1
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
2
|
Naidoo K, Oliver SV. Gene drives: an alternative approach to malaria control? Gene Ther 2024:10.1038/s41434-024-00468-8. [PMID: 39039203 DOI: 10.1038/s41434-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control by genetic modifications to reduce mosquito populations or create mosquitoes that are refractory to infection with pathogens are less developed. The advent of CRISPR-Cas9-mediated gene drives may advance this mechanism of control. In this review, use and progress of gene drives for vector control, particularly for malaria, is discussed. A brief history of population suppression and replacement gene drives in mosquitoes, rapid advancement of the field over the last decade and how genetic modification fits into the current scope of vector control are described. Mechanisms of alternative vector control by genetic modification to modulate mosquitoes' immune responses and anti-parasite effector molecules as part of a combinational strategy to combat malaria are considered. Finally, the limitations and ethics of using gene drives for mosquito control are discussed.
Collapse
Affiliation(s)
- Kubendran Naidoo
- SAMRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa.
- Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shüné V Oliver
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
3
|
Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses 2024; 16:1134. [PMID: 39066296 PMCID: PMC11281716 DOI: 10.3390/v16071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquitoes of the Culex genus are responsible for a large burden of zoonotic virus transmission globally. Collectively, they play a significant role in the transmission of medically significant diseases such as Japanese encephalitis virus and West Nile virus. Climate change, global trade, habitat transformation and increased urbanisation are leading to the establishment of Culex mosquitoes in new geographical regions. These novel mosquito incursions are intensifying concerns about the emergence of Culex-transmitted diseases and outbreaks in previously unaffected areas. New mosquito control methods are currently being developed and deployed globally. Understanding the complex interaction between pathogens and mosquitoes is essential for developing new control strategies for Culex species mosquitoes. This article reviews the role of Culex mosquitos as vectors of zoonotic disease, discussing the transmission of viruses across different species, and the potential use of Wolbachia technologies to control disease spread. By leveraging the insights gained from recent successful field trials of Wolbachia against Aedes-borne diseases, we comprehensively discuss the feasibility of using this technique to control Culex mosquitoes and the potential for the development of next generational Wolbachia-based control methods.
Collapse
Affiliation(s)
- Mukund Madhav
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Kim R. Blasdell
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Brendan Trewin
- CSIRO Health and Biosecurity, Dutton Park, Brisbane, QLD 4102, Australia
| | - Prasad N. Paradkar
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Adam J. López-Denman
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| |
Collapse
|
4
|
Akintola AA, Hwang UW. Microbiome profile of South Korean vector mosquitoes. Acta Trop 2024; 255:107213. [PMID: 38608996 DOI: 10.1016/j.actatropica.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
This research offers a comprehensive exploration of the microbial communities associated with vector mosquitoes from South Korea. Aedes albopictus, Anopheles sinensis, and Culex molestus are vectors of pathogens, and understanding the intricacies of their microbiome profile is paramount for unraveling their roles in disease transmission dynamics. In this study, we characterized the microbiome of the midguts of adult female vector mosquitoes collected from different locations in South Korea. After DNA extraction from dissected mosquito midguts, we used the Illumina MiSeq next-generation sequencing to obtain sequences spanning the V4 hypervariable region of the bacteria 16S rRNA. Morphological and molecular characterization using 506-bp mitochondrial 16S rRNA was used to identify the mosquito species before amplicon sequencing. Across the three vector mosquitoes surveyed, 21 bacteria genera belonging to 20 families and 5 phyla were discovered. Proteobacteria and Bacteriodota were the major phyla of bacteria associated with the three mosquito species. There were significant differences in the gut microbiome genera composition between the species and little variation in the gut microbiome between individuals of the same mosquito species. Wolbachia is the most dominant genus in Aedes while Aeromonas, Acinetobacter, and unassigned taxa are the most common in An. sinensis. In addition to that, Chromobacterium, Chryseobacterium, and Aeromonas are dominant in Cx. molestus. This study sheds light on the complex interactions between mosquitoes and their microbiome, revealing potential implications for vector competence, disease transmission, and vector control strategies.
Collapse
Affiliation(s)
- Ashraf Akintayo Akintola
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ui Wook Hwang
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea; Institute for Korean Herb-Bio Convergence Promotion, Kyungpook National University, Daegu, 41566, Republic of Korea; Phylomics Inc., Daegu, 41910, Republic of Korea.
| |
Collapse
|
5
|
Ross PA, Hoffmann AA. Revisiting Wolbachia detections: Old and new issues in Aedes aegypti mosquitoes and other insects. Ecol Evol 2024; 14:e11670. [PMID: 38957696 PMCID: PMC11219197 DOI: 10.1002/ece3.11670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Wijegunawardana NDAD, Gunawardene YINS, Abeyewickreme W, Chandrasena TGAN, Thayanukul P, Kittayapong P. Diversity of Wolbachia infections in Sri Lankan mosquitoes with a new record of Wolbachia Supergroup B infecting Aedes aegypti vector populations. Sci Rep 2024; 14:11966. [PMID: 38796552 PMCID: PMC11127934 DOI: 10.1038/s41598-024-62476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Wolbachia bacteria are common endosymbionts of insects and have recently been applied for controlling arboviral vectors, especially Aedes aegypti mosquito populations. However, several medically important mosquito species in Sri Lanka were present with limited information for the Wolbachia infection status. Therefore, the screening of Wolbachia in indigenous mosquitoes is required prior to a successful application of Wolbachia-based vector control strategy. In this study, screening of 78 mosquito species collected from various parts of the country revealed that 13 species were positive for Wolbachia infection, giving ~ 17% infection frequency of Wolbachia among the Sri Lankan mosquitoes. Twelve Wolbachia-positive mosquito species were selected for downstream Wolbachia strain genotyping using Multi Locus Sequencing Type (MLST), wsp gene, and 16S rRNA gene-based approaches. Results showed that these Wolbachia strains clustered together with the present Wolbachia phylogeny of world mosquito populations with some variations. Almost 90% of the mosquito populations were infected with supergroup B while the remaining were infected with supergroup A. A new record of Wolbachia supergroup B infection in Ae. aegypti, the main vectors of dengue, was highlighted. This finding was further confirmed by real-time qPCR, revealing Wolbachia density variations between Ae. aegypti and Ae. albopictus (p = 0.001), and between males and females (p < 0.05). The evidence of natural Wolbachia infections in Ae. aegypti populations in Sri Lanka is an extremely rare incident that has the potential to be used for arboviral vector control.
Collapse
Affiliation(s)
- N D A D Wijegunawardana
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Phayathai, Thailand
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | | | - W Abeyewickreme
- Department of Parasitology, Faculty of Medicine, General Sir Johan Kotelawala Defence University, Dehiwala-Mount Lavinia, Sri Lanka
| | - T G A N Chandrasena
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - P Thayanukul
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Salaya, Thailand.
- Department of Biology, Faculty of Science, Mahidol University, Phayathai, Thailand.
| | - P Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Salaya, Thailand
| |
Collapse
|
7
|
Mushtaq I, Sarwar MS, Chaudhry A, Shah SAH, Ahmad MM. Updates on traditional methods for combating malaria and emerging Wolbachia-based interventions. Front Cell Infect Microbiol 2024; 14:1330475. [PMID: 38716193 PMCID: PMC11074371 DOI: 10.3389/fcimb.2024.1330475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
The escalating challenge of malaria control necessitates innovative approaches that extend beyond traditional control strategies. This review explores the incorporation of traditional vector control techniques with emerging Wolbachia-based interventions. Wolbachia, a naturally occurring bacteria, offers a novel approach for combatting vector-borne diseases, including malaria, by reducing the mosquitoes' ability to transmit these diseases. The study explores the rationale for this integration, presenting various case studies and pilot projects that have exhibited significant success. Employing a multi-dimensional approach that includes community mobilization, environmental modifications, and new biological methods, the paper posits that integrated efforts could mark a turning point in the struggle against malaria. Our findings indicate that incorporating Wolbachia-based strategies into existing vector management programs not only is feasible but also heightens the efficacy of malaria control initiatives in different countries especially in Pakistan. The paper concludes that continued research and international collaboration are imperative for translating these promising methods from the laboratory to the field, thereby offering a more sustainable and effective malaria control strategy.
Collapse
|
8
|
Muharromah AF, Reyes JIL, Kagia N, Watanabe K. Genome-wide detection of Wolbachia in natural Aedes aegypti populations using ddRAD-Seq. Front Cell Infect Microbiol 2023; 13:1252656. [PMID: 38162582 PMCID: PMC10755911 DOI: 10.3389/fcimb.2023.1252656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Wolbachia, an endosymbiotic bacterium, is globally used to control arboviruses because of its ability to block arboviral replication and manipulate the reproduction of Wolbachia host, Aedes aegypti. Polymerase chain reaction (PCR)-based Wolbachia detection has been recently reported from natural Ae. aegypti populations. However, due to the technical limitations of PCR, such as primer incompatibility, PCR-based assays are not sufficiently reliable or accurate. In this study, we examined double digestion restriction site-associated DNA sequencing (ddRAD-Seq) efficiency and limitations in Wolbachia detection and quantification in field-collected Ae. aegypti natural populations in Metro Manila, the Philippines, compared with PCR-based assays. Methods A total of 217 individuals Ae. aegypti were collected from Metropolitan Manila, Philippines. We separated it into 14 populations consisting of 7 female and male populations. We constructed a library for pool ddRAD-Seq per population and also screened for Wolbachia by PCR assays using wsp and 16S rRNA. Wolbachia density per population were measured using RPS17 as the housekeeping gene. Results From 146,239,637 sequence reads obtained, 26,299 and 43,778 reads were mapped across the entire Wolbachia genome (with the wAlbA and wAlbB strains, respectively), suggesting that ddRAD-Seq complements PCR assays and supports more reliable Wolbachia detection from a genome-wide perspective. The number of reads mapped to the Wolbachia genome per population positively correlated with the number of Wolbachia-infected individuals per population based on PCR assays and the relative density of Wolbachia in the Ae. aegypti populations based on qPCR, suggesting ddRAD-Seq-based semi-quantification of Wolbachia by ddRAD-Seq. Male Ae. aegypti exhibited more reads mapped to the Wolbachia genome than females, suggesting higher Wolbachia prevalence rates in their case. We detected 150 single nucleotide polymorphism loci across the Wolbachia genome, allowing for more accurate the detection of four strains: wPip, wRi, TRS of Brugia malayi, and wMel. Conclusions Taken together, our results demonstrate the feasibility of ddRAD-Seq-based Wolbachia detection from field-collected Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Atikah Fitria Muharromah
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Entomology Laboratory, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jerica Isabel L. Reyes
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Ngure Kagia
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
9
|
Minwuyelet A, Petronio GP, Yewhalaw D, Sciarretta A, Magnifico I, Nicolosi D, Di Marco R, Atenafu G. Symbiotic Wolbachia in mosquitoes and its role in reducing the transmission of mosquito-borne diseases: updates and prospects. Front Microbiol 2023; 14:1267832. [PMID: 37901801 PMCID: PMC10612335 DOI: 10.3389/fmicb.2023.1267832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Mosquito-borne diseases such as malaria, dengue fever, West Nile virus, chikungunya, Zika fever, and filariasis have the greatest health and economic impact. These mosquito-borne diseases are a major cause of morbidity and mortality in tropical and sub-tropical areas. Due to the lack of effective vector containment strategies, the prevalence and severity of these diseases are increasing in endemic regions. Nowadays, mosquito infection by the endosymbiotic Wolbachia represents a promising new bio-control strategy. Wild-infected mosquitoes had been developing cytoplasmic incompatibility (CI), phenotypic alterations, and nutrition competition with pathogens. These reduce adult vector lifespan, interfere with reproduction, inhibit other pathogen growth in the vector, and increase insecticide susceptibility of the vector. Wild, uninfected mosquitoes can also establish stable infections through trans-infection and have the advantage of adaptability through pathogen defense, thereby selectively infecting uninfected mosquitoes and spreading to the entire population. This review aimed to evaluate the role of the Wolbachia symbiont with the mosquitoes (Aedes, Anopheles, and Culex) in reducing mosquito-borne diseases. Global databases such as PubMed, Web of Sciences, Scopus, and pro-Quest were accessed to search for potentially relevant articles. We used keywords: Wolbachia, Anopheles, Aedes, Culex, and mosquito were used alone or in combination during the literature search. Data were extracted from 56 articles' texts, figures, and tables of the included article.
Collapse
Affiliation(s)
- Awoke Minwuyelet
- Department of Biology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| | | | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Andrea Sciarretta
- Department of Agriculture, Environment and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Daria Nicolosi
- Department of Pharmaceutical and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Getnet Atenafu
- Department of Biology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
10
|
Li Y, Sun Y, Zou J, Zhong D, Liu R, Zhu C, Li W, Zhou Y, Cui L, Zhou G, Lu G, Li T. Characterizing the Wolbachia infection in field-collected Culicidae mosquitoes from Hainan Province, China. Parasit Vectors 2023; 16:128. [PMID: 37060070 PMCID: PMC10103416 DOI: 10.1186/s13071-023-05719-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Mosquitoes are vectors of many pathogens, such as malaria, dengue virus, yellow fever virus, filaria and Japanese encephalitis virus. Wolbachia are capable of inducing a wide range of reproductive abnormalities in their hosts, such as cytoplasmic incompatibility. Wolbachia has been proposed as a tool to modify mosquitoes that are resistant to pathogen infection as an alternative vector control strategy. This study aimed to determine natural Wolbachia infections in different mosquito species across Hainan Province, China. METHODS Adult mosquitoes were collected using light traps, human landing catches and aspirators in five areas in Hainan Province from May 2020 to November 2021. Species were identified based on morphological characteristics, species-specific PCR and DNA barcoding of cox1 assays. Molecular classification of species and phylogenetic analyses of Wolbachia infections were conducted based on the sequences from PCR products of cox1, wsp, 16S rRNA and FtsZ gene segments. RESULTS A total of 413 female adult mosquitoes representing 15 species were identified molecularly and analyzed. Four mosquito species (Aedes albopictus, Culex quinquefasciatus, Armigeres subalbatus and Culex gelidus) were positive for Wolbachia infection. The overall Wolbachia infection rate for all mosquitoes tested in this study was 36.1% but varied among species. Wolbachia types A, B and mixed infections of A × B were detected in Ae. albopictus mosquitoes. A total of five wsp haplotypes, six FtsZ haplotypes and six 16S rRNA haplotypes were detected from Wolbachia infections. Phylogenetic tree analysis of wsp sequences classified them into three groups (type A, B and C) of Wolbachia strains compared to two groups each for FtsZ and 16S rRNA sequences. A novel type C Wolbachia strain was detected in Cx. gelidus by both single locus wsp gene and the combination of three genes. CONCLUSION Our study revealed the prevalence and distribution of Wolbachia in mosquitoes from Hainan Province, China. Knowledge of the prevalence and diversity of Wolbachia strains in local mosquito populations will provide part of the baseline information required for current and future Wolbachia-based vector control approaches to be conducted in Hainan Province.
Collapse
Affiliation(s)
- Yiji Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Yingbo Sun
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Jiaquan Zou
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Chuanlong Zhu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Yanhe Zhou
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA.
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China.
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, Hainan, China.
- The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Academician Workstation of Hainan Province, Hainan Medical University, Haikou, 571199, People's Republic of China.
| | - Tingting Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
11
|
Zhang H, Gao J, Ma Z, Liu Y, Wang G, Liu Q, Du Y, Xing D, Li C, Zhao T, Jiang Y, Dong Y, Guo X, Zhao T. Wolbachia infection in field-collected Aedes aegypti in Yunnan Province, southwestern China. Front Cell Infect Microbiol 2022; 12:1082809. [PMID: 36530420 PMCID: PMC9748079 DOI: 10.3389/fcimb.2022.1082809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China. Methods A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied. Results 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%. Conclusions Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - XiaoXia Guo
- *Correspondence: XiaoXia Guo, ; TongYan Zhao,
| | | |
Collapse
|
12
|
Bacterial Community Diversity and Bacterial Interaction Network in Eight Mosquito Species. Genes (Basel) 2022; 13:genes13112052. [DOI: 10.3390/genes13112052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Mosquitoes (Diptera: Culicidae) are found widely throughout the world. Several species can transmit pathogens to humans and other vertebrates. Mosquitoes harbor great amounts of bacteria, fungi, and viruses. The bacterial composition of the microbiota of these invertebrates is associated with several factors, such as larval habitat, environment, and species. Yet little is known about bacterial interaction networks in mosquitoes. This study investigates the bacterial communities of eight species of Culicidae collected in Vale do Ribeira (Southeastern São Paulo State) and verifies the bacterial interaction network in these species. Sequences of the 16S rRNA region from 111 mosquito samples were analyzed. Bacterial interaction networks were generated from Spearman correlation values. Proteobacteria was the predominant phylum in all species. Wolbachia was the predominant genus in Haemagogus leucocelaenus. Aedes scapularis, Aedes serratus, Psorophora ferox, and Haemagogus capricornii were the species that showed a greater number of bacterial interactions. Bacterial positive interactions were found in all mosquito species, whereas negative correlations were observed in Hg. leucocelaenus, Ae. scapularis, Ae. serratus, Ps. ferox, and Hg. capricornii. All bacterial interactions with Asaia and Wolbachia were negative in Aedes mosquitoes.
Collapse
|
13
|
Maquart PO, Chann L, Boyer S. Culex vishnui (Diptera: Culicidae): An Overlooked Vector of Arboviruses in South-East Asia. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1144-1153. [PMID: 35522221 DOI: 10.1093/jme/tjac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Culex vishnui Theobald, 1901, a main vector of Japanese encephalitis virus (JEV), is widely distributed in the Oriental region where it often accounts for a great part of the culicid fauna. This species also has been found naturally infected with at least 13 other arboviruses of medical and veterinary importance. Females blood feed predominantly upon pigs and birds, but may readily bite cattle and humans. Because of its abundance, medical importance, and presence throughout ecological gradients among urban, peri-urban, and rural areas, Cx. vishnui potentially may serve as a bridge vector transmitting viruses from natural and wild hosts to humans. Being zoo- and anthropophagic, omnipresent in the Oriental region, and presenting strong resistance to many insecticide families, this overlooked mosquito species may pose a serious health risk in one of the most densely populated regions of the world.
Collapse
Affiliation(s)
- Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Leakena Chann
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
14
|
Waymire E, Duddu S, Yared S, Getachew D, Dengela D, Bordenstein SR, Balkew M, Zohdy S, Irish SR, Carter TE. Wolbachia 16S rRNA haplotypes detected in wild Anopheles stephensi in eastern Ethiopia. Parasit Vectors 2022; 15:178. [PMID: 35610655 PMCID: PMC9128127 DOI: 10.1186/s13071-022-05293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND About two out of three Ethiopians are at risk of malaria, a disease caused by the parasites Plasmodium falciparum and Plasmodium vivax. Anopheles stephensi, an invasive vector typically found in South Asia and the Middle East, was recently found to be distributed across eastern and central Ethiopia and is capable of transmitting both P. falciparum and P. vivax. The detection of this vector in the Horn of Africa (HOA) coupled with widespread insecticide resistance requires that new methods of vector control be investigated in order to control the spread of malaria. Wolbachia, a naturally occurring endosymbiotic bacterium of mosquitoes, has been identified as a potential vector control tool that can be explored for the control of malaria transmission. Wolbachia could be used to control the mosquito population through suppression or potentially decrease malaria transmission through population replacement. However, the presence of Wolbachia in wild An. stephensi in eastern Ethiopia is unknown. This study aimed to identify the presence and diversity of Wolbachia in An. stephensi across eastern Ethiopia. METHODS DNA was extracted from An. stephensi collected from eastern Ethiopia in 2018 and screened for Wolbachia using a 16S targeted PCR assay, as well as multilocus strain typing (MLST) PCR assays. Haplotype and phylogenetic analysis of the sequenced 16S amplicons were conducted to compare with Wolbachia from countries across Africa and Asia. RESULTS Twenty out of the 184 mosquitoes screened were positive for Wolbachia, with multiple haplotypes detected. In addition, phylogenetic analysis revealed two superclades, representing Wolbachia supergroups A and B (bootstrap values of 81 and 72, respectively) with no significant grouping of geographic location or species. A subclade with a bootstrap value of 89 separates the Ethiopian haplotype 2 from other sequences in that superclade. CONCLUSIONS These findings provide the first evidence of natural Wolbachia populations in wild An. stephensi in the HOA. They also identify the need for further research to confirm the endosymbiotic relationship between Wolbachia and An. stephensi and to investigate its utility for malaria control in the HOA.
Collapse
Affiliation(s)
| | - Sowmya Duddu
- Department of Biology, Baylor University, Waco, TX USA
| | | | | | - Dereje Dengela
- PMI VectorLink Ethiopia Project, Abt Associates, Addis Ababa, Ethiopia
| | | | - Meshesha Balkew
- PMI VectorLink Ethiopia Project, Abt Associates, Addis Ababa, Ethiopia
| | - Sarah Zohdy
- U.S. President’s Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Seth R. Irish
- U.S. President’s Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA USA
| | | |
Collapse
|
15
|
Djihinto OY, Medjigbodo AA, Gangbadja ARA, Saizonou HM, Lagnika HO, Nanmede D, Djossou L, Bohounton R, Sovegnon PM, Fanou MJ, Agonhossou R, Akoton R, Mousse W, Djogbénou LS. Malaria-Transmitting Vectors Microbiota: Overview and Interactions With Anopheles Mosquito Biology. Front Microbiol 2022; 13:891573. [PMID: 35668761 PMCID: PMC9164165 DOI: 10.3389/fmicb.2022.891573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Malaria remains a vector-borne infectious disease that is still a major public health concern worldwide, especially in tropical regions. Malaria is caused by a protozoan parasite of the genus Plasmodium and transmitted through the bite of infected female Anopheles mosquitoes. The control interventions targeting mosquito vectors have achieved significant success during the last two decades and rely mainly on the use of chemical insecticides through the insecticide-treated nets (ITNs) and indoor residual spraying (IRS). Unfortunately, resistance to conventional insecticides currently being used in public health is spreading in the natural mosquito populations, hampering the long-term success of the current vector control strategies. Thus, to achieve the goal of malaria elimination, it appears necessary to improve vector control approaches through the development of novel environment-friendly tools. Mosquito microbiota has by now given rise to the expansion of innovative control tools, such as the use of endosymbionts to target insect vectors, known as "symbiotic control." In this review, we will present the viral, fungal and bacterial diversity of Anopheles mosquitoes, including the bacteriophages. This review discusses the likely interactions between the vector microbiota and its fitness and resistance to insecticides.
Collapse
Affiliation(s)
- Oswald Y. Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Adandé A. Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Albert R. A. Gangbadja
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Helga M. Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Hamirath O. Lagnika
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Dyane Nanmede
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Laurette Djossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Roméo Bohounton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Pierre Marie Sovegnon
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Marie-Joel Fanou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Romuald Agonhossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Romaric Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Wassiyath Mousse
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Luc S. Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
- Regional Institute of Public Health, University of Abomey-Calavi, Ouidah, Benin
| |
Collapse
|
16
|
Thayanukul P, Lertanantawong B, Sirawaraporn W, Charasmongkolcharoen S, Chaibun T, Jittungdee R, Kittayapong P. Simple, sensitive, and cost-effective detection of wAlbB Wolbachia in Aedes mosquitoes, using loop mediated isothermal amplification combined with the electrochemical biosensing method. PLoS Negl Trop Dis 2022; 16:e0009600. [PMID: 35560029 PMCID: PMC9132313 DOI: 10.1371/journal.pntd.0009600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 05/25/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Wolbachia is an endosymbiont bacterium generally found in about 40% of insects, including mosquitoes, but it is absent in Aedes aegypti which is an important vector of several arboviral diseases. The evidence that Wolbachia trans-infected Ae. aegypti mosquitoes lost their vectorial competence and became less capable of transmitting arboviruses to human hosts highlights the potential of using Wolbachia-based approaches for prevention and control of arboviral diseases. Recently, release of Wolbachia trans-infected Ae. aegypti has been deployed widely in many countries for the control of mosquito-borne viral diseases. Field surveillance and monitoring of Wolbachia presence in released mosquitoes is important for the success of these control programs. So far, a number of studies have reported the development of loop mediated isothermal amplification (LAMP) assays to detect Wolbachia in mosquitoes, but the methods still have some specificity and cost issues. Methodology/Principal findings We describe here the development of a LAMP assay combined with the DNA strand displacement-based electrochemical sensor (BIOSENSOR) method to detect wAlbB Wolbachia in trans-infected Ae. aegypti. Our developed LAMP primers used a low-cost dye detecting system and 4 oligo nucleotide primers which can reduce the cost of analysis while the specificity is comparable to the previous methods. The detection capacity of our LAMP technique was 1.4 nM and the detection limit reduced to 2.2 fM when combined with the BIOSENSOR. Our study demonstrates that a BIOSENSOR can also be applied as a stand-alone method for detecting Wolbachia; and it showed high sensitivity when used with the crude DNA extracts of macerated mosquito samples without DNA purification. Conclusions/Significance Our results suggest that both LAMP and BIOSENSOR, either used in combination or stand-alone, are robust and sensitive. The methods have good potential for routine detection of Wolbachia in mosquitoes during field surveillance and monitoring of Wolbachia-based release programs, especially in countries with limited resources. Mosquito-borne diseases such as dengue, chikungunya, zika, and yellow fever are transmitted to humans mainly by the bites of Aedes aegypti mosquitoes. Controlling the vectors of these diseases relies mostly on the use of insecticides. However, the efficiency has been reduced through the development of insecticide resistance in mosquitoes. Wolbachia is an endosymbiotic bacterium that is naturally found in 40% of insects, including mosquitoes. The bacterium can protect its insect hosts from viral infections and can also cause sterility in insect host populations, therefore, providing an opportunity to use it for human disease control. Application of a Wolbachia trans-infected mosquitoes needs simple, rapid and sensitive methods for detecting the bacteria in released mosquitoes. In this paper, we develop the methods of LAMP and BIOSENSORS for detecting wAlbB Wolbachia in mosquitoes. Our positive LAMP reaction can be visualized by color change from violet to blue at a sensitivity of ≥ 10 pg of genomic DNA. When used in combination with the BIOSENSOR method, the sensitivity increases a millionfold without losing specificity. Our study suggests that both developed methods, either used in combination or stand-alone, are efficient and cost-effective, hence, they could be applied for routine surveys of Wolbachia in mosquito control programs that use Wolbachia-based approaches.
Collapse
Affiliation(s)
- Parinda Thayanukul
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Benchaporn Lertanantawong
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Worachart Sirawaraporn
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | | | - Thanyarat Chaibun
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | | | - Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
17
|
Quek S, Cerdeira L, Jeffries CL, Tomlinson S, Walker T, Hughes GL, Heinz E. Wolbachia endosymbionts in two Anopheles species indicates independent acquisitions and lack of prophage elements. Microb Genom 2022; 8. [PMID: 35446252 PMCID: PMC9453072 DOI: 10.1099/mgen.0.000805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wolbachia is a genus of obligate bacterial endosymbionts that infect a diverse range of arthropod species as well as filarial nematodes, with its single described species, Wolbachia pipientis, divided into several ‘supergroups’ based on multilocus sequence typing. Wolbachia strains in mosquitoes have been shown to inhibit the transmission of human pathogens, including Plasmodium malaria parasites and arboviruses. Despite their large host range, Wolbachia strains within the major malaria vectors of the Anopheles gambiae and Anopheles funestus complexes appear at low density, established solely on PCR-based methods. Questions have been raised as to whether this represents a true endosymbiotic relationship. However, recent definitive evidence for two distinct, high-density strains of supergroup B Wolbachia within Anopheles demeilloni and Anopheles moucheti has opened exciting possibilities to explore naturally occurring Wolbachia endosymbionts in Anopheles for biocontrol strategies to block Plasmodium transmission. Here, we utilize genomic analyses to demonstrate that both Wolbachia strains have retained all key metabolic and transport pathways despite their smaller genome size, with this reduction potentially attributable to degenerated prophage regions. Even with this reduction, we confirmed the presence of cytoplasmic incompatibility (CI) factor genes within both strains, with wAnD maintaining intact copies of these genes while the cifB gene was interrupted in wAnM, so functional analysis is required to determine whether wAnM can induce CI. Additionally, phylogenetic analysis indicates that these Wolbachia strains may have been introduced into these two Anopheles species via horizontal transmission events, rather than by ancestral acquisition and subsequent loss events in the Anopheles gambiae species complex. These are the first Wolbachia genomes, to our knowledge, that enable us to study the relationship between natural strain Plasmodium malaria parasites and their anopheline hosts.
Collapse
Affiliation(s)
- Shannon Quek
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Louise Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claire L Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sean Tomlinson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Grant L Hughes
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
18
|
Wolbachia Detection in Field-Collected Mosquitoes from Cameroon. INSECTS 2021; 12:insects12121133. [PMID: 34940221 PMCID: PMC8704151 DOI: 10.3390/insects12121133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Wolbachia bacteria from different strains, carried by many insects and nematodes, can interact in many ways with their hosts by changing their biology in different ways, including by suppressing vector population and reducing parasite transmission. Consequently, Wolbachia play an important role in vector control strategies. This study assessed the prevalence of natural Wolbachia infections in mosquitoes collected in Cameroon. Despite the low prevalence that was revealed, Wolbachia spp. were found in eight species of field-collected mosquitoes and are closely related to clades A and B. Aedes aegypti and A. gambiae sl., the main vectors of dengue and malaria, respectively, were not infected in this study, while C. moucheti recorded a high prevalence (46.67%). Future characterisation of the Wolbachia bacteria obtained is needed. Abstract Wolbachia spp., known to be maternally inherited intracellular bacteria, are widespread among arthropods, including mosquitoes. Our study assessed the presence and prevalence of Wolbachia infection in wild mosquitoes collected in Cameroon, using the combination of 23s rRNA Anaplasmatacea and 16s rRNA Wolbachia genes. Mosquitoes that were positive for Wolbachia were sequenced for subsequent phylogenetic analysis. Out of a total of 1740 individual mosquitoes belonging to 22 species and five genera screened, 33 mosquitoes (1.87%) belonging to eight species (namely, Aedes albopictus, A. contigus, Culex quinquefasciatus, C. perfuscus, C. wigglesworthi, C. duttoni, Anopheles paludis and Coquillettidia sp.) were found to be positive for Wolbachia infections. Wolbachia spp. were absent in A. gambiae and A. aegypti, the main vectors of malaria and dengue, respectively. Phylogenetic analysis of the 16S RNA sequences showed they belong mainly to two distinct subgroups (A and B). This study reports the presence of Wolbachia in about eight species of mosquitoes in Cameroon and suggests that future characterisation of the strains is needed.
Collapse
|
19
|
Yang Y, He Y, Zhu G, Zhang J, Gong Z, Huang S, Lu G, Peng Y, Meng Y, Hao X, Wang C, Sun J, Shang S. Prevalence and molecular characterization of Wolbachia in field-collected Aedes albopictus, Anopheles sinensis, Armigeres subalbatus, Culex pipiens and Cx. tritaeniorhynchus in China. PLoS Negl Trop Dis 2021; 15:e0009911. [PMID: 34710095 PMCID: PMC8577788 DOI: 10.1371/journal.pntd.0009911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/09/2021] [Accepted: 10/15/2021] [Indexed: 01/24/2023] Open
Abstract
Wolbachia are maternally transmitted intracellular bacteria that can naturally and artificially infect arthropods and nematodes. Recently, they were applied to control the spread of mosquito-borne pathogens by causing cytoplasmic incompatibility (CI) between germ cells of females and males. The ability of Wolbachia to induce CI is based on the prevalence and polymorphism of Wolbachia in natural populations of mosquitoes. In this study, we screened the natural infection level and diversity of Wolbachia in field-collected mosquitoes from 25 provinces of China based on partial sequence of Wolbachia surface protein (wsp) gene and multilocus sequence typing (MLST). Among the samples, 2489 mosquitoes were captured from 24 provinces between July and September, 2014 and the remaining 1025 mosquitoes were collected month-by-month in Yangzhou, Jiangsu province between September 2013 and August 2014. Our results showed that the presence of Wolbachia was observed in mosquitoes of Aedes albopictus (97.1%, 331/341), Armigeres subalbatus (95.8%, 481/502), Culex pipiens (87.0%, 1525/1752), Cx. tritaeniorhynchus (17.1%, 14/82), but not Anopheles sinensis (n = 88). Phylogenetic analysis indicated that high polymorphism of wsp and MLST loci was observed in Ae. albopictus mosquitoes, while no or low polymorphisms were in Ar. subalbatus and Cx. pipiens mosquitoes. A total of 12 unique mutations of deduced amino acid were identified in the wsp sequences obtained in this study, including four mutations in Wolbachia supergroup A and eight mutations in supergroup B. This study revealed the prevalence and polymorphism of Wolbachia in mosquitoes in large-scale regions of China and will provide some useful information when performing Wolbachia-based mosquito biocontrol strategies in China. The mosquitoes Aedes albopictus, Anopheles sinensis, Armigeres subalbatus, Culex pipiens and Cx. tritaeniorhynchus are native to China and the major vectors in the transmission of arboviruses, protozoans and nematodes. Recently, an innovative biocontrol strategy has been developed and evaluated based on the ability of Wolbachia to induce cytoplasmic incompatibility (CI), as well as interfere with the infection and replication of pathogens. Since the ability to induce CI largely depends on the density and diversity of Wolbachia, we investigated and characterized the natural infection of Wolbachia in above-mentioned five species of field-collected mosquitoes in 25 provinces of China. The results showed that the positive rates of Wolbachia infection were high in mosquitoes of Ae. albopictus, Ar. subalbatus and Cx. pipiens in large-scale regions of China and low in Cx. tritaeniorhynchus in Guizhou province. Phylogenetic analysis based on Wolbachia surface protein (wsp) gene and five multilocus sequence typing (MLST) loci indicated the high polymorphism of Wolbachia in Ae. albopictus, and low polymorphisms in Ar. subalbatus and Cx. pipiens. This finding contributes to the understanding of the nationwide distribution of Wolbachia and the potential application of this biocontrol strategy in China.
Collapse
Affiliation(s)
- Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
- * E-mail: (YY); (JS); (SS)
| | - Yifan He
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zaicheng Gong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Siyang Huang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
| | - Guangwu Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yalan Peng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yining Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoli Hao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Jie Sun
- Shenzhen Academy of Inspection and Quarantine Sciences, Shenzhen, China
- * E-mail: (YY); (JS); (SS)
| | - Shaobin Shang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
- * E-mail: (YY); (JS); (SS)
| |
Collapse
|
20
|
Walker T, Quek S, Jeffries CL, Bandibabone J, Dhokiya V, Bamou R, Kristan M, Messenger LA, Gidley A, Hornett EA, Anderson ER, Cansado-Utrilla C, Hegde S, Bantuzeko C, Stevenson JC, Lobo NF, Wagstaff SC, Nkondjio CA, Irish SR, Heinz E, Hughes GL. Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes. Curr Biol 2021; 31:2310-2320.e5. [PMID: 33857432 PMCID: PMC8210651 DOI: 10.1016/j.cub.2021.03.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Wolbachia, a widespread bacterium that can reduce pathogen transmission in mosquitoes, has recently been reported to be present in Anopheles (An.) species. In wild populations of the An. gambiae complex, the primary vectors of Plasmodium malaria in Sub-Saharan Africa, Wolbachia DNA sequences at low density and infection frequencies have been detected. As the majority of studies have used highly sensitive nested PCR as the only method of detection, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Here, we describe high-density Wolbachia infections in geographically diverse populations of An. moucheti and An. demeilloni. Fluorescent in situ hybridization localized a heavy infection in the ovaries of An. moucheti, and maternal transmission was observed. Genome sequencing of both Wolbachia strains obtained genome depths and coverages comparable to those of other known infections. Notably, homologs of cytoplasmic incompatibility factor (cif) genes were present, indicating that these strains possess the capacity to induce the cytoplasmic incompatibility phenotype, which allows Wolbachia to spread through host populations. These strains should be further investigated as candidates for use in Wolbachia biocontrol strategies in Anopheles aiming to reduce the transmission of malaria. High-density Wolbachia strains found in An. moucheti and An. demeilloni mosquitoes Infections are visualized in the ovaries, and maternal transmission was observed Sequencing at depths and coverages comparable to other known Wolbachia strains Homologs of cytoplasmic incompatibility factor genes are present in both genomes
Collapse
Affiliation(s)
- Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claire L Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Janvier Bandibabone
- Laboratoire d'entomologie médicale et parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/LWIRO), Sud-Kivu, Democratic Republic of Congo
| | - Vishaal Dhokiya
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Roland Bamou
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroon; Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Alexandra Gidley
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK; Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Enyia R Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chimanuka Bantuzeko
- Laboratoire d'entomologie médicale et parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/LWIRO), Sud-Kivu, Democratic Republic of Congo
| | - Jennifer C Stevenson
- Macha Research Trust, Choma District, Zambia; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Simon C Wagstaff
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christophe Antonio Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroon
| | - Seth R Irish
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
21
|
Ding H, Yeo H, Puniamoorthy N. Wolbachia infection in wild mosquitoes (Diptera: Culicidae): implications for transmission modes and host-endosymbiont associations in Singapore. Parasit Vectors 2020; 13:612. [PMID: 33298138 PMCID: PMC7724734 DOI: 10.1186/s13071-020-04466-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Background Wolbachia are intracellular bacterial endosymbionts found in most insect lineages. In mosquitoes, the influence of these endosymbionts on host reproduction and arboviral transmission has spurred numerous studies aimed at using Wolbachia infection as a vector control technique. However, there are several knowledge gaps in the literature and little is known about natural Wolbachia infection across species, their transmission modes, or associations between various Wolbachia lineages and their hosts. This study aims to address these gaps by exploring mosquito-Wolbachia associations and their evolutionary implications. Methods We conducted tissue-specific polymerase chain reaction screening for Wolbachia infection in the leg, gut and reproductive tissues of wild mosquitoes from Singapore using the Wolbachia surface protein gene (wsp) molecular marker. Mosquito-Wolbachia associations were explored using three methods—tanglegram, distance-based, and event-based methods—and by inferred instances of vertical transmission and host shifts. Results Adult mosquitoes (271 specimens) representing 14 genera and 40 species were screened for Wolbachia. Overall, 21 species (51.2%) were found positive for Wolbachia, including five in the genus Aedes and five in the genus Culex. To our knowledge, Wolbachia infections have not been previously reported in seven of these 21 species: Aedes nr. fumidus, Aedes annandalei, Uranotaenia obscura, Uranotaenia trilineata, Verrallina butleri, Verrallina sp. and Zeugnomyia gracilis. Wolbachia were predominantly detected in the reproductive tissues, which is an indication of vertical transmission. However, Wolbachia infection rates varied widely within a mosquito host species. There was no clear signal of cophylogeny between the mosquito hosts and the 12 putative Wolbachia strains observed in this study. Host shift events were also observed. Conclusions Our results suggest that the mosquito-Wolbachia relationship is complex and that combinations of transmission modes and multiple evolutionary events likely explain the observed distribution of Wolbachia diversity across mosquito hosts. These findings have implications for a better understanding of the diversity and ecology of Wolbachia and for their utility as biocontrol agents.
Collapse
Affiliation(s)
- Huicong Ding
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Huiqing Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| |
Collapse
|