant (MDR) pathogenic bacteria. Three isolates of Staphylococcus aureus (gram-positive), Proteus spp. (gram-negative), and Escherichia coli (gram-negative) bacteria were extracted from various clinical examples utilizing routine methods on bacteriological culture media. The antibacterial sensitivity of commercial antibiotics such as Ciprofloxacin, Cefotaxime, Gentamycin, and Amoxicillin was broken down on a Muller Hinton agar plate and evaluated using the disk diffusion method. The study results demonstrated the antibacterial effect of the Co NPs against the bacterial isolates with three different concentrations utilized in the study. The results indicated that the Co NPs showed the highest antibacterial activity when utilizing 100 μg/ml against Escherichia coli followed by Proteus spp and Staphylococcus aureus with zones of inhibition measured as 22.2±0.1 mm, 20.3±0.15 mm, and 15.8±0.1 mm; respectively. Co NPs at a 100 μg/mL concentration showed higher inhibition zones than several common antibiotics except for Ciprofloxacin, which demonstrated better antibacterial activity against the bacterial isolates employed in this study. Scanning Electron Microscope (SEM)and X-Ray diffraction (XRD)studies confirmed that Cobalt nanoparticles (Co NPs) were synthesized from cobalt sulphate solution with a size ranging from 40 nm to 60 nm. The nanoparticles showed a crystalline structure with a round shape and smooth surface. The antibacterial resistance of Co NPs against three common bacteria such as Staphylococcus aureus, Proteus spp, and Escherichia coli was assessed in this study. The optimum concentration of the Co NPs was identified as 100 μg/ml, which could provide a similar or higher antibacterial effect.
Collapse
Affiliation(s)
| | | | | | | | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
23
|
Silver Nanoparticles Conjugated with Contact Lens Solutions May Reduce the Risk of Acanthamoeba Keratitis. PATHOGENS (BASEL, SWITZERLAND) 2021; 10:pathogens10050583. [PMID: 34064555 PMCID: PMC8151187 DOI: 10.3390/pathogens10050583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Acanthamoeba keratitis (AK), a severe sight-threatening corneal infection, has become a significant medical problem, especially among contact lens wearers. The disease manifests as eye pain, congestion, blurred vision, lachrymation, and ring-shaped infiltrates of the cornea, and can lead to permanent blindness. Inappropriate habits of contact lens users may result in an increased risk of AK infection. The anti-amoebic efficiency of popular multipurpose contact lens solutions is insufficient to reduce this risk. An effective and non-toxic therapy against AK has not yet been developed. The prevention of AK is crucial to reduce the number of AK infections. Nanoparticles are known to be active agents against bacteria, viruses, and fungi and were also recently tested against protozoa, including Acanthamoeba spp. In our previous studies, we proved the anti-amoebic and anti-adhesive activity of silver nanoparticles against Acanthamoeba castellanii. The aim of this study is to evaluate the activity, cytotoxicity, and anti-adhesive properties of silver nanoparticles conjugated with five commonly used multipurpose contact lens solutions against the Acanthamoeba castellanii NEFF strain. The obtained results show a significant increase in anti-amoebic activity, without increasing the overall cytotoxicity, of Solo Care Aqua and Opti Free conjugated with nanoparticles. The adhesion of Acanthamoeba trophozoites to the contact lens surface is also significantly reduced. We conclude that low concentrations of silver nanoparticles can be used as an ingredient in contact lens solutions to decrease the risk of Acanthamoeba keratitis infection.
Collapse
|
24
|
Masri A, Abdelnasir S, Anwar A, Iqbal J, Numan A, Jagadish P, Shahabuddin S, Khalid M. Antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite against pathogenic bacteria and parasite. Appl Microbiol Biotechnol 2021; 105:3315-3325. [PMID: 33797573 DOI: 10.1007/s00253-021-11221-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Conducting polymer based nanocomposites are known to be effective against pathogens. Herein, we report the antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite (PPy-Co3O4-AgNPs) for the first time. Antibacterial activities were tested against multi-drug-resistant Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria, while antiamoebic effects were assessed against opportunistic protist Acanthamoeba castellanii (A. castellanii). RESULTS The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 μg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 μg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 μg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells. CONCLUSION These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications. KEY POINTS •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.
Collapse
Affiliation(s)
- Abdulkader Masri
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sumayah Abdelnasir
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| | - Javed Iqbal
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arshid Numan
- Graphene and Advanced 2D Materials Research Group, School of Engineering and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Priyanka Jagadish
- Graphene and Advanced 2D Materials Research Group, School of Engineering and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Syed Shahabuddin
- Department of Science, School of Technology, Pandit Deendayal Petroleum University, Knowledge Corridor, Gandhi Nagar, Gujarat, 382007, India
| | - Mohammad Khalid
- Graphene and Advanced 2D Materials Research Group, School of Engineering and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
25
|
Ngowi EE, Wang YZ, Qian L, Helmy YASH, Anyomi B, Li T, Zheng M, Jiang ES, Duan SF, Wei JS, Wu DD, Ji XY. The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Front Bioeng Biotechnol 2021; 9:629832. [PMID: 33738278 PMCID: PMC7960921 DOI: 10.3389/fbioe.2021.629832] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood–brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China.,Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yasmeen Ahmed Saleheldin Hassan Helmy
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Bright Anyomi
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Nursing and Health, Institutes of Nursing and Health, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
26
|
Hendiger EB, Padzik M, Żochowska A, Baltaza W, Olędzka G, Zyskowska D, Bluszcz J, Jarzynka S, Chomicz L, Grodzik M, Hendiger J, Piñero JE, Grobelny J, Ranoszek-Soliwoda K, Lorenzo-Morales J. Tannic acid-modified silver nanoparticles enhance the anti-Acanthamoeba activity of three multipurpose contact lens solutions without increasing their cytotoxicity. Parasit Vectors 2020; 13:624. [PMID: 33353560 PMCID: PMC7754594 DOI: 10.1186/s13071-020-04453-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Free-living amoebae of the genus Acanthamoeba are cosmopolitan, widely distributed protozoans that cause a severe, vision-threatening corneal infection known as Acanthamoeba keratitis (AK). The majority of the increasing number of AK cases are associated with contact lens use. Appropriate eye hygiene and effective contact lens disinfection are crucial in the prevention of AK because of the lack of effective therapies against it. Currently available multipurpose contact lens disinfection systems are not fully effective against Acanthamoeba trophozoites and cysts. There is an urgent need to increase the disinfecting activity of these systems to prevent AK infections. Synthesized nanoparticles (NPs) have been recently studied and proposed as a new generation of anti-microbial agents. It is also known that some plant metabolites, including tannins, have anti-parasitic activity. The aim of this study was to evaluate the anti-amoebic activity and cytotoxicity of tannic acid-modified silver NPs (AgTANPs) conjugated with selected multipurpose contact lens solutions. METHODS The anti-amoebic activities of pure contact lens care solutions, and NPs conjugated with contact lens care solutions, were examined in vitro by a colorimetric assay based on the oxido-reduction of alamarBlue. The cytotoxicity assays were performed using a fibroblast HS-5 (ATCC CRL-11882) cell line. The results were statistically analysed by ANOVA and Student-Newman-Keuls test using P < 0.05 as the level of statistical significance. RESULTS We show that the NPs enhance the anti-Acanthamoeba activities of the tested contact lens solutions without increasing their cytotoxicity profiles. The activities are enhanced within the minimal disinfection time recommended by the manufacturers. CONCLUSIONS The conjugation of the selected contact lens solutions with AgTANPs might be a novel and promising approach for the prevention of AK infections among contact lens users.
Collapse
Affiliation(s)
- Edyta B. Hendiger
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| | - Marcin Padzik
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Agnieszka Żochowska
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Wanda Baltaza
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Gabriela Olędzka
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Diana Zyskowska
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Julita Bluszcz
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Sylwia Jarzynka
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Lidia Chomicz
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw, University of Life Sciences, 8 Ciszewskiego Street, 02-787 Warsaw, Poland
| | - Jacek Hendiger
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Street, 00-653 Warsaw, Poland
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Street, 90-236 Lodz, Poland
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Street, 90-236 Lodz, Poland
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| |
Collapse
|
27
|
Walvekar S, Anwar A, Anwar A, Sridewi N, Khalid M, Yow YY, Khan NA. Anti-amoebic potential of azole scaffolds and nanoparticles against pathogenic Acanthamoeba. Acta Trop 2020; 211:105618. [PMID: 32628912 DOI: 10.1016/j.actatropica.2020.105618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
Acanthamoeba spp. are free living amoeba (FLA) which are widely distributed in nature. They are opportunistic parasites and can cause severe infections to the eye, skin and central nervous system. The advances in drug discovery and modifications in the chemotherapeutic agents have shown little improvement in morbidity and mortality rates associated with Acanthamoeba infections. The mechanism-based process of drug discovery depends on the molecular drug targets present in the signaling pathways in the genome. Synthetic libraries provide a platform for broad spectrum of activities due to their desired structural modifications. Azoles, originally a class of synthetic anti-fungal drugs, disrupt the fungal cell membrane by inhibiting the biosynthesis of ergosterol through the inhibition of cytochrome P450 dependent 14α-lanosterol, a key step of the sterol pathway. Acanthamoeba and fungi share the presence of similar sterol intermediate, as ergosterol is also the major end-product in the sterol biosynthesis in Acanthamoeba. Sterols present in the eukaryotic cell membrane are one of the most essential lipids and exhibit important structural and signaling functions. Therefore, in this review we highlight the importance of specific targeting of ergosterol present in Acanthamoebic membrane by azole compounds for amoebicidal activity. Previously, azoles have also been repurposed to report antimicrobial, antiparasitic and antibacterial properties. Moreover, by loading the azoles into nanoparticles through advanced techniques in nanotechnology, such as physical encapsulation, adsorption, or chemical conjugation, the pharmacokinetics and therapeutic index of the drugs can be significantly improved. The current review proposes an important strategy to target Acanthamoeba using synthetic libraries of azoles and their conjugated nanoparticles for the first time.
Collapse
|
28
|
Sharma G, Kalra SK, Tejan N, Ghoshal U. Nanoparticles based therapeutic efficacy against Acanthamoeba: Updates and future prospect. Exp Parasitol 2020; 218:108008. [PMID: 32979343 DOI: 10.1016/j.exppara.2020.108008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022]
Abstract
Acanthamoeba sp. is a free living amoeba that causes severe, painful and fatal infections, viz. Acanthamoeba keratitis and granulomatous amoebic encephalitis among humans. Antimicrobial chemotherapy used against Acanthamoeba is toxic to human cells and show side effects as well. Infections due to Acanthamoeba also pose challenges towards currently used antimicrobial treatment including resistance and transformation of trophozoites to resistant cyst forms that can lead to recurrence of infection. Therapeutic agents targeting central nervous system infections caused by Acanthamoeba should be able to cross blood-brain barrier. Nanoparticles based drug delivery put forth an effective therapeutic method to overcome the limitations of currently used antimicrobial chemotherapy. In recent years, various researchers investigated the effectiveness of nanoparticles conjugated drug and/or naturally occurring plant compounds against both trophozoites and cyst form of Acanthamoeba. In the current review, a reasonable effort has been made to provide a comprehensive overview of various nanoparticles tested for their efficacy against Acanthamoeba. This review summarizes the noteworthy details of research performed to elucidate the effect of nanoparticles conjugated drugs against Acanthamoeba.
Collapse
Affiliation(s)
- Geetansh Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology & Management Sciences, Bajhol, District Solan, H.P, 173229, India
| | - Sonali K Kalra
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology & Management Sciences, Bajhol, District Solan, H.P, 173229, India.
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili Road, Lucknow, U.P, 226014, India
| | - Ujjala Ghoshal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili Road, Lucknow, U.P, 226014, India
| |
Collapse
|
29
|
Isoniazid Conjugated Magnetic Nanoparticles Loaded with Amphotericin B as a Potent Antiamoebic Agent against Acanthamoeba castellanii. Antibiotics (Basel) 2020; 9:antibiotics9050276. [PMID: 32466210 PMCID: PMC7277095 DOI: 10.3390/antibiotics9050276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023] Open
Abstract
The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
Collapse
|
30
|
Tombuloglu H, Khan FA, Almessiere MA, Aldakheel S, Baykal A. Synthesis of niobium substituted cobalt-nickel nano-ferrite (Co 0.5Ni 0.5Nb xFe 2-xO 4 (x ≤ 0.1) by hydrothermal approach show strong anti-colon cancer activities. J Biomol Struct Dyn 2020; 39:2257-2265. [PMID: 32241211 DOI: 10.1080/07391102.2020.1748719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The combination of two or more nanoparticles found to be effective strategy to synthesize nanocomposites for better drug delivery and treatment. In the present study, we have combined cobalt (Co), nickel (Ni), niobium (Nb), and iron oxide (Fe2O4) and prepared niobium substituted cobalt-nickel nano-ferrite nanocomposites (Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) by using hydrothermal approach. We have characterized the structure and morphology of nanocomposites by using XRD, EDX, TEM and SEM methodologies. We have examined the impact of nanocomposites (Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) on cancerous cells (human colorectal carcinoma cells, HCT-116) by using MTT assay. We have also checked the impact of nanocomposites on normal and non-cancerous cells (human embryonic kidney cells, HEK-293) to confirm the specificity of their actions. Post- 48 h treatment of Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) led to dose-dependent inhibition of cancer cells growth and proliferation. However, no cytotoxic effect was observed on the normal cells (HEK-293). In addition, DAPI stained nuclear DNA staining analysis demonstrates that the Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) treatment also caused nuclear DNA disintegration which is the marker for programmed cell death. These results demonstrate that synthesized nanocomposites Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) selectively target the colon cancer cells and induce cancer cell death.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- H Tombuloglu
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - F A Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - M A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - S Aldakheel
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - A Baykal
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
31
|
Simões MF, Ottoni CA, Antunes A. Biogenic Metal Nanoparticles: A New Approach to Detect Life on Mars? Life (Basel) 2020; 10:E28. [PMID: 32245046 PMCID: PMC7151574 DOI: 10.3390/life10030028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 01/02/2023] Open
Abstract
Metal nanoparticles (MNPs) have been extensively studied. They can be produced via different methods (physical, chemical, or biogenic), but biogenic synthesis has become more relevant, mainly for being referred by many as eco-friendly and more advantageous than others. Biogenic MNPs have been largely used in a wide variety of applications, from industry, to agriculture, to health sectors, among others. Even though they are increasingly researched and used, there is still space for exploring further applications and increasing their functionality and our understanding of their synthesis process. Here, we provide an overview of MNPs and biogenic MNPs, and we analyze the potential application of their formation process to astrobiology and the detection of life on Mars and other worlds. According to current knowledge, we suggest that they can be used as potential biosignatures in extra-terrestrial samples. We present the advantages and disadvantages of this approach, suggest further research, and propose its potential use for the search for life in future space exploration.
Collapse
Affiliation(s)
- Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, Hong Kong, China
| | | | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, Hong Kong, China
| |
Collapse
|
32
|
Effects of Shape and Size of Cobalt Phosphate Nanoparticles against Acanthamoeba castellanii. Pathogens 2019; 8:pathogens8040260. [PMID: 31766722 PMCID: PMC6963488 DOI: 10.3390/pathogens8040260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022] Open
Abstract
T4 genotype Acanthamoeba are opportunistic pathogens that cause two types of infections, including vision-threatening Acanthamoeba keratitis (AK) and a fatal brain infection known as granulomatous amoebic encephalitis (GAE). Due to the existence of ineffective treatments against Acanthamoeba, it has become a potential threat to all contact lens users and immunocompromised patients. Metal nanoparticles have been proven to have various antimicrobial properties against bacteria, fungi, and parasites. Previously, different types of cobalt nanoparticles showed some promise as anti-acanthamoebic agents. In this study, the objectives were to synthesize and characterize the size, morphology, and crystalline structure of cobalt phosphate nanoparticles, as well as to determine the effects of different sizes of cobalt metal-based nanoparticles against A. castellanii. Cobalt phosphate octahydrate (CHP), Co3(PO4)2•8H2O, was synthesized by ultrasonication using a horn sonicator, then three different sizes of cobalt phosphates Co3(PO4)2 were produced through calcination of Co3(PO4)2•8H2O at 200 °C, 400 °C and 600 °C (CP2, CP4, CP6). These three types of cobalt phosphate nanoparticles were characterized using a field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. Next, the synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. The overall results showed that 1.30 ± 0.70 µm of CHP microflakes demonstrated the best anti-acanthemoebic effects at 100 µg/mL, followed by 612.50 ± 165.94 nm large CP6 nanograins. However, amongst the three tested cobalt phosphates, Co3(PO4)2, the smaller nanoparticles had stronger antiamoebic effects against A. castellanii. During cell cytotoxicity analysis, CHP exhibited only 15% cytotoxicity against HeLa cells, whereas CP6 caused 46% (the highest) cell cytotoxicity at the highest concentration, respectively. Moreover, the composition and morphology of nanoparticles is suggested to be important in determining their anti-acathamoebic effects. However, the molecular mechanisms of cobalt phosphate nanoparticles are still unidentified. Nevertheless, the results suggested that cobalt phosphate nanoparticles hold potential for development of nanodrugs against Acanthamoeba.
Collapse
|