1
|
Lee JA, Mikuls TR, Sayles HR, Thiele GM, Duryee MJ, Payne JB. Associations between periodontitis and serum anti-malondialdehyde-acetaldehyde antibody concentrations in rheumatoid arthritis: A case-control study. J Periodontol 2024; 95:929-941. [PMID: 38728106 DOI: 10.1002/jper.23-0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Malondialdehyde-acetaldehyde (MAA) adducts lead to generation of anti-MAA autoantibodies and have been independently identified in inflamed periodontal and rheumatoid arthritis (RA) tissues. This study evaluates serum samples from RA cases and osteoarthritis (OA) controls to quantify associations between periodontal clinical measures, alveolar bone loss (ABL), and anti-Porphyromonas gingivalis, anti-Prevotella intermedia, and anti-Fusobacterium nucleatum antibody concentrations with anti-MAA antibody concentrations. METHODS Participants (n = 284 RA cases, n = 330 OA controls) underwent periodontal clinical assessments and ABL measurements. Serum immunoglobulin (Ig) A, IgG, and IgM anti-MAA and serum IgG antibacterial antibody concentrations were quantified by enzyme-linked immunosorbent assay (ELISA). Analyses utilized simple linear regression and multivariable adjusted models. RESULTS No significant associations of periodontal clinical measures with serum anti-MAA were found. Moderate (p = 0.038 and p = 0.036, respectively) and high ABL (p = 0.012 and p = 0.014, respectively) in RA cases (but not in OA) were positively associated with IgG and IgM anti-MAA. Anti-P. gingivalis and anti-P. intermedia antibody concentrations were positively associated with IgA (p = 0.001 for both), IgG (p = 0.007 and p = 0.034, respectively), and IgM anti-MAA antibody concentrations (p < 0.001 and p = 0.020, respectively), while anti-F. nucleatum was positively associated with IgG anti-MAA (p = 0.042), findings that were similar across groups. CONCLUSIONS A positive association was demonstrated between ABL and serum IgG and IgM anti-MAA antibody concentrations that was unique to RA and not observed in OA. Serum anti-P. gingivalis, anti-P. intermedia, and anti-F. nucleatum antibody concentrations displayed significant associations with anti-MAA antibody in both groups. These findings suggest MAA may play a role in the interrelationship between the periodontium and RA.
Collapse
Affiliation(s)
- Joyce A Lee
- Department of Surgical Specialties, Division of Periodontics, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Ted R Mikuls
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Medicine, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Harlan R Sayles
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Geoffrey M Thiele
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Medicine, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Michael J Duryee
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Medicine, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Jeffrey B Payne
- Department of Surgical Specialties, Division of Periodontics, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska, USA
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Holers VM, Demoruelle KM, Buckner JH, James EA, Firestein GS, Robinson WH, Steere AC, Zhang F, Norris JM, Kuhn KA, Deane KD. Distinct mucosal endotypes as initiators and drivers of rheumatoid arthritis. Nat Rev Rheumatol 2024; 20:601-613. [PMID: 39251771 DOI: 10.1038/s41584-024-01154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Rheumatoid arthritis (RA) is a potentially devastating autoimmune disease. The great majority of patients with RA are seropositive for anti-citrullinated protein antibodies (ACPAs), rheumatoid factors, or other autoantibodies. The onset of clinically apparent inflammatory arthritis meeting classification criteria (clinical RA) is preceded by ACPA seropositivity for an average of 3-5 years, a period that is designated as 'at-risk' of RA for ACPA-positive individuals who do not display signs of arthritis, or 'pre-RA' for individuals who are known to have progressed to developing clinical RA. Prior studies of individuals at-risk of RA have associated pulmonary mucosal inflammation with local production of ACPAs and rheumatoid factors, leading to development of the 'mucosal origins hypothesis'. Recent work now suggests the presence of multiple distinct mucosal site-specific mechanisms that drive RA evolution. Indicatively, subsets of individuals at-risk of RA and patients with RA harbour a faecal bacterial strain that has exhibited arthritogenic activity in animal models and that favours T helper 17 (TH17) cell responses in patients. Periodontal inflammation and oral microbiota have also been suggested to promote the development of arthritis through breaches in the mucosal barrier. Herein, we argue that mucosal sites and their associated microbial strains can contribute to RA evolution via distinct pathogenic mechanisms, which can be considered causal mucosal endotypes. Future therapies instituted for prevention in the at-risk period, or, perhaps, during clinical RA as therapeutics for active arthritis, will possibly have to address these individual mechanisms as part of precision medicine approaches.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, University of Colorado Denver, Aurora, CO, USA.
| | | | | | | | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Division of Rheumatology, University of Colorado Denver, Aurora, CO, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado Denver, Aurora, CO, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
3
|
Raposo B, Klareskog L, Robinson WH, Malmström V, Grönwall C. The peculiar features, diversity and impact of citrulline-reactive autoantibodies. Nat Rev Rheumatol 2024; 20:399-416. [PMID: 38858604 DOI: 10.1038/s41584-024-01124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Since entering the stage 25 years ago as a highly specific serological biomarker for rheumatoid arthritis, anti-citrullinated protein antibodies (ACPAs) have been a topic of extensive research. This hallmark B cell response arises years before disease onset, displays interpatient autoantigen variability, and is associated with poor clinical outcomes. Technological and scientific advances have revealed broad clonal diversity and intriguing features including high levels of somatic hypermutation, variable-domain N-linked glycosylation, hapten-like peptide interactions, and clone-specific multireactivity to citrullinated, carbamylated and acetylated epitopes. ACPAs have been found in different isotypes and subclasses, in both circulation and tissue, and are secreted by both plasmablasts and long-lived plasma cells. Notably, although some disease-promoting features have been reported, results now demonstrate that certain monoclonal ACPAs therapeutically block arthritis and inflammation in mouse models. A wealth of functional studies using patient-derived polyclonal and monoclonal antibodies have provided evidence for pathogenic and protective effects of ACPAs in the context of arthritis. To understand the roles of ACPAs, one needs to consider their immunological properties by incorporating different facets such as rheumatoid arthritis B cell biology, environmental triggers and chronic antigen exposure. The emerging picture points to a complex role of citrulline-reactive autoantibodies, in which the diversity and dynamics of antibody clones could determine clinical progression and manifestations.
Collapse
Affiliation(s)
- Bruno Raposo
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Carmona-Rivera C, Kaplan MJ, O'Neil LJ. Neutrophils in Inflammatory Bone Diseases. Curr Osteoporos Rep 2024; 22:280-289. [PMID: 38418800 PMCID: PMC11061041 DOI: 10.1007/s11914-024-00865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW In this review, we summarize the current evidence that suggests that neutrophils play a key role in facilitating damage to local bone structures. RECENT FINDINGS Neutrophil infiltration is a hallmark of inflammatory bone diseases such as rheumatoid arthritis (RA) and periodontitis disease (PD). Both of these human diseases are marked by an imbalance in bone homeostasis, favoring the degradation of local bone which ultimately leads to erosions. Osteoclasts, a multinucleated resident bone cell, are responsible for facilitating the turnover of bone and the bone damage observed in these diseases. The involvement of neutrophils and neutrophil extracellular trap formation have recently been implicated in exacerbating osteoclast function through direct and indirect mechanisms. We highlight a recent finding that NET proteins such as histones and elastase can generate non-canonical, inflammatory osteoclasts, and this process is mediated by post-translational modifications such as citrullination and carbamylation, both of which act as autoantigens in RA. It appears that NETs, autoantibodies, modified proteins, cytokines, and osteoclasts all ultimately contribute to local and permanent bone damage in RA and PD. However, more studies are needed to fully understand the role of neutrophils in inflammatory bone diseases.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liam J O'Neil
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Lopez-Oliva I, Malcolm J, Culshaw S. Periodontitis and rheumatoid arthritis-Global efforts to untangle two complex diseases. Periodontol 2000 2024. [PMID: 38411247 DOI: 10.1111/prd.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 02/28/2024]
Abstract
Understanding the impact of oral health on rheumatoid arthritis (RA) will inform how best to manage patients with both periodontitis and RA. This review seeks to provide an update on interventional and mechanistic investigations, including a brief summary of European Research programs investigating the link between periodontitis and RA. Recent clinical studies are described that evaluate how the treatment of one disease impacts on the other, as are studies in both humans and animal models that have sought to identify the potential mechanisms linking the two diseases.
Collapse
Affiliation(s)
- Isabel Lopez-Oliva
- Department of Periodontology, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jennifer Malcolm
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shauna Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Clinic for Periodontology, Endodontology and Cariology, University Center of Dental Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Holers VM. Are there causal mucosal drivers in the preclinical development of rheumatoid arthritis? Semin Arthritis Rheum 2024; 64S:152324. [PMID: 38030540 DOI: 10.1016/j.semarthrit.2023.152324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/23/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The causal pathways which drive the development of seropositive rheumatoid arthritis (RA) are incompletely understood, especially in the period of time prior to the first development of signs and symptoms of joint involvement. That asymptomatic period, designated herein as pre-RA, is characterized by the presence of RA-related autoantibodies for many years and is the subject of an increasing number of studies as well as a focus of efforts to prevent the onset of clinically apparent arthritis. OBJECTIVES To review the potential causal pathways in pre-RA by examining results of studies which evaluate the systemic peripheral blood and mucosal alterations that have been identified in individuals who are genetically at-risk, and/or who elaborate RA-related autoantibodies, and are defined as in a pre-RA period. METHODS Published studies by the author and his colleagues, as well as publications by other groups, which describe the presence of biomarkers at mucosal sites and in the blood were reviewed. From these studies, a hypothesis related to the presence of pre-RA causal drivers was constructed. RESULTS The author and his colleagues, as well as other groups, have shown that there are multiple mucosal sites, primarily gut, lung and oral/peridontial, which appear in subsets of individuals in the pre-RA to exhibit inflammation and/or the presence of local production of IgA and IgG RA-related autoantibodies, including anti-citrullinated protein antibodies (ACPA). These findings are reviewed herein. There remain a large number of unanswered questions, though, related to the immune mechanisms that are operative at each site, as well as how these local findings evolve to causal systemic autoimmunity and eventually inflammatory arthritis. AUTHOR'S CONCLUSIONS Comprehensive natural history studies are required to understand how multiple mucosal sites which appear to be involved in pre-RA are causally involved in the development of arthritis. Questions remain as to whether there are independent, serially involved, or inter-related causal immune pathways originating from these sites. In addition, the microbiota which may be involved in local immune inflammation and autoantibody production should be identified and characterized.
Collapse
Affiliation(s)
- V Michael Holers
- Medicine/Rheumatology, University of Colorado School of Medicine, Aurora, CO United States of America.
| |
Collapse
|
7
|
Kobayashi T, Bartold PM. Periodontitis and periodontopathic bacteria as risk factors for rheumatoid arthritis: A review of the last 10 years. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:263-272. [PMID: 37674898 PMCID: PMC10477376 DOI: 10.1016/j.jdsr.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammatory destruction of joint tissue and is caused by an abnormal autoimmune response triggered by interactions between genetics, environmental factors, and epigenetic and posttranslational modifications. RA has been suggested to be interrelated with periodontitis, a serious form or stage of chronic inflammatory periodontal disease associated with periodontopathic bacterial infections, genetic predisposition, environmental factors, and epigenetic influences. Over the last decade, a number of animal and clinical studies have been conducted to assess whether or not periodontitis and associated periodontopathic bacteria constitute risk factors for RA. The present review introduces recent accumulating evidence to support the associations of periodontitis and periodontopathic bacteria with the risk of RA or the outcome of RA pharmacological treatment with disease-modifying antirheumatic drugs. In addition, the results from intervention studies have suggested an improvement in RA clinical parameters after nonsurgical periodontal treatment. Furthermore, the potential causal mechanisms underlying the link between periodontitis and periodontopathic bacteria and RA are summarized.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Peter Mark Bartold
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
8
|
Maisha JA, El-Gabalawy HS, O’Neil LJ. Modifiable risk factors linked to the development of rheumatoid arthritis: evidence, immunological mechanisms and prevention. Front Immunol 2023; 14:1221125. [PMID: 37767100 PMCID: PMC10520718 DOI: 10.3389/fimmu.2023.1221125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a common autoimmune disease that targets the synovial joints leading to arthritis. Although the etiology of RA remains largely unknown, it is clear that numerous modifiable risk factors confer increased risk to developing RA. Of these risk factors, cigarette smoking, nutrition, obesity, occupational exposures and periodontal disease all incrementally increase RA risk. However, the precise immunological mechanisms by which these risk factors lead to RA are not well understood. Basic and translational studies have provided key insights into the relationship between inflammation, antibody production and the influence in other key cellular events such as T cell polarization in RA risk. Improving our general understanding of the mechanisms which lead to RA will help identify targets for prevention trials, which are underway in at-risk populations. Herein, we review the modifiable risk factors that are linked to RA development and describe immune mechanisms that may be involved. We highlight the few studies that have sought to understand if modification of these risk factors reduces RA risk. Finally, we speculate that modification of risk factors may be an appealing avenue for prevention for some at-risk individuals, specifically those who prefer lifestyle interventions due to safety and economic reasons.
Collapse
Affiliation(s)
| | | | - Liam J. O’Neil
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Castillo DM, Lafaurie GI, Romero-Sánchez C, Delgadillo NA, Castillo Y, Bautista-Molano W, Pacheco-Tena C, Bello-Gualtero JM, Chalem-Choueka P, Castellanos JE. The Interaction Effect of Anti-RgpA and Anti-PPAD Antibody Titers: An Indicator for Rheumatoid Arthritis Diagnosis. J Clin Med 2023; 12:jcm12083027. [PMID: 37109363 PMCID: PMC10144073 DOI: 10.3390/jcm12083027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Porphyromonas gingivalis secretes virulence factors like Arg-gingipains and peptidyl arginine deiminase (PPAD), that are associated with rheumatoid arthritis (RA) pathogenesis. However, there is no information regarding the antibody titers for these bacterial enzymes as systemic indicators or biomarkers in RA. In this cross-sectional study, 255 individuals were evaluated: 143 were diagnosed with RA, and 112 were without RA. Logistic regression models adjusted for age, sex, basal metabolic index, smoking, and periodontitis severity were used to evaluate the association of RA with rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPAs), erythrocyte sedimentation rate, high sensitivity C-reactive protein, anti-RgpA, anti-PPAD, and double positive anti-RgpA/anti-PPAD. It was found that RF (odds ratio [OR] 10.6; 95% confidence interval [CI] 4.4-25), ACPAs (OR 13.7; 95% CI 5.1-35), and anti-RgpA/anti-PPAD double positivity (OR 6.63; 95% CI 1.61-27) were associated with RA diagnoses. Anti-RgpA was also associated with RA (OR 4.09; 95% CI 1.2-13.9). The combination of anti-RgpA/anti-PPAD showed a high specificity of 93.7% and 82.5% PPV in identifying individuals with RA. RgpA antibodies were associated with the periodontal inflammatory index in RA individuals (p < 0.05). The double positivity of the anti-RgpA/anti-PPAD antibodies enhanced the diagnosis of RA. Therefore, RgpA antibodies and anti-RgpA/anti-PPAD may be biomarkers for RA.
Collapse
Affiliation(s)
- Diana Marcela Castillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | - Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | - Consuelo Romero-Sánchez
- Cellular and Molecular Immunilogy Group (INMUBO), School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia
- Clinical Immunology Group, Rheumatology and Immunology Department, Hospital Militar Central, Bogotá 110231, Colombia
- Clinical Immunology Group, School of Medicine, Universidad Militar Nueva Granada, Bogotá 110231, Colombia
| | - Nathaly Andrea Delgadillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | - Yormaris Castillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | - Wilson Bautista-Molano
- Cellular and Molecular Immunilogy Group (INMUBO), School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia
| | | | - Juan Manuel Bello-Gualtero
- Clinical Immunology Group, Rheumatology and Immunology Department, Hospital Militar Central, Bogotá 110231, Colombia
- Clinical Immunology Group, School of Medicine, Universidad Militar Nueva Granada, Bogotá 110231, Colombia
| | | | - Jaime E Castellanos
- Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
10
|
Lee JA, Mikuls TR, Deane KD, Sayles HR, Thiele GM, Edison JD, Wagner BD, Feser ML, Moss LK, Kelmenson LB, Robinson WH, Payne JB. Serum antibodies to periodontal pathogens prior to rheumatoid arthritis diagnosis: A case-control study. Semin Arthritis Rheum 2023; 59:152176. [PMID: 36812865 PMCID: PMC10243205 DOI: 10.1016/j.semarthrit.2023.152176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVES 1) To quantify the association between anti-Porphyromonas gingivalis serum antibody concentrations and the risk of developing rheumatoid arthritis (RA), and 2) to quantify the associations among RA cases between anti-P. gingivalis serum antibody concentrations and RA-specific autoantibodies. Additional anti-bacterial antibodies evaluated included anti-Fusobacterium nucleatum and anti-Prevotella intermedia. METHODS Serum samples were acquired pre- and post- RA diagnosis from the U.S. Department of Defense Serum Repository (n = 214 cases, 210 matched controls). Using separate mixed-models, the timing of elevations of anti-P. gingivalis, anti-P. intermedia, and anti-F. nucleatum antibody concentrations relative to RA diagnosis were compared in RA cases versus controls. Associations were determined between serum anti-CCP2, ACPA fine specificities (vimentin, histone, and alpha-enolase), and IgA, IgG, and IgM RF in pre-RA diagnosis samples and anti-bacterial antibodies using mixed-effects linear regression models. RESULTS No compelling evidence of case-control divergence in serum anti-P. gingivalis, anti-F. nucleatum, and anti-P. intermedia was observed. Among RA cases, including all pre-diagnosis serum samples, anti-P. intermedia was significantly positively associated with anti-CCP2, ACPA fine specificities targeting vimentin, histone, alpha-enolase, and IgA RF (p<0.001), IgG RF (p = 0.049), and IgM RF (p = 0.004), while anti-P. gingivalis and anti-F. nucleatum were not. CONCLUSIONS No longitudinal elevations of anti-bacterial serum antibody concentrations were observed in RA patients prior to RA diagnosis compared to controls. However, anti-P. intermedia displayed significant associations with RA autoantibody concentrations prior to RA diagnosis, suggesting a potential role of this organism in progression towards clinically-detectable RA.
Collapse
Affiliation(s)
- Joyce A Lee
- Department of Surgical Specialties, Division of Periodontics, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Ted R Mikuls
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Medicine, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Kevin D Deane
- Department of Internal Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Harlan R Sayles
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
| | - Geoffrey M Thiele
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Medicine, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Jess D Edison
- Department of Internal Medicine, Rheumatology Service, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marie L Feser
- Department of Internal Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura K Moss
- Department of Internal Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lindsay B Kelmenson
- Department of Internal Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William H Robinson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Palo Alto Healthcare System and Division of Immunology/Rheumatology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey B Payne
- Department of Surgical Specialties, Division of Periodontics, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, USA; Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
High Levels of Leptin and Adipsin Are Associated with Clinical Activity in Early Rheumatoid Arthritis Patients with Overweight and Periodontal Infection. Diagnostics (Basel) 2023; 13:diagnostics13061126. [PMID: 36980434 PMCID: PMC10047025 DOI: 10.3390/diagnostics13061126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 03/18/2023] Open
Abstract
Adipokines are associated with the pathogenesis of rheumatoid arthritis (RA) and are potential biomarkers of disease activity, periodontitis, and obesity. The aim of this was to establish the association between adipokine profile, RA disease activity, body mass index, and periodontal infection. This study evaluated 51 patients with early-RA and 51 controls including serum rheumatological markers, adipokine levels, detection of Porphyromonas gingivalis and serum anti-Porphyromonas gingivalis antibodies, clinical and periodontal measurements. Statistical analyses were run with SPSS® V26, with a logistic regression model to confirm associations. The results show high levels of leptin were more frequent in patients (p = 0.001) who simultaneously showed a higher frequency of Porphyromonas gingivalis (p = 0.004). Patients with concomitant presence of Porphyromonas gingivalis, high clinical activity score, and overweight were correlated with high levels of leptin (OR, 7.20; 95% CI, 2.68–19.33; p = 0.0001) and adipsin (OR, 2.69; 95% CI, 1.00–7.28; p = 0.005). The conclusion is that high levels of leptin and adipsin are associated with greater clinical activity in early-RA patients with overweight and periodontal infection, whereby overweight and Porphyromonas gingivalis may enhance RA activity. This may represent a pathological mechanism between these conditions, where adipokines seem to have a key role.
Collapse
|
12
|
de Pablo P, Serban S, Lopez‐Oliva I, Rooney J, Hill K, Raza K, Filer A, Chapple I, Dietrich T. Outcomes of periodontal therapy in rheumatoid arthritis: The OPERA feasibility randomized trial. J Clin Periodontol 2023; 50:295-306. [PMID: 36415901 PMCID: PMC10946499 DOI: 10.1111/jcpe.13756] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/01/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
AIM Periodontitis is independently associated with rheumatoid arthritis (RA); however, there is limited data on whether periodontal treatment improves overall RA disease activity. We conducted a pilot feasibility randomized controlled clinical trial to test whether intensive periodontal therapy reduces RA disease activity in patients with active RA and periodontitis. MATERIALS AND METHODS The following inclusion criteria were applied: patients with RA and periodontitis, aged 18+, stable on treatment with disease-modifying anti-rheumatic drugs for ≥3 months, disease activity score (DAS28) ≥3.2, and DAS28 >5.1 only if patient unwilling to take biologics. Participants meeting the inclusion criteria were randomized to immediate intensive periodontal therapy or to delayed therapy (control group) administered by a dental hygienist in a secondary care setting. Data were collected at baseline and at 3 and 6 months of follow-up. Participants randomized to the control group (delayed therapy) received the standard of care for the duration of the trial, including oral hygiene instructions delivered by a dental hygienist, and the same periodontal therapy as the intervention group after study completion (i.e., 6 months after randomization). The periodontal inflammation surface area was calculated using clinical attachment loss (CAL), periodontal probing pocket depth, and bleeding on probing. Cumulative probing depth was also measured. We examined the effect of periodontal therapy on periodontal outcomes and on clinical markers of disease activity in RA, as measured by the DAS28-C-reactive protein score as well as musculo-skeletal ultrasound grey scale and power Doppler scores. RESULTS A total of 649 patients with RA were invited to participate in the study. Of these, 296 (46%) consented to participate in the screening visit. A sample of 201 patients was assessed for eligibility, of whom 41 (20%) did not meet the RA inclusion criteria and 100 (50%) did not meet the periodontal disease criteria. Among the 60 (30%) eligible participants, 30 were randomized to immediate periodontal therapy and 30 were allocated to the control group. The loss to follow-up was 18% at the end of the trial. There were no major differences with regard to baseline characteristics between the groups. Periodontal therapy was associated with reduced periodontal inflamed surface area, cumulative probing depths, RA disease activity scores, and ultrasound scores over the course of the trial. There was no change in CAL. CONCLUSIONS Overall, the trial was feasible and acceptable to the study participants. Recruitment to and satisfactory retention in a randomized controlled trial on the effect of periodontal treatment on RA patients is possible, albeit challenging. In this feasibility study of patients with RA and periodontitis, periodontal treatment resulted in significant improvements in periodontal disease outcomes and overall RA disease activity, although complete resolution of periodontal inflammation was difficult to achieve in some cases.
Collapse
Affiliation(s)
- Paola de Pablo
- Rheumatology Research GroupInstitute of Inflammation and Ageing, College of Medical and Dental Sciences, University of BirminghamBirminghamUK
- Department of RheumatologySandwell & West Birmingham NHS TrustBirminghamUK
- Department of RheumatologyUniversity Hospital Birmingham NHS Foundation TrustBirminghamUK
| | - Stefan Serban
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, and Birmingham Dental Hospital (Birmingham Community Healthcare Trust)BirminghamUK
- Department of Dental Public HealthSchool of Dentistry, University of LeedsLeedsUK
| | - Isabel Lopez‐Oliva
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, and Birmingham Dental Hospital (Birmingham Community Healthcare Trust)BirminghamUK
- Department of PeriodontologyInstitute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Joanna Rooney
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, and Birmingham Dental Hospital (Birmingham Community Healthcare Trust)BirminghamUK
| | - Kirsty Hill
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, and Birmingham Dental Hospital (Birmingham Community Healthcare Trust)BirminghamUK
| | - Karim Raza
- Rheumatology Research GroupInstitute of Inflammation and Ageing, College of Medical and Dental Sciences, University of BirminghamBirminghamUK
- Department of RheumatologySandwell & West Birmingham NHS TrustBirminghamUK
| | - Andrew Filer
- Rheumatology Research GroupInstitute of Inflammation and Ageing, College of Medical and Dental Sciences, University of BirminghamBirminghamUK
- Department of RheumatologyUniversity Hospital Birmingham NHS Foundation TrustBirminghamUK
| | - Iain Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, and Birmingham Dental Hospital (Birmingham Community Healthcare Trust)BirminghamUK
| | - Thomas Dietrich
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, and Birmingham Dental Hospital (Birmingham Community Healthcare Trust)BirminghamUK
| |
Collapse
|
13
|
Ferrillo M, Giudice A, Migliario M, Renó F, Lippi L, Calafiore D, Marotta N, de Sire R, Fortunato L, Ammendolia A, Invernizzi M, de Sire A. Oral-Gut Microbiota, Periodontal Diseases, and Arthritis: Literature Overview on the Role of Probiotics. Int J Mol Sci 2023; 24:4626. [PMID: 36902056 PMCID: PMC10003001 DOI: 10.3390/ijms24054626] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Periodontal diseases are oral inflammatory diseases affecting the tissues supporting and surrounding the teeth and include gingivitis and periodontitis. Oral pathogens may lead to microbial products spreading into the systemic circulation and reaching distant organs, while periodontal diseases have been related to low-grade systemic inflammation. Gut and oral microbiota alterations might play a role in the pathogenesis of several autoimmune and inflammatory diseases including arthritis, considering the role of the gut-joint axis in the regulation of molecular pathways involved in the pathogenesis of these conditions. In this scenario, it is hypothesized that probiotics might contribute to the oral and intestinal micro-ecological balance and could reduce low-grade inflammation typical of periodontal diseases and arthritis. This literature overview aims to summarize state-of-the-art ideas about linkages among oral-gut microbiota, periodontal diseases, and arthritis, while investigating the role of probiotics as a potential therapeutic intervention for the management of both oral diseases and musculoskeletal disorders.
Collapse
Affiliation(s)
- Martina Ferrillo
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Mario Migliario
- Dentistry Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Filippo Renó
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, University of Eastern Piedmont, 28100 Novara, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Dario Calafiore
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy
| | - Nicola Marotta
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy
| | - Leonzio Fortunato
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Muacevic A, Adler JR, Amini SS, Kesselman MM. Oral Microbiome in Pre-Rheumatoid Arthritis: The Role of Aggregatibacter Actinomycetemcomitans in Bacterial Composition. Cureus 2022; 14:e32201. [PMID: 36620849 PMCID: PMC9812525 DOI: 10.7759/cureus.32201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that symmetrically affects the joints, eventually leading to cartilage and tissue destruction. While there are multiple etiologies for RA, from environmental to genetic risk factors, periodontal disease (PD) may contribute to the acceleration of RA symptoms in pre-rheumatoid arthritis (pre-RA) and RA patients. While PD is caused by multiple oral bacteria, this review explains the role of Aggregatibacter actinomycetemcomitans (Aa) in the pathogenesis of pre-RA and RA based on 13 primary articles. This paper focuses on the Aa virulence factor leukotoxin A (LtxA) because it has been reported to cause cellular destruction and inflammation in the oral cavity that can accelerate the development of RA. Individuals who are classified as pre-RA may benefit from periodontal screening to further reduce their risk of developing advanced RA. Additionally, they may benefit from earlier pharmacological therapy for RA using disease-modifying anti-rheumatic drugs (DMARD) and antibacterial treatment.
Collapse
|
15
|
Kim JW, Jung H, Baek IP, Nam Y, Kang J, Chung MK, Park JB, Lee J, Kwok SK, Kim WU, Park SH, Ju JH. Differential effects of periodontal microbiome on the rheumatoid factor induction during rheumatoid arthritis pathogenesis. Sci Rep 2022; 12:19636. [PMID: 36385263 PMCID: PMC9668994 DOI: 10.1038/s41598-022-21788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Association between exposure to periodontal bacteria and development of autoantibodies related to rheumatoid arthritis (RA) has been widely accepted; however, direct causal relationship between periodontal bacteria and rheumatoid factor (RF) is currently not fully understood. We investigated whether periodontal bacteria could affect RF status. Patients with preclinical, new-onset, or chronic RA underwent periodontal examination, and investigation of subgingival microbiome via 16S rRNA sequencing. Degree of arthritis and RF induction was examined in collagen-induced arthritis (CIA) mice that were orally inoculated with different periodontal bacteria species. Subsequently, single-cell RNA sequencing analysis of the mouse spleen cells was performed. Patients with preclinical RA showed an increased abundance of the Porphyromonadacae family in the subgingival microbiome compared to those with new-onset or chronic RA, despite comparable periodontitis severity among them. Notably, a distinct subgingival microbial community was found between patients with high-positive RF and those with negative or low-positive RF (p=0.022). Oral infections with the periodontal pathogens P. gingivalis and Treponema denticola in CIA mice similarly enhanced arthritis score, but resulted in different levels of RF induction. Genes related to B cell receptor signaling, B cell proliferation, activation, and differentiation, and CD4+ T cell costimulation and cytokine production were involved in the differential induction of RF in mice exposed to different bacteria. In summary, periodontal microbiome might shape RF status by affecting the humoral immune response during RA pathogenesis.
Collapse
Affiliation(s)
- Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Hyerin Jung
- grid.411947.e0000 0004 0470 4224Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | | | - Yoojun Nam
- grid.411947.e0000 0004 0470 4224Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Jaewoo Kang
- grid.411947.e0000 0004 0470 4224Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Min Kyung Chung
- grid.255649.90000 0001 2171 7754Division of Rheumatology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jun-Beom Park
- grid.411947.e0000 0004 0470 4224Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jennifer Lee
- grid.411947.e0000 0004 0470 4224Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Seung-Ki Kwok
- grid.411947.e0000 0004 0470 4224Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Wan-Uk Kim
- grid.411947.e0000 0004 0470 4224Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Sung-Hwan Park
- grid.411947.e0000 0004 0470 4224Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Ji Hyeon Ju
- grid.411947.e0000 0004 0470 4224Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
16
|
Anti-Citrullinated Peptide Antibodies Control Oral Porphyromonas and Aggregatibacter species in Patients with Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms232012599. [PMID: 36293451 PMCID: PMC9604485 DOI: 10.3390/ijms232012599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Oral microbiome changes take place at the initiation of rheumatoid arthritis (RA); however, questions remain regarding the oral microbiome at pre-RA stages in individuals with clinically suspect arthralgia (CSA). Two cross-sectional cohorts were selected including 84 Tatarstan women (15 early-RA as compared to individuals with CSA ranging from CSA = 0 [n = 22], CSA = 1 [n = 19], CSA = 2 [n = 11], and CSA ≥ 3 [n = 17]) and 42 women with established RA (median: 5 years from diagnosis [IQ: 2–11]). Amplicon sequence variants (ASVs) obtained from oral samples (16S rRNA) were analyzed for alpha and beta diversity along with the abundance at the genus level. A decrease in oral Porphyromonas sp. is observed in ACPA-positive individuals, and this predominates in early-RA patients as compared to non-RA individuals irrespective of their CSA score. In the RA-established cohort, Porphyromonas sp. and Aggregatibacter sp. reductions were associated with elevated ACPA levels. In contrast, no associations were reported when considering individual, genetic and clinical RA-associated factors. Oral microbiome changes related to the genera implicated in post-translational citrullination (Porphyromonas sp. and Aggregatibacter sp.) characterized RA patients with elevated ACPA levels, which supports that the role of ACPA in controlling the oral microbiome needs further evaluation.
Collapse
|
17
|
Chow YC, Yam HC, Gunasekaran B, Lai WY, Wo WY, Agarwal T, Ong YY, Cheong SL, Tan SA. Implications of Porphyromonas gingivalis peptidyl arginine deiminase and gingipain R in human health and diseases. Front Cell Infect Microbiol 2022; 12:987683. [PMID: 36250046 PMCID: PMC9559808 DOI: 10.3389/fcimb.2022.987683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis is a major pathogenic bacterium involved in the pathogenesis of periodontitis. Citrullination has been reported as the underlying mechanism of the pathogenesis, which relies on the interplay between two virulence factors of the bacterium, namely gingipain R and the bacterial peptidyl arginine deiminase. Gingipain R cleaves host proteins to expose the C-terminal arginines for peptidyl arginine deiminase to citrullinate and generate citrullinated proteins. Apart from carrying out citrullination in the periodontium, the bacterium is found capable of citrullinating proteins present in the host synovial tissues, atherosclerotic plaques and neurons. Studies have suggested that both virulence factors are the key factors that trigger distal effects mediated by citrullination, leading to the development of some non-communicable diseases, such as rheumatoid arthritis, atherosclerosis, and Alzheimer’s disease. Thus, inhibition of these virulence factors not only can mitigate periodontitis, but also can provide new therapeutic solutions for systematic diseases involving bacterial citrullination. Herein, we described both these proteins in terms of their unique structural conformations and biological relevance to different human diseases. Moreover, investigations of inhibitory actions on the enzymes are also enumerated. New approaches for identifying inhibitors for peptidyl arginine deiminase through drug repurposing and virtual screening are also discussed.
Collapse
Affiliation(s)
- Yoke Chan Chow
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Weng Yeen Lai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Weng Yue Wo
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Tarun Agarwal
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Yien Yien Ong
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Siew Lee Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Sheri-Ann Tan, ; Siew Lee Cheong,
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
- *Correspondence: Sheri-Ann Tan, ; Siew Lee Cheong,
| |
Collapse
|
18
|
Purification of RgpA from external outer membrane vesicles of Porphyromonas gingivalis. Anaerobe 2022; 77:102647. [PMID: 36116685 DOI: 10.1016/j.anaerobe.2022.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Purification of native gingipains is challenging because these proteases are frequently associated with the cell surface, which affects yield. This study aimed to purify native Arg-gingipain (RgpA) from Porphyromonas gingivalis Outer Membrane Vesicles (OMV). METHODS Native RgpA was purified from P. gingivalis strain ATCC33277 OMV using a strategy including ultracentrifugation, sonication, and successive anionic and cationic fast protein liquid chromatography (FPLC). The presence and purity of the protease were confirmed by SDS-PAGE and detection of protease activity using fluorogenic substrates. Rat antibodies produced against the unique adhesin hemagglutinin (H1) domain of RgpA (amino acids 719-865) were titrated by ELISA at a 1:100 dilution using whole P. gingivalis lysate as an antigen and western blotting to detect a 75 kDa band corresponding to RgpA. RESULTS Double anionic-cationic FLPC yielded prominent peaks with evident amidolytic gingipain activity of the appropriate molecular weight, as confirmed by western blotting. The final RgpA yield from 1 L of bacterial culture with colony forming unit (CFU) (Log10) 7.4 ± 0.08/mL was of 12.6% (2 mg/mL), with 3.2 FU/μg of amidolytic activity. CONCLUSIONS This protocol allows purification of native RgpA from OMV that retains protease activity.
Collapse
|
19
|
Krutyhołowa A, Strzelec K, Dziedzic A, Bereta GP, Łazarz-Bartyzel K, Potempa J, Gawron K. Host and bacterial factors linking periodontitis and rheumatoid arthritis. Front Immunol 2022; 13:980805. [PMID: 36091038 PMCID: PMC9453162 DOI: 10.3389/fimmu.2022.980805] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.
Collapse
Affiliation(s)
- Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| |
Collapse
|
20
|
Romão VC, Fonseca JE. Disease mechanisms in preclinical rheumatoid arthritis: A narrative review. Front Med (Lausanne) 2022; 9:689711. [PMID: 36059838 PMCID: PMC9437632 DOI: 10.3389/fmed.2022.689711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In the last decades, the concept of preclinical rheumatoid arthritis (RA) has become established. In fact, the discovery that disease mechanisms start years before the onset of clinical RA has been one of the major recent insights in the understanding of RA pathogenesis. In accordance with the complex nature of the disease, preclinical events extend over several sequential phases. In a genetically predisposed host, environmental factors will further increase susceptibility for incident RA. In the initial steps of preclinical disease, immune disturbance mechanisms take place outside the joint compartment, namely in mucosal surfaces, such as the lung, gums or gut. Herein, the persistent immunologic response to altered antigens will lead to breach of tolerance and trigger autoimmunity. In a second phase, the immune response matures and is amplified at a systemic level, with epitope spreading and widening of the autoantibody repertoire. Finally, the synovial and bone compartment are targeted by specific autoantibodies against modified antigens, initiating a local inflammatory response that will eventually culminate in clinically evident synovitis. In this review, we discuss the elaborate disease mechanisms in place during preclinical RA, providing a broad perspective in the light of current evidence.
Collapse
Affiliation(s)
- Vasco C. Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Li Y, Guo R, Oduro PK, Sun T, Chen H, Yi Y, Zeng W, Wang Q, Leng L, Yang L, Zhang J. The Relationship Between Porphyromonas Gingivalis and Rheumatoid Arthritis: A Meta-Analysis. Front Cell Infect Microbiol 2022; 12:956417. [PMID: 35923803 PMCID: PMC9340274 DOI: 10.3389/fcimb.2022.956417] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systematical autoimmune disease, characterized by chronic synovial joint inflammation and hurt. Porphyromonas gingivalis(P. gingivalis) can cause life-threatening inflammatory immune responses in humans when the host pathogenic clearance machinery is disordered. Some epidemiological studies have reported that P. gingivalis exposure would increase the prevalence of RA. However, the results remain inconsistent. Therefore, a meta-analysis was done to systematically analyze the relationship between P. gingivalis exposure and the prevalence of rheumatoid arthritis. Database including Cochrane Library, Web of Science, PubMed, and EMBASE were searched for published epidemiological articles assessed the relationship between P. gingivalis and RA. Obtained studies were screened based on the predefined inclusion and exclusion criteria. The overall Odds Ratios (ORs) of incorporated articles were pooled by random-effect model with STATA 15.1 software. The literature search returned a total of 2057 studies. After exclusion, 28 articles were included and analyzed. The pooled ORs showed a significant increase in the risk of RA in individuals with P. gingivalis exposure (OR = 1.86; 95% CI: 1.43-2.43). Subgroup analysis revealed that pooled ORs from populations located in Europe (OR = 2.17; 95% CI: 1.46-3.22) and North America (OR = 2.50; 95% CI: 1.23-5.08) were significantly higher than that from population in Asia (OR = 1.11; 95% CI: 1.03-1.20). Substantial heterogeneity was observed but did not significantly influence the overall outcome. In conclusion, our results indicated P. gingivalis exposure was a risk factor in RA. Prompt diagnosis and management decisions on P. gingivalis antimicrobial therapy would prevent rheumatoid arthritis development and progression.
Collapse
Affiliation(s)
- Yilin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Rui Guo
- Research center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Tongke Sun
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yating Yi
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Weiqian Zeng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| | - Long Yang
- Research center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| |
Collapse
|
22
|
Weening-Verbree LF, Schuller AA, Zuidema SU, Hobbelen JSM. Evaluation of an Oral Care Program to Improve the Oral Health of Home-Dwelling Older People. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127251. [PMID: 35742500 PMCID: PMC9223830 DOI: 10.3390/ijerph19127251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the impact of the implementation of an Oral Care Program on home care nurses’ attitudes and knowledge about oral health (care) and the impact on older people’s oral health. A pre–post study, without a control group, was conducted. A preventive Oral Care Program (OCP) was designed, focusing on home care nurses and older people, in collaboration with dental hygienists. Implementation was measured with questionnaires at baseline and after 6 months for home care nurses; for older people, implementation was measured at baseline and after 3 months with the Oral Health Assessment Tool and a questionnaire about oral (self) care between January 2018 and September 2019. Although the study design has limitations, the oral health of older people improved significantly after 3 months and the OCP was most beneficial for people with full dentures. The OCP improved knowledge and attitude of home care nurses. The program fitted well with the daily work routines of home care nurses. Individual-centered care plans for older people, education of home care nurses and the expertise of the dental hygienists have added value in home care nursing. Future implementations should focus on older people with natural teeth.
Collapse
Affiliation(s)
- Lina F. Weening-Verbree
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Petrus Driessenstraat 3, 9714 CA Groningen, The Netherlands;
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, A. Deusinglaan 1, FB 21, 9713 AV Groningen, The Netherlands;
- Correspondence:
| | - Annemarie A. Schuller
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, A. Deusinglaan 1, FB 21, 9713 AV Groningen, The Netherlands;
- TNO the Netherlands Organisation for Applied Scientific Research, Schipholweg 77-89, 2316 ZL Leiden, The Netherlands
| | - Sytse U. Zuidema
- Department of General Practice and Elderly Care Medicine, University of Groningen, University Medical Center Groningen, FA21, P.O. Box 196, 9700 AD Groningen, The Netherlands;
| | - Johannes S. M. Hobbelen
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Petrus Driessenstraat 3, 9714 CA Groningen, The Netherlands;
- Department of General Practice and Elderly Care Medicine, University of Groningen, University Medical Center Groningen, FA21, P.O. Box 196, 9700 AD Groningen, The Netherlands;
| |
Collapse
|
23
|
Koziel J, Potempa J. Pros and cons of causative association between periodontitis and rheumatoid arthritis. Periodontol 2000 2022; 89:83-98. [PMID: 35262966 PMCID: PMC9935644 DOI: 10.1111/prd.12432] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 02/05/2023]
Abstract
Research in recent decades has brought significant advancements in understanding of the molecular basis of the etiology of autoimmune diseases, including rheumatoid arthritis, a common systemic disease in which an inappropriate or inadequate immune response to environmental challenges leads to joint destruction. Recent studies have indicated that the classical viewpoint of the immunological processes underpinning the pathobiology of rheumatoid arthritis is restricted and needs to be expanded to include a more holistic and interdisciplinary approach incorporating bacteria-induced inflammatory reactions as an important pathway in rheumatoid arthritis etiology. Here, we discuss in detail data showing the clinical and molecular association of rheumatoid arthritis development with periodontal diseases. We also describe the unique role of periopathogens, which have been proposed to be crucial in the initiation and progression of this autoimmune pathological disorder.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
24
|
Sherina N, de Vries C, Kharlamova N, Sippl N, Jiang X, Brynedal B, Kindstedt E, Hansson M, Mathsson-Alm L, Israelsson L, Stålesen R, Saevarsdottir S, Holmdahl R, Hensvold A, Johannsen G, Eriksson K, Sallusto F, Catrina AI, Rönnelid J, Grönwall C, Yucel-Lindberg T, Alfredsson L, Klareskog L, Piccoli L, Malmström V, Amara K, Lundberg K. Antibodies to a Citrullinated Porphyromonas gingivalis Epitope Are Increased in Early Rheumatoid Arthritis, and Can Be Produced by Gingival Tissue B Cells: Implications for a Bacterial Origin in RA Etiology. Front Immunol 2022; 13:804822. [PMID: 35514991 PMCID: PMC9066602 DOI: 10.3389/fimmu.2022.804822] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Based on the epidemiological link between periodontitis and rheumatoid arthritis (RA), and the unique feature of the periodontal bacterium Porphyromonas gingivalis to citrullinate proteins, it has been suggested that production of anti-citrullinated protein antibodies (ACPA), which are present in a majority of RA patients, may be triggered in the gum mucosa. To address this hypothesis, we investigated the antibody response to a citrullinated P. gingivalis peptide in relation to the autoimmune ACPA response in early RA, and examined citrulline-reactivity in monoclonal antibodies derived from human gingival B cells. Antibodies to a citrullinated peptide derived from P. gingivalis (denoted CPP3) and human citrullinated peptides were analyzed by multiplex array in 2,807 RA patients and 372 controls; associations with RA risk factors and clinical features were examined. B cells from inflamed gingival tissue were single-cell sorted, and immunoglobulin (Ig) genes were amplified, sequenced, cloned and expressed (n=63) as recombinant monoclonal antibodies, and assayed for citrulline-reactivities by enzyme-linked immunosorbent assay. Additionally, affinity-purified polyclonal anti-cyclic-citrullinated peptide (CCP2) IgG, and monoclonal antibodies derived from RA blood and synovial fluid B cells (n=175), were screened for CPP3-reactivity. Elevated anti-CPP3 antibody levels were detected in RA (11%), mainly CCP2+ RA, compared to controls (2%), p<0.0001, with a significant association to HLA-DRB1 shared epitope alleles, smoking and baseline pain, but with low correlation to autoimmune ACPA fine-specificities. Monoclonal antibodies derived from gingival B cells showed cross-reactivity between P. gingivalis CPP3 and human citrullinated peptides, and a CPP3+/CCP2+ clone, derived from an RA blood memory B cell, was identified. Our data support the possibility that immunity to P. gingivalis derived citrullinated antigens, triggered in the inflamed gum mucosa, may contribute to the presence of ACPA in RA patients, through mechanisms of molecular mimicry.
Collapse
Affiliation(s)
- Natalia Sherina
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte de Vries
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nastya Kharlamova
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sippl
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Xia Jiang
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Boel Brynedal
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elin Kindstedt
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Monika Hansson
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, ImmunoDiagnositic Division, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lena Israelsson
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ragnhild Stålesen
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Saedis Saevarsdottir
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Aase Hensvold
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Gunnar Johannsen
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Danakliniken Specialisttandvård, Praktikertjänst AB, Danderyd, Sweden
| | - Kaja Eriksson
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Orthodontics and Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Federica Sallusto
- Institute for Research in Biomedicine, Universita dell a Svizzera Italiana, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Anca I Catrina
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Orthodontics and Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre of Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Piccoli
- Institute for Research in Biomedicine, Universita dell a Svizzera Italiana, Bellinzona, Switzerland
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Khaled Amara
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lundberg
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Bacali C, Vulturar R, Buduru S, Cozma A, Fodor A, Chiș A, Lucaciu O, Damian L, Moldovan ML. Oral Microbiome: Getting to Know and Befriend Neighbors, a Biological Approach. Biomedicines 2022; 10:671. [PMID: 35327473 PMCID: PMC8945538 DOI: 10.3390/biomedicines10030671] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
The oral microbiome, forming a biofilm that covers the oral structures, contains a high number of microorganisms. Biofilm formation starts from the salivary pellicle that allows bacterial adhesion-colonization-proliferation, co-aggregation and biofilm maturation in a complex microbial community. There is a constant bidirectional crosstalk between human host and its oral microbiome. The paper presents the fundamentals regarding the oral microbiome and its relationship to modulator factors, oral and systemic health. The modern studies of oral microorganisms and relationships with the host benefits are based on genomics, transcriptomics, proteomics and metabolomics. Pharmaceuticals such as antimicrobials, prebiotics, probiotics, surface active or abrasive agents and plant-derived ingredients may influence the oral microbiome. Many studies found associations between oral dysbiosis and systemic disorders, including autoimmune diseases, cardiovascular, diabetes, cancers and neurodegenerative disorders. We outline the general and individual factors influencing the host-microbial balance and the possibility to use the analysis of the oral microbiome in prevention, diagnosis and treatment in personalized medicine. Future therapies should take in account the restoration of the normal symbiotic relation with the oral microbiome.
Collapse
Affiliation(s)
- Cecilia Bacali
- Department of Prosthodontics and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor St., 400006 Cluj-Napoca, Romania; (C.B.); (S.B.)
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Pasteur St., 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Smaranda Buduru
- Department of Prosthodontics and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor St., 400006 Cluj-Napoca, Romania; (C.B.); (S.B.)
| | - Angela Cozma
- 4th Medical Department, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 18 Republicii St., 400015 Cluj-Napoca, Romania;
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Pasteur St., 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Health, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Laura Damian
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases, 2-4 Clinicilor St., 400006 Cluj-Napoca, Romania;
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior St., 400002 Cluj-Napoca, Romania
| | - Mirela Liliana Moldovan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12, I. Creanga St., 400010 Cluj-Napoca, Romania;
| |
Collapse
|
26
|
Antibodies to Porphyromonas gingivalis Are Increased in Patients with Severe Periodontitis, and Associate with Presence of Specific Autoantibodies and Myocardial Infarction. J Clin Med 2022; 11:jcm11041008. [PMID: 35207282 PMCID: PMC8875626 DOI: 10.3390/jcm11041008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
There is accumulating data suggesting that periodontitis is associated with increased risk of systemic and autoimmune diseases, including cardiovascular disease, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), and there is an unmet need to identify these individuals early. With the periodontal bacteria Porphyromonas gingivalis (Pg) as one of the key drivers of periodontitis, we set out to investigate whether antibodies to Pg virulence factor arginine gingipain (Rgp) could serve as a biomarker for periodontitis patients at increased risk of autoimmunity and systemic disease. We measured serum anti-Rgp IgG in three study populations: PAROKRANK (779 individuals with myocardial infarction (MI); 719 controls), where 557 had periodontitis, and 312 were positive for autoantibodies associated with RA/SLE; the PerioGene North pilot (41 periodontitis; 39 controls); and an SLE case/control study (101 SLE; 100 controls). Anti-Rgp IgG levels were increased in severe periodontitis compared to controls (p < 0.0001), in individuals positive for anti-citrullinated protein antibodies (p = 0.04) and anti-dsDNA antibodies (p = 0.035), compared to autoantibody-negative individuals; and in MI patients versus matched controls (p = 0.035). Our data support longitudinal studies addressing the role of anti-Rgp antibodies as biomarkers for periodontitis patients at increased risk of developing autoimmunity linked to RA and SLE, and mechanisms underpinning these associations.
Collapse
|
27
|
Romão VC, Fonseca JE. Etiology and Risk Factors for Rheumatoid Arthritis: A State-of-the-Art Review. Front Med (Lausanne) 2021; 8:689698. [PMID: 34901047 PMCID: PMC8661097 DOI: 10.3389/fmed.2021.689698] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common systemic inflammatory rheumatic disease. It is associated with significant burden at the patient and societal level. Extensive efforts have been devoted to identifying a potential cause for the development of RA. Epidemiological studies have thoroughly investigated the association of several factors with the risk and course of RA. Although a precise etiology remains elusive, the current understanding is that RA is a multifactorial disease, wherein complex interactions between host and environmental factors determine the overall risk of disease susceptibility, persistence and severity. Risk factors related to the host that have been associated with RA development may be divided into genetic; epigenetic; hormonal, reproductive and neuroendocrine; and comorbid host factors. In turn, environmental risk factors include smoking and other airborne exposures; microbiota and infectious agents; diet; and socioeconomic factors. In the present narrative review, aimed at clinicians and researchers in the field of RA, we provide a state-of-the-art overview of the current knowledge on this topic, focusing on recent progresses that have improved our comprehension of disease risk and development.
Collapse
Affiliation(s)
- Vasco C Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
28
|
Jajoo NS, Shelke AU, Bajaj RS, Devani V. Correction to: Periodontitis and Rheumatoid Arthritis: The Common Thread. Clin Rev Bone Miner Metab 2021. [DOI: 10.1007/s12018-021-09280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Jasemi S, Erre GL, Cadoni ML, Bo M, Sechi LA. Humoral Response to Microbial Biomarkers in Rheumatoid Arthritis Patients. J Clin Med 2021; 10:jcm10215153. [PMID: 34768672 PMCID: PMC8584451 DOI: 10.3390/jcm10215153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background/Objective: Chronic humoral immune response against multiple microbial antigens may play a crucial role in the etiopathogenesis of rheumatoid arthritis (RA). We aimed to assess the prevalence and magnitude of antibody response against various bacterial and viral immunogen peptides in the sera of RA patients compared with the general population. Methods: Polyclonal IgG antibodies (Abs) specific for peptides derived from Porphyromonas gingivalis (RgpA, Kpg), Aggregatibacter actinomycetemcomitans (LtxA1, LtxA2), Mycobacterium avium subsp. paratuberculosis (MAP4027), Epstein–Barr virus (EBNA1, EBVBOLF), and human endogenous retrovirus (HERV-W env-su) were detected by ELISA in serum samples from 148 consecutive RA patients and 148 sex and age-matched healthy controls (HCs). In addition, the presence of a relationship between the positivity and the titer of antibodies and RA descriptors was explored by bivariate correlation analysis. Results: RA patients exhibit a higher prevalence of humoral immune response against all tested peptides compared to HCs with a statically significant difference for MAP4027 (30.4% vs. 10.1%), BOLF (25.7% vs. 8.1%), RgpA (24.3% vs. 9.4%), HERV W-env (20.3% vs. 9.4%), and EBNA1 (18.9% vs. 9.4%) peptides. Fifty-three (35.8%) out of 148 RA serum and 93 (62.8%) out of 148 HCs were negative for all pathogen-derived peptides. There was a significant correlation between OD values obtained by ELISA test against all peptides (p < 0.0001). We also found an increased titer and prevalence of Abs against LtxA1 and LtxA2 in seropositive vs. seronegative RF (p = 0.019, p = 0.018). Conclusion: This study demonstrates a significantly increased humoral response against multiple pathogens in patients with RA and implies that they could be an important factor in the pathogenesis of the disease. Therefore, the role of each individual pathogen in RA needs to be further investigated.
Collapse
Affiliation(s)
- Seyedesomaye Jasemi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (S.J.); (M.B.)
| | - Gian Luca Erre
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.L.E.); (M.L.C.)
- Dipartimento di Specialità Mediche, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
| | - Maria Luisa Cadoni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.L.E.); (M.L.C.)
- Dipartimento di Specialità Mediche, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
| | - Marco Bo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (S.J.); (M.B.)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (S.J.); (M.B.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079228462
| |
Collapse
|
30
|
Rahajoe PS, de Smit MJ, Raveling-Eelsing E, du Teil Espina M, Stobernack T, Lisotto P, Harmsen HJM, van Dijl JM, Kertia N, Vissink A, Westra J. No Obvious Role for Suspicious Oral Pathogens in Arthritis Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189560. [PMID: 34574484 PMCID: PMC8471642 DOI: 10.3390/ijerph18189560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
A particular role for Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa) has been suggested in periodontitis and rheumatoid arthritis (RA), as these bacteria could initiate the formation of rheumatoid factor (RF) and anticitrullinated protein autoantibodies (ACPA). We assessed whether serum antibodies against Pg and Aa in RA patients and non-RA controls reflect the subgingival presence of Pg and Aa, and evaluated the relationship of these antibodies to the severity of periodontal inflammation and RA-specific serum autoantibodies. In 70 Indonesian RA patients and 70 non-RA controls, the subgingival presence of Pg and Aa was assessed by bacterial 16S rRNA gene sequencing, and serum IgG levels specific for Pg and Aa were determined. In parallel, serum levels of ACPA (ACPA:IgG,IgA) and RF (RF:IgM,IgA) were measured. The extent of periodontal inflammation was assessed by the periodontal inflamed surface area. In both RA patients and the controls, the presence of subgingival Pg and Aa was comparable, anti-Pg and anti-Aa antibody levels were associated with the subgingival presence of Pg and Aa, and anti-Pg did not correlate with ACPA or RF levels. The subgingival Pg and Aa were not related to RA. No noteworthy correlation was detected between the antibodies against Pg and Aa, and RA-specific autoantibodies.
Collapse
Affiliation(s)
- Poerwati S. Rahajoe
- Department of Oral and Maxillofacial Surgery, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia;
- University Medical Center Groningen, Department of Oral and Maxillofacial Surgery, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Menke J. de Smit
- University Medical Center Groningen, Department of Oral and Maxillofacial Surgery, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
- University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (E.R.-E.); (J.W.)
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: ; Tel.: +31-50-3613841
| | - Elisabeth Raveling-Eelsing
- University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (E.R.-E.); (J.W.)
| | - Marines du Teil Espina
- University Medical Center Groningen, Department of Medical Microbiology, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.d.T.E.); (T.S.); (P.L.); (H.J.M.H.); (J.M.v.D.)
| | - Tim Stobernack
- University Medical Center Groningen, Department of Medical Microbiology, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.d.T.E.); (T.S.); (P.L.); (H.J.M.H.); (J.M.v.D.)
| | - Paola Lisotto
- University Medical Center Groningen, Department of Medical Microbiology, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.d.T.E.); (T.S.); (P.L.); (H.J.M.H.); (J.M.v.D.)
| | - Hermie J. M. Harmsen
- University Medical Center Groningen, Department of Medical Microbiology, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.d.T.E.); (T.S.); (P.L.); (H.J.M.H.); (J.M.v.D.)
| | - Jan Maarten van Dijl
- University Medical Center Groningen, Department of Medical Microbiology, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.d.T.E.); (T.S.); (P.L.); (H.J.M.H.); (J.M.v.D.)
| | - Nyoman Kertia
- Department of Rheumatology and Clinical Immunology, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia;
| | - Arjan Vissink
- University Medical Center Groningen, Department of Oral and Maxillofacial Surgery, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Johanna Westra
- University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (E.R.-E.); (J.W.)
| |
Collapse
|
31
|
Thomas C, Minty M, Vinel A, Canceill T, Loubières P, Burcelin R, Kaddech M, Blasco-Baque V, Laurencin-Dalicieux S. Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics (Basel) 2021; 11:1376. [PMID: 34441309 PMCID: PMC8391932 DOI: 10.3390/diagnostics11081376] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is host to a complex and diverse microbiota community which plays an important role in health and disease. Major oral infections, i.e., caries and periodontal diseases, are both responsible for and induced by oral microbiota dysbiosis. This dysbiosis is known to have an impact on other chronic systemic diseases, whether triggering or aggravating them, making the oral microbiota a novel target in diagnosing, following, and treating systemic diseases. In this review, we summarize the major roles that oral microbiota can play in systemic disease development and aggravation and also how novel tools can help investigate this complex ecosystem. Finally, we describe new therapeutic approaches based on oral bacterial recolonization or host modulation therapies. Collaboration in diagnosis and treatment between oral specialists and general health specialists is of key importance in bridging oral and systemic health and disease and improving patients' wellbeing.
Collapse
Affiliation(s)
- Charlotte Thomas
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Matthieu Minty
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Alexia Vinel
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Thibault Canceill
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR CNRS 5085, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), Université Paul Sabatier, 35 Chemin des Maraichers, CEDEX 9, 31062 Toulouse, France
| | - Pascale Loubières
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Remy Burcelin
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Myriam Kaddech
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Vincent Blasco-Baque
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Sara Laurencin-Dalicieux
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations de Toulouse (CERPOP), Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France
| |
Collapse
|
32
|
Weening-Verbree LF, Schuller DAA, Cheung SL, Zuidema PDSU, Schans PDCPVD, Hobbelen DJSM. Barriers and facilitators of oral health care experienced by nursing home staff. Geriatr Nurs 2021; 42:799-805. [PMID: 34090223 DOI: 10.1016/j.gerinurse.2021.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022]
Abstract
Objectives to explore attitudes, perceptions, and perceived barriers to and the perceived facilitators of daily oral health care and the actual daily oral health care performances among nursing home staff. Methods A mixed methods study in 21 nursing homes was completed; a) questionnaires for nursing staff and managers; b) focus group interviews with nursing staff. Results 409 (21%) questionnaires were completed by nursing staff and 14 focus group interviews organized. Conclusions attitude was not a barrier in this study, while oral care was not performed according to guidelines. Nursing staff reported a lack of products, while toothbrushes are available. The most frequently mentioned barriers were lack of support of dental staff, oral care for clients with cognitive impairment, and a lack of education. Increasing facilitators could be; more (practical) education combined with tailored advice from internal dental staff. Where and on whom will the research have an impact? Nursing home staff, nursing home organizations/ managers and dental professionals working in nursing homes.
Collapse
Affiliation(s)
- Lina Francina Weening-Verbree
- Hanze University of Applied Sciences Groningen, Research group Healthy Ageing, Allied Health Care and Nursing, Groningen, Netherlands; Center for Dentistry and Oral Hygiene, University Medical Center Groningen, Netherlands; University of Groningen, Groningen, Netherlands.
| | - Dr Annemarie Adriana Schuller
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, Netherlands; University of Groningen, Groningen, Leiden, TNO, Netherlands
| | - Sie-Long Cheung
- Hanze University of Applied Sciences Groningen, Research group Healthy Ageing, Allied Health Care and Nursing, Groningen, Netherlands; Department of Health Psychology, University Medical Center Groningen, University of Groningen, Netherlands; Hanze University of Applied Sciences, Petrus Driessenstraat 3, Groningen 9714 CA, Netherlands
| | - Prof Dr Sytse Ulbe Zuidema
- University of Groningen, Groningen, Netherlands; Department of General Practice and Elderly Care Medicine, University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Prof Dr Cornelis P Van Der Schans
- Hanze University of Applied Sciences Groningen, Research group Healthy Ageing, Allied Health Care and Nursing, Groningen, Netherlands; Department of Health Psychology, University Medical Center Groningen, University of Groningen, Netherlands; Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Netherlands; Hanze University of Applied Sciences, Petrus Driessenstraat 3, Groningen 9714 CA, Netherlands
| | - Dr Johannes Simon Maria Hobbelen
- Hanze University of Applied Sciences Groningen, Research group Healthy Ageing, Allied Health Care and Nursing, Groningen, Netherlands; University of Groningen, Groningen, Netherlands; Hanze University of Applied Sciences, Petrus Driessenstraat 3, Groningen 9714 CA, Netherlands
| |
Collapse
|
33
|
The pre-clinical phase of rheumatoid arthritis: From risk factors to prevention of arthritis. Autoimmun Rev 2021; 20:102797. [PMID: 33746022 DOI: 10.1016/j.autrev.2021.102797] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease considered as a multistep process spanning from the interaction of genetic (e.g., shared epitope or non-HLA loci), environmental and behavioral risk factors (e.g., smoking) leading to breaking immune tolerance and autoimmune processes such as the production of autoantibodies (e.g., antibodies against citrullinated proteins ACPA or rheumatoid factors, RF), development of the first symptoms without clinical arthritis, and, finally, the manifestation of arthritis. Despite the typical joint involvement in established RA, the pathogenesis of the disease likely begins far from joint structures: in the lungs or periodontium in association with citrullination, intestinal microbiome, or adipose tissue, which supports normal findings in synovial tissue in ACPA+ patients with arthralgia. The presence of ACPA is detectable even years before the first manifestation of RA. The pre-clinical phase of RA is the period preceding clinically apparent RA with ACPA contributing to the symptoms without subclinical inflammation. While the combination of ACPA and RF increases the risk of progression to RA by up to 10 times, increasing numbers of novel autoantibodies are to be investigated to contribute to the increased risk and pathogenesis of RA. With growing knowledge about the course of RA, new aspiration emerges to cure and even prevent RA, shifting the "window of opportunity" to the pre-clinical phases of RA. The clinical definition of individuals at risk of developing RA (clinically suspect arthralgia, CSA) makes it possible to unify these at-risk individuals' clinical characteristics for "preventive" treatment in ongoing clinical trials using mostly biological or conventional synthetic disease-modifying drugs. However, the combination of symptoms, laboratory, and imaging biomarkers may be the best approach to select the correct target at-risk population. The current review aims to explore different phases of RA and discuss the potential of (non)pharmacological intervention aiming to prevent RA.
Collapse
|
34
|
Porphyromonas gingivalis. Trends Microbiol 2021; 29:376-377. [PMID: 33546976 DOI: 10.1016/j.tim.2021.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022]
|
35
|
Manoil D, Courvoisier DS, Gilbert B, Möller B, Walker UA, Muehlenen IV, Rubbert-Roth A, Finckh A, Bostanci N. Associations between serum antibodies to periodontal pathogens and preclinical phases of rheumatoid arthritis. Rheumatology (Oxford) 2021; 60:4755-4764. [PMID: 33512428 DOI: 10.1093/rheumatology/keab097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To examine whether serum antibodies against selected periodontal pathogens are associated with early symptoms of RA development in healthy individuals at risk of developing the disease. METHODS Within an ongoing study cohort of first-degree relatives of patients with RA (RA-FDRs), we selected four groups corresponding to specific preclinical phases of RA development (n = 201). (i) RA-FDR controls without signs and symptoms of arthritis nor RA-related autoimmunity (n = 51); (ii) RA-FDRs with RA-related autoimmunity (n = 51); (iii) RA-FDRs with inflammatory arthralgias without clinical arthritis (n = 51); and (iv) RA-FDRs who have presented at least one swollen joint ('unclassified arthritis') (n = 48). Groups were matched for smoking, age, sex and shared epitope status. The primary outcome was IgG serum levels against five selected periodontal pathogens and one commensal oral species assessed using validated-in-house ELISA assays. Associations between IgG measurements and preclinical phases of RA development were examined using Kruskal-Wallis or Mann-Whitney tests (α = 0.05). RESULTS None of the IgGs directed against individual periodontal pathogens significantly differed between the four groups of RA-FDRs. Further analyses of cumulated IgG levels into bacterial clusters representative of periodontal infections revealed significantly higher IgG titres against periodontopathogens in anti-citrullinated protein antibodies (ACPA)-positive RA-FDRs (P = 0.015). Current smoking displayed a marked trend towards reduced IgG titres against periodontopathogens. CONCLUSION Our results do not suggest an association between serum IgG titres against individual periodontal pathogens and specific preclinical phases of RA development. However, associations between cumulative IgG titres against periodontopathogens and the presence of ACPAs suggest a synergistic contribution of periodontopathogens to ACPA development.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Delphine S Courvoisier
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva
| | - Benoit Gilbert
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva
| | - Burkhard Möller
- Department of Rheumatology, Immunology and Allergology, University Hospital Inselspital Bern, Bern
| | | | | | - Andrea Rubbert-Roth
- Division of Rheumatology and Immunology, Kantonsspital St. Gallen, St Gallen
| | - Axel Finckh
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
36
|
Yambe N, Tamai R, Mashima I, Kiyoura Y. Etidronate down-regulates Toll-like receptor 2 ligand-induced chemokine production by inhibiting MyD88 expression and NF-κB activation. Immunopharmacol Immunotoxicol 2020; 43:51-57. [PMID: 33251898 DOI: 10.1080/08923973.2020.1850761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Pretreatment of J774.1 cells with etidronate, a non-nitrogen-containing bisphosphonate (non-NBP) used as an antibone resorptive drug, was previously reported to inhibit Toll-like receptor (TLR) 2 agonist-induced proinflammatory cytokine production. The present study aimed to examine the effects of etidronate on chemokine production by human monocytic U937 cells incubated with Pam3Cys-Ser-(Lys)4 (Pam3CSK4, a TLR2 ligand) and lipid A (a TLR4 ligand). METHODS U937 cells were pretreated with or without etidronate, and then incubated with or without Pam3CSK4 or lipid A. Levels of secreted human interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1) in culture supernatants and activation of nuclear factor-κB (NF-κB) p65 were measured by enzyme-linked immunosorbent assay (ELISA). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) activity in supernatants. Expression of intracellular adhesion molecule (ICAM)-1 and MyD88 was analyzed by flow cytometry and Western blot analysis, respectively. RESULTS Etidronate down-regulated IL-8 and MCP-1 production and NF-κB p65 activation induced by Pam3CSK4, but not lipid A, in U937 cells. Etidronate also inhibited MyD88 expression in U937 cells incubated with Pam3CSK4. CONCLUSION Etidronate down-regulates IL-8 and MCP-1 production in U937 cells by inhibiting both the expression of MyD88 and activation of NF-κB p65 in the TLR2, but not TLR4, pathway.
Collapse
Affiliation(s)
- Naohito Yambe
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Japan
| | - Riyoko Tamai
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Japan
| | - Izumi Mashima
- Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Japan
| | - Yusuke Kiyoura
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Japan
| |
Collapse
|
37
|
Association of Dickkopf-1 Polymorphisms With Radiological Damage and Periodontal Disease in Patients With Early Rheumatoid Arthritis. J Clin Rheumatol 2020; 26:S187-S194. [DOI: 10.1097/rhu.0000000000001391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Cheng Z, Do T, Mankia K, Meade J, Hunt L, Clerehugh V, Speirs A, Tugnait A, Emery P, Devine D. Dysbiosis in the oral microbiomes of anti-CCP positive individuals at risk of developing rheumatoid arthritis. Ann Rheum Dis 2020; 80:162-168. [PMID: 33004333 DOI: 10.1136/annrheumdis-2020-216972] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES An increased prevalence of periodontitis and perturbation of the oral microbiome has been identified in patients with rheumatoid arthritis (RA). The periodontal pathogen Porphyromonas gingivalis may cause local citrullination of proteins, potentially triggering anti-citrullinated protein antibody production. However, it is not known if oral dysbiosis precedes the onset of clinical arthritis. This study comprehensively characterised the oral microbiome in anti-cyclic citrullinated peptide (anti-CCP) positive at-risk individuals without clinical synovitis (CCP+at risk). METHODS Subgingival plaque was collected from periodontally healthy and diseased sites in 48 CCP+at risk, 26 early RA and 32 asymptomatic healthy control (HC) individuals. DNA libraries were sequenced on the Illumina HiSeq 3000 platform. Taxonomic profile and functional capability of the subgingival microbiome were compared between groups. RESULTS At periodontally healthy sites, CCP+at risk individuals had significantly lower microbial richness compared with HC and early RA groups (p=0.004 and 0.021). Microbial community alterations were found at phylum, genus and species levels. A large proportion of the community differed significantly in membership (523 species; 35.6%) and structure (575 species; 39.1%) comparing CCP+at risk and HC groups. Certain core species, including P. gingivalis, had higher relative abundance in the CCP+at risk group. Seventeen clusters of orthologous gene functional units were significantly over-represented in the CCP+at risk group compared with HC (adjusted p value <0.05). CONCLUSION Anti-CCP positive at-risk individuals have dysbiotic subgingival microbiomes and increased abundance of P. gingivalis compared with controls. This supports the hypothesis that the oral microbiome and specifically P. gingivalis are important in RA initiation.
Collapse
Affiliation(s)
- Zijian Cheng
- Division of Oral Biology, University of Leeds, School of Dentistry, Leeds, UK.,The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Thuy Do
- Division of Oral Biology, University of Leeds, School of Dentistry, Leeds, UK
| | - Kulveer Mankia
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, School of Medicine, Leeds, UK.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Josephine Meade
- Division of Oral Biology, University of Leeds, School of Dentistry, Leeds, UK
| | - Laura Hunt
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, School of Medicine, Leeds, UK.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Val Clerehugh
- Division of Restorative Dentistry, University of Leeds, School of Dentistry, Leeds, UK
| | - Alastair Speirs
- Leeds Dental Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Aradhna Tugnait
- Division of Restorative Dentistry, University of Leeds, School of Dentistry, Leeds, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, School of Medicine, Leeds, UK.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Deirdre Devine
- Division of Oral Biology, University of Leeds, School of Dentistry, Leeds, UK
| |
Collapse
|
39
|
|
40
|
Tachibana M, Yonemoto Y, Okamura K, Suto T, Sakane H, Kaneko T, Dam TT, Okura C, Tajika T, Tsushima Y, Chikuda H. Does periodontitis affect the treatment response of biologics in the treatment of rheumatoid arthritis? Arthritis Res Ther 2020; 22:178. [PMID: 32711580 PMCID: PMC7382136 DOI: 10.1186/s13075-020-02269-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) and periodontitis (PD) have been suggested to share many clinical and pathological features. However, few reports have investigated the relationship between the degree of PD and the treatment response to RA. This study aimed to examine the relationship between the extent of PD and the treatment response to biologics in RA patients using FDG-PET/CT. METHODS Sixty RA patients (male, n = 14; female, n = 46; average age, 58.3 years) treated with biologic agents were included in this study. FDG-PET/CT was performed at baseline and 6 months after the initiation of biological therapy. The maximum standardized uptake value (SUVmax) was used as a representative value for the assessment of the FDG uptake in periodontal tissue and joints including the bilateral shoulders, elbows, wrists, hip, knees, and ankle joints. The Disease Activity Score (DAS) 28-CRP and the following clinical parameters were assessed: C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), anti-cyclic citrullinated peptide antibody (ACPA), rheumatoid factor (RF), and matrix metalloproteinase 3 (MMP-3). The relationship between the treatment response of RA and the baseline SUVmax of the periodontal tissue was evaluated. RESULTS The baseline periodontal SUVmax was related to patient age (r = 0.302, p = 0.009) and the ACPA level (r = 0.265, p = 0.025). The DAS28-CRP, CRP, ESR, MMP-3, and joint SUVmax values were significantly decreased after 6 months of biological therapy. However, the mean periodontal SUVmax, ACPA, and RF showed no significant changes after treatment. There was a significantly negative correlation between the baseline periodontal SUVmax and the treatment response of DAS28-CRP (r = - 0.369, p = 0.004). CONCLUSION There was a negative correlation between the extent of PD at baseline and the treatment response of RA patients who received biological therapy. The evaluation of the periodontal condition is considered to be an essential part for the management of RA.
Collapse
Affiliation(s)
- Masahiro Tachibana
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| | - Yukio Yonemoto
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| | - Koichi Okamura
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan.
| | - Takahito Suto
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| | - Hideo Sakane
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuya Kaneko
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| | - Trang Thuy Dam
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan.,Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan.,Radiology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Chisa Okura
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| | - Tsuyoshi Tajika
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan.,Research Program for Diagnostic and Molecular Imaging, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
41
|
Desclos-Theveniau M, Bonnaure-Mallet M, Meuric V. [Protein arginine deiminase of oral microbiome plays a causal role in the polyarthritis rheumatoid initiating]. Med Sci (Paris) 2020; 36:465-471. [PMID: 32452368 DOI: 10.1051/medsci/2020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the last decade, the association between the periodontitis and rheumatoid arthritis (RA) has been established, suggesting that oral microbiome plays a causal role by initiating this chronic autoimmune inflammatory disease of articulation. Both pathogenesis are similar in term of chronic inflammation, tissue breakdown and bone resorption. Molecular aspects have also revealed that citrullination, a post-translational modification catalyzed by peptidyl-arginine deiminases (PADs), is involved in both diseases. For RA, citrullinated proteins production leads to the synthesis the of anti-citrullinated protein antibodies triggering the loss of immune tolerance. In humans, five PADs have been identified. Recently, studies have found that only Porphyromonas species possess PAD. Thus, a major periodontal pathogen, Porphyromonas gingivalis, is able to generate citrullinated epitopes, and could consequently induce anti-citrullinated protein antibodies. In this review, citrullination process, periodontitis and RA are described to put them in relation with molecular, clinical and epidemiological studies establishing the association between periodontitis and RA.
Collapse
Affiliation(s)
- Marie Desclos-Theveniau
- Inserm, INRAE, Univ Rennes 1, CHU de Rennes, Nutrition, Métabolismes et Cancer, 2 avenue du professeur Léon Bernard, 35043 Rennes, France
| | - Martine Bonnaure-Mallet
- Inserm, INRAE, Univ Rennes 1, CHU de Rennes, Nutrition, Métabolismes et Cancer, 2 avenue du professeur Léon Bernard, 35043 Rennes, France
| | - Vincent Meuric
- Inserm, INRAE, Univ Rennes 1, CHU de Rennes, Nutrition, Métabolismes et Cancer, 2 avenue du professeur Léon Bernard, 35043 Rennes, France
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW To explore the pathogenic association between periodontal disease and rheumatoid arthritis focusing on the role of Porphyromonas gingivalis. RECENT FINDINGS In the last decades our knowledge about the pathogenesis of rheumatoid arthritis substantially changed. Several evidences demonstrated that the initial production of autoantibodies is not localized in the joint, rather in other immunological-active sites. A central role seems to be played by periodontal disease, in particular because of the ability of P. gingivalis to induce citrullination, the posttranslational modification leading to the production of anticitrullinated protein/peptide antibodies, the most sensitive and specific rheumatoid arthritis biomarker. SUMMARY The pathogenic role of P. gingivalis has been demonstrated in mouse models in which arthritis was either triggered or worsened in infected animals. P. gingivalis showed its detrimental role not only by inducing citrullination but also by means of other key mechanisms including induction of NETosis, osteoclastogenesis, and Th17 proinflammatory response leading to bone damage and systemic inflammation.
Collapse
|
43
|
Bartold PM, Lopez‐Oliva I. Periodontitis and rheumatoid arthritis: An update 2012‐2017. Periodontol 2000 2020; 83:189-212. [DOI: 10.1111/prd.12300] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Mark Bartold
- Department of Dentistry University of Adelaide Adelaide South Australia Australia
| | | |
Collapse
|
44
|
Abstract
Rheumatoid Arthritis (RA) is a severe, chronic autoimmune disease that affects 1% of the world's population. Familial risk contributes 50% of the risk of seropositive RA, with strongest risks seen in first-degree relatives. Smoking increases the risk of developing anti-citrullinated peptide antibody (ACPA)+ RA, particularly in individuals with high-risk RA-susceptibility alleles. Other contributory environmental risks including particulate exposure, periodontal disease, bronchiectasis, diet, obesity and the oral contraceptive impact respiratory, oral, intestinal and genital tract mucosal sites. Furthermore, the first signs of autoimmunity may appear at mucosal sites e.g. sputum ACPA-IgA and IgG. While oral and faecal dysbiosis are well described, there is no consistent single bacterial species that appears to drive RA. Animal and human data suggest a model in which multiple environmental influences impact mucosal immune function through the host genetics through enhanced mucosal permeability and the traffic of pro-inflammatory PAMPs and the amplification of autoimmune responses. In some cases, autoimmunity may be driven by cross-reactivity, or mimicry, to pathogen-specific antigens, particularly where the host immune system fails to support their rapid control and elimination.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia
| | - Rabina Giri
- Mater Research Institute-UQ, Faculty of Medicine, University of Queensland, Brisbane, 4102, QLD, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia.
| |
Collapse
|
45
|
González-Febles J, Rodríguez-Lozano B, Sánchez-Piedra C, Garnier-Rodríguez J, Bustabad S, Hernández-González M, González-Dávila E, Sanz M, Díaz-González F. Association between periodontitis and anti-citrullinated protein antibodies in rheumatoid arthritis patients: a cross-sectional study. Arthritis Res Ther 2020; 22:27. [PMID: 32054521 PMCID: PMC7020577 DOI: 10.1186/s13075-020-2121-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
AIM The aim of this study was to evaluate the association between periodontal parameters related with the periodontal disease severity and the presence and levels of anti-citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) patients. MATERIALS AND METHODS This cross-sectional study included 164 RA patients. Socio-demographics and RA disease characteristics, including ELISA-detected ACPA (anti-CCP-2), were recorded. Exposure was assessed by periodontal parameters: plaque index (PI), bleeding on probing (BoP), probing pocket depth, and clinical attachment levels (CAL). Presence and levels of ACPAs (outcome) and exposure variables were compared by both parametric and non-parametric tests and associations were evaluated by adjusted odds ratio (OR). RESULTS A significant association was observed between the presence of anti-CCP antibodies and severity of periodontal outcomes such as the mean CAL (OR 1.483, p = 0.036), mean PI (OR 1.029, p = 0.012), and the number of pockets ≥ 5 mm (OR 1.021, p = 0.08). High anti-CCP antibodies levels were associated with mean CAL, mean PI, and number of pockets ≥ 5 mm with an OR of 1.593 (p = 0.043), 1.060 (p < 0.001), and 1.031 (p = 0.031), respectively. Furthermore, a significant increase of 4.45 U/mL in anti-CCP antibodies levels (p = 0.002) in RA patients was found for each pocket ≥ 5 mm after adjusting for age, gender, smoking, time of disease evolution, and RA activity. CONCLUSIONS In RA patients, the severity of periodontal conditions such as mean CAL, mean PI, and the number of pockets ≥ 5 mm were linearly associated with both the presence and levels of anti-CCP antibodies.
Collapse
Affiliation(s)
- Jerián González-Febles
- Departamento de Especialidades Odontológicas, Facultad de Odontología, Universidad Complutense, Madrid, Spain
- Grupo de Investigación de Etiología y Tratamiento de las Enfermedades Periodontales (ETEP), Facultad de Odontología, Universidad Complutense, Madrid, Spain
| | | | | | | | - Sagrario Bustabad
- Servicio de Reumatología, Hospital Universitario de Canarias, S/C de Tenerife, Spain
| | | | - Enrique González-Dávila
- Departamento de Matemáticas, Estadística e Investigación Operativa, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Mariano Sanz
- Grupo de Investigación de Etiología y Tratamiento de las Enfermedades Periodontales (ETEP), Facultad de Odontología, Universidad Complutense, Madrid, Spain
| | - Federico Díaz-González
- Grupo de Investigación de Etiología y Tratamiento de las Enfermedades Periodontales (ETEP), Facultad de Odontología, Universidad Complutense, Madrid, Spain.
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Laguna, C/Ofra s/n, 38320, La Laguna, Spain.
| |
Collapse
|
46
|
MPMBP down-regulates Toll-like receptor (TLR) 2 ligand-induced proinflammatory cytokine production by inhibiting NF-κB but not AP-1 activation. Int Immunopharmacol 2020; 79:106085. [DOI: 10.1016/j.intimp.2019.106085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
|
47
|
Tong Y, Zheng L, Qing P, Zhao H, Li Y, Su L, Zhang Q, Zhao Y, Luo Y, Liu Y. Oral Microbiota Perturbations Are Linked to High Risk for Rheumatoid Arthritis. Front Cell Infect Microbiol 2020; 9:475. [PMID: 32039051 PMCID: PMC6987375 DOI: 10.3389/fcimb.2019.00475] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/24/2019] [Indexed: 02/05/2023] Open
Abstract
Oral microbial dysbiosis is known to increase susceptibility of an individual to develop rheumatoid arthritis (RA). Individuals at-risk of RA may undergo different phases of disease progression. In this study, we aim to investigate whether and whereby the oral microbiome communities alter prior to symptoms of RA. Seventy-nine saliva samples were collected from 29 high-risk individuals, who were positive for anti-citrullinated protein antibodies (ACPA) and have no clinical arthritis, 27 RA patients and 23 healthy controls (HCs). The salivary microbiome was examined using 16S ribosomal RNA gene sequencing. Alpha and beta diversity analysis and the linear discriminant analysis were applied to examine the bacterial diversity, community structure and discriminatory taxa between three groups, respectively. The correlation between salivary bacteria and autoantibodies were analyzed. In the “pre-clinical” stages, salivary microbial diversity was significantly reduced comparing to RA patients and HCs. In contrast to HCs, like RA patients, individuals at high-risk for RA showed a reduction in the abundance of genus Defluviitaleaceae_UCG-011 and the species Neisseria oralis, but an expansion of Prevotella_6. Unexpectedly, the relative abundance of Porphyromonas gingivalis, reported as opportunistic pathogens for RA development, was significantly decreased in high-risk individuals. Additionally, we identified four genera in the saliva from high-risk individuals positively correlated with serum ACPA titers, and the other two genera inversely displayed. In summary, we observed a characteristic compositional change of salivary microbes in individuals at high-risk for RA, suggesting that oral microbiota dysbiosis occurs in the “pre-clinical” stage of RA and are correlated with systemic autoimmune features.
Collapse
Affiliation(s)
- Yanli Tong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Linlin Zheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Pingying Qing
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Linchong Su
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Rantapää Dahlqvist S, Andrade F. Individuals at risk of seropositive rheumatoid arthritis: the evolving story. J Intern Med 2019; 286:627-643. [PMID: 31562671 PMCID: PMC6878216 DOI: 10.1111/joim.12980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aetiology of the autoimmune disease rheumatoid arthritis (RA) involves a complex interplay between genetic and environmental factors that initiate many years before the onset of clinical symptoms. These interactions likely include both protective and susceptibility factors which together determine the risk of developing RA. More than 100 susceptibility loci have been linked to RA. The strongest association is with HLA-DRB1 alleles encoding antigen presenting molecules containing a unique sequence in the peptide-binding grove called the 'shared epitope'. Female sex, infections during childhood, lifestyle habits (e.g. smoking and diet) and distinct microbial agents, amongst many others, are interacting risk factors thought to contribute to RA pathogenesis by dysregulating the immune system in individuals with genetic susceptibility. Interestingly, patients with RA develop autoantibodies many years before the clinical onset of disease, providing strong evidence that the lack of tolerance to arthritogenic antigens is amongst the earliest events in the initiation of seropositive RA. Here, we will discuss the clinical and mechanistic evidence surrounding the role of different environmental and genetic factors in the phases leading to the production of autoantibodies and the initiation of symptomatic RA. Understanding this complexity is critical in order to develop tools to identify drivers of disease initiation and propagation and to develop preventive therapeutics.
Collapse
Affiliation(s)
- S Rantapää Dahlqvist
- Institution of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - F Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Oluwagbemigun K, Yucel-Lindberg T, Dietrich T, Tour G, Sherina N, Hansson M, Bergmann M, Lundberg K, Boeing H. A cross-sectional investigation into the association between Porphyromonas gingivalis and autoantibodies to citrullinated proteins in a German population. Ther Adv Musculoskelet Dis 2019; 11:1759720X19883152. [PMID: 31723356 PMCID: PMC6831975 DOI: 10.1177/1759720x19883152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/26/2019] [Indexed: 01/22/2023] Open
Abstract
Background Porphyromonas gingivalis (P.g) is unique among pathogens due to its ability to generate citrullinated proteins in an inflammatory milieu, potentially mediating the loss of immune tolerance, the production of anticitrullinated protein antibodies (ACPAs), and subsequently the development of rheumatoid arthritis (RA). Based on this hypothesis, we set out to investigate whether P.g is linked to ACPAs in a well-characterized German population. Participants and methods A total of 600 participants (292 women and 308 men with a mean age of 67 years) of the European Prospective Investigation into Cancer and Nutrition-Potsdam study were selected in 2013, and paired saliva and serum samples were collected. Salivary P.g DNA and serum anticyclic citrullinated peptide (anti-CCP2) levels were quantified by real-time polymerase chain reaction and anti-CCP2 enzyme-linked immunosorbent assay, respectively. In selected participants, additional ACPA fine-specificities were also analysed on a custom-made multiplex peptide array. Results Among participants with C-reactive protein greater than 3.0 mg/l, a one-unit increase in P.g DNA was associated with an almost twofold increase in anti-CCP2 levels. Moreover, participants with high P.g DNA had on average approximately 2.8-times higher anti-CCP2 levels when compared with participants with low P.g DNA, (Holm-adjusted p value = 0.01). Furthermore, citrullinated epitopes on α-enolase and vimentin were common ACPA reactivities among participants who also had high P.g DNA and elevated C-reactive protein. Conclusions Our study suggests that in specific subgroups of individuals with systemic inflammation, higher salivary P.g DNA is associated with elevated serum ACPA. These data support a role for P.g in the development of anticitrulline immunity.
Collapse
Affiliation(s)
- Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Endenicher Allee 19b, Bonn, 53115, Germany
| | - Tülay Yucel-Lindberg
- Periodontology Unit, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Dietrich
- Department of Oral Surgery, School of Dentistry, University of Birmingham, Birmingham, UK
| | - Gregory Tour
- Periodontology Unit, Department of Dental Medicine, Karolinska Institutet, Sweden
| | - Natalia Sherina
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Monika Hansson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Bergmann
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Nuthetal, Germany
| | - Karin Lundberg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Nuthetal, Germany
| |
Collapse
|
50
|
Chaparro-Sanabria JA, Bautista-Molano W, Bello-Gualtero JM, Chila-Moreno L, Castillo DM, Valle-Oñate R, Chalem P, Romero-Sánchez C. Association of adipokines with rheumatic disease activity indexes and periodontal disease in patients with early rheumatoid arthritis and their first-degree relatives. Int J Rheum Dis 2019; 22:1990-2000. [PMID: 31659869 DOI: 10.1111/1756-185x.13724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the adipokine levels in early rheumatoid arthritis (eRA) and first-degree relatives (FDR) of patients with RA and establish their association with rheumatic disease activity and periodontal variables. METHOD A cross-sectional study with eRA patients, FDR and a healthy population. Adipokine levels, clinical, joint radiological indexes and periodontal variables were evaluated. A descriptive, bivariate analysis was performed based on the adipokine levels by χ2 , Fisher's test and Mann-Whitney U test. A logistic regression was made for associations. RESULTS High leptin levels were associated with the diagnosis of eRA (odds ratio [OR] = 2.79; 95% CI 1.54-5.07). Early rheumatoid arthritis with high adiponectin levels was less likely to have Multidimensional Health Assessment Questionnaire score >3, body mass index (BMI) >25 and Routine Assessment of Patient Index Data 3 score >12 (OR = 0.16; 95% CI 0.03-0.72). Early rheumatoid arthritis was more likely to present high leptin and interleukin (IL)6 levels with low adiponectin simultaneously (OR = 5.03; 95% CI 1.05-24.0). High leptin levels were associated with the FDR adjusted for IgG2 Porphyromonas gingivalis, swollen joints, P gingivalis and low IL6 (OR = 2.57; 95% CI 1.14-5.95). CONCLUSION High adipokine levels in eRA may modulate the disease activity. Having more than 1 adipokine at high serum levels is associated with increased disability, disease activity and BMI, indicating that RA is controlled by adiponectin levels in the early stages of the disease. High leptin levels, presence of P gingivalis and swollen joints may be the factors associated with the development of RA in FDR.
Collapse
Affiliation(s)
- Jeimy A Chaparro-Sanabria
- Rheumatology and Immunology Department, Hospital Militar Central, Bogotá, Colombia.,Clinical Immunology Group-School of Medicine, Universidad Militar Nueva Granada, Bogotá, Colombia
| | - Wilson Bautista-Molano
- Clinical Immunology Group-School of Medicine, Universidad Militar Nueva Granada, Bogotá, Colombia.,Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Juan M Bello-Gualtero
- Rheumatology and Immunology Department, Hospital Militar Central, Bogotá, Colombia.,Clinical Immunology Group-School of Medicine, Universidad Militar Nueva Granada, Bogotá, Colombia
| | - Lorena Chila-Moreno
- Clinical Immunology Group-School of Medicine, Universidad Militar Nueva Granada, Bogotá, Colombia.,Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Diana M Castillo
- Unit of Oral Basic Investigation, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Rafael Valle-Oñate
- Rheumatology and Immunology Department, Hospital Militar Central, Bogotá, Colombia
| | - Phillipe Chalem
- Institute of Rheumatology Fernando Chalem Foundation, Bogotá, Colombia
| | - Consuelo Romero-Sánchez
- Rheumatology and Immunology Department, Hospital Militar Central, Bogotá, Colombia.,Clinical Immunology Group-School of Medicine, Universidad Militar Nueva Granada, Bogotá, Colombia.,Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|