1
|
McVey DS, Hanzlicek G, Ruder MG, Loy D, Drolet BS. Evidence of Active Orbivirus Transmission in 2016 in Kansas and Nebraska. Vector Borne Zoonotic Dis 2024; 24:390-395. [PMID: 38386998 DOI: 10.1089/vbz.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Retrospective serological and case diagnostic data of endemic bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) provide evidence of viral transmission among livestock and wildlife from 2016 in Kansas and Nebraska. Serological testing of mature cattle in nine distinct regional zones of Kansas revealed 76% to 100% had detectable antibodies to BTV and/or EHDV. Specimens tested in the Kansas Veterinary Diagnostic Laboratory (55 submissions) were 51% test positive for antibodies to BTV and/or EHDV. Specimens tested in the Nebraska Veterinary Diagnostic Center (283 submissions) were 25% test positive for antibodies to BTV and/or EHDV. Low disease incidence in white-tailed deer and other susceptible wild ungulates was observed during 2016. However, there were no confirmed reports of disease in livestock in either state. The reasons for emergence of significant clinical disease in livestock and wildlife populations remain undefined.
Collapse
Affiliation(s)
- David Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Greg Hanzlicek
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, College of Veterinary Medicine, Athens, Georgia, USA
| | - Dustin Loy
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, USDA ARS CGAHR, Manhattan, Kansas, USA
| |
Collapse
|
2
|
Benn JS, Orange JP, Gomez JP, Dinh ETN, McGregor BL, Blosser EM, Burkett-Cadena ND, Wisely SM, Blackburn JK. Culicoides Midge Abundance across Years: Modeling Inter-Annual Variation for an Avian Feeder and a Candidate Vector of Hemorrhagic Diseases in Farmed Wildlife. Viruses 2024; 16:766. [PMID: 38793647 PMCID: PMC11125994 DOI: 10.3390/v16050766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: Epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) are orbiviruses that cause hemorrhagic disease (HD) with significant economic and population health impacts on domestic livestock and wildlife. In the United States, white-tailed deer (Odocoileus virginianus) are particularly susceptible to these viruses and are a frequent blood meal host for various species of Culicoides biting midges (Diptera: Ceratopogonidae) that transmit orbiviruses. The species of Culicoides that transmit EHDV and BTV vary between regions, and larval habitats can differ widely between vector species. Understanding how midges are distributed across landscapes can inform HD virus transmission risk on a local scale, allowing for improved animal management plans to avoid suspected high-risk areas or target these areas for insecticide control. (2) Methods: We used occupancy modeling to estimate the abundance of gravid (egg-laden) and parous (most likely to transmit the virus) females of two putative vector species, C. stellifer and C. venustus, and one species, C. haematopotus, that was not considered a putative vector. We developed a universal model to determine habitat preferences, then mapped a predicted weekly midge abundance during the HD transmission seasons in 2015 (July-October) and 2016 (May-October) in Florida. (3) Results: We found differences in habitat preferences and spatial distribution between the parous and gravid states for C. haematopotus and C. stellifer. Gravid midges preferred areas close to water on the border of well and poorly drained soil. They also preferred mixed bottomland hardwood habitats, whereas parous midges appeared less selective of habitat. (4) Conclusions: If C. stellifer is confirmed as an EHDV vector in this region, the distinct spatial and abundance patterns between species and physiological states suggest that the HD risk is non-random across the study area.
Collapse
Affiliation(s)
- Jamie S. Benn
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, 3141 Turlington Hall, Gainesville, FL 32611, USA; (J.S.B.); (J.P.O.)
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32611, USA
| | - Jeremy P. Orange
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, 3141 Turlington Hall, Gainesville, FL 32611, USA; (J.S.B.); (J.P.O.)
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32611, USA
| | - Juan Pablo Gomez
- Departamento de Química y Biología, Universidad del Norte, Barranquilla 080001, Colombia;
| | - Emily T. N. Dinh
- Michigan Department of Health and Human Services, 333 S Grand Ave, Lansing, MI 48933, USA;
| | - Bethany L. McGregor
- USDA-ARS-Center for Grain and Animal Health Research-Arthropod-Borne Animal Diseases Research Unit, 1515 College Ave, Manhatten, KS 66506, USA;
| | - Erik M. Blosser
- Sutter-Yuba Mosquito & Vector Control District, 701 Bogue Road, Yuba City, CA 95991, USA;
| | - Nathan D. Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St SE, Vero Beach, FL 32962, USA;
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, 110 Newins-Ziegler Hall, Gainesville, FL 32611, USA;
| | - Jason K. Blackburn
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, 3141 Turlington Hall, Gainesville, FL 32611, USA; (J.S.B.); (J.P.O.)
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Steele CH, McDermott EG. From forests to fields: investigating Culicoides (Diptera: Ceratopogonidae) abundance and diversity in cattle pastures and adjacent woodlands. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:473-480. [PMID: 38085671 DOI: 10.1093/jme/tjad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 03/14/2024]
Abstract
Culicoides Latreille (Diptera: Ceratopogonidae) biting midges are hematophagous flies that feed on wild and domestic ruminants. They can transmit arboviruses, such as bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), which circulate in the United States. Larvae occupy a range of aquatic and semiaquatic habitats, and disperse short distances from their development sites. In the southeastern United States, there are limited studies on the abundance and diversity of Culicoides in wooded and adjacent livestock pasture habitats. In this study, we characterized Culicoides diversity and abundance within these distinct habitat types. BG-Sentinel and CDC miniature suction traps baited with CO2 or UV-light were placed in wooded and pasture habitats at 2 locations on a university beef farm in Savoy, Arkansas. Traps were set once per week for 9 wk during August-October of 2021 and 2022. Fifteen species were collected during this study, and the 2 most abundant species were Culicoides haematopotus Malloch and Culicoides stellifer Coquillett. There was a significant effect of site and location on C. haematopotus collections, and a significant effect and interaction of site and trap on C. stellifer collections. In the woods, significantly more C. stellifer were collected from CDC-UV traps, while in the pasture significantly more were collected in CDC-CO2 traps. These data suggest that C. stellifer, a putative vector of BTV and EHDV in the southeast, may be traveling into the pasture to host-seek, while C. haematopotus remains primarily in wooded areas. This study reveals community differences between these habitat types and implications for Culicoides control.
Collapse
Affiliation(s)
- Cassandra H Steele
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Emily G McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
4
|
Banerjee P, Sarkar A, Mazumdar A. Effect of substrate salinity and pH on life history traits of the bluetongue virus vector Culicoides peregrinus. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:829-837. [PMID: 37997803 DOI: 10.1017/s0007485323000512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Habitat selection of Culicoides spp. (Diptera: Ceratopogonidae) is influenced by the physicochemical factors such as temperature, pH, salinity, moisture, conductivity, organic and inorganic compounds of substrates. These factors determine the life history traits of the vectors. We studied the influence of substrate salinity (0-40 parts per thousand, ppt) and pH (pH 1-13) on oviposition, egg hatching, larval survivability, and adult emergence of Culicoides peregrinus Kieffer under laboratory conditions. Most eggs (80.74%) were laid in 0 ppt and 95% in pH 7 but lowered with increased salinity and pH levels. It was observed that the females did not lay eggs in 30 ppt to 40 ppt salinity; pH 1 and pH 13 but interestingly up to 95% of the eggs were retained within the abdomen. Little effect of salinity and pH on egg hatching was observed up to 5 ppt and 10 ppt except at the extreme values of 40 ppt and pH 1, pH 13. Pupation did not occur in rearing plates with high salinities, 30 ppt and 40 ppt, although the few eggs hatched when exposed to such salinity. In low salinity (0 to 2 ppt), occurrence of adult emergence was more and then decreased with increasing salinity. Maximum emergence was seen when the rearing media was alkaline. This study deals with the suitability of breeding substrate of C. peregrinus when exposed to salinity and pH ranges. Our study suggests the ambient salinity and pH ranges to be maintained during laboratory rearing of this vector species.
Collapse
Affiliation(s)
- Paramita Banerjee
- Department of Zoology, Entomology Research Unit, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Ankita Sarkar
- Department of Zoology, Entomology Research Unit, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Abhijit Mazumdar
- Department of Zoology, Entomology Research Unit, The University of Burdwan, Bardhaman 713104, West Bengal, India
| |
Collapse
|
5
|
Osborne CJ, Cohnstaedt LW, Silver KS. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens 2023; 12:1251. [PMID: 37887767 PMCID: PMC10610143 DOI: 10.3390/pathogens12101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Culicoides are small biting midges with the capacity to transmit important livestock pathogens around much of the world, and their impacts on animal welfare are likely to expand. Hemorrhagic diseases resulting from Culicoides-vectored viruses, for example, can lead to millions of dollars in economic damages for producers. Chemical insecticides can reduce Culicoides abundance but may not suppress population numbers enough to prevent pathogen transmission. These insecticides can also cause negative effects on non-target organisms and ecosystems. RNA interference (RNAi) is a cellular regulatory mechanism that degrades mRNA and suppresses gene expression. Studies have examined the utility of this mechanism for insect pest control, and with it, have described the hurdles towards producing, optimizing, and applying these RNAi-based products. These methods hold promise for being highly specific and environmentally benign when compared to chemical insecticides and are more transient than engineering transgenic insects. Given the lack of available control options for Culicoides, RNAi-based products could be an option to treat large areas with minimal environmental impact. In this study, we describe the state of current Culicoides control methods, successes and hurdles towards using RNAi for pest control, and the necessary research required to bring an RNAi-based control method to fruition for Culicoides midges.
Collapse
Affiliation(s)
- Cameron J. Osborne
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United Stated Department of Agriculture, Manhattan, KS 66502, USA
| | - Kristopher S. Silver
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
6
|
Sloyer KE, Acevedo C, Wisely SM, Burkett-Cadena ND. Host associations of biting midges (Diptera: Ceratopogonidae: Culicoides) at deer farms in Florida, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:518-526. [PMID: 37040561 DOI: 10.1093/jme/tjad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Documenting the host use of vector species is important for understanding the transmission dynamics of vector-borne pathogens. Biting midges (Diptera: Ceratopogonidae: Culicoides) are vectors of epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) worldwide. However, relative to mosquitoes and many other vector groups, host associations of this group are poorly documented. In this study, we used PCR-based bloodmeal analysis to determine species-level host associations of 3,603 blood-engorged specimens belonging to 18 Culicoides species at 8 deer farms in Florida, USA. We used a binomial mixed model with a Bayesian framework to compare the effect of host composition on the feeding patterns of Culicoides spp. and employed the Morisita-Horn Index to investigate the similarity of host use between farms for Culicoides stellifer and Culicoides insignis. Results show that the estimated probability of Culicoides spp. feeding upon white-tailed deer depends on the availability of cattle or exotic game and demonstrates differences in host-feeding selection among species. Culicoides insignis had high host similarity across farms suggesting that its host-use patterns are somewhat conserved. Culicoides stellifer had lower host similarity across farms suggesting that it is a more opportunistic feeder. White-tailed deer are fed upon by many Culicoides species on deer farms in Florida, and while most Culicoides species feed on white-tailed deer, the ratio of white-tailed deer bloodmeals to other bloodmeals is likely influenced by host availability. Culicoides spp. taking a majority of their bloodmeals from farmed white-tailed deer should be assessed for their vector competence for EHDV and BTV.
Collapse
Affiliation(s)
- Kristin E Sloyer
- Florida Medical Entomology Laboratory, University of Florida IFAS, 200 9th St. SE, Vero Beach, FL, USA
| | - Carolina Acevedo
- Florida Medical Entomology Laboratory, University of Florida IFAS, 200 9th St. SE, Vero Beach, FL, USA
| | - Samantha M Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, USA
| | - Nathan D Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida IFAS, 200 9th St. SE, Vero Beach, FL, USA
| |
Collapse
|
7
|
Navarro Mamani DA, Ramos Huere H, Vera Buendia R, Rojas M, Chunga WA, Valdez Gutierrez E, Vergara Abarca W, Rivera Gerónimo H, Altamiranda-Saavedra M. Would Climate Change Influence the Potential Distribution and Ecological Niche of Bluetongue Virus and Its Main Vector in Peru? Viruses 2023; 15:v15040892. [PMID: 37112872 PMCID: PMC10145190 DOI: 10.3390/v15040892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Bluetongue virus (BTV) is an arbovirus that is transmitted between domestic and wild ruminants by Culicoides spp. Its worldwide distribution depends on competent vectors and suitable environmental ecosystems that are becoming affected by climate change. Therefore, we evaluated whether climate change would influence the potential distribution and ecological niche of BTV and Culicoides insignis in Peru. Here, we analyzed BTV (n = 145) and C. insignis (n = 22) occurrence records under two shared socioeconomic pathway scenarios (SSP126 and SSP585) with five primary general circulation models (GCMs) using the kuenm R package v.1.1.9. Then, we obtained binary presence–absence maps and represented the risk of transmission of BTV and niche overlapping. The niche model approach showed that north and east Peru presented suitability in the current climate scenario and they would have a decreased risk of BTV, whilst its vector would be stable and expand with high agreement for the five GCMs. In addition, its niche overlap showed that the two niches almost overlap at present and would completely overlap with one another in future climate scenarios. These findings might be used to determine the areas of highest priority for entomological and virological investigations and surveillance in order to control and prevent bluetongue infections in Peru.
Collapse
Affiliation(s)
- Dennis A. Navarro Mamani
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
- Correspondence:
| | - Heydi Ramos Huere
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Renzo Vera Buendia
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Miguel Rojas
- Laboratorio de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Wilfredo Arque Chunga
- Laboratorio de Referencia Nacional de Metaxenicas y Zoonosis Bacterianas, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima 15001, Peru
| | - Edgar Valdez Gutierrez
- Laboratorio de Sanidad Animal “M.V. Atilio Pacheco Pacheco”, Escuela Profesional de Zootecnia, Universidad Nacional San Antonio Abad del Cusco, Cusco 08681, Peru
| | - Walter Vergara Abarca
- Laboratorio de Sanidad Animal “M.V. Atilio Pacheco Pacheco”, Escuela Profesional de Zootecnia, Universidad Nacional San Antonio Abad del Cusco, Cusco 08681, Peru
| | - Hermelinda Rivera Gerónimo
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Mariano Altamiranda-Saavedra
- Grupo de Investigación Bioforense, Tecnológico de Antioquia Institución Universitaria, Medellín 050005, Colombia
| |
Collapse
|
8
|
Neupane S, Davis T, Nayduch D, McGregor BL. Habitat type and host grazing regimen influence the soil microbial diversity and communities within potential biting midge larval habitats. ENVIRONMENTAL MICROBIOME 2023; 18:5. [PMID: 36658608 PMCID: PMC9854200 DOI: 10.1186/s40793-022-00456-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/14/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we characterized microbial communities (bacterial, protistan, fungal and metazoan) in soils from disturbed (bison and cattle grazed) and undisturbed (non-grazed) pond and spring potential midge larval habitats. We evaluated the influence of habitat and grazing disturbance and their interaction on microbial communities, diversity, presence of midges, and soil properties. RESULTS Bacterial, protistan, fungal and metazoan community compositions were significantly influenced by habitat and grazing type. Irrespective of habitat and grazing type, soil communities were dominated by phyla Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria (Bacteria); Apicomplexa, Cercozoa, Ciliophora, Ochrophyta (Protists); Chytridiomycota, Cryptomycota (Fungi) and Nematoda, Arthropoda (Metazoa). The relative abundance of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, Verrucomicrobia (Bacteria); Apicomplexa, Lobosa (Protists); Ascomycota, Blastomycotina, Cryptomycota (Fungi); and Platyhelminthes (Metazoa) were significantly affected by grazing type. Of note, midge prevalence was higher in grazed sites (67-100%) than non-grazed (25%). Presence of midges in the soil was negatively correlated with bacterial, protistan, fungal and metazoan beta diversities and metazoan species richness but positively correlated with protistan and fungal species richness. Moreover, total carbon (TC), nitrogen (TN) and organic matter (OM) were negatively correlated with the presence of midges and relative abundances of unclassified Solirubrobacterales (Bacteria) and Chlamydomonadales (Protists) but positively with Proteobacteria and unclassified Burkholderiales (Bacteria). CONCLUSIONS Habitat and grazing type shaped the soil bacterial, protistan, fungal and metazoan communities, their compositions and diversities, as well as presence of midges. Soil properties (TN, TC, OM) also influenced soil microbial communities, diversities and the presence of midges. Prevalence of midges mainly in grazed sites indicates that midges prefer to breed and shelter in a habitat with abundant hosts, probably due to greater accessibility of food (blood meals). These results provide a first glimpse into the microbial communities, soil properties and prevalence of midges in suspected midge larval habitats at a protected natural prairie site.
Collapse
Affiliation(s)
- Saraswoti Neupane
- Department of Entomology, Kansas State University, Manhattan, KS 66506 USA
| | - Travis Davis
- Arthropod-Borne Animal Diseases Research Unit, USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS 66502 USA
| | - Dana Nayduch
- Arthropod-Borne Animal Diseases Research Unit, USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS 66502 USA
| | - Bethany L. McGregor
- Arthropod-Borne Animal Diseases Research Unit, USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS 66502 USA
| |
Collapse
|
9
|
Zhang X, Mathias DK. The Effects of Light Wavelength and Trapping Habitat on Surveillance of Culicoides Biting Midges (Diptera: Ceratopogonidae) in Alabama. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2053-2065. [PMID: 36256531 DOI: 10.1093/jme/tjac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 06/16/2023]
Abstract
In the southeastern United States, biting midges transmit agents of hemorrhagic diseases that are enzootic among white-tailed deer (Odocoileus virginianus (Zimmermann), Artiodactyla: Cervidae). Culicoides sonorensis Wirth and Jones (Diptera: Ceratopogonidae), the only confirmed vector of epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) in the United States, is rarely collected in the Southeast, implying that other Culicoides Latreille species act as vectors. Despite multiple surveillance studies, the influence of trapping habitat and light wavelength on Culicoides sampling has yet to be investigated in Alabama. This study sampled Culicoides species at a deer research facility using CO2-baited CDC light traps with three distinct wavelengths. Traps were rotated within three habitats to examine impacts of habitat type and light wavelength on Culicoides abundance and parity status. For most species, midges were more abundant in a pine forest compared to a hardwood-forest riparian zone or a lightly wooded area adjacent to a seasonal pond. The pine forest generally had negative effects on parity status, suggesting that most females in this habitat were foraging for their first bloodmeal. Ultraviolet (UV) black-light (350 nm-360 nm) attracted more midges than incandescent light or UV LED light (385 nm-395 nm), but wavelength had less of an effect on parity than habitat. This study indicates that light wavelength and habitat significantly influence Culicoides sampling outcomes, and that when collecting parous females is desired (e.g., EHDV/BTV surveillance), targeting areas around oviposition sites may be a better strategy than trapping where midges are most abundant.
Collapse
Affiliation(s)
- Xinmi Zhang
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
- Keck Science Center, 925 North Mills Avenue, Claremont, CA 91711, USA
| | - Derrick K Mathias
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
- Florida Medical Entomology Laboratory, Department of Entomology & Nematology, Institute of Food and Agricultural Sciences, University of Florida, 200 9th Street SE, Vero Beach, FL 32962, USA
| |
Collapse
|
10
|
Black TV, Quaglia AI, Wisely S, Burkett-Cadena N. Field Comparison of Removed Substrate Sampling and Emergence Traps for Estimating Culicoides Orbivirus Vectors in Northern Florida. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1660-1668. [PMID: 35802003 DOI: 10.1093/jme/tjac089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 06/15/2023]
Abstract
The larval ecology of Culicoides (Diptera: Ceratopogonidae) influences their spatial distributions and the pathogens they transmit. These features are of special concern for deer farmers in Florida where epizootic hemorrhagic disease virus (EHDV) is a major source of mortality in captive herds. Rarity of larval morphological expertise leads many researchers to study larval ecology by quantifying emergence, either with field emergence traps or removing substrate from the field for observation under laboratory conditions. We investigated the comparability of these methods in Florida seepages where two recently implicated EHDV vectors, Culicoides stellifer Coquillett and Culicoides venustus Hoffman, are common. We compared the abundance and composition of emerging Culicoides collected from emergence traps with removed substrate samples (soil plugs) at three seepages. Soil plugs were sampled adjacent to the emergence trap and from underneath the trap footprint, and then monitored under laboratory conditions for 11-13 wk to compare the methods and to assess the role of incubation period for removed substrate samples. Emergence traps and removed substrate sampling largely agreed on community compositions and trends within different seepages. However, comparatively large numbers of C. stellifer emerged later than expected and well into the incubation period with emergence still occurring after 13 wk (90 d). Removed substrate samples were more similar to emergence traps at shorter incubation times. The importance of time for the capture of Culicoides in removed substrate sampling was more pronounced than we anticipated and is important from both a methodological and biological perspective.
Collapse
Affiliation(s)
- Theodore Vincent Black
- University of Florida IFAS, Florida Medical Entomology Laboratory, 200 9th Street SE, Vero Beach, FL 32962, USA
| | - Agustin Ignacio Quaglia
- University of Florida IFAS, Florida Medical Entomology Laboratory, 200 9th Street SE, Vero Beach, FL 32962, USA
| | - Samantha Wisely
- Wildlife and Conservation Department, University of Florida IFAS, 110 Newins-Ziegler Hall, Gainesville, FL 32611, USA
| | - Nathan Burkett-Cadena
- University of Florida IFAS, Florida Medical Entomology Laboratory, 200 9th Street SE, Vero Beach, FL 32962, USA
| |
Collapse
|
11
|
Kadjoudj N, Bounamous A, Kouba Y, Dik B, Zeroual S, Amira A, Chenchouni H. Composition and diversity of Culicoides biting midges (Diptera: Ceratopogonidae) in rural and suburban environments of Algeria. Acta Trop 2022; 234:106588. [PMID: 35803337 DOI: 10.1016/j.actatropica.2022.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Culicoides biting midges are well known biological vectors of several arboviruses causing more than 100 veterinary and medical diseases worldwide. In Algeria, bluetongue virus, which is transmitted by Culicoides midges, is responsible for one of the most critical insect-borne diseases of sheep. For example, this disease caused clinically severe morbidity of about 2,661 confirmed cases out of 21,175 susceptible sheep in Algeria. This study compared the abundance, richness, and diversity of Culicoides species in rural and suburban environments of semi-arid regions in North Africa. It examined the potential influence of the bio-climatic factors on the variation of population sizes and the elevation distribution of biting midges. Specimen collection was carried out from June to September during two successive years (2018 and 2019) using CDC light traps installed at 15 sites in different environments. Culicoides specimens were dissected, slide-mounted, and morphologically identified using the interactive identification key IIKC and various standard morphological criteria. A total of 1,046 Culicoides specimens (1,024 females and 22 males) were trapped and classified into 22 species, belonged to nine distinct subgenera. Two new species records for Algeria and even North Africa are reported: Culicoides albicans (Winnertz, 1852) and Culicoides nubeculosus (Meigen, 1830). Culicoides newsteadi Austen, 1921 (51.6%) was the dominant species, and it was followed by Culicoides punctatus (Meigen, 1804) (16.3%) and Culicoides odiatus Austen, 1921 (11.5%). These three species, comprising 80% of the collected Culicoides, were the most abundant both outside and inside livestock stables in rural and suburban environments. Species diversity was similar in the two settings, with a slight increase in suburban environments. None of the Culicoides species encountered correlated significantly with the climatic factors (mean temperature, precipitation, and relative humidity). Elevation was the most determinant environmental parameter that affected the abundance and distribution of Culicoides midges in the semi-arid and sub-humid areas studied. The maximum distribution of Culicoides species was detected at mid elevations (400‒800 m). Using a modeling approach, we explored for the first time the variation of composition and diversity in Culicoides communities within different climatic regions, environments and livestock settings in Algeria. This survey deepens our understanding of the relationships among environmental factors, abundance, diversity, and geographic distribution of Culicoides. This is a crucial step to assess the epidemiological situation of the diseases transmitted by these biting midges and to allow mitigation of the associated risks.
Collapse
Affiliation(s)
- Nadia Kadjoudj
- Laboratory of Natural Sciences and Materials, Institute of Science and Technology, University Center A. Boussouf of Mila, Mila 43000, Algeria
| | - Azzedine Bounamous
- Laboratory of Natural Sciences and Materials, Institute of Science and Technology, University Center A. Boussouf of Mila, Mila 43000, Algeria
| | - Yacine Kouba
- Department of Geography and Spatial Planning, Larbi Ben Mhidi University, 04000, Algeria
| | - Bilal Dik
- Department of Parasitology, Faculty of Veterinary Medicine, Selçuk University, Konya 42250, Turkey
| | - Samir Zeroual
- Laboratory of Genetics, biotechnology and valorization of bio-resources, University Mohamed Khider, Biskra, Algeria
| | - Aicha Amira
- Laboratory of Natural Sciences and Materials, Institute of Science and Technology, University Center A. Boussouf of Mila, Mila 43000, Algeria
| | - Haroun Chenchouni
- Department of Forest Management, Higher National School of Forests, Khenchela 40000, Algeria; Laboratory of Natural Resources and Management of Sensitive Environments 'RNAMS', Larbi Ben Mhidi University, Oum-El-Bouaghi 04000, Algeria.
| |
Collapse
|
12
|
Habitat-dependent Culicoides species composition and abundance in blue tit ( Cyanistes caeruleus) nests. Parasitology 2022; 149:1119-1128. [PMID: 35570671 PMCID: PMC10090578 DOI: 10.1017/s003118202200066x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Wild birds are hosts of Culicoides from as early on as the nesting stage when constrained to their nests. However, the environmental factors which determine the abundance and composition of Culicoides species within each bird nest are still understudied. We sampled Culicoides from Eurasian blue tit (Cyanistes caeruleus) nests found in 2 types of forests located in southern Spain. Firstly, we monitored the abundance of Culicoides species in bird nests from a dry Pyrenean oak deciduous forest and a humid mixed forest comprising Pyrenean and Holm oaks throughout 2 consecutive years. During the 3rd year, we performed a cross-fostering experiment between synchronous nests to differentiate the role of rearing environment conditions from that of the genetically determined or maternally transmitted cues released by nestlings from each forest. We found 147 female Culicoides from 5 different species in the birds' nests. The abundance of Culicoides was higher in the dry forest than in the humid forest. Culicoides abundance, species richness and prevalence were greater when the nestlings were hatched later in the season. The same pattern was observed in the cross-fostering experiment, but we did not find evidence that nestling's features determined by the forest of origin had any effect on the Culicoides collected. These results support the notion that habitat type has a strong influence on the Culicoides affecting birds in their nests, while some life history traits of birds, such as the timing of reproduction, also influence Culicoides abundance and species composition.
Collapse
|
13
|
Dorak SJ, Varga C, Ruder MG, Gronemeyer P, Rivera NA, Dufford DR, Skinner DJ, Roca AL, Novakofski J, Mateus-Pinilla NE. Spatial epidemiology of hemorrhagic disease in Illinois wild white-tailed deer. Sci Rep 2022; 12:6888. [PMID: 35477968 PMCID: PMC9046210 DOI: 10.1038/s41598-022-10694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) and bluetongue (BT) are vector-borne viral diseases that affect wild and domestic ruminants. Clinical signs of EHD and BT are similar; thus, the syndrome is referred to as hemorrhagic disease (HD). Syndromic surveillance and virus detection in North America reveal a northern expansion of HD. High mortalities at northern latitudes suggest recent incursions of HD viruses into northern geographic areas. We evaluated the occurrence of HD in wild Illinois white-tailed deer from 1982 to 2019. Our retrospective space-time analysis identified high-rate clusters of HD cases from 2006 to 2019. The pattern of northward expansion indicates changes in virus-host-vector interactions. Serological evidence from harvested deer revealed prior infection with BTV. However, BTV was not detected from virus isolation in dead deer sampled during outbreaks. Our findings suggest the value of capturing the precise geographic location of outbreaks, the importance of virus isolation to confirm the cause of an outbreak, and the importance of expanding HD surveillance to hunter-harvested wild white-tailed deer. Similarly, it assists in predicting future outbreaks, allowing for targeted disease and vector surveillance, helping wildlife agencies communicate with the public the cause of mortality events and viral hemorrhagic disease outcomes at local and regional scales.
Collapse
Affiliation(s)
- Sheena J Dorak
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA.
| | - Csaba Varga
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Peg Gronemeyer
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Nelda A Rivera
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Douglas R Dufford
- Illinois Department of Natural Resources, One Natural Resources Way, Springfield, IL, 62702, USA
| | - Daniel J Skinner
- Illinois Department of Natural Resources, One Natural Resources Way, Springfield, IL, 62702, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
| | - Jan Novakofski
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
A Review of the Vector Status of North American Culicoides (Diptera: Ceratopogonidae) for Bluetongue Virus, Epizootic Hemorrhagic Disease Virus, and Other Arboviruses of Concern. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:130-139. [PMID: 36105115 PMCID: PMC9463510 DOI: 10.1007/s40475-022-00263-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 01/11/2023]
Abstract
Purpose of Review Culicoides biting midges transmit several pathogens of veterinary importance in North America, but the vector status of many midge species is unresolved. Additionally, the available evidence of vector competence in these species is scattered and variable. The purpose of this review is to summarize current knowledge on confirmed and putative North American Culicoides arbovirus vectors. Recent Findings While the vector status of Culicoides sonorensis (EHDV, BTV, VSV) and Culicoides insignis (BTV) are well established, several other potential vector species have been recently identified. Frequently, these species are implicated based primarily on host-feeding, abundance, and/or detection of arboviruses from field-collected insects, and often lack laboratory infection and transmission data necessary to fully confirm their vector status. Recent genetic studies have also indicated that some wide-ranging species likely represent several cryptic species, further complicating our understanding of their vector status. Summary In most cases, laboratory evidence needed to fully understand the vector status of the putative Culicoides vectors is absent; however, it appears that several species are likely contributing to the transmission of arboviruses in North America.
Collapse
|
15
|
Predicting the Geographic Range of an Invasive Livestock Disease across the Contiguous USA under Current and Future Climate Conditions. CLIMATE 2021. [DOI: 10.3390/cli9110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vesicular stomatitis (VS) is the most common vesicular livestock disease in North America. Transmitted by direct contact and by several biting insect species, this disease results in quarantines and animal movement restrictions in horses, cattle and swine. As changes in climate drive shifts in geographic distributions of vectors and the viruses they transmit, there is considerable need to improve understanding of relationships among environmental drivers and patterns of disease occurrence. Multidisciplinary approaches integrating pathology, ecology, climatology, and biogeophysics are increasingly relied upon to disentangle complex relationships governing disease. We used a big data model integration approach combined with machine learning to estimate the potential geographic range of VS across the continental United States (CONUS) under long-term mean climate conditions over the past 30 years. The current extent of VS is confined to the western portion of the US and is related to summer and winter precipitation, winter maximum temperature, elevation, fall vegetation biomass, horse density, and proximity to water. Comparison with a climate-only model illustrates the importance of current processes-based parameters and identifies regions where uncertainty is likely to be greatest if mechanistic processes change. We then forecast shifts in the range of VS using climate change projections selected from CMIP5 climate models that most realistically simulate seasonal temperature and precipitation. Climate change scenarios that altered climatic conditions resulted in greater changes to potential range of VS, generally had non-uniform impacts in core areas of the current potential range of VS and expanded the range north and east. We expect that the heterogeneous impacts of climate change across the CONUS will be exacerbated with additional changes in land use and land cover affecting biodiversity and hydrological cycles that are connected to the ecology of insect vectors involved in VS transmission.
Collapse
|
16
|
Erram D, Burkett-Cadena N. Oviposition of Culicoides insignis (Diptera: Ceratopogonidae) under laboratory conditions with notes on the developmental life history traits of its immature stages. Parasit Vectors 2021; 14:522. [PMID: 34627349 PMCID: PMC8501582 DOI: 10.1186/s13071-021-05025-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Culicoides insignis is a confirmed vector of bluetongue virus (BTV) throughout the American tropics and a possible vector of epizootic hemorrhagic disease virus (EHDV) in Florida. Despite its importance, fundamental information on the biology and ecology of this vector species is lacking. In this study, we examined the oviposition of C. insignis under laboratory conditions, monitored the development of immature stages and attempted colonization of this species. METHODS Live C. insignis females were collected from the field using CDC-UV-LED traps, allowed to blood-feed on live chicken and given various natural substrates for oviposition in two-choice assays. The eggs deposited were transferred to 0.3% agar slants, and the hatched larvae were provided a diet of Panagrellus redivivus Linnaeus nematodes and the development of all immature stages was monitored. RESULTS Culicoides insignis females exhibited an overall oviposition preference for dishes containing mud from their larval habitat as gravid females deposited a significantly higher number of eggs on these dishes (35.3 eggs/female) than on controls (17.7 eggs/female). The ovipositing females also deposited a higher percentage of eggs on substrates with habitat mud and other organically enriched muds (≥ 75.2%) compared to controls (31.0%). The larvae developed successfully to adulthood on the nematode diet, exhibiting high overall larval survival rates (85.0%). Sex ratios of the F1 generation were male biased, approximately 3:1 (male:female). Captive mating could not be induced in the F1 adults. CONCLUSIONS Mud from the larval habitat and other organically enriched muds provide strong oviposition cues to C. insignis under laboratory conditions. Further studies will be needed to identify the key biotic/abiotic factors influencing midge oviposition in the field. The agar/nematode method is effective for the rearing of C. insignis larvae. However, further studies will be needed to address the issue of male-biased sex ratios in the progeny and to examine the mating habits/cues of C. insignis in nature, which may provide clues towards inducing captive mating in the F1 adults.
Collapse
Affiliation(s)
- Dinesh Erram
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA.
| | - Nathan Burkett-Cadena
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA
| |
Collapse
|
17
|
Palinski R, Pauszek SJ, Humphreys JM, Peters DP, McVey DS, Pelzel‐McCluskey AM, Derner JD, Burruss ND, Arzt J, Rodriguez LL. Evolution and expansion dynamics of a vector‐borne virus: 2004–2006 vesicular stomatitis outbreak in the western USA. Ecosphere 2021. [DOI: 10.1002/ecs2.3793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rachel Palinski
- US Department of Agriculture, Agricultural Research Service Plum Island Animal Disease Center Orient Point New York 11957 USA
- Veterinary Diagnostic Laboratory College of Veterinary Medicine Kansas State University 2005 Research Park Manhattan Kansas 66502 USA
| | - Steven J. Pauszek
- US Department of Agriculture, Agricultural Research Service Plum Island Animal Disease Center Orient Point New York 11957 USA
| | - John M. Humphreys
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico 88003 USA
| | - Debra P.C. Peters
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico 88003 USA
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico 88003 USA
| | - D. Scott McVey
- US Department of Agriculture Agricultural Research Service Center for Grain and Animal Health Research Arthropod‐Borne Animal Diseases Research Unit Manhattan Kansas 66506 USA
- School of Veterinary Medicine and Biomedical Sciences University of Nebraska Lincoln Lincoln Nebraska 68583 USA
| | - Angela M. Pelzel‐McCluskey
- US Department of Agriculture, Animal and Plant Health Inspection Service Veterinary Services Fort Collins Colorado 80526 USA
| | - Justin D. Derner
- US Department of Agriculture Agricultural Research Service Rangeland Resources and Systems Research Unit 8408 Hildreth Road Cheyenne Wyoming 82009 USA
| | - N. Dylan Burruss
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico 88003 USA
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico 88003 USA
| | - Jonathan Arzt
- US Department of Agriculture, Agricultural Research Service Plum Island Animal Disease Center Orient Point New York 11957 USA
| | - Luis L. Rodriguez
- US Department of Agriculture, Agricultural Research Service Plum Island Animal Disease Center Orient Point New York 11957 USA
| |
Collapse
|
18
|
Modeling Abundance of Culicoides stellifer, a Candidate Orbivirus Vector, Indicates Nonrandom Hemorrhagic Disease Risk for White-Tailed Deer ( Odocoileus virginianus). Viruses 2021; 13:v13071328. [PMID: 34372534 PMCID: PMC8310359 DOI: 10.3390/v13071328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Hemorrhagic diseases in white-tailed deer (Odocoileus virginianus) are caused by orbiviruses and have significant economic impact on the deer ranching industry in the United States. Culicoides stellifer is a suspected vector of epizootic hemorrhagic disease virus (EHDV), with recent field evidence from Florida, but its natural history is poorly understood. Studying the distribution and abundance of C. stellifer across the landscape can inform our knowledge of how virus transmission can occur locally. We may then target vector management strategies in areas where viral transmission can occur. (2) Methods: Here, we used an occupancy modeling approach to estimate abundance of adult C. stellifer females at various physiological states to determine habitat preferences. We then mapped midge abundance during the orbiviral disease transmission period (May–October) in Florida. (3) Results: We found that overall, midge abundance was positively associated with sites in closer proximity to large-animal feeders. Additionally, midges generally preferred mixed bottomland hardwood and agricultural/sand/water habitats. Female C. stellifer with different physiological states preferred different habitats. (4) Conclusions: The differences in habitat preferences between midges across states indicate that disease risk for deer is heterogeneous across this landscape. This can inform how effective vector management strategies should be implemented.
Collapse
|
19
|
Inter-annual home range fidelity of wild and ranched white-tailed deer in Florida: implications for epizootic hemorrhagic disease virus and bluetongue virus intervention. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-020-01448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Resource Selection by Wild and Ranched White-Tailed Deer ( Odocoileus virginianus) during the Epizootic Hemorrhagic Disease Virus (EHDV) Transmission Season in Florida. Animals (Basel) 2021; 11:ani11010211. [PMID: 33467117 PMCID: PMC7830392 DOI: 10.3390/ani11010211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Epizootic hemorrhagic disease virus is transmitted by Culicoides midges and causes serious disease in wild and privately ranched white-tailed deer (Odocoileus virginianus) in the United States. The U.S. deer ranching industry is fast growing and generates an estimated ~USD 8 billion annually. In Florida, there are over 400 registered deer farms, and virus rates are high among these populations. While vaccines for the virus are becoming available, many farms have large hunting preserves, where safely capturing deer is difficult. At the same time, these farms are situated in proximity to wild deer populations, and both populations are at risk. We studied habitat selection in ranched deer within a ~180 ha high-fenced preserve. We GPS-collared deer in the hunting preserve and nearby state-managed lands to compare habitat selection. During 2016, we collected GPS data from 15 ranched and eight wild deer and built resource selection function models. These models suggest ranched deer select habitats more likely to support several midge species that transmit the virus compared to wild deer. These differences in habitat use may partially explain previously confirmed higher rates of disease exposure in the ranched deer. Our results may inform ranch land management strategies that reduce midge–deer contact. Abstract Epizootic hemorrhagic disease virus (EHDV) causes serious disease in wild and privately ranched white-tailed deer (Odocoileusvirginianus) in the United States. In Florida, there is high EHDV prevalence, yet no treatments. There are few management strategies for the disease due to limited knowledge of virus–vector–host interactions. We conducted a telemetry study on white-tailed deer to examine resource use by wild and ranched animals in the Florida panhandle during the 2016 transmission risk period. We built generalized linear mixed models (GLMMs) to estimate resource selection and map habitat preferences for wild and ranched deer in the study area to reveal how second-order selection may relate to higher disease prevalence in ranched deer. Wild deer preferred areas closer to tertiary roads and supplementary food sources but farther from permanent water. Ranched deer selected bottomland mixed forest and areas closer to tertiary roads, supplementary food sources, and permanent water. Ranched deer behaviors may increase the likelihood of EHDV vector encounters, as these deer selected preferred habitats of several putative vector species, which may increase vector blood meal success and viral transmission risk. Disparate resource selection behaviors may be a factor in observed differential EHDV exposure risk between ranched and wild white-tailed deer in Florida.
Collapse
|
21
|
McDermott EG, Lysyk TJ. Sampling Considerations for Adult and Immature Culicoides (Diptera: Ceratopogonidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5948078. [PMID: 33135756 PMCID: PMC7604845 DOI: 10.1093/jisesa/ieaa025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Indexed: 06/11/2023]
Abstract
Developing sampling programs for Culicoides can be challenging due to variation in ecology and behavior of the numerous species as well as their broad distributions and habitats. In this paper, we emphasize the need to clearly define research goals to select appropriate sampling methods. This includes not just the choice of sampling device, but also choice of attractant, site, number of traps per site, the duration and frequency of sampling, and the number of traps per unit area. Animal-baited trapping using enclosure traps and direct animal aspiration is more labor-intensive but yields information on species attracted to specific hosts as well as their biting rates. Sampling immatures is discussed with respect to choosing collection sites in semiaquatic mud, soil, and rich organic habitats. Sorting and extracting larvae using emergence traps, flotation, and Berlese funnels is also discussed.
Collapse
Affiliation(s)
- E G McDermott
- Vector Control and Surveillance, Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD
| | - T J Lysyk
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
22
|
Tracking Community Timing: Pattern and Determinants of Seasonality in Culicoides (Diptera: Ceratopogonidae) in Northern Florida. Viruses 2020; 12:v12090931. [PMID: 32854272 PMCID: PMC7552033 DOI: 10.3390/v12090931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Community dynamics are embedded in hierarchical spatial–temporal scales that connect environmental drivers with species assembly processes. Culicoides species are hematophagous arthropod vectors of orbiviruses that impact wild and domestic ruminants. A better sense of Culicoides dynamics over time is important because sympatric species can lengthen the seasonality of virus transmission. We tested a putative departure from the four seasons calendar in the phenology of Culicoides and the vector subassemblage in the Florida panhandle. Two years of weekly abundance data, temporal scales, persistence and environmental thresholds were analyzed using a tripartite Culicoides β-diversity based modeling approach. Culicoides phenology followed a two-season regime and was explained by stream flow and temperature, but not rainfall. Species richness fit a nested pattern where the species recruitment was maximized during spring months. Midges were active year-round, and two suspected vectors species, Culicoides venustus and Culicoides stellifer, were able to sustain and connect the seasonal modules. Persistence suggests that Orbivirus maintenance does not rely on overwintering and that viruses are maintained year-round, with the seasonal dynamics resembling subtropical Culicoides communities with temporal-overlapping between multivoltine species. Viewing Culicoides-borne orbiviruses as a time-sensitive community-based issue, our results help to recommend when management operations should be delivered.
Collapse
|
23
|
Mayo C, McDermott E, Kopanke J, Stenglein M, Lee J, Mathiason C, Carpenter M, Reed K, Perkins TA. Ecological Dynamics Impacting Bluetongue Virus Transmission in North America. Front Vet Sci 2020; 7:186. [PMID: 32426376 PMCID: PMC7212442 DOI: 10.3389/fvets.2020.00186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Bluetongue virus (BTV) is an arbovirus transmitted to domestic and wild ruminants by certain species of Culicoides midges. The disease resulting from infection with BTV is economically important and can influence international trade and movement of livestock, the economics of livestock production, and animal welfare. Recent changes in the epidemiology of Culicoides-transmitted viruses, notably the emergence of exotic BTV genotypes in Europe, have demonstrated the devastating economic consequences of BTV epizootics and the complex nature of transmission across host-vector landscapes. Incursions of novel BTV serotypes into historically enzootic countries or regions, including the southeastern United States (US), Israel, Australia, and South America, have also occurred, suggesting diverse pathways for the transmission of these viruses. The abundance of BTV strains and multiple reassortant viruses circulating in Europe and the US in recent years demonstrates considerable genetic diversity of BTV strains and implies a history of reassortment events within the respective regions. While a great deal of emphasis is rightly placed on understanding the epidemiology and emergence of BTV beyond its natural ecosystem, the ecological contexts in which BTV maintains an enzootic cycle may also be of great significance. This review focuses on describing our current knowledge of ecological factors driving BTV transmission in North America. Information presented in this review can help inform future studies that may elucidate factors that are relevant to longstanding and emerging challenges associated with prevention of this disease.
Collapse
Affiliation(s)
- Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily McDermott
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, WA, United States
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Candace Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - T. Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
24
|
Erram D, Burkett-Cadena N. Laboratory Rearing of Culicoides stellifer (Diptera: Ceratopogonidae), a Suspected Vector of Orbiviruses in the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:25-32. [PMID: 31602460 DOI: 10.1093/jme/tjz154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Laboratory rearing procedures of Culicoides stellifer Coquillett (Diptera: Ceratopogonidae) were evaluated with an aim towards colonization of this species. Eggs collected from field-collected gravid females were placed on 0.25% agar slants and given a diet of 1) nematodes (Panagrellus redivivus Linnaeus), 2) nematodes + lactalbumin and yeast (LY), 3) microbes from nematode medium, and 4) tap water (autoclaved). Complete larval development to adult stage occurred only in two treatments: 1) nematodes and 2) nematodes + LY. Culicoides stellifer larvae could not survive beyond 1 wk on a diet of microbes alone or in the sterile water treatment. Larval survival rates were high using nematode diet (79.2 ± 11.3% [mean ± SE]) but were slightly lower in the nematode + LY group (66.5 ± 19.6%). Larval stage lasted ~21 d in both treatments. Sex ratio of F1 adults was ~1:1 (M:F) using nematode diet but was male biased (~2:1) with nematode + LY diet. These findings collectively suggest that a microbial community is required for midge larvae, either to support invertebrate prey base or as a potential food source. But in the present study, the supplied microbes alone were not sufficient to support midge survival/development. It appears that other nutritional components may also be essential to support the larval survival/development of C. stellifer. Overall, a simple diet of bacterial feeding nematodes and their associated microorganisms can be used to rear C. stellifer larvae under laboratory conditions. However, captive mating in F1 adults poses a major obstacle for successful colonization of this species currently.
Collapse
Affiliation(s)
- Dinesh Erram
- Florida Medical Entomology Laboratory, University of Florida, FL
| | | |
Collapse
|