1
|
Chen J, Tarantino G, Severgnini M, Baginska J, Giobbie-Hurder A, Weirather JL, Manos M, Russell JD, Pfaff KL, Rodig SJ, Huang AY, Brennick R, Nazzaro M, Hathaway E, Holovatska M, Manuszak C, Ranasinghe S, Liu D, Hodi FS. Circulating cytokine associations with clinical outcomes in melanoma patients treated with combination nivolumab plus ipilimumab. Oncoimmunology 2025; 14:2432723. [PMID: 39699928 DOI: 10.1080/2162402x.2024.2432723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Nivolumab plus ipilimumab (aCTLA-4/aPD-1) combination therapy has significantly improved clinical outcomes in patients with metastatic melanoma, with 50%-60% of patients responding to treatment, but predictors of response are poorly characterized. We hypothesized that circulating cytokines and peripheral white blood cells may predict response to therapy and evaluated 15 cytokines and complete blood counts (CBC with differentials) from 89 patients with advanced melanoma treated with combination therapy from three points in time: pre-treatment, one month and approximately three months after starting therapy. Clinical endpoints evaluated included durable clinical benefit (DCB), progression-free survival (PFS), and overall survival (OS). A parsimonious predictive model was developed to identify cytokines predictors of response to combination therapy. In this study, we found that pre-treatment, patients with DCB had higher IL-23, lower CXCL6, and lower IL-10 levels. Lower NLR one month after starting therapy predicted better PFS and OS, primarily driven by an increase in absolute lymphocytes. A multivariate model demonstrated that baseline CXCL6, IL-10, IL-23 were independent predictors of therapy response, and the combined model has reached an area under the curve (AUC) of 0.79 in prediction of response to combination therapy. Our study identified baseline CXCL6, IL-23, and IL-10 as predictors of response to aCTLA4/aPD1 combination therapy among patients with metastatic melanoma. This study also provides a framework for identifying patients who are likely to respond to combination ICB, as well as a subset of patients with high risk of developing resistance and are thus in need of alternative therapeutic options, such as clinical trials.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Giuseppe Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mariano Severgnini
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joanna Baginska
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason L Weirather
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Janice D Russell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen L Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott J Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy Y Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ryan Brennick
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew Nazzaro
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Emma Hathaway
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marta Holovatska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Claire Manuszak
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Srinika Ranasinghe
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
2
|
Dang Q, Zhang L, Ma H, Sun X, Ren A, Chen J, Huang X, Zhang B, Sun W. Lighthouses illuminating tumor metastasis: The application of fluorescent probes in the localization and imaging metastatic lymph nodes across various tumors. Biomaterials 2025; 316:123020. [PMID: 39693784 DOI: 10.1016/j.biomaterials.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/24/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The significance of metastatic lymph nodes in tumor diagnosis and prognosis is self-evident. With the deepening of research on the lymphatic system and the advancement of imaging technology, an increasing number of near-infrared fluorescent probes targeting tumor metastatic lymph nodes have been developed. These probes can identify tumors while further detecting lymph nodes (LNs), showcasing great potential in image-guided surgery. In this review, we comprehensively outline the design strategies and applications of near-infrared fluorescent probes for cancers with a high propensity for lymph node metastasis during disease progression. Particular emphasis is placed on two targeting mechanisms: tumor-directed probes capable of identifying metastatic lymph nodes and lymph node-specific probes utilizing passive targeting of metastatic lymph nodes or active targeting of lymph nodes directly. Additionally, we discuss current issues and future prospects in this field, which will facilitate the development of new fluorescent probes and their further clinical translation.
Collapse
Affiliation(s)
- Qi Dang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Linhao Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Huipeng Ma
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiaoshan Sun
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Anguo Ren
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Jiuyang Chen
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiaohua Huang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
3
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
4
|
Pérez-Cabello JA, Artero-Castro A, Molina-Pinelo S. Small cell lung cancer unveiled: Exploring the untapped resource of circulating tumor cells-derived organoids. Crit Rev Oncol Hematol 2025; 207:104622. [PMID: 39832682 DOI: 10.1016/j.critrevonc.2025.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Small cell lung cancer (SCLC) remains a challenge in oncology due to its aggressive behavior and dismal prognosis. Despite advances in treatments, novel strategies are urgently needed. Enter liquid biopsy-a game-changer in SCLC management. This revolutionary non-invasive approach allows for the analysis of circulating tumor cells (CTCs), offering insights into tumor behavior and treatment responses. Our review focuses on a groundbreaking frontier: harnessing CTCs to create three-dimensional (3D) organoid models. These models, derived from CTCs that break away from the primary tumor or metastatic locations, hold immense potential for revolutionizing cancer research, especially in SCLC. We explore the essential conditions for successfully establishing CTC-derived organoids-a transformative approach with profound implications for personalized medicine. Our evaluation spans diverse isolation techniques, shedding light on their advantages and limitations. Furthermore, we uncover the critical factors governing the cultivation of 3D organoids from CTCs, meticulously mimicking the tumor microenvironment. This review comprehensively elucidates the molecular characterization of these organoids, showcasing their potential in identifying treatment targets and predicting responses. In essence, our review amalgamates cutting-edge methodologies for isolating CTCs, establishing transformative CTC-derived organoids, and characterizing their molecular landscape. This represents a promising frontier for advancing personalized medicine in the complex realm of SCLC management and holds significant implications for translational research.
Collapse
Affiliation(s)
- Jesús A Pérez-Cabello
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain
| | - Ana Artero-Castro
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid 28029, Spain.
| |
Collapse
|
5
|
Takahashi Y, Ijiri Y, Fujino S, Elnaz N, Kishimoto A, Shirai K, Iwanaga S, Yanagida M, Bhagat AAS, Miyoshi N. Detection and Characterization of Circulating Tumor Cells in Colorectal Cancer Patients via Epithelial-Mesenchymal Transition Markers. Cancers (Basel) 2025; 17:303. [PMID: 39858085 PMCID: PMC11763958 DOI: 10.3390/cancers17020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Liquid biopsy methods have gained prominence as minimally invasive tools to improve cancer treatment outcomes. Circulating tumor cells (CTCs) offer valuable insights into both primary and metastatic lesions. However, validating the CTC test results requires confirmation that the detected cells originate from cancer tissue. While studies have identified CTCs in colorectal cancer (CRC) patients using molecular markers, simultaneous validation of their cancer tissue origin remains unexplored. Methods: This study introduces a simple approach to detect adenomatous polyposis coli (APC) gene abnormalities alongside established CTC markers using a molecular imaging flow cytometer (MI-FCM). Given that APC gene abnormalities occur in 60-70% of CRC patients, their detection serves as strong evidence of cancer origin. Results: Our method achieved 92% concordance with DNA sequence analysis of tumor-derived cells. In a proof-of-concept study using 5 mL of whole blood from CRC patients, we observed a high frequency of cells exhibiting APC abnormalities, cytokeratin (CK), and vimentin (Vim) expression. Extending the study to 80 CRC patients across pathological stages I-IV confirmed CK and Vim as valid CTC markers. Three distinct cell populations were identified in blood: CK+/Vim-, CK+/Vim+, and CK-/Vim+. CTC number and frequency increased progressively with cancer stage. Conclusions: This is the first report demonstrating CK and Vim as effective markers for direct CTC detection in CRC patients. Our findings provide evidence-based validation of CTC markers, offering new insights and advancing approaches for patient care.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of Central Research Laboratories, Sysmex Corporation, Kobe 651-2271, Japan; (Y.T.); (Y.I.); (N.E.); (A.K.); (K.S.); (S.I.); (M.Y.)
| | - Yuichi Ijiri
- Department of Central Research Laboratories, Sysmex Corporation, Kobe 651-2271, Japan; (Y.T.); (Y.I.); (N.E.); (A.K.); (K.S.); (S.I.); (M.Y.)
| | - Shiki Fujino
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne 3004, Australia;
- Innovative Oncology Research and Regenerative Medicine, Osaka International Cancer Institute, Osaka 541-8567, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Nakhaei Elnaz
- Department of Central Research Laboratories, Sysmex Corporation, Kobe 651-2271, Japan; (Y.T.); (Y.I.); (N.E.); (A.K.); (K.S.); (S.I.); (M.Y.)
| | - Ayuko Kishimoto
- Department of Central Research Laboratories, Sysmex Corporation, Kobe 651-2271, Japan; (Y.T.); (Y.I.); (N.E.); (A.K.); (K.S.); (S.I.); (M.Y.)
| | - Kentaro Shirai
- Department of Central Research Laboratories, Sysmex Corporation, Kobe 651-2271, Japan; (Y.T.); (Y.I.); (N.E.); (A.K.); (K.S.); (S.I.); (M.Y.)
| | - Shigeki Iwanaga
- Department of Central Research Laboratories, Sysmex Corporation, Kobe 651-2271, Japan; (Y.T.); (Y.I.); (N.E.); (A.K.); (K.S.); (S.I.); (M.Y.)
| | - Masatoshi Yanagida
- Department of Central Research Laboratories, Sysmex Corporation, Kobe 651-2271, Japan; (Y.T.); (Y.I.); (N.E.); (A.K.); (K.S.); (S.I.); (M.Y.)
| | - Ali Asgar S. Bhagat
- Biolidics Limited, Singapore 577177, Singapore;
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119276, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Norikatsu Miyoshi
- Innovative Oncology Research and Regenerative Medicine, Osaka International Cancer Institute, Osaka 541-8567, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
6
|
He YG, Zhu YN, Xiao ZY, Wang Z, Wang CQ, Jing-Li, Huang XB, Zheng L. Impact of anti-PD1 immunotherapy and circulating tumor cells on progression-free survival in surgical pancreatic adenocarcinoma: a retrospective cohort study. Expert Rev Clin Immunol 2025:1-10. [PMID: 39745065 DOI: 10.1080/1744666x.2024.2448989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION The clinical benefits of combining immunotherapy with chemotherapy and surgical resection in pancreatic adenocarcinoma remain unclear. The expression and clinical significance of HIF1A in circulating tumor cells (CTCs) in pancreatic adenocarcinoma remains limited. METHODS This retrospective cohort study compared survival outcomes in pancreatic adenocarcinoma patients treated with two regimens: surgery+chemotherapy (nab-paclitaxel plus gemcitabine)+anti-PD1 (Tislelizumab) (S+AG+anti-PD1) (n = 37), and surgery+chemotherapy (S+AG) (n = 5). The study also evaluated CTCs and HIF1A-positive CTCs as potential prognostic biomarkers. RESULTS The S+AG+anti-PD1 group (n = 37) showed significantly better progression-free survival (PFS) compared to S+AG (n = 15) in multivariate analysis (HR: 0.426, 95% CI: 0.185-0.983, p = 0.045). Overall survival (OS) differences were not statistically significant between groups. Lower CTC counts (≤1) were associated with longer PFS in surgical patients. This association was confirmed in multivariate analysis, after adjustment for AJCC stages (HR: 0.318, 95% CI: 0.104-0.974, p = 0.045). HIF1A-positive CTCs showed similar trends and prognostic significance to total CTC counts. Advanced AJCC stages remained the strongest independent predictor of worse PFS and OS. CONCLUSION Combining surgery, chemotherapy, and immunotherapy may improve PFS in resectable pancreatic adenocarcinoma. While CTCs and HIF1A-positive CTCs may have prognostic value, AJCC staging remains the most reliable indicator.
Collapse
Affiliation(s)
| | | | | | - Zheng Wang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Chao-Qun Wang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jing-Li
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiao-Bing Huang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Lu Zheng
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Sun X, Qiao T, Zhang Z, Wang X, Gao Z, Ding D. A near-infrared fluorescent probe with assembly/aggregation-induced retention effect for specific diagnosis of metastasis and image-guided surgery in breast cancer. Biosens Bioelectron 2025; 267:116801. [PMID: 39357494 DOI: 10.1016/j.bios.2024.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Image-guided surgery is crucial for achieving complete tumor resection, reducing postoperative recurrence and improving patient survival. However, current clinical near-infrared fluorescent probes, such as indocyanine green (ICG), face two main limitations: 1) lack of active tumor targeting, and 2) short retention time in tumors, which restricts real-time imaging during surgery. To address these issues, we developed a near-infrared fluorescent probe capable of in situ nanofiber formation within tumor lesions. This probe actively targets the integrin αvβ3 receptors overexpressed on breast cancer cells and exhibits assembly/aggregation-induced retention effects at the tumor site, significantly extending the imaging time window. Additionally, we found that the probe's fluorescence intensity can be enhanced under receptor induction. Due to its excellent tumor specificity and sensitivity, 1FCG-FFGRGD not only identifies primary breast cancer but also precisely locates smaller lymph node metastases and detects sub-millimeter peritoneal metastases. In summary, this near-infrared probe, leveraging assembly/aggregation-induced retention effects, holds substantial potential for various biomedical applications.
Collapse
Affiliation(s)
- Xuan Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Tianhe Qiao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zuyuan Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Zhiyuan Gao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300350, China.
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
8
|
von Arx C, Calderaio C, Calabrese A, Marciano B, Martinelli C, Di Lauro V, Cerillo I, Cianniello D, De Laurentiis M. The multidisciplinary management of HER2-positive breast cancer brain metastases: from new biological insights to future therapeutic options. Front Oncol 2024; 14:1447508. [PMID: 39749036 PMCID: PMC11693720 DOI: 10.3389/fonc.2024.1447508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The advent and success of new drugs for treating HER2-positive metastatic breast cancer has led to a constant improvement in disease and progression-free survival as well as overall survival. Despite these advantages, the overall survival and quality of life of patients with HER2-positive breast cancer brain metastases are significantly worse than the ones of patients with HER2-positive breast cancer metastases outside the brain. For this reason, prevention and treatment of brain metastasis remain a major clinical challenge and the keys to further improving the clinical and survival outcomes of HER2-positive breast cancer patients. This review discusses the etiopathogenesis of brain metastasis, the currently available treatments, and the future perspective on new treatment strategies and diagnostic tools.
Collapse
Affiliation(s)
- Claudia von Arx
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Claudia Calderaio
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alessandra Calabrese
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Benedetta Marciano
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Claudia Martinelli
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Lauro
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Ivana Cerillo
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Daniela Cianniello
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Michelino De Laurentiis
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy
| |
Collapse
|
9
|
Prkačin I, Mokos M, Ferara N, Šitum M. Melanoma's New Frontier: Exploring the Latest Advances in Blood-Based Biomarkers for Melanoma. Cancers (Basel) 2024; 16:4219. [PMID: 39766118 PMCID: PMC11727356 DOI: 10.3390/cancers16244219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
Melanoma is one of the most malignant cancers, and the global incidence of cutaneous melanoma is increasing. While melanomas are highly prone to metastasize if diagnosed late, early detection and treatment significantly reduce the risk of mortality. Identifying patients at higher risk of metastasis, who might benefit from early adjuvant therapies, is particularly important, especially with the advent of new melanoma treatments. Therefore, there is a pressing need to develop additional prognostic biomarkers for melanoma to improve early stratification of patients and accurately identify high-risk subgroups, ultimately enabling more effective personalized treatments. Recent advances in melanoma therapy, including targeted treatments and immunotherapy, have underscored the importance of biomarkers in determining prognosis and predicting treatment response. The clinical application of these markers holds the potential for significant advancements in melanoma management. Various tumor-derived genetic, proteomic, and cellular components are continuously released into the bloodstream of cancer patients. These molecules, including circulating tumor DNA and RNA, proteins, tumor cells, and immune cells, are emerging as practical and precise liquid biomarkers for cancer. In the current era of effective molecular-targeted therapies and immunotherapies, there is an urgent need to integrate these circulating biomarkers into clinical practice to facilitate personalized treatment. This review highlights recent discoveries in circulating melanoma biomarkers, explores the challenges and potentials of emerging technologies for liquid biomarker discovery, and discusses future directions in melanoma biomarker research.
Collapse
Affiliation(s)
- Ivana Prkačin
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Mislav Mokos
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
| | - Nikola Ferara
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
| | - Mirna Šitum
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Song J, Ye X, Peng Q, Ying X, Xiao H. Circulating Tumor cells and multiple indicators combined to identify the risk of poorer prognosis in patients with resected non-small cell lung cancer. BMC Cancer 2024; 24:1491. [PMID: 39627742 PMCID: PMC11616275 DOI: 10.1186/s12885-024-13245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Surgical resection is an important treatment option for patients with non-small cell lung cancer (NSCLC). However, recurrence and survival rates remain a cause of concern. To further improve prognosis, more studies have focused on liquid biopsy, which has significant value as a prognostic factor for defining the risk stratification of postoperative NSCLC patients. This study aimed to identify circulating tumor cells (CTCs) as biomarkers that indicate a poor prognosis, combined with multiple indicators to determine prognostic risks in advance and develop individualized treatment strategies. METHODS Between November 2015 and August 2018, 65 radical resected patients with NSCLC were analyzed. Preoperative CTCs were collected, and follow-up lasted until August 2023. Overall survival (OS) and disease-free survival (DFS) were the primary outcomes. RESULTS With an 11 CTC unit threshold, the high preoperative CTC level group had worse OS and DFS than the low-level group, suggesting that preoperative CTC levels have prognostic value. Time-dependent receiver operating characteristic (ROC) curves also showed satisfactory predictive efficiency of CTCs. Univariate analysis revealed that preoperative CTC levels were significantly associated with increasing risks for OS and DFS. Moreover, we combined CTCs and multiple indicators to provide a reference for a group at high risk of adverse outcomes. CONCLUSIONS CTCs serve as feasible biomarkers for predicting postoperative prognosis in NSCLC patients. The combination of hematological, radiological, and pathological features could be valuable tools to guide postoperative management and treatment decisions in these patients. A multimodal prognostic approach is important for the clinical evaluation of lung cancer.
Collapse
Affiliation(s)
- Jinghan Song
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Ye
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qianqian Peng
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinnan Ying
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Aziz MA. Multiomics approach towards characterization of tumor cell plasticity and its significance in precision and personalized medicine. Cancer Metastasis Rev 2024; 43:1549-1559. [PMID: 38761231 DOI: 10.1007/s10555-024-10190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Cellular plasticity refers to the ability of cells to change their identity or behavior, which can be advantageous in some cases (e.g., tissue regeneration) but detrimental in others (e.g., cancer metastasis). With a better understanding of cellular plasticity, the complexity of cancer cells, their heterogeneity, and their role in metastasis is being unraveled. The plasticity of the cells could also prove as a nemesis to their characterization. In this review, we have attempted to highlight the possibilities and benefits of using multiomics approach in characterizing the plastic nature of cancer cells. There is a need to integrate fragmented evidence at different levels of cellular organization (DNA, RNA, protein, metabolite, epigenetics, etc.) to facilitate the characterization of different forms of plasticity and cell types. We have discussed the role of cellular plasticity in generating intra-tumor heterogeneity. Different omics level evidence is being provided to highlight the variety of molecular determinants discovered using different techniques. Attempts have been made to integrate some of this information to provide a quantitative assessment and scoring of the plastic nature of the cells. However, there is a huge gap in our understanding of mechanisms that lead to the observed heterogeneity. Understanding of these mechanism(s) is necessary for finding targets for early detection and effective therapeutic interventions in metastasis. Targeting cellular plasticity is akin to neutralizing a moving target. Along with the advancements in precision and personalized medicine, these efforts may translate into better clinical outcomes for cancer patients, especially in metastatic stages.
Collapse
Affiliation(s)
- Mohammad Azhar Aziz
- Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
12
|
Shahhosseini R, Pakmehr S, Elhami A, Shakir MN, Alzahrani AA, Al-Hamdani MM, Abosoda M, Alsalamy A, Mohammadi-Dehcheshmeh M, Maleki TE, Saffarfar H, Ali-Khiavi P. Current biological implications and clinical relevance of metastatic circulating tumor cells. Clin Exp Med 2024; 25:7. [PMID: 39546080 PMCID: PMC11567993 DOI: 10.1007/s10238-024-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Metastatic disease and cancer recurrence are the primary causes of cancer-related deaths. Circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) are the driving forces behind the spread of cancer cells. The emergence and development of liquid biopsy using rare CTCs as a minimally invasive strategy for early-stage tumor detection and improved tumor management is a promising advancement in recent years. However, before blood sample analysis and clinical translation, precise isolation of CTCs from patients' blood based on their biophysical properties, followed by molecular identification of CTCs using single-cell multi-omics technologies is necessary to understand tumor heterogeneity and provide effective diagnosis and monitoring of cancer progression. Additionally, understanding the origin, morphological variation, and interaction between CTCs and the primary and metastatic tumor niche, as well as and regulatory immune cells, will offer new insights into the development of CTC-based advanced tumor targeting in the future clinical trials.
Collapse
Affiliation(s)
| | - SeyedAbbas Pakmehr
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ahvaz Jundishapur University of Medical Sciences Ahvaz, Ahvaz, Iran
| | - Anis Elhami
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | | | - Munther Abosoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Pharmacy, Imam Ja'afar Al-Sadiq University, Al-Samawa, Al-Muthanna, 66002, Iraq
| | | | | | - Hossein Saffarfar
- Cardiovascular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Payam Ali-Khiavi
- Medical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Nguyen TH, Nguyen HT, Ngo NA, Nguyen MC, Bui Thu H, Ducrée J, Chu Duc T, Bui TT, Do Quang L. Numerical study on a facing electrode configuration dielectrophoresis microfluidic system for efficient biological cell separation. Sci Rep 2024; 14:27627. [PMID: 39528653 PMCID: PMC11555325 DOI: 10.1038/s41598-024-78722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor cell separation has been the focus of numerous studies owing to its importance in the diagnosis, prognosis, and therapy of cancer. This study reports a highly efficient microfluidic device that integrates a specialized dielectrophoresis configuration, namely the facing-electrode configuration dielectrophoresis (FEC-DEP) structure, to isolate circulating tumor cells (CTCs) from various blood components, including red blood cells, white blood cells, and platelets. The FEC-DEP design features a bottom-slanted electrode array positioned parallel to a basic rectangular top electrode. A non-homogeneous electric field is produced between these parallel electrodes, generating dielectrophoretic forces acting on cells. Consequently, when the FEC-DEP is integrated into a flow, it can direct various biological objects in the flow along separate trajectories. As a result, cells with comparable characteristics might move together within a similar path. This configuration may simplify the microfabrication process and lessen dependency on particle position within the microchannel. The separation process was numerically analyzed using the finite element method, and device parameters were optimized to obtain high-efficiency and high-purity cell separation. The simulations show that the microfluidic device may effectively enrich tumor cells in a label-free and non-invasive manner, with a high-efficiency rate of almost 80%.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Hoang Trung Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Nam Anh Ngo
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Mai Chi Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Hang Bui Thu
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
- Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Jens Ducrée
- School of Physical Sciences, Dublin City University, Dublin, Ireland
| | - Trinh Chu Duc
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Thanh Tung Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Loc Do Quang
- University of Science, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
14
|
Li C, Li Z, Wang L, Zhang K, Li Z, Ji Y, Li J, Zhang Y, Chen L. Conquering dual challenges: A sialic-modified liposome for targeting activated neutrophils to tackle comorbid lung inflammation and cancer metastasis. J Control Release 2024; 376:930-948. [PMID: 39476871 DOI: 10.1016/j.jconrel.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/09/2024]
Abstract
In clinical settings, cancer frequently coexists with multi-system diseases. Owing to compromised immune systems, patients with cancer exhibit an increased susceptibility to infections and inflammation. Notably, lung inflammation occurs with high incidence among these patients. Furthermore, the inflammatory milieu within the lungs often accelerates the metastasis of cancer, thereby enhancing mortality rates and posing substantial challenges for clinical management. To date, effective strategies addressing both lung inflammation and cancer concurrently are lacking. In this context, we introduce a novel therapeutic approach involving a sialic acid-lipid derivative (SA-PG10-C18) modified doxorubicin-curcumin co-loaded liposome (DOX/CUR-SAL). This formulation effectively targeted activated neutrophils, which are abundantly present in inflammatory and metastatic lung tissues. DOX/CUR-SAL notably inhibited neutrophil-mediated pro-inflammatory and pro-metastatic processes. Utilizing a newly established mouse model of acute lung injury (ALI) and metastasis comorbidity, DOX/CUR-SAL modulated the lung immune microenvironment and arrested the progression of both inflammation and metastasis, without inducing side effects. The treated animals demonstrated favorable survival conditions, persisting beyond 45 days. This innovative therapeutic strategy offers a novel concept and reference for treating comorbid conditions of tumors and inflammation, thus breaking the clinical impasse where lung inflammation and cancer metastasis have been treated separately.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Liaoning Key Laboratory of New Drug Research & Development, Shenyang 110036, China
| | - Zhihang Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lihong Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Kexin Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zehao Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Yating Ji
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Jing Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Yifan Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Liaoning Key Laboratory of New Drug Research & Development, Shenyang 110036, China.
| |
Collapse
|
15
|
Chen H, Zhou Y, Tang Y, Lan J, Lin C, Chen Q, Kuang H. Neutrophil extracellular traps in tumor progression of gynecologic cancers. Front Immunol 2024; 15:1421889. [PMID: 39555072 PMCID: PMC11563837 DOI: 10.3389/fimmu.2024.1421889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024] Open
Abstract
This article delves into the intricate interplay between tumors, particularly gynecologic malignancies, and neutrophil extracellular traps (NETs). The relationship between tumors, specifically gynecologic malignancies, and NETs is a multifaceted and pivotal area of study. Neutrophils, pivotal components of the immune system, are tasked with combating foreign invaders. NETs, intricate structures released by neutrophils, play a vital role in combating systemic infections but also play a role in non-infectious conditions such as inflammation, autoimmune diseases, and cancer. Cancer cells have the ability to attract neutrophils, creating tumor-associated neutrophils, which then stimulate the release of NETs into the tumor microenvironment. The impact of NETs within the tumor microenvironment is profound and intricate. They play a significant role in influencing cancer development and metastasis, as well as modulating tumor immune responses. Through the release of proteases and pro-inflammatory cytokines, NETs directly alter the behavior of tumor cells, increasing invasiveness and metastatic potential. Additionally, NETs can trigger epithelial-mesenchymal transition in tumor cells, a process associated with increased invasion and metastasis. The interaction between tumors and NETs is particularly critical in gynecologic malignancies such as ovarian, cervical, and endometrial cancer. Understanding the mechanisms through which NETs operate in these tumors can offer valuable insights for the development of targeted therapeutic interventions. Researchers are actively working towards harnessing this interaction to impede tumor progression and metastasis, opening up new avenues for future treatment modalities. As our understanding of the interplay between tumors and NETs deepens, it is anticipated that novel treatment strategies will emerge, potentially leading to improved outcomes for patients with gynecologic malignancies. This article provides a comprehensive overview of the latest research findings on the interaction between NETs and cancer, particularly in gynecologic tumors, serving as a valuable resource for future exploration in this field.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yaling Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianfa Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongying Kuang
- The Second Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
16
|
Ding H, Wang J, Zhao X, Xiu S, Cai H, Ma J, Fu L, Zhou J, Shen F, Zhang H, Chen Y, Li B, Yan J. Combination of circulating tumor cells, lncRNAs and DNA methylation for the diagnosis of endometrial carcinoma. Oncol Lett 2024; 28:545. [PMID: 39310026 PMCID: PMC11413727 DOI: 10.3892/ol.2024.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological malignant neoplasms, the prognosis of which is strongly related to the time of diagnosis, with an earlier diagnosis leading to a better prognosis. Therefore, effective diagnostic indicators and methods are needed to ensure early detection. The present study explored the following in EC: Circulating tumor cells (CTCs); the long noncoding RNAs (lncRNAs) RP4-616B8.5, RP11-389G6.3 and carboxy-terminal domain (CTD)-2377D24.6; and the methylation of cysteine dioxygenase type 1 (CDO1) and CUGBP Elav-like family member 4 (CELF4). In total, 85 patients, including 71 with EC, and 14 without EC (NO-EC) but with uterine fibroids or polyps, were included in the present study. In total, 46 patients with EC and 8 NO-EC patients underwent CTC detection. In the evaluation of the EC vs. NO-EC groups, the results showed that the CTC-positive rate of the EC group was 80.43% and that the area under the curve (AUC) value of CTCs was 0.8872 (P=0.0098). A total of 35 patients with EC and 14 NO-EC patients underwent detection of the RP4-616B8.5, RP11-389G6.3 and CTD-2377D24.6 lncRNAs. When the levels of the three lncRNAs RP4-616B8.5, RP11-389G6.3 and CTD-2377D24.6 were compared between the EC and NO-EC groups, they were higher in the EC group; the P-values were 0.0002, 0.0001 and <0.0001, respectively, and the AUC values were 0.8184, 0.8347 and 0.8265, respectively. In addition, a total of 35 patients with EC and 8 NO-EC patients underwent CDO1 and CELF4 DNA methylation analysis. The positive rates of the methylated genes CDO1 and CELF4 were 20% (7/35) and 5.71% (2/35), and the P-values of the comparisons between the EC and NO-EC groups were 0.1748 and 0.5004, respectively; the AUC values were 0.6000 and 0.5286. Furthermore, the combination of CTCs, and lncRNAs RP4-616B8.5, RP11-389G6.3 and CTD-2377D24.6 exhibited high performance in the detection of EC (AUC=0.9375).
Collapse
Affiliation(s)
- Hongmei Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Xiaoyu Zhao
- Holosensor Medical Technology Ltd., Suzhou, Jiangsu 215000, P.R. China
| | - Shi Xiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Honghong Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jingjing Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Li Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jing Yan
- Holosensor Medical Technology Ltd., Suzhou, Jiangsu 215000, P.R. China
- Department of Veterinary Medicine, University of Cambridge, Cambridge 02138, UK
| |
Collapse
|
17
|
Dompé C, Chojnowska A, Ramlau R, Nowicki M, Alix-Panabières C, Budna-Tukan J. Unveiling the dynamics of circulating tumor cells in colorectal cancer: from biology to clinical applications. Front Cell Dev Biol 2024; 12:1498032. [PMID: 39539964 PMCID: PMC11557528 DOI: 10.3389/fcell.2024.1498032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This review delves into the pivotal role of circulating tumor cells (CTCs) in colorectal cancer (CRC) metastasis, focusing on their biological properties, interactions with the immune system, advanced detection techniques, and clinical implications. We explored how metastasis-competent CTCs evade immune surveillance and proliferate, utilizing cutting-edge detection and isolation technologies, such as microfluidic devices and immunological assays, to enhance sensitivity and specificity. The review highlights the significant impact of CTC interactions with immune cells on tumor progression and patient outcomes. It discusses the application of these findings in clinical settings, including non-invasive liquid biopsies for early diagnosis, prognosis, and treatment monitoring. Despite advancements, challenges remain, such as the need for standardized methods to consistently capture and analyze CTCs. Addressing these challenges through further molecular and cellular research on CTCs could lead to improved interventions and outcomes for CRC patients, underscoring the importance of unraveling the complex dynamics of CTCs in cancer progression.
Collapse
Affiliation(s)
- Claudia Dompé
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- Centre de Recherche en Ecologie et Evolution du Cancer, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Dévelopement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
18
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
19
|
Wang X, Zhang L, Cheng L, Wang Y, Li M, Yu J, Ma Z, Ho PCL, Sethi G, Chen X, Wang L, Goh BC. Extracellular vesicle-derived biomarkers in prostate cancer care: Opportunities and challenges. Cancer Lett 2024; 601:217184. [PMID: 39142499 DOI: 10.1016/j.canlet.2024.217184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men worldwide, presenting a significant global public health challenge that necessitates early detection and personalized treatment. Recently, non-invasive liquid biopsy methods have emerged as promising tools to provide insights into the genetic landscape of PCa and monitor disease progression, aiding decision-making at all stages. Research efforts have concentrated on identifying liquid biopsy biomarkers to improve PCa diagnosis, prognosis, and treatment prediction. This article reviews recent research advances over the last five years utilizing extracellular vesicles (EVs) as a natural biomarker library for PCa, and discusses the clinical translation of EV biomarkers, including ongoing trials and key implementation challenges. The findings underscore the transformative role of liquid biopsy, particularly EV-based biomarkers, in revolutionizing PCa diagnosis, prediction, and treatment.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, 434000, China; The Third Clinical Medical College of Yangtze University, Jingzhou, 434000, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yufei Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Boon-Cher Goh
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| |
Collapse
|
20
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
21
|
Li S, Feng T, Yuan H, Li Q, Zhao G, Li K. DEAD-box RNA helicases in the multistep process of tumor metastasis. Mol Biol Rep 2024; 51:1006. [PMID: 39306810 DOI: 10.1007/s11033-024-09912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
RNA helicases constitute a large family of proteins that share a catalytic core with high structural similarity. DEAD-box (DDX) proteins belong to the largest RNA helicase subfamily, and DDX members have been implicated in all facets of RNA metabolism, from transcription to translation, miRNA maturation, and RNA delay and degradation. Interestingly, an increasing number of studies have suggested a relationship between DDX proteins and cancer initiation and progression. The expression levels of many DDX proteins are elevated in a majority of cancers, and recent studies have demonstrated that some DDX proteins have a potent positive effect on promoting the metastasis of malignant cells. Metastasis is a complex, multistep cascade process that includes local invasion, intravasation and survival in the circulation, arrest at a distant organ site, extravasation and metastatic colonization; here, we review this process and present the suggested functions and mechanisms of DDX family proteins in particular steps of the invasion‒metastasis cascade.
Collapse
Affiliation(s)
- Shan Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Tianyu Feng
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Sichuan Clinical Research Center for Laboratory Medicine, West China Hospital, Sichuan University, Chengdu City, People's Republic of China
| | - Hang Yuan
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Qin Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Gang Zhao
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| | - Kai Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| |
Collapse
|
22
|
Lai HC, Huang HH, Hao YJ, Lee HL, Wang CC, Ling TY, Wu JK, Tseng FG. A Preliminary Analysis of Circulating Tumor Microemboli from Breast Cancer Patients during Follow-Up Visits. Curr Oncol 2024; 31:5677-5693. [PMID: 39330049 PMCID: PMC11431662 DOI: 10.3390/curroncol31090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Most breast cancer-related deaths are caused by distant metastases and drug resistance. It is important to find appropriate biomarkers to monitor the disease and to predict patient responses after treatment early and accurately. Many studies have found that clustered circulating tumor cells, with more correlations with metastatic cancer and poor survival of patients than individual ones, are promising biomarkers. METHODS Eighty samples from eleven patients with breast cancer during follow-up visits were examined. By using a microfluidic chip and imaging system, the number of circulating tumor cells and microemboli (CTC/CTM) were counted to assess the distribution in stratified patients and the potential in predicting the disease condition of patients after treatments during follow-up visits. Specific components and subtypes of CTM were also preliminarily investigated. RESULTS Compared to CTC, CTM displayed a distinguishable distribution in stratified patients, having a better AUC value, in predicting the disease progression of breast cancer patients during follow-up visits in this study. Four subtypes were categorized from the identified CTM by considering different components. In combination with CEA and CA153, enumerated CTC and CTM from individual patients were applied to monitor the disease condition and patient response to the therapy during follow-up visits. CONCLUSIONS The CTM and its subtypes are promising biomarkers and valuable tools for studying cancer metastasis and longitudinally monitoring cancer patients during follow-up visits.
Collapse
Affiliation(s)
- Hung-Chih Lai
- Division of Hematology and Oncology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan;
| | - Hsing-Hua Huang
- Division of Breast Surgery Clinic, En Chu Kong Hospital, No. 258, Zhongshan Rd., Sanxia Dist., New Taipei City 237, Taiwan;
| | - Yun-Jie Hao
- Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan; (Y.-J.H.); (H.-L.L.); (C.-C.W.)
| | - Hsin-Ling Lee
- Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan; (Y.-J.H.); (H.-L.L.); (C.-C.W.)
| | - Chiao-Chan Wang
- Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan; (Y.-J.H.); (H.-L.L.); (C.-C.W.)
| | - Thai-Yen Ling
- Graduate Institute of Pharmacology, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist., Taipei City 100025, Taiwan;
| | - Jen-Kuei Wu
- Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan; (Y.-J.H.); (H.-L.L.); (C.-C.W.)
- Biomedical Science and Engineering Center, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan; (Y.-J.H.); (H.-L.L.); (C.-C.W.)
- Biomedical Science and Engineering Center, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, No.28, Alley 70, Section 2, Academia Road, Nankang District, Taipei City 115201, Taiwan
| |
Collapse
|
23
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
24
|
Hariri A, Mirian M, Khosravi A, Zarepour A, Iravani S, Zarrabi A. Intersecting pathways: The role of hybrid E/M cells and circulating tumor cells in cancer metastasis and drug resistance. Drug Resist Updat 2024; 76:101119. [PMID: 39111134 DOI: 10.1016/j.drup.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Cancer metastasis and therapy resistance are intricately linked with the dynamics of Epithelial-Mesenchymal Transition (EMT) and Circulating Tumor Cells (CTCs). EMT hybrid cells, characterized by a blend of epithelial and mesenchymal traits, have emerged as pivotal in metastasis and demonstrate remarkable plasticity, enabling transitions across cellular states crucial for intravasation, survival in circulation, and extravasation at distal sites. Concurrently, CTCs, which are detached from primary tumors and travel through the bloodstream, are crucial as potential biomarkers for cancer prognosis and therapeutic response. There is a significant interplay between EMT hybrid cells and CTCs, revealing a complex, bidirectional relationship that significantly influences metastatic progression and has a critical role in cancer drug resistance. This resistance is further influenced by the tumor microenvironment, with factors such as tumor-associated macrophages, cancer-associated fibroblasts, and hypoxic conditions driving EMT and contributing to therapeutic resistance. It is important to understand the molecular mechanisms of EMT, characteristics of EMT hybrid cells and CTCs, and their roles in both metastasis and drug resistance. This comprehensive understanding sheds light on the complexities of cancer metastasis and opens avenues for novel diagnostic approaches and targeted therapies and has significant advancements in combating cancer metastasis and overcoming drug resistance.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
25
|
Zhao Y, Zhao Y, Liu L, Li G, Wu Y, Cui Y, Xie L. Tumor-exosomal miR-205-5p as a diagnostic biomarker for colorectal cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03647-6. [PMID: 39133387 DOI: 10.1007/s12094-024-03647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Tumor-derived exosomal miRNAs play crucial roles in cancer diagnosis. Current studies aim to identify exosomal miRNAs associated with colorectal cancer (CRC) that are noninvasive, sensitive, and specific. PATIENTS AND METHODS Exosomes were extracted from CRC patients and healthy donors via ultracentrifugation, followed by verification via transmission electron microscopy (TEM), qNano, and Western blot analysis. The differential expression levels and clinical characteristics of miR-205-5p were analyzed in CRC via data from The Cancer Genome Atlas (TCGA). Real-time quantitative PCR was used to assess the expression levels of exosomal miRNAs in 157 primary CRC patients, 20 patients with benign diseases, and 135 healthy donors. Predictions regarding target genes were made to guide further exploration of the disease's etiopathogenesis through bioinformatics. RESULTS Compared with that in healthy donors, the expression of miR-205-5p in colorectal cancer (CRC) patients was significantly lower, as determined through analysis of the TCGA database. We conducted a prediction and analysis of the functional enrichment of downstream target genes regulated by miR-205-5p. A lower level of exosomal miR-205-5p in the serum of CRC patients than in that of healthy controls (p < 0.0001) and patients with benign disease (p < 0.0001) was observed. Furthermore, the expression levels of exosomal miR-205-5p were significantly lower in early-stage CRC patients than in the comparison groups (p<0.001 and p < 0.0001). Notably, the expression levels of exosomal miR-205-5p significantly increased postoperatively (p = 0.0053). CONCLUSIONS The present study demonstrated that serum exosomal miR-205-5p may be a diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Yajing Zhao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yapeng Zhao
- Department of Stomatology, Qinghai Red Cross Hospital, Xining, Qinghai, China
| | - Lisheng Liu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanghao Li
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yawen Wu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanan Cui
- Shandong Second Medical University, Weifang, Shandong, China
| | - Li Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, Shandong Province, China.
| |
Collapse
|
26
|
Abstract
Metastasis is the ultimate and often lethal stage of cancer. Metastasis occurs in three phases that may vary across individuals: First, dissemination from the primary tumor. Second, tumor dormancy at the metastatic site where micrometastatic cancer cells remain quiescent or, in dynamic cycles of proliferation and elimination, remaining clinically undetectable. Finally, cancer cells are able to overcome microenvironmental constraints for outgrowth, or the formation of clinically detectable macrometastases that colonize distant organs and are largely incurable. A variety of approaches have been used to model metastasis to elucidate molecular mechanisms and identify putative therapeutic targets. In particular, metastatic dormancy has been challenging to model in vivo due to the sparse numbers of cancer cells in micrometastasis nodules and the long latency times required for tumor outgrowth. Here, we review state-of-the art genetically engineered mouse, syngeneic, and patient-derived xenograft approaches for modeling metastasis and dormancy. We describe the advantages and limitations of various metastasis models, novel findings enabled by such approaches, and highlight opportunities for future improvement.
Collapse
Affiliation(s)
- Ahmed Mahmoud
- Program in Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
27
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
28
|
Zou Y, Duan H, Deng Z, Xiang R, Zhao J, Zhang Z, Hu W, Yang Y, Yan Z, Wen S, Liu Z, Zhang G, Mou Y, Li D, Jiang X. Single-cell atlas profiling revealed cellular characteristics and dynamic changes after PD-1 blockade therapy of brain metastases from laryngeal squamous cell carcinoma. Mol Cell Biochem 2024:10.1007/s11010-024-05064-3. [PMID: 39085744 DOI: 10.1007/s11010-024-05064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
Brain metastasis (BM) in laryngeal squamous cell carcinoma (LSCC) is uncommon but prognosis is poor. Anti-PD-1 immunotherapy benefits some advanced LSCC cases, yet its efficiency is limited by tumor complexity. We analyzed paired metastatic tumor samples from before and after immunotherapy using single-cell RNA sequencing (scRNA-seq), along with a primary LSCC dataset and bulk RNA sequencing. This identified changes post-immunotherapy and revealed differences in single-cell transcriptomes among LSCC, primBM, and neoBM. Our findings show that anti-PD-1 treatment suppresses metastasis-promoting pathways like VEGF and EMT in cancer cells, and alters immune cell functions. Notably, it upregulates T cell activation, leading to CD8 T cell exhaustion from excess heat shock proteins, notably HSPA8. However, CD8 T cell cytotoxic functions improve post-treatment. In myeloid cells, anti-PD-1 therapy enhances antigen presentation and promotes a proinflammatory shift post-metastasis. Additionally, NUPR1 is linked to BM in LSCC, and NEAT1 is a potential metastatic cancer cell cycle participant. Our study provides insights into cancer heterogeneity and the impact of PD-1 immunotherapy on metastasis, aiding precise diagnosis and prognosis.
Collapse
Affiliation(s)
- Yunzhi Zou
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zekun Deng
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Rong Xiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jixiang Zhao
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Wanming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yuanzhong Yang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zeming Yan
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shujuan Wen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong.
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Depei Li
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Xiaobing Jiang
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
29
|
Tang M, Zhang Z, Wang P, Zhao F, Miao L, Wang Y, Li Y, Li Y, Gao Z. Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells. Acta Pharm Sin B 2024; 14:3457-3475. [PMID: 39220884 PMCID: PMC11365446 DOI: 10.1016/j.apsb.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.
Collapse
Affiliation(s)
- Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
30
|
Kouhmareh K, Martin E, Finlay D, Bhadada A, Hernandez-Vargas H, Downey F, Allen JK, Teriete P. Capture of circulating metastatic cancer cell clusters from lung cancer patients can reveal unique genomic profiles and potential anti-metastatic molecular targets: A proof-of-concept study. PLoS One 2024; 19:e0306450. [PMID: 39083508 PMCID: PMC11290651 DOI: 10.1371/journal.pone.0306450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Metastasis remains the leading cause of cancer deaths worldwide and lung cancer, known for its highly metastatic progression, remains among the most lethal of malignancies. Lung cancer metastasis can selectively spread to multiple different organs, however the genetic and molecular drivers for this process are still poorly understood. Understanding the heterogeneous genomic profile of lung cancer metastases is considered key in identifying therapeutic targets that prevent its spread. Research has identified the key source for metastasis being clusters of cells rather than individual cancer cells. These clusters, known as metastatic cancer cell clusters (MCCCs) have been shown to be 100-fold more tumorigenic than individual cancer cells. Unfortunately, access to these primary drivers of metastases remains difficult and has limited our understanding of their molecular and genomic profiles. Strong evidence in the literature suggests that differentially regulated biological pathways in MCCCs can provide new therapeutic drug targets to help combat cancer metastases. In order to expand research into MCCCs and their role in metastasis, we demonstrate a novel, proof of principle technology, to capture MCCCs directly from patients' whole blood. Our platform can be readily tuned for different solid tumor types by combining a biomimicry-based margination effect coupled with immunoaffinity to isolate MCCCs. Adopting a selective capture approach based on overexpressed CD44 in MCCCs provides a methodology that preferentially isolates them from whole blood. Furthermore, we demonstrate a high capture efficiency of more than 90% when spiking MCCC-like model cell clusters into whole blood. Characterization of the captured MCCCs from lung cancer patients by immunofluorescence staining and genomic analyses, suggests highly differential morphologies and genomic profiles. This study lays the foundation to identify potential drug targets thus unlocking a new area of anti-metastatic therapeutics.
Collapse
Affiliation(s)
| | - Erika Martin
- PhenoVista Biosciences, San Diego, CA, United States of America
| | - Darren Finlay
- National Cancer Institute Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States of America
| | | | | | | | | | - Peter Teriete
- TumorGen Inc., San Diego, CA, United States of America
- IDEAYA Biosciences, South San Francisco, CA, United States of America
| |
Collapse
|
31
|
Seyhan AA. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int J Mol Sci 2024; 25:7974. [PMID: 39063215 PMCID: PMC11277426 DOI: 10.3390/ijms25147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
32
|
Papadimitrakis D, Perdikakis M, Gargalionis AN, Papavassiliou AG. Biomarkers in Cerebrospinal Fluid for the Diagnosis and Monitoring of Gliomas. Biomolecules 2024; 14:801. [PMID: 39062515 PMCID: PMC11274947 DOI: 10.3390/biom14070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas are the most common type of malignant brain tumor and are characterized by a plethora of heterogeneous molecular alterations. Current treatments require the emergence of reliable biomarkers that will aid personalized treatment decisions and increase life expectancy. Glioma tissues are not as easily accessible as other solid tumors; therefore, detecting prominent biomarkers in biological fluids is necessary. Cerebrospinal fluid (CSF) circulates adjacent to the cerebral parenchyma and holds promise for discovering useful prognostic, diagnostic, and predictive biomarkers. In this review, we summarize extensive research regarding the role of circulating DNA, tumor cells, proteins, microRNAs, metabolites, and extracellular vesicles as potential CSF biomarkers for glioma diagnosis, prognosis, and monitoring. Future studies should address discrepancies and issues of specificity regarding CSF biomarkers, as well as the validation of candidate biomarkers.
Collapse
Affiliation(s)
- Dimosthenis Papadimitrakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (M.P.)
| | - Miltiadis Perdikakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (M.P.)
| | - Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, ‘Attikon’ University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (M.P.)
| |
Collapse
|
33
|
Jiang J, Mo W, Lian X, Cao D, Cheng H, Wang H. Detection of PD‑L1 expression and epithelial‑mesenchymal transition of circulating tumor cells in non‑small cell lung cancer. Exp Ther Med 2024; 28:294. [PMID: 38827467 PMCID: PMC11140314 DOI: 10.3892/etm.2024.12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
The present study aimed to assess the roles of peripheral circulating tumor cell (CTC) count, CTC subtypes and programmed death ligand 1 (PD-L1) expression in the clinical staging and prognosis of patients with non-small cell lung cancer (NSCLC). A total of 100 patients with NSCLC with available tumor tissues were enrolled in the present study, and 7.5 ml peripheral blood was collected. Patients were divided into PD-L1-positive and PD-L1-negative groups according to PD-L1 immunohistochemical staining. Peripheral blood samples from both groups were analyzed to determine the CTC count, epithelial-type CTCs (E-CTCs), mesenchymal-type CTCs (M-CTCs) and PD-L1 expression. Clinical data were collected, and patients were followed up for a maximum of 36 months, with patient death as the endpoint event. Patients with PD-L1-positive tumors had a worse prognosis compared with those with PD-L1-negative tumors (P=0.045). The PD-L1-positive group exhibited significantly higher numbers of CTCs and M-CTCs compared with the PD-L1-negative group (P≤0.05). However, the number of E-CTCs did not differ significantly between the two groups (P>0.05). PD-L1-positive patients with higher CTC and M-CTC counts had relatively poorer prognoses (P≤0.05), while the number of E-CTCs had no significant effect on prognosis (P>0.05). Compared with the early-stage NSCLC group, the late-stage NSCLC group exhibited a significant increase in the CTC count (P≤0.05), while E-CTC and M-CTC counts did not significantly differ between the two groups (P>0.05). The PD-L1-positive group exhibited a significant increase in the number of PD-L1+ CTCs and PD-L1+ M-CTCs compared with the PD-L1-negative group (P≤0.05), while PD-L1+ E-CTC counts did not differ significantly between the two groups (P>0.05). The PD-L1-positive patients with a higher number of PD-L1+ CTCs and PD-L1+ M-CTCs had relatively poorer prognoses (P≤0.05), while the PD-L1+ E-CTC count had no significant effect on prognosis (P>0.05). Compared with the early-stage NSCLC group, the late-stage NSCLC group exhibited a significant increase in the number of PD-L1+ CTCs and PD-L1+ M-CTCs (P≤0.05), while PD-L1+ E-CTC counts did not significantly differ between the two groups (P>0.05). Based on univariate and multivariate analyses, the number of PD-L1+ M-CTCs was identified as an independent prognostic factor for NSCLC. In conclusion, the presence of CTCs in peripheral blood, particularly PD-L1+ M-CTC subtype, indicated poorer clinical staging and prognosis in patients with NSCLC. These findings suggested that CTCs, specifically the PD-L1+ M-CTC subtype, could serve as a monitoring indicator for the clinical staging and prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Jianping Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Weiqiang Mo
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xue Lian
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Dakui Cao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Haiying Cheng
- Department of Nursing Administration, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Haiqin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
34
|
Zhang J, Miao G, Ta MH, Zhao B, Wang W, Xing Y, Qian H, Huang D, Chen W, Zhong Y. Photothermal-controlled NO-releasing Nanogels reverse epithelial-mesenchymal transition and restore immune surveillance against cancer metastasis. J Control Release 2024; 371:16-28. [PMID: 38763388 DOI: 10.1016/j.jconrel.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Metastasis leads to high mortality among cancer patients. It is a complex, multi-step biological process that involves the dissemination of cancer cells from the primary tumor and their systemic spread throughout the body, primarily through the epithelial-mesenchymal transition (EMT) program and immune evasion mechanisms. It presents a challenge in how to comprehensively treat metastatic cancer cells throughout the entire stage of the metastatic cascade using a simple system. Here, we fabricate a nanogel (HNO-NG) by covalently crosslinking a macromolecular nitric oxide (NO) donor with a photothermal IR780 iodide-containing hyaluronic acid derivative via a click reaction. This enables stable storage and tumor-targeted, photothermia-triggered release of NO to combat tumor metastasis throughout all stages. Upon laser irradiation (HNO-NG+L), the surge in NO production within tumor cells impairs the NF-κB/Snail/RKIP signaling loop that promotes the EMT program through S-nitrosylation, thus inhibiting cell dissemination from the primary tumor. On the other hand, it induces immunogenic cell death (ICD) and thereby augments anti-tumor immunity, which is crucial for killing both the primary tumor and systemically distributed tumor cells. Therefore, HNO-NG+L, by fully leveraging EMT reversal, ICD induction, and the lethal effect of NO, achieved impressive eradication of the primary tumor and significant prevention of lung metastasis in a mouse model of orthotropic 4T1 breast tumor that spontaneously metastasizes to the lungs, extending the NO-based therapeutic approach against tumor metastasis.
Collapse
Affiliation(s)
- Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Guizhi Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - My Hanh Ta
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanran Xing
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
35
|
Chu X, Zhong X, Zang S, Wang M, Li P, Ma Y, Tian X, Yang Y, Wang C, Yang Y. Stem cell-like circulating tumor cells identified by Pep@MNP and their clinical significance in pancreatic cancer metastasis. Front Oncol 2024; 14:1327280. [PMID: 38983932 PMCID: PMC11231205 DOI: 10.3389/fonc.2024.1327280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Objective The circulating tumor cells (CTCs) could be captured by the peptide functionalized magnetic nanoparticles (Pep@MNP) detection system in pancreatic ductal adenocarcinoma (PDAC). CTCs and the CXCR4 expression were detected to explore their clinical significance. The CXCR4+ CTCs, this is highly metastatic-prone stem cell-like subsets of CTCs (HM-CTCs), were found to be associated with the early recurrence and metastasis of PDAC. Methods CTCs were captured by Pep@MNP. CTCs were identified via immunofluorescence with CD45, cytokeratin antibodies, and the CXCR4 positive CTCs were assigned to be HM-CTCs. Results The over-expression of CXCR4 could promote the migration of pancreatic cancer cell in vitro and in vivo. In peripheral blood (PB), CTCs were detected positive in 79.0% of all patients (49/62, 9 (0-71)/2mL), among which 63.3% patients (31/49, 3 (0-23)/2mL) were HM-CTCs positive. In portal vein blood (PVB), CTCs were positive in 77.5% of patients (31/40, 10 (0-40)/2mL), and 67.7% of which (21/31, 4 (0-15)/2mL) were HM-CTCs positive CTCs enumeration could be used as diagnostic biomarker of pancreatic cancer (AUC = 0.862), and the combination of CTCs positive and CA19-9 increase shows improved diagnostic accuracy (AUC = 0.963). in addition, PVB HM-CTCs were more accurate to predict the early recurrence and liver metastasis than PB HM-CTCs (AUC 0.825 vs. 0.787 and 0.827 vs. 0.809, respectively). Conclusions The CTCs identified by Pep@MNP detection system could be used as diagnostic and prognostic biomarkers of PDAC patients. We identified and defined the CXCR4 over-expressed CTC subpopulation as highly metastatic-prone CTCs, which was proved to identify patients who were prone to suffering from early recurrence and metastasis.
Collapse
Affiliation(s)
- Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Xiejian Zhong
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Shouge Zang
- Department of General Surgery, Fuyang People's Hospital of Anhui Medical University, Fuyang, China
| | - Mengting Wang
- Chinese Academy of Sciences Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ping Li
- Chinese Academy of Sciences Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yanlian Yang
- Chinese Academy of Sciences Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- Chinese Academy of Sciences Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
36
|
Chen X, Zhang Y, Chen S, Yang Y, Sun G, Pan P. Construction of a nomogram for predicting HNSCC distant metastasis and identification of EIF5A as a hub gene. Sci Rep 2024; 14:13367. [PMID: 38862693 PMCID: PMC11166653 DOI: 10.1038/s41598-024-64197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Patients with distant metastasis of head and neck squamous cell carcinoma (HNSCC) often have a poor prognosis. However, early diagnosis of distant metastasis is challenging in clinical practice, and distant metastasis is often only detected in the late stages of tumor metastasis through imaging techniques. In this study, we utilized data from HNSCC patients collected from the TCGA database. Patients were divided into distant metastasis and nonmetastasis groups based on the tumor-node-metastasis (TNM) stage. We analyzed the differentially expressed genes between the two groups (DM/non-M DEGs) and their associated lncRNAs and generated a predictive model based on 23 lncRNAs that were significantly associated with the occurrence of distant metastasis in HNSCC patients. On this basis, we built a nomogram to predict the distant metastasis of HNSCC patients. Moreover, through WGCNA and Cytoscape software analysis of DM/non-M DEGs, we identified the gene most closely related to HNSCC distant metastasis: EIF5A. Our findings were validated using GEO data; EIF5A expression was significantly increased in the tumor tissues of HNSCC patients with distant metastasis. We then predicted miRNAs that can directly bind to EIF5A via the TargetScan and miRWalk websites, intersected them with differentially expressed miRNAs in the two groups from the TCGA cohort, and identified the only overlapping miRNA, miR-424; we predicted the direct binding site of EIF5A and miR-424 via the miRWalk website. Immunohistochemistry further revealed high expression of EIF5A in the primary tumor tissue of HNSCC patients with distant metastasis. These results provide a new perspective for the early diagnosis of distant metastasis in HNSCC patients and the study of the mechanisms underlying HNSCC distant metastasis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ying Zhang
- Oncology Department, The Second Hospital of Nanjing, Nanjing, China
| | - Sheng Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yan Yang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Guowen Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Peng Pan
- Department of Clinical Laboratory, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
37
|
Boutsikou E, Hardavella G, Fili E, Bakiri A, Gaitanakis S, Kote A, Samitas K, Gkiozos I. The Role of Biomarkers in Lung Cancer Screening. Cancers (Basel) 2024; 16:1980. [PMID: 38893101 PMCID: PMC11171002 DOI: 10.3390/cancers16111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Lung Cancer Screening (LCS) is an evolving field with variations in its implementation in various countries. There are only scarce data from National LCS programs. AIM We aim to provide an up-to-date overview of the current evidence regarding the use of biomarkers in LCS. MATERIALS AND METHODS A multidisciplinary Task Force experts' panel collaborated and conducted a systematic literature search, followed by screening, review and synthesis of available evidence. RESULTS Biomarkers in LCS could be used to improve risk stratification in high-risk participants, improve clarification regarding indeterminate lung nodules and avoid overdiagnosis in suspicious lung findings. Currently, there seem to be promising biomarkers (blood/serum/breath) that have been studied in various trials; however, there is still a lack of solid evidence in clinical validation that would pave the way for their integration into LCS programs. CONCLUSIONS Biomarkers are the next logical step in improving the LCS pathway and its efficiency by playing an adjuvant role in a minimally invasive way. National LCS programs and pilot studies should integrate biomarkers to validate their accuracy in real-life LCS participants.
Collapse
Affiliation(s)
- Efimia Boutsikou
- Department of Respiratory Medicine and Oncology, “Theageneio” Anti-Cancer Hospital of Thessaloniki, AL. Simeonidi Str., 54639 Thessaloniki, Greece;
| | - Georgia Hardavella
- 4th–9th Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece
| | - Eleni Fili
- Health Sciences Library, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Aikaterini Bakiri
- 1st University Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Stylianos Gaitanakis
- Department of Thoracic Surgery, 401 Hellenic Army Hospital, Panagiotis Kanellopoulos Av., 11525 Athens, Greece;
| | - Alexandra Kote
- 6th Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Konstantinos Samitas
- 7th Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Ioannis Gkiozos
- Oncology Unit, 3rd University Department of Internal Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| |
Collapse
|
38
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
39
|
Gao S, Li X, Hu Z, Wang Z, Hao X. Dual targeting negative enrichment strategy for highly sensitive and purity detection of CTCs. Front Chem 2024; 12:1400988. [PMID: 38831912 PMCID: PMC11144890 DOI: 10.3389/fchem.2024.1400988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Circulating tumor cells (CTCs) have significant clinical value in early tumor detection, dynamic monitoring and immunotherapy. CTC detection stands out as a leading non-invasive approach for tumor diagnostics and therapeutics. However, the high heterogeneity of CTCs and the occurrence of epithelial-mesenchymal transition (EMT) during metastasis pose challenges to methods relying on EpCAM-positive enrichment. To address these limitations, a method based on negative enrichment of CTCs using specific leukocyte targets has been developed. In this study, aiming to overcome the low purity associated with immunomagnetic beads targeting solely the leukocyte common antigen CD45, we introduced CD66b-modified immunomagnetic beads. CD66b, a specific target for neutrophils with abundant residues, was chosen as a complementary approach. The process involved initial collection of nucleated cells from whole blood samples using density gradient centrifugation. Subsequently, magnetically labeled leukocytes were removed by magnetic field, enabling the capture of CTCs with higher sensitivity and purity while retaining their activity. Finally, we selected 20 clinical blood samples from patients with various cancers to validate the effectiveness of this strategy, providing a new generalized tool for the clinical detection of CTCs.
Collapse
Affiliation(s)
- Siying Gao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Xuejie Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Zhiyuan Hu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- School of Nanoscience and Technology, SinoDanish College, University of Chinese Academy of Sciences, Beijing, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaopeng Hao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Shanehband N, Naghib SM. Recent advances in nano/microfluidics-based cell isolation techniques for cancer diagnosis and treatments. Biochimie 2024; 220:122-143. [PMID: 38176605 DOI: 10.1016/j.biochi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/26/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Miniaturization has improved significantly in the recent decade, which has enabled the development of numerous microfluidic systems. Microfluidic technologies have shown great potential for separating desired cells from heterogeneous samples, as they offer benefits such as low sample consumption, easy operation, and high separation accuracy. Microfluidic cell separation approaches can be classified into physical (label-free) and biological (labeled) methods based on their working principles. Each method has remarkable and feasible benefits for the purposes of cancer detection and therapy, as well as the challenges that we have discussed in this article. In this review, we present the recent advances in microfluidic cell sorting techniques that incorporate both physical and biological aspects, with an emphasis on the methods by which the cells are separated. We first introduce and discuss the biological cell sorting techniques, followed by the physical cell sorting techniques. Additionally, we explore the role of microfluidics in drug screening, drug delivery, and lab-on-chip (LOC) therapy. In addition, we discuss the challenges and future prospects of integrated microfluidics for cell sorting.
Collapse
Affiliation(s)
- Nahid Shanehband
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
41
|
Liao C, Huang Z, Liu J, Deng M, Wang L, Chen Y, Li J, Zhao J, Luo X, Zhu J, Wu Q, Fu W, Sun B, Zheng J. Role of extracellular vesicles in castration-resistant prostate cancer. Crit Rev Oncol Hematol 2024; 197:104348. [PMID: 38588967 DOI: 10.1016/j.critrevonc.2024.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
Prostate cancer (PCa) is a common health threat to men worldwide, and castration-resistant PCa (CRPC) is the leading cause of PCa-related deaths. Extracellular vesicles (EVs) are lipid bilayer compartments secreted by living cells that are important mediators of intercellular communication. EVs regulate the biological processes of recipient cells by transmitting heterogeneous cargoes, contributing to CRPC occurrence, progression, and drug resistance. These EVs originate not only from malignant cells, but also from various cell types within the tumor microenvironment. EVs are widely dispersed throughout diverse biological fluids and are attractive biomarkers derived from noninvasive liquid biopsy techniques. EV quantities and cargoes have been tested as potential biomarkers for CRPC diagnosis, progression, drug resistance, and prognosis; however, technical barriers to their clinical application continue to exist. Furthermore, exogenous EVs may provide tools for new therapies for CRPC. This review summarizes the current evidence on the role of EVs in CRPC.
Collapse
Affiliation(s)
- Chaoyu Liao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Zeyu Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingui Liu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Min Deng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Leyi Wang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yutong Chen
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiang Zhao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xing Luo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingzhen Zhu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Qingjian Wu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Weihua Fu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Bishao Sun
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| |
Collapse
|
42
|
Chen Y, Tang Z, Liu J, Ren C, Zhang Y, Xu H, Li Q, Zhang Q. A multilocus-dendritic boronic acid functionalized magnetic nanoparticle for capturing circulating tumor cells in the peripheral blood of mice with metastatic breast cancer. Anal Chim Acta 2024; 1297:342381. [PMID: 38438224 DOI: 10.1016/j.aca.2024.342381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Dynamic fluctuation of circulating tumor cells (CTCs) can serve as an indicator of tumor progression. However, the sensitive isolation of CTCs remains extremely challenging due to their rarity and heterogeneity. Against this dilemma, dendritic boronic acid-modified magnetic nanoparticles (MNPs) were prepared in this study, and polyethyleneimine (PEI) was utilized as a scaffold to significantly increase the number of boronic acid moieties. Then the novel developed material was applied to monitor the number of CTCs in mice with metastatic breast cancer to evaluate the therapeutic effects of matrine (Mat), doxorubicin (Dox), and Mat in combination with Dox. RESULTS Compared to the low binding capacity of a single boronic acid ligand, dendritic boronic acid shows enhanced sensitivity in binding to sialic acid (SA), which is overexpressed in CTCs. The results showed that the capture efficiency of this modified material could achieve 94.7% and successfully captured CTCs in blood samples from mice with metastatic breast cancer. The CTC counts were consistent with the results of the pathologic examination, demonstrating the reliability and utility of the method. SIGNIFICANCE The dendritic boronic acid nanomaterials prepared in this study showed high specificity, sensitivity, and accuracy for cancer cell capture. The approach is expected to provide new insights into cancer diagnosis, personalized therapy, and optimization of treatment regimens.
Collapse
Affiliation(s)
- Yue Chen
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengkun Tang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiajia Liu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chuanyang Ren
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yiwen Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
43
|
Yang C, Wang X, To KKW, Cui C, Luo M, Wu S, Huang L, Fu K, Pan C, Liu Z, Fan T, Yang C, Wang F, Fu L. Circulating tumor cells shielded with extracellular vesicle-derived CD45 evade T cell attack to enable metastasis. Signal Transduct Target Ther 2024; 9:84. [PMID: 38575583 PMCID: PMC10995208 DOI: 10.1038/s41392-024-01789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/09/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Circulating tumor cells (CTCs) are precursors of distant metastasis in a subset of cancer patients. A better understanding of CTCs heterogeneity and how these CTCs survive during hematogenous dissemination could lay the foundation for therapeutic prevention of cancer metastasis. It remains elusive how CTCs evade immune surveillance and elimination by immune cells. In this study, we unequivocally identified a subpopulation of CTCs shielded with extracellular vesicle (EVs)-derived CD45 (termed as CD45+ CTCs) that resisted T cell attack. A higher percentage of CD45+ CTCs was found to be closely correlated with higher incidence of metastasis and worse prognosis in cancer patients. Moreover, CD45+ tumor cells orchestrated an immunosuppressive milieu and CD45+ CTCs exhibited remarkably stronger metastatic potential than CD45- CTCs in vivo. Mechanistically, CD45 expressing on tumor surfaces was shown to form intercellular CD45-CD45 homophilic interactions with CD45 on T cells, thereby preventing CD45 exclusion from TCR-pMHC synapse and leading to diminished TCR signaling transduction and suppressed immune response. Together, these results pointed to an underappreciated capability of EVs-derived CD45-dressed CTCs in immune evasion and metastasis, providing a rationale for targeting EVs-derived CD45 internalization by CTCs to prevent cancer metastasis.
Collapse
Affiliation(s)
- Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Caimei Cui
- LABVIV Technology (Shenzhen) Co., Ltd, Shenzhen, 518057, China
| | - Min Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Shaocong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Lamei Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Teng Fan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Caibo Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
44
|
Sayed ZS, Khattap MG, Madkour MA, Yasen NS, Elbary HA, Elsayed RA, Abdelkawy DA, Wadan AHS, Omar I, Nafady MH. Circulating tumor cells clusters and their role in Breast cancer metastasis; a review of literature. Discov Oncol 2024; 15:94. [PMID: 38557916 PMCID: PMC10984915 DOI: 10.1007/s12672-024-00949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Breast cancer is a significant and deadly threat to women globally. Moreover, Breast cancer metastasis is a complicated process involving multiple biological stages, which is considered a substantial cause of death, where cancer cells spread from the original tumor to other organs in the body-representing the primary mortality factor. Circulating tumor cells (CTCs) are cancer cells detached from the primary or metastatic tumor and enter the bloodstream, allowing them to establish new metastatic sites. CTCs can travel alone or in groups called CTC clusters. Studies have shown that CTC clusters have more potential for metastasis and a poorer prognosis than individual CTCs in breast cancer patients. However, our understanding of CTC clusters' formation, structure, function, and detection is still limited. This review summarizes the current knowledge of CTC clusters' biological properties, isolation, and prognostic significance in breast cancer. It also highlights the challenges and future directions for research and clinical application of CTC clusters.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Mohamed G Khattap
- Technology of Radiology and Medical Imaging Program, Faculty of Applied Health Sciences Technology, Galala University, Suez, 435611, Egypt
| | | | - Noha S Yasen
- Radiology and Imaging Technology Department, Faculty of Applied Health Science Technology, Delta University for Science and Technology, Gamasa, Al Mansurah, Egypt
| | - Hanan A Elbary
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Reem A Elsayed
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Dalia A Abdelkawy
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | | | - Islam Omar
- Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Mohamed H Nafady
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, 6th of october, Egypt.
| |
Collapse
|
45
|
Gupta S, Singh B, Abhishek R, Gupta S, Sachan M. The emerging role of liquid biopsy in oral squamous cell carcinoma detection: advantages and challenges. Expert Rev Mol Diagn 2024; 24:311-331. [PMID: 38607339 DOI: 10.1080/14737159.2024.2340997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Oral Squamous Cell Carcinoma (OSCC), the sixth most widespread malignancy in the world, accounts for 90% of all cases of oral cancer. The primary risk factors are tobacco chewing, alcohol consumption, viral infection, and genetic modifications. OSCC has a high morbidity rate due to the lack of early diagnostic methods. Nowadays, liquid biopsy plays a vital role in the initial diagnosis of oral cancer. ctNAs extracted from saliva and serum/plasma offer meaningful insights into tumor genetics and dynamics. The interplay of these elements in saliva and serum/plasma showcases their significance in advancing noninvasive, effective OSCC detection and monitoring. AREAS COVERED This review mainly focused on the role of liquid biopsy as an emerging point in the diagnosis and prognosis of OSCC and the current advancements and challenges associated with liquid biopsy. EXPERT OPINION Liquid biopsy is regarded as a new, minimally invasive, real-time monitoring tool for cancer diagnosis and prognosis. Many biomolecules found in bodily fluids, including ctDNA, ctRNA, CTCs, and EVs, are significant biomarkers to identify cancer in its early stages. Despite these groundbreaking strides, challenges persist. Standardization of sample collection, isolation, processing, and detection methods is imperative for ensuring result reproducibility across diverse studies.
Collapse
Affiliation(s)
- Sudha Gupta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Brijesh Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Rajul Abhishek
- Department of Surgical Oncology, Motilal Nehru Medical College, Prayagraj, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
46
|
Wang Q, Tan L. Advances in the role of circulating tumor cell heterogeneity in metastatic small cell lung cancer. CANCER INNOVATION 2024; 3:e98. [PMID: 38946931 PMCID: PMC11212323 DOI: 10.1002/cai2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 07/02/2024]
Abstract
Small cell lung cancer (SCLC), a highly aggressive malignancy, is rapidly at an extensive stage once diagnosed and is one of the leading causes of death from malignancy. In the past decade, the treatment of SCLC has largely remained unchanged, and chemotherapy remains the cornerstone of SCLC treatment. The therapeutic value of adding immune checkpoint inhibitors to chemotherapy for SCLC is low, and only a few SCLC patients have shown a response to immune checkpoint inhibitors. Circulating tumor cells (CTCs) are tumor cells shed from solid tumor masses into the peripheral circulation and are key to tumor metastasis. Single-cell sequencing has revealed that the genetic profiles of individual CTCs are highly heterogeneous and contribute to the poor outcome and prognosis of SCLC patients. Theoretically, phenotypic analysis of CTCs may be able to predict the diagnostic significance of new potential targets for metastatic tumors. In this paper, we will discuss in depth the heterogeneity of CTCs in SCLC and the value of CTCs for the diagnosis and prognosis of SCLC and as relevant tumor markers in metastatic SCLC.
Collapse
Affiliation(s)
- Qunxia Wang
- Department of Laboratory Medicine, Jiangxi Province's Key Laboratory of Laboratory MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Li‐Ming Tan
- Department of Laboratory Medicine, Jiangxi Province's Key Laboratory of Laboratory MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
47
|
Allen TA. The Role of Circulating Tumor Cells as a Liquid Biopsy for Cancer: Advances, Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2024; 16:1377. [PMID: 38611055 PMCID: PMC11010957 DOI: 10.3390/cancers16071377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a leading cause of mortality worldwide, with metastasis significantly contributing to its lethality. The metastatic spread of tumor cells, primarily through the bloodstream, underscores the importance of circulating tumor cells (CTCs) in oncological research. As a critical component of liquid biopsies, CTCs offer a non-invasive and dynamic window into tumor biology, providing invaluable insights into cancer dissemination, disease progression, and response to treatment. This review article delves into the recent advancements in CTC research, highlighting their emerging role as a biomarker in various cancer types. We explore the latest technologies and methods for CTC isolation and detection, alongside novel approaches to characterizing their biology through genomics, transcriptomics, proteomics, and epigenetic profiling. Additionally, we examine the clinical implementation of these findings, assessing how CTCs are transforming the landscape of cancer diagnosis, prognosis, and management. By offering a comprehensive overview of current developments and potential future directions, this review underscores the significance of CTCs in enhancing our understanding of cancer and in shaping personalized therapeutic strategies, particularly for patients with metastatic disease.
Collapse
|
48
|
Whalen RM, Anderson AN, Jones JA, Sims Z, Chang YH, Nederlof MA, Wong MH, Gibbs SL. Ultra high content analyses of circulating and tumor associated hybrid cells reveal phenotypic heterogeneity. Sci Rep 2024; 14:7350. [PMID: 38538742 PMCID: PMC10973471 DOI: 10.1038/s41598-024-57381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 07/03/2024] Open
Abstract
Persistently high, worldwide mortality from cancer highlights the unresolved challenges of disease surveillance and detection that impact survival. Development of a non-invasive, blood-based biomarker would transform survival from cancer. We demonstrate the functionality of ultra-high content analyses of a newly identified population of tumor cells that are hybrids between neoplastic and immune cells in patient matched tumor and peripheral blood specimens. Using oligonucleotide conjugated antibodies (Ab-oligo) permitting cyclic immunofluorescence (cyCIF), we present analyses of phenotypes among tumor and peripheral blood hybrid cells. Interestingly, the majority of circulating hybrid cell (CHC) subpopulations were not identified in tumor-associated hybrids. These results highlight the efficacy of ultra-high content phenotypic analyses using Ab-oligo based cyCIF applied to both tumor and peripheral blood specimens. The combination of a multiplex phenotypic profiling platform that is gentle enough to analyze blood to detect and evaluate disseminated tumor cells represents a novel approach to exploring novel tumor biology and potential utility for developing the population as a blood-based biomarker in cancer.
Collapse
Affiliation(s)
- Riley M Whalen
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA
| | - Ashley N Anderson
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA
| | - Jocelyn A Jones
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
| | - Zachary Sims
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | | | - Melissa H Wong
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA.
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA.
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.
| |
Collapse
|
49
|
Ouyang R, Geng C, Li J, Jiang Q, Shen H, Zhang Y, Liu X, Liu B, Wu J, Miao Y. Recent advances in photothermal nanomaterials-mediated detection of circulating tumor cells. RSC Adv 2024; 14:10672-10686. [PMID: 38572345 PMCID: PMC10988362 DOI: 10.1039/d4ra00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Photothermal materials have shown great potential for cancer detection and treatment due to their excellent photothermal effects. Circulating tumor cells (CTCs) are tumor cells that are shed from the primary tumor into the blood and metastasize. In contrast to other tumor markers that are free in the blood, CTCs are a collective term for all types of tumor cells present in the peripheral blood, a source of tumor metastasis, and clear evidence of tumor presence. CTCs detection enables early detection, diagnosis and treatment of tumors, and plays an important role in cancer prevention and treatment. This review summarizes the application of various photothermal materials in CTC detection, including gold, carbon, molybdenum, phosphorus, etc. and describes the significance of CTC detection for early tumor diagnosis and tumor prognosis. Focus is also put on how various photothermal materials play their roles in CTCs detection, including CT, imaging and photoacoustic and therapeutic roles. The physicochemical properties, shapes, and photothermal properties of various photothermal materials are discussed to improve the detection sensitivity and efficiency and to reduce the damage to normal cells. These photothermal materials are capable of converting radiant light energy into thermal energy for highly-sensitive CTCs detection and improving their photothermal properties by various methods, and have achieved good results in various experiments. The use of photothermal materials for CTCs detection is becoming more and more widespread and can be of significant help in early cancer screening and later treatment.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Chongrui Geng
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Li
- Hunan Shizhuyuan Nonferrous Metals Co., Ltd Chenzhou Hunan 423037 China
| | - Qiliang Jiang
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Hongyu Shen
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yulong Zhang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xueyu Liu
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jingxiang Wu
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
50
|
Xiao L, Sun H, Cheng R, Yang R, Jin X, Xu Z, Cai Y, Yang Y, Pang F, Xue G, Wang P, Jiang Q, Nie H. Functional requirement of alternative splicing in epithelial-mesenchymal transition of pancreatic circulating tumor. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102129. [PMID: 38370981 PMCID: PMC10869908 DOI: 10.1016/j.omtn.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Circulating tumor cells (CTCs) that undergo epithelial-to-mesenchymal transition (EMT) can provide valuable information regarding metastasis and potential therapies. However, current studies on the EMT overlook alternative splicing. Here, we used single-cell full-length transcriptome data and mRNA sequencing of CTCs to identify stage-specific alternative splicing of partial EMT and mesenchymal states during pancreatic cancer metastasis. We classified definitive tumor and normal epithelial cells via genetic aberrations and demonstrated dynamic changes in the epithelial-mesenchymal continuum in both epithelial cancer cells and CTCs. We provide the landscape of alternative splicing in CTCs at different stages of EMT, uncovering cell-type-specific splicing patterns and splicing events in cell surface proteins suitable for therapies. We show that MBNL1 governs cell fate through alternative splicing independently of changes in gene expression and affects the splicing pattern during EMT. We found a high frequency of events that contained multiple premature termination codons and were enriched with C and G nucleotides in close proximity, which influence the likelihood of stop codon readthrough and expand the range of potential therapeutic targets. Our study provides insights into the EMT transcriptome's dynamic changes and identifies potential diagnostic and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Lixing Xiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Haoxiu Sun
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Rongrong Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Yideng Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Yuexin Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Fenglan Pang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Guangfu Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Pingping Wang
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|