1
|
Wu Y, Song P, Wang M, Liu H, Jing Y, Su J. Extracellular derivatives for bone metabolism. J Adv Res 2024; 66:329-347. [PMID: 38218580 PMCID: PMC11674789 DOI: 10.1016/j.jare.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Bone metabolism can maintain the normal homeostasis and function of bone tissue. Once the bone metabolism balance is broken, it will cause osteoporosis, osteoarthritis, bone defects, bone tumors, or other bone diseases. However, such orthopedic diseases still have many limitations in clinical treatment, such as drug restrictions, drug tolerance, drug side effects, and implant rejection. AIM OF REVIEW In complex bone therapy and bone regeneration, extracellular derivatives have become a promising research focus to solve the problems of bone metabolic diseases. These derivatives, which include components such as extracellular matrix, growth factors, and extracellular vesicles, have significant therapeutic potential. It has the advantages of good biocompatibility, low immune response, and dynamic demand for bone tissue. The purpose of this review is to provide a comprehensive perspective on extracellular derivatives for bone metabolism and elucidate the intrinsic properties and versatility of extracellular derivatives. Further discussion of them as innovative advanced orthopedic materials for improving the effectiveness of bone therapy and regeneration processes. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we first listed the types and functions of three extracellular derivatives. Then, we discussed the effects of extracellular derivatives of different cell sources on bone metabolism. Subsequently, we collected applications of extracellular derivatives in the treatment of bone metabolic diseases and summarized the advantages and challenges of extracellular derivatives in clinical applications. Finally, we prospected the extracellular derivatives in novel orthopedic materials and clinical applications. We hope that the comprehensive understanding of extracellular derivatives in bone metabolism will provide new solutions to bone diseases.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
2
|
Kulakova K, Lawal TR, Mccarthy E, Floudas A. The Contribution of Macrophage Plasticity to Inflammatory Arthritis and Their Potential as Therapeutic Targets. Cells 2024; 13:1586. [PMID: 39329767 PMCID: PMC11430612 DOI: 10.3390/cells13181586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammatory arthritis are common chronic inflammatory autoimmune diseases characterised by progressive, destructive inflammation of the joints leading to a loss of function and significant comorbidities; importantly, there are no cures and only 20% of patients achieve drug-free remission for over 2 years. Macrophages play a vital role in maintaining homeostasis, however, under the wrong environmental cues, become drivers of chronic synovial inflammation. Based on the current "dogma", M1 macrophages secrete pro-inflammatory cytokines and chemokines, promoting tissue degradation and joint and bone erosion which over time lead to accelerated disease progression. On the other hand, M2 macrophages secrete anti-inflammatory mediators associated with wound healing, tissue remodelling and the resolution of inflammation. Currently, four subtypes of M2 macrophages have been identified, namely M2a, M2b, M2c and M2d. However, more subtypes may exist due to macrophage plasticity and the ability for repolarisation. Macrophages are highly plastic, and polarisation exists as a continuum with diverse intermediate phenotypes. This plasticity is achieved by a highly amenable epigenome in response to environmental stimuli and shifts in metabolism. Initiating treatment during the early stages of disease is important for improved prognosis and patient outcomes. Currently, no treatment targeting macrophages specifically is available. Such therapeutics are being investigated in ongoing clinical trials. The repolarisation of pro-inflammatory macrophages towards the anti-inflammatory phenotype has been proposed as an effective approach in targeting the M1/M2 imbalance, and in turn is a potential therapeutic strategy for IA diseases. Therefore, elucidating the mechanisms that govern macrophage plasticity is fundamental for the success of novel macrophage targeting therapeutics.
Collapse
Affiliation(s)
- Karina Kulakova
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
| | - Tope Remilekun Lawal
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
| | - Eoghan Mccarthy
- Department of Rheumatology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
- Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Achilleas Floudas
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
- Medical School, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
3
|
Yu J, Wang X, Zhou Y, Hu J, Gu L, Zhou H, Yue C, Zhou P, Li Y, Zhao Q, Zhang C, Hu Y, Zeng F, Zhao F, Li G, Feng Y, He M, Huang S, Wu W, Huang N, Cui K, Li J. EDIL3 alleviates Mannan-induced psoriatic arthritis by slowing the intracellular glycolysis process in mononuclear-derived dendritic cells. Inflammation 2024:10.1007/s10753-024-02134-y. [PMID: 39289212 DOI: 10.1007/s10753-024-02134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Psoriatic arthritis (PsA) is an immune-mediated, chronic inflammatory joint disease that commonly occurs as a complication of psoriasis. EGF-like repeats and discoidal I-like domain 3 (EDIL3) is a secreted protein with multiple structural domains and associated with various physiological functions. In this study, we employed a mannan-induced psoriatic arthritis model to investigate the impact of EDIL3 on PsA pathogenesis. Notably, a downregulation of EDIL3 expression was observed in the PsA model, which correlated with increased disease severity. EDIL3 knockout mice exhibited a more severe phenotype of PsA, which was ameliorated upon re-infusion of recombinant EDIL3 protein. The mitigation effect of EDIL3 on PsA depends on its regulation of the activation of monocyte-derived DCs (MoDCs) and T-help 17 cells (Th17). After inhibiting the function of MoDCs and Th17 cells with neutralizing antibodies, the beneficial effects of EDIL3 on PsA were lost. By inducing adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and suppressing protein kinase B (AKT) phosphorylation, EDIL3 attenuates intracellular glycolysis in MoDCs stimulated by glucose, thereby impeding their maturation and differentiation. Moreover, it diminishes the differentiation of Th17 cells and decelerates the progression of PsA. In conclusion, our findings elucidate the role and mechanism of EDIL3 in the development of PsA, providing a new target for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jiadong Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifan Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linna Gu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengcheng Yue
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pei Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qixiang Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Chen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yawen Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanlian Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fulei Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guolin Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingxiang He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shishi Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenling Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nongyu Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Jiong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Baek HS, Hong VS, Kang H, Lee SJ, Lee JY, Kang H, Jeong S, Jung H, Park JW, Kwon TK, Son CN, Kim SH, Lee J, Kim KS, Kim S. Anti-rheumatic property and physiological safety of KMU-11342 in in vitro and in vivo models. Inflamm Res 2024; 73:1371-1391. [PMID: 38879731 PMCID: PMC11281989 DOI: 10.1007/s00011-024-01904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder characterized by joint destruction due to synovial hypertrophy and the infiltration of inflammatory cells. Despite substantial progress in RA treatment, challenges persist, including suboptimal treatment responses and adverse effects associated with current therapies. This study investigates the anti-rheumatic capabilities of the newly identified multi-protein kinase inhibitor, KMU-11342, aiming to develop innovative agents targeting RA. In this study, we synthesized the novel multi-protein kinase inhibitor KMU-11342, based on indolin-2-one. We assessed its cardiac electrophysiological safety using the Langendorff system in rat hearts and evaluated its toxicity in zebrafish in vivo. Additionally, we examined the anti-rheumatic effects of KMU-11342 on human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), THP-1 cells, and osteoclastogenesis in RAW264.7 cells. KMU-11342 demonstrated the ability to inhibit LPS-induced chemokine inhibition and the upregulation of pro-inflammatory cytokines, cyclooxygenase-2, inducible nitric oxide synthase, p-IKKα/β, p-NF-κB p65, and the nuclear translocation of NF-κB p65 in RA-FLS. It effectively suppressed the upregulation of NLR family pyrin domain containing 3 (NLRP3) and caspase-1 cleavage. Furthermore, KMU-11342 hindered the activation of osteoclast differentiation factors such as RANKL-induced TRAP, cathepsin K, NFATc-1, and c-Fos in RAW264.7 cells. KMU-11342 mitigates LPS-mediated inflammatory responses in THP-1 cells by inhibiting the activation of NLRP3 inflammasome. Notably, KMU-11342 exhibited minimal cytotoxicity in vivo and electrophysiological cardiotoxicity ex vivo. Consequently, KMU-11342 holds promise for development as a therapeutic agent in RA treatment.
Collapse
Affiliation(s)
- Hye Suk Baek
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
| | - Victor Sukbong Hong
- Department of Chemistry, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
| | - Hyunsu Kang
- R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Sang-Jin Lee
- Department of Biological Sciences, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu, 42601, Republic of Korea
| | - Hyunju Kang
- Department of Food and Nutrition, Keimyung University, Daegu, 42601, Republic of Korea
| | - Seungik Jeong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Hyunho Jung
- Department of Chemistry, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
| | - Jong Wook Park
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
- Institute of Medical Science, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
- Institute of Medical Science, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
| | - Chang-Nam Son
- Department of Rheumatology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, 712, Dongil-ro, Uijeongbu-si, 11759, Gyeonggi-do, Republic of Korea
| | - Sang Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jinho Lee
- Department of Chemistry, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea.
| | - Ki-Suk Kim
- R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea.
- Institute of Medical Science, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea.
- Institute for Cancer Research, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea.
| |
Collapse
|
5
|
Han N, Liu Y, Li X, Du J, Guo L, Liu Y. Reuterin isolated from the probiotic Lactobacillus reuteri promotes periodontal tissue regeneration by inhibiting Cx43-mediated the intercellular transmission of endoplasmic reticulum stress. J Periodontal Res 2024; 59:552-564. [PMID: 38193526 DOI: 10.1111/jre.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE The present study aimed to evaluate the effects of reuterin, a bioactive isolated from the probiotic Lactobacillus reuteri (L. reuteri) on periodontal tissue regeneration, and provide a new strategy for periodontitis treatment in the future. BACKGROUND Data discussing the present state of the field: Probiotics are essential for maintaining oral microecological balance. Our previous study confirmed that probiotic L. reuteri extracts could rescue the function of mesenchymal stem cells (MSCs) and promote soft tissue wound healing by neutralizing inflammatory Porphyromonas gingivalis-LPS. Periodontitis is a chronic inflammatory disease caused by bacteria seriously leading to tooth loss. In this study, we isolated and purified reuterin from an extract of L. reuteri to characterize from the extracts of L. reuteri to characterize its role in promoting periodontal tissue regeneration and controlling inflammation in periodontitis. METHODS Chromatographic analysis was used to isolate and purify reuterin from an extract of L. reuteri, and HNMR was used to characterize its structure. The inflammatory cytokine TNFα was used to simulate the inflammatory environment. Periodontal ligament stem cells (PDLSCs) were treated with TNFα and reuterin after which their effects were characterized using scratch wound cell migration assays to determine the concentration of reuterin, an experimental periodontitis model in rats was used to investigate the function of reuterin in periodontal regeneration and inflammation control in vivo. Real-time PCR, dye transfer experiments, image analysis, alkaline phosphatase activity, Alizarin red staining, cell proliferation, RNA-sequencing and Western Blot assays were used to detect the function of PDLSCs. RESULTS In vivo, local injection of reuterin promoted periodontal tissue regeneration of experimental periodontitis in rats and reduced local inflammatory response. Moreover, we found that TNFα stimulation caused endoplasmic reticulum (ER) stress in PDLSCs, which resulted in decreased osteogenic differentiation. Treatment with reuterin inhibited the ER stress state of PDLSCs caused by the inflammatory environment and restored the osteogenic differentiation and cell proliferation functions of inflammatory PDLSCs. Mechanistically, we found that reuterin restored the functions of inflammatory PDLSCs by inhibiting the intercellular transmission of ER stress mediated by Cx43 in inflammatory PDLSCs and regulated osteogenic differentiation capacity. CONCLUSION Our findings identified reuterin isolated from extracts of the probiotic L. reuteri, which improves tissue regeneration and controls inflammation, thus providing a new therapeutic method for treating periodontitis.
Collapse
Affiliation(s)
- Nannan Han
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
6
|
Ishibashi HK, Nakamura Y, Saruga T, Imaizumi T, Kurose A, Kawaguchi S, Seya K, Sasaki E, Ishibashi Y. TLR3 signaling-induced interferon-stimulated gene 56 plays a role in the pathogenesis of rheumatoid arthritis. Exp Biol Med (Maywood) 2024; 249:10122. [PMID: 38881847 PMCID: PMC11176439 DOI: 10.3389/ebm.2024.10122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Rheumatoid fibroblast-like synoviocytes (RFLS) have an important role in the inflammatory pathogenesis of rheumatoid arthritis (RA). Toll-like receptor 3 (TLR3) is upregulated in RFLS; its activation leads to the production of interferon-β (IFN-β), a type I IFN. IFN-stimulated gene 56 (ISG56) is induced by IFN and is involved in innate immune responses; however, its role in RA remains unknown. Therefore, the purpose of this study was to investigate the role of TLR3-induced ISG56 in human RFLS. RFLS were treated with polyinosinic-polycytidylic acid (poly I:C), which served as a TLR3 ligand. ISG56, melanoma differentiation-associated gene 5 (MDA5), and C-X-C motif chemokine ligand 10 (CXCL10) expression were measured using quantitative reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. Using immunohistochemistry, we found that ISG56 was expressed in synovial tissues of patients with RA and osteoarthritis. Under poly I:C treatment, ISG56 was upregulated in RFLS. In addition, we found that the type I IFN-neutralizing antibody mixture suppressed ISG56 expression. ISG56 knockdown decreased CXCL10 expression and MDA5 knockdown decreased ISG56 expression. In addition, we found that ISG56 was strongly expressed in the synovial cells of patients with RA. TLR3 signaling induced ISG56 expression in RFLS and type I IFN was involved in ISG56 expression. ISG56 was also found to be associated with CXCL10 expression, suggesting that ISG56 may be involved in TLR3/type I IFN/CXCL10 axis, and play a role in RA synovial inflammation.
Collapse
Affiliation(s)
- Hikaru Kristi Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yuzuru Nakamura
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tatsuro Saruga
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Eiji Sasaki
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
7
|
Zheng Q, Wang D, Lin R, Li Z, Chen Y, Chen R, Zheng C, Xu W. Effects of circulating inflammatory proteins on osteoporosis and fractures: evidence from genetic correlation and Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1386556. [PMID: 38757000 PMCID: PMC11097655 DOI: 10.3389/fendo.2024.1386556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Objective There is a controversy in studies of circulating inflammatory proteins (CIPs) in association with osteoporosis (OP) and fractures, and it is unclear if these two conditions are causally related. This study used MR analyses to investigate the causal associations between 91 CIPs and OP and 9 types of fractures. Methods Genetic variants data for CIPs, OP, and fractures were obtained from the publicly available genome-wide association studies (GWAS) database. We used inverse variance weighted (IVW) as the primary analysis, pleiotropy, and heterogeneity tests to analyze the validity and robustness of causality and reverse MR analysis to test for reverse causality. Results The IVW results with Bonferroni correction indicated that CXCL11 (OR = 1.2049; 95% CI: 1.0308-1.4083; P = 0.0192) can increase the risk of OP; IL-4 (OR = 1.2877; 95% CI: 1.1003-1.5070; P = 0.0016), IL-7 (OR = 1.2572; 95% CI: 1.0401-1.5196; P = 0.0180), IL-15RA (OR = 1.1346; 95% CI: 1.0163-1.2668; P = 0.0246), IL-17C (OR = 1.1353; 95% CI: 1.0272-1.2547; P = 0.0129), CXCL10 (OR = 1.2479; 95% CI: 1.0832-1.4377; P = 0.0022), eotaxin/CCL11 (OR = 1.1552; 95% CI: 1.0525-1.2678; P = 0.0024), and FGF23 (OR = 1.9437; 95% CI: 1.1875-3.1816; P = 0.0082) can increase the risk of fractures; whereas IL-10RB (OR = 0.9006; 95% CI: 0.8335-0.9730; P = 0.0080), CCL4 (OR = 0.9101; 95% CI: 0.8385-0.9878; P = 0.0242), MCP-3/CCL7 (OR = 0.8579; 95% CI: 0.7506-0.9806; P = 0.0246), IFN-γ [shoulder and upper arm (OR = 0.7832; 95% CI: 0.6605-0.9287; P = 0.0049); rib(s), sternum and thoracic spine (OR = 0.7228; 95% CI: 0.5681-0.9197; P = 0.0083)], β-NGF (OR = 0.8384; 95% CI: 0.7473-0.9407; P = 0.0027), and SIRT2 (OR = 0.5167; 95% CI: 0.3296-0.8100; P = 0.0040) can decrease fractures risk. Conclusion Mendelian randomization (MR) analyses indicated the causal associations between multiple genetically predicted CIPs and the risk of OP and fractures.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhechen Li
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuchao Chen
- Department of Paediatrics, Fujian Provincial Hospital South Branch, Fuzhou, China
| | - Rongsheng Chen
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Weihong Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Li X, Chen W, Liu D, Chen P, Wang S, Li F, Chen Q, Lv S, Li F, Chen C, Guo S, Yuan W, Li P, Hu Z. Pathological progression of osteoarthritis: a perspective on subchondral bone. Front Med 2024; 18:237-257. [PMID: 38619691 DOI: 10.1007/s11684-024-1061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 04/16/2024]
Abstract
Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as "top to bottom." However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone's physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the "bottom-up" progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.
Collapse
Affiliation(s)
- Xuefei Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenhua Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Liu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pinghua Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shiyun Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fangfang Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qian Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shunyi Lv
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fangyu Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chen Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Suxia Guo
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Weina Yuan
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pan Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhijun Hu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
9
|
Chen C, Wang S, Wang N, Zheng Y, Zhou J, Hong M, Chen Z, Wang S, Wang Z, Xiang S. Icariin inhibits prostate cancer bone metastasis and destruction via suppressing TAM/CCL5-mediated osteoclastogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155076. [PMID: 37716031 DOI: 10.1016/j.phymed.2023.155076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Bone metastasis occurs in nearly 70% of patients with metastatic prostate cancer (PCa), and represents the leading cause of death in patients with PCa. Emerging evidence has demonstrated the potential activities of icariin in modulating bone metabolism and remodelling the tumor microenvironment (TME). However, whether icariin could inhibit PCa bone metastasis and destruction by modulating the TME as well as the underlying mechanisms remains unclear. PURPOSE This study investigated whether icariin could inhibit PCa bone metastasis and destruction by modulating the bone TME as well as the underlying mechanisms. METHODS Osteoclasts were induced from mouse bone marrow-derived macrophages (BMMs) or Raw264.7 cells. PCa cells were cultured in the conditional medium (CM) of macrophages in vitro or co-injected with macrophages in vivo to simulate their coexistence in the TME. Multiple molecular biology experiments and the mouse RM1-Luc PCa bone metastasis model were used to explore the inhibitory activity and mechanism of icariin on PCa metastasis and bone destruction. RESULTS Icariin treatment significantly suppressed PCa growth, bone metastasis and destruction as well as osteoclastogenesis in vivo. Furthermore, icariin remarkably inhibited osteoclast differentiation, even in the presence of the CM of tumor-associated macrophages (TAMs), while exhibiting no obvious effect on osteoblasts. Moreover, icariin suppressed the M2 phenotype polarization of Raw264.7-derived TAMs and transcriptionally attenuated their CC motif chemokine ligand 5 (CCL5) expression and secretion via inhibiting SPI1. Additionally, CCL5 induced the differentiation and chemotaxis of osteoclast precursor cells by binding with its receptor CCR5. The clinicopathological analysis further verified the positive correlation between the TAM/CCL5/CCR5 axis and osteoclastogenesis within the TME of PCa patients. More importantly, icariin remarkably suppressed PCa metastasis-induced bone destruction in vivo by inhibiting osteoclastogenesis via downregulating the TAM/CCL5 pathway. CONCLUSION Altogether, these results not only implicate icariin as a promising candidate immunomodulator for PCa bone metastasis and destruction but also shed novel insight into targeting TAM/CCL5-mediated osteoclastogenesis as a potential treatment strategy for osteolytic bone metastasis. This study helps to advance the understanding of the crosstalk between bone TME and bone homeostasis.
Collapse
Affiliation(s)
- Chiwei Chen
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengqi Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianfu Zhou
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Hong
- Department of Pathology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiqiang Chen
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shusheng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiyu Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Songtao Xiang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Wang X, Mao Y, Ji S, Hu H, Li Q, Liu L, Shi S, Liu Y. Gamma-glutamyl transpeptidase and indirect bilirubin may participate in systemic inflammation of patients with psoriatic arthritis. Adv Rheumatol 2023; 63:53. [PMID: 37904193 DOI: 10.1186/s42358-023-00334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Previous studies have suggested that systemic metabolic abnormalities are closely related to psoriatic arthritis (PsA). Gamma-glutamyl transpeptidase (GGT) and indirect bilirubin (IBIL), two essential active substances in hepatic metabolism that have been demonstrated as an oxidative and anti-oxidative factor respectively, have been proved to be involved in oxidative stress damage and inflammation in several human diseases. However, their role in PsA remains unclear. METHODS In this retrospective comparative cohort study, a case group of 68 PsA patients and a control group of 73 healthy volunteers from the Third Hospital of Hebei Medical University were enrolled. Serum GGT, IBIL, GGT/IBIL ratio and C-reactive protein (CRP), a well applied bio-marker of systemic inflammatory in PsA, were compared between the two groups. Furthermore, the relationship of GGT, IBIL and GGT/IBIL with CRP were explored in PsA patients. Finally, the patients were divided into high inflammation group and low inflammation group according to the median value of CRP. Multivariate logistic regression analyses were used for the association of systemic inflammation level with GGT, IBIL and GGT/IBIL. RESULTS Compared with healthy controls, PsA patients exhibited significantly higher serum GGT, GGT/IBIL, and CRP levels and lower IBIL levels. Serum GGT and GGT/IBIL were positively correlated with CRP, whereas IBIL were negatively correlated with CRP. Binary logistic regression analysis revealed that serum GGT was a risk factor for high CRP in PsA, whereas IBIL was a protective factor. Furthermore, GGT/IBIL was a better indicator of high CRP condition in PsA patients than either GGT or IBIL alone, as determined by the receiver operating characteristic curves. CONCLUSION GGT and IBIL may participate in the pathogenesis of PsA. Additionally, GGT, IBIL and the balance of the two may reflect systemic inflammation mediated by oxidative stress events related to metabolic abnormalities to a certain extent.
Collapse
Affiliation(s)
- Xu Wang
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Mao
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shang Ji
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huanrong Hu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lichao Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shaomin Shi
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yaling Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
11
|
Qian T, Huo B, Deng X, Song X, Jiang Y, Yang J, Hao F. Decreased TAX1BP1 participates in systemic lupus erythematosus by regulating monocyte/macrophage function. Int Immunol 2023; 35:483-495. [PMID: 37465957 DOI: 10.1093/intimm/dxad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
Systemic lupus erythematosus (SLE) involves disorders of innate and adaptive immune pathways. Tax1-binding protein 1 (TAX1BP1) modulates the production of antibodies in B cells and the T-cell cycle by regulating the NF-κB signaling pathway. However, the potential association of TAX1BP1 with SLE and its role in monocytes/macrophages have not been fully elucidated. In this study, we utilized whole-exome sequencing (WES) in combination with Sanger sequencing and identified 16 gene mutations, including in TAX1BP1, in an SLE family. TAX1BP1 protein expression with western blotting detection was reduced in SLE patients and correlated with disease activity negatively. Furthermore, RNA sequencing and 4D Label-Free Phosphoproteomic analysis were employed to characterize the transcriptome and phosphoproteome profiles in THP-1 and THP-1-differentiated M1 macrophages with TAX1BP1 knockdown. Silencing of TAX1BP1 in THP-1 and THP-1-differentiated M1 macrophages led to an increase in cluster of differentiation 80 (CD80) expression and differential changes in CD14 and CD16 expression, as assessed by flow cytometry. Additionally, western blot analysis showed that knockdown of TAX1BP1 led to a reduction in TRAF6 and p-p65 in THP-1-differentiated macrophages, with or without lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α stimulation. Taken together, our findings suggest that TAX1BP1 participates in SLE activity by regulating antigen presentation in monocytes and inflammatory responses in M1 macrophages.
Collapse
Affiliation(s)
- Tian Qian
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Bengang Huo
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaorong Deng
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaoli Song
- Department of Rheumatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yiwei Jiang
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Hao
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
12
|
Krasnova O, Neganova I. Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Rev Rep 2023; 19:1635-1658. [PMID: 37204634 DOI: 10.1007/s12015-023-10558-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
As a highly dynamic organ, bone changes during throughout a person's life. This process is referred to as 'bone remodeling' and it involves two stages - a well-balanced osteoclastic bone resorption and an osteoblastic bone formation. Under normal physiological conditions bone remodeling is highly regulated that ensures tight coupling between bone formation and resorption, and its disruption results in a bone metabolic disorder, most commonly osteoporosis. Though osteoporosis is one of the most prevalent skeletal ailments that affect women and men aged over 40 of all races and ethnicities, currently there are few, if any safe and effective therapeutic interventions available. Developing state-of-the-art cellular systems for bone remodeling and osteoporosis can provide important insights into the cellular and molecular mechanisms involved in skeletal homeostasis and advise better therapies for patients. This review describes osteoblastogenesis and osteoclastogenesis as two vital processes for producing mature, active bone cells in the context of interactions between cells and the bone matrix. In addition, it considers current approaches in bone tissue engineering, pointing out cell sources, core factors and matrices used in scientific practice for modeling bone diseases and testing drugs. Finally, it focuses on the challenges that bone regenerative medicine is currently facing.
Collapse
Affiliation(s)
- O Krasnova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - I Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
13
|
Yang YL, Li XF, Song B, Wu S, Wu YY, Huang C, Li J. The Role of CCL3 in the Pathogenesis of Rheumatoid Arthritis. Rheumatol Ther 2023; 10:793-808. [PMID: 37227653 PMCID: PMC10326236 DOI: 10.1007/s40744-023-00554-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unexplained causes. Its pathological features include synovial tissue hyperplasia, inflammatory cell infiltration in joint cavity fluid, cartilage bone destruction, and joint deformation. C-C motif chemokine ligand 3 (CCL3) belongs to inflammatory cell chemokine. It is highly expressed in inflammatory immune cells. Increasingly, studies have shown that CCL3 can promote the migration of inflammatory factors to synovial tissue, the destruction of bone and joint, angiogenesis, and participate in the pathogenesis of RA. These symptoms indicate that the expression of CCL3 is highly correlated with RA disease. Therefore, this paper reviews the possible mechanism of CCL3 in the pathogenesis of RA, which may provide some new insights for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Ying-Li Yang
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Biao Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Sha Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Yuan Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
Huang X, Li Y, Liao H, Luo X, Zhao Y, Huang Y, Zhou Z, Xiang Q. Research Advances on Stem Cell-Derived Extracellular Vesicles Promoting the Reconstruction of Alveolar Bone through RANKL/RANK/OPG Pathway. J Funct Biomater 2023; 14:jfb14040193. [PMID: 37103283 PMCID: PMC10145790 DOI: 10.3390/jfb14040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Periodontal bone tissue defects and bone shortages are the most familiar and troublesome clinical problems in the oral cavity. Stem cell-derived extracellular vesicles (SC-EVs) have biological properties similar to their sources, and they could be a promising acellular therapy to assist with periodontal osteogenesis. In the course of alveolar bone remodeling, the RANKL/RANK/OPG signaling pathway is an important pathway involved in bone metabolism. This article summarizes the experimental studies of SC-EVs applied for the therapy of periodontal osteogenesis recently and explores the role of the RANKL/RANK/OPG pathway in their mechanism of action. Their unique patterns will open a new field of vision for people, and they will help to advance a possible future clinical treatment.
Collapse
Affiliation(s)
- Xia Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yuxiao Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Hui Liao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Xin Luo
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yueping Zhao
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zhiying Zhou
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Chen W, Fang Y, Wang H, Tan X, Zhu X, Xu Z, Jiang H, Wu X, Hong W, Wang X, Tu J, Wei W. Role of chemokine receptor 2 in rheumatoid arthritis: A research update. Int Immunopharmacol 2023; 116:109755. [PMID: 36724626 DOI: 10.1016/j.intimp.2023.109755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023]
Abstract
Rheumatoid arthritis (RA) is a multisystemic and inflammatory autoimmune disease characterized by joint destruction. The C-C motif chemokine receptor 2 (CCR2) is mainly expressed in monocytes and T cells, initiating their migration to sites of inflammation, ultimately leading to cartilage damage and bone destruction. CCR2 has long been considered a prospective target for treating autoimmune diseases. However, clinical studies on inhibitors or neutralizing antibodies against CCR2 in RA have exhibited limited efficacy. Recent evidence indicates that CCR2 may play different roles in RA. Hence, a comprehensive understanding regarding the role of CCR2 may facilitate the development of targeted drugs and provide novel insights for improving CCL2-mediated inflammatory diseases. This review summarizes the biological characteristics of CCR2, the related signaling pathways, and recent developments in CCR2-targeting therapeutics.
Collapse
Affiliation(s)
- Weile Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xiangling Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Zhen Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xuming Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wenming Hong
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinming Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
17
|
Murayama MA, Shimizu J, Miyabe C, Yudo K, Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front Immunol 2023; 14:1100869. [PMID: 36860872 PMCID: PMC9968812 DOI: 10.3389/fimmu.2023.1100869] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes inflammation and bone destruction in multiple joints. Inflammatory cytokines, such as IL-6 and TNF-α, play important roles in RA development and pathogenesis. Biological therapies targeting these cytokines have revolutionized RA therapy. However, approximately 50% of the patients are non-responders to these therapies. Therefore, there is an ongoing need to identify new therapeutic targets and therapies for patients with RA. In this review, we focus on the pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs) in RA. Inflamed tissues in RA, such as the synovium, highly express various chemokines to promote leukocyte migration, tightly controlled by chemokine ligand-receptor interactions. Because the inhibition of these signaling pathways results in inflammatory response regulation, chemokines and their receptors could be promising targets for RA therapy. The blockade of various chemokines and/or their receptors has yielded prospective results in preclinical trials using animal models of inflammatory arthritis. However, some of these strategies have failed in clinical trials. Nonetheless, some blockades showed promising results in early-phase clinical trials, suggesting that chemokine ligand-receptor interactions remain a promising therapeutic target for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
18
|
Barbarić Starčević K, Lukač N, Jelić M, Šućur A, Grčević D, Kovačić N. Reciprocal Alterations in Osteoprogenitor and Immune Cell Populations in Rheumatoid Synovia. Int J Mol Sci 2022; 23:ijms232012379. [PMID: 36293236 PMCID: PMC9604389 DOI: 10.3390/ijms232012379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is chronic, autoimmune joint inflammation characterized by irreversible joint destruction. Besides increased resorption, destruction is a result of decreased bone formation, due to suppressed differentiation and function of the mesenchymal lineage-derived osteoblasts in inflammatory milieu. In this study, we analyzed the cellular composition of synovial tissue from 11 RA and 10 control patients harvested during planned surgeries in order to characterize resident synovial progenitor populations. Synovial cells were released by collagenase, and labeled for flow cytometry by two antibody panels: 1. CD3-FITC, CD14-PE, 7-AAD, CD11b-PECy7, CD235a-APC, CD19-APCeF780; and 2. 7-AAD, CD105-PECy7, CD45/CD31/CD235a-APC, and CD200-APCeF780. The proportions of lymphocytes (CD3+, CD19+) and myeloid (CD11b+, CD14+) cells were higher in synovial tissue from the patients with RA than in the controls. Among non-hematopoietic (CD45-CD31-CD235a-) cells, there was a decrease in the proportion of CD200+CD105- and increase in the proportion of CD200-CD105+ cells in synovial tissue from the patients with RA in comparison to the control patients. The proportions of both populations were associated with inflammatory activity and could discriminate between the RA and the controls.
Collapse
Affiliation(s)
| | - Nina Lukač
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
- Department of Anatomy, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
| | - Mislav Jelić
- Department of Orthopaedic Surgery, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Alan Šućur
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology and Immunology, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
| | - Danka Grčević
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology and Immunology, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
- Department of Anatomy, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4566-846
| |
Collapse
|
19
|
Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease. Front Immunol 2022; 13:998244. [PMID: 36304447 PMCID: PMC9592920 DOI: 10.3389/fimmu.2022.998244] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Periodontitis involves the loss of connective tissue attachment and alveolar bone. Single cell RNA-seq experiments have provided new insight into how resident cells and infiltrating immune cells function in response to bacterial challenge in periodontal tissues. Periodontal disease is induced by a combined innate and adaptive immune response to bacterial dysbiosis that is initiated by resident cells including epithelial cells and fibroblasts, which recruit immune cells. Chemokines and cytokines stimulate recruitment of osteoclast precursors and osteoclastogenesis in response to TNF, IL-1β, IL-6, IL-17, RANKL and other factors. Inflammation also suppresses coupled bone formation to limit repair of osteolytic lesions. Bone lining cells, osteocytes and periodontal ligament cells play a key role in both processes. The periodontal ligament contains cells that exhibit similarities to tendon cells, osteoblast-lineage cells and mesenchymal stem cells. Bone lining cells consisting of mesenchymal stem cells, osteoprogenitors and osteoblasts are influenced by osteocytes and stimulate formation of osteoclast precursors through MCSF and RANKL, which directly induce osteoclastogenesis. Following bone resorption, factors are released from resorbed bone matrix and by osteoclasts and osteal macrophages that recruit osteoblast precursors to the resorbed bone surface. Osteoblast differentiation and coupled bone formation are regulated by multiple signaling pathways including Wnt, Notch, FGF, IGF-1, BMP, and Hedgehog pathways. Diabetes, cigarette smoking and aging enhance the pathologic processes to increase bone resorption and inhibit coupled bone formation to accelerate bone loss. Other bone pathologies such as rheumatoid arthritis, post-menopausal osteoporosis and bone unloading/disuse also affect osteoblast lineage cells and participate in formation of osteolytic lesions by promoting bone resorption and inhibiting coupled bone formation. Thus, periodontitis involves the activation of an inflammatory response that involves a large number of cells to stimulate bone resorption and limit osseous repair processes.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Dana T. Graves,
| |
Collapse
|
20
|
Kotschenreuther K, Yan S, Kofler DM. Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front Immunol 2022; 13:947636. [PMID: 36016949 PMCID: PMC9398455 DOI: 10.3389/fimmu.2022.947636] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022] Open
Abstract
Regulatory T (Treg) cells are garnering increased attention in research related to autoimmune diseases, including rheumatoid arthritis (RA). They play an essential role in the maintenance of immune homeostasis by restricting effector T cell activity. Reduced functions and frequencies of Treg cells contribute to the pathogenesis of RA, a common autoimmune disease which leads to systemic inflammation and erosive joint destruction. Treg cells from patients with RA are characterized by impaired functions and by an altered phenotype. They show increased plasticity towards Th17 cells and a reduced suppressive capacity. Besides the suppressive function of Treg cells, their effectiveness is determined by their ability to migrate into inflamed tissues. In the past years, new mechanisms involved in Treg cell migration have been identified. One example of such a mechanism is the phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Efficient migration of Treg cells requires the presence of VASP. IL-6, a cytokine which is abundantly present in the peripheral blood and in the synovial tissue of RA patients, induces posttranslational modifications of VASP. Recently, it has been shown in mice with collagen-induced arthritis (CIA) that this IL-6 mediated posttranslational modification leads to reduced Treg cell trafficking. Another protein which facilitates Treg cell migration is G-protein-signaling modulator 2 (GPSM2). It modulates G-protein coupled receptor functioning, thereby altering the cellular activity initiated by cell surface receptors in response to extracellular signals. The almost complete lack of GPSM2 in Treg cells from RA patients contributes to their reduced ability to migrate towards inflammatory sites. In this review article, we highlight the newly identified mechanisms of Treg cell migration and review the current knowledge about impaired Treg cell homeostasis in RA.
Collapse
Affiliation(s)
- Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M. Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- *Correspondence: David M. Kofler,
| |
Collapse
|
21
|
Alturaiki W, Alhamad A, Alturaiqy M, Mir SA, Iqbal D, Bin Dukhyil AA, Alaidarous M, Alshehri B, Alsagaby SA, Almalki SG, Alghofaili F, Choudhary RK, Almutairi S, Banawas S, Alosaimi B, Mubarak A. Assessment of IL-1β, IL-6, TNF-α, IL-8, and CCL 5 levels in newly diagnosed Saudi patients with rheumatoid arthritis. Int J Rheum Dis 2022; 25:1013-1019. [PMID: 35748059 DOI: 10.1111/1756-185x.14373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder which mainly affects small joints, occurs most commonly in middle-aged adults, and can be fatal in severe cases. The exact etiology of RA remains unknown. However, uncontrolled expression of pro-inflammatory cytokines and chemokines can contribute to the pathogenesis of RA. AIM In the current study, we assessed the potential of serum concentrations of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, IL-8, and C-C motif chemokine ligand (CCL)5 as early predictive markers for RA. METHODS In addition to clinical examination, blood samples were collected from 100 Saudi patients recently diagnosed with early RA for basic and serological tests, including rheumatoid factor (RF), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). Sera of 32 healthy individuals were used as controls. Specific enzyme-linked immunosorbent assay was used to quantify the serum IL-1β, IL-6, TNF-α, IL-8, and CCL5 levels in the samples. RESULTS Our results indicated that RF, CRP, and ESR levels were higher in RA patients compared to controls. Furthermore, serum levels of IL-1β, IL-6, IL-8, and CCL5, but not TNF-α, significantly increased in RA patients compared to controls. CONCLUSION Overall, the findings suggested that IL-1β, IL-6, IL-8, and CCL5 can be used as biomarkers in the early diagnosis of RA.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abdulaziz Alhamad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Main Laboratory and blood bank, Alzulfi General Hospital, Alzulfi, Saudi Arabia
| | - Muath Alturaiqy
- Department of Internal Medicine, Alzulfi General Hospital, Alzulfi, Saudi Arabia
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ranjay K Choudhary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Saeedah Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia.,Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Han J, Ren G, Xu Z, Qi W, Shang Y, Wen S, Luo Y. Exploring the relationship between systemic lupus erythematosus and osteoporosis based on bioinformatics. Lupus 2022; 31:163-177. [PMID: 35067074 DOI: 10.1177/09612033211073909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to explore the relationship between systemic lupus erythematosus (SLE) and osteoporosis (OP) based on bioinformatics. METHODS The expression profiles of SLE and OP gene chips were searched through the GEO database, and the differentially expressed genes (DEGs) were screened out to obtain the intersection. Then, the Funrich software was used to predict the upstream miRNAs of the intersection genes, and the miRNA-mRNA relationship network was constructed. Afterward, the String database and Cytoscape software were used to construct the protein interaction network of the intersection genes to screen out the key genes. Finally, the functions and related pathways of key genes were analyzed by using the DAVID database. RESULTS ①A total of 140 intersection genes of SLE and OP were obtained; ②There were 217 miRNAs regulating the intersection genes; ③IL-4, FOS, TLR1, TLR6, CD40LG, CCR1 were the key genes in the protein interaction network; ④The DAVID enrichment analysis mainly covered the positive regulation of cytokine production, the regulation of osteoclast differentiation, macrophage activation and other biological processes, involving Toll-like receptor signaling pathway, T cell receptor signaling pathway, Th1, Th2, and Th17 cells Differentiation, IL-17 signaling pathway. CONCLUSIONS SLE and OP still have some highly overlapping differential gene expressions under the background of complex gene networks. The gene functions and signaling pathways involved can simultaneously regulate the two diseases, suggesting that there is a close relationship between the molecular mechanisms of the two diseases, and that it may be a target of drugs that interfere with two diseases at the same time.
Collapse
Affiliation(s)
- Jie Han
- Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Guowu Ren
- Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Zhiwei Xu
- Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Wen Qi
- Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Yuzhi Shang
- Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Shuaibo Wen
- Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Yehao Luo
- Guangxi University of Traditional Chinese Medicine, Nanning City, China
| |
Collapse
|
23
|
Flegar D, Filipović M, Šućur A, Markotić A, Lukač N, Šisl D, Ikić Matijašević M, Jajić Z, Kelava T, Katavić V, Kovačić N, Grčević D. Preventive CCL2/CCR2 Axis Blockade Suppresses Osteoclast Activity in a Mouse Model of Rheumatoid Arthritis by Reducing Homing of CCR2 hi Osteoclast Progenitors to the Affected Bone. Front Immunol 2021; 12:767231. [PMID: 34925336 PMCID: PMC8677701 DOI: 10.3389/fimmu.2021.767231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
Detailed characterization of medullary and extramedullary reservoirs of osteoclast progenitors (OCPs) is required to understand the pathophysiology of increased periarticular and systemic bone resorption in arthritis. In this study, we focused on identifying the OCP population specifically induced by arthritis and the role of circulatory OCPs in inflammatory bone loss. In addition, we determined the relevant chemokine axis responsible for their migration, and targeted the attraction signal to reduce bone resorption in murine collagen-induced arthritis (CIA). OCPs were expanded in periarticular as well as circulatory compartment of arthritic mice, particularly the CCR2hi subset. This subset demonstrated enhanced osteoclastogenic activity in arthritis, whereas its migratory potential was susceptible to CCR2 blockade in vitro. Intravascular compartment of the periarticular area contained increased frequency of OCPs with the ability to home to the arthritic bone, as demonstrated in vivo by intravascular staining and adoptive transfer of splenic LysMcre/Ai9 tdTomato-expressing cells. Simultaneously, CCL2 levels were increased locally and systemically in arthritic mice. Mouse cohorts were treated with the small-molecule inhibitor (SMI) of CCR2 alone or in combination with methotrexate (MTX). Preventive CCR2/CCL2 axis blockade in vivo reduced bone resorption and OCP frequency, whereas combining with MTX treatment also decreased disease clinical score, number of active osteoclasts, and OCP differentiation potential. In conclusion, our study characterized the functional properties of two distinct OCP subsets in CIA, based on their CCR2 expression levels, implying that the CCR2hi circulatory-like subset is specifically induced by arthritis. Signaling through the CCL2/CCR2 axis contributes to OCP homing in the inflamed joints and to their increased osteoclastogenic potential. Therefore, addition of CCL2/CCR2 blockade early in the course of arthritis is a promising approach to reduce bone pathology.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Benzoxazines/pharmacology
- Bone and Bones/drug effects
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Movement/drug effects
- Cell Movement/genetics
- Cells, Cultured
- Chemokine CCL2/metabolism
- Disease Models, Animal
- Flow Cytometry
- Humans
- Male
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Methotrexate/pharmacology
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Osteoclasts/cytology
- Osteoclasts/metabolism
- RNA Interference
- Receptors, CCR2/antagonists & inhibitors
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Spiro Compounds/pharmacology
- Mice
Collapse
Affiliation(s)
- Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Antonio Markotić
- Center for Clinical Pharmacology, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina
- Department of Physiology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Nina Lukač
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Ikić Matijašević
- Department of Clinical Immunology, Rheumatology and Pulmology, Sveti Duh University Hospital, Zagreb, Croatia
| | - Zrinka Jajić
- Department of Rheumatology, Physical Medicine and Rehabilitation, Clinical Hospital Center Sestre Milosrdnice, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vedran Katavić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
24
|
Singh R, Koppu S, Perche PO, Feldman SR. The Cytokine Mediated Molecular Pathophysiology of Psoriasis and Its Clinical Implications. Int J Mol Sci 2021; 22:12793. [PMID: 34884596 PMCID: PMC8657643 DOI: 10.3390/ijms222312793] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Psoriasis is the result of uncontrolled keratinocyte proliferation, and its pathogenesis involves the dysregulation of the immune system. The interplay among cytokines released by dendritic, Th1, Th2, and Th17 cells leads to the phenotypical manifestations seen in psoriasis. Biological therapies target the cytokine-mediated pathogenesis of psoriasis and have improved patient quality of life. This review will describe the underlying molecular pathophysiology and biologics used to treat psoriasis. A review of the literature was conducted using the PubMed and Google Scholar repositories to investigate the molecular pathogenesis, clinical presentation, and current therapeutics in psoriasis. Plaque psoriasis', the most prevalent subtype of psoriasis, pathogenesis primarily involves cytokines TNF-α, IL-17, and IL-23. Pustular psoriasis', an uncommon variant, pathogenesis involves a mutation in IL-36RN. Currently, biological therapeutics targeted at TNF-α, IL-12/IL-23, IL-17, and IL-23/IL-39 are approved for the treatment of moderate to severe psoriasis. More studies need to be performed to elucidate the precise molecular pathology and assess efficacy between biological therapies for psoriasis. Psoriasis is a heterogenous, chronic, systemic inflammatory disease that presents in the skin with multiple types. Recognizing and understanding the underlying molecular pathways and biological therapeutics to treat psoriasis is important in treating this common disease.
Collapse
Affiliation(s)
- Rohan Singh
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (R.S.); (S.K.); (P.O.P.)
| | - Sindhuja Koppu
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (R.S.); (S.K.); (P.O.P.)
| | - Patrick O. Perche
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (R.S.); (S.K.); (P.O.P.)
| | - Steven R. Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (R.S.); (S.K.); (P.O.P.)
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Social Sciences & Health Policy, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
25
|
Zhao J, Guo S, Schrodi SJ, He D. Molecular and Cellular Heterogeneity in Rheumatoid Arthritis: Mechanisms and Clinical Implications. Front Immunol 2021; 12:790122. [PMID: 34899757 PMCID: PMC8660630 DOI: 10.3389/fimmu.2021.790122] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease that exhibits significant clinical heterogeneity. There are various treatments for rheumatoid arthritis, including disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), and inflammatory cytokine inhibitors (ICI), typically associated with differentiated clinical effects and characteristics. Personalized responsiveness is observed to the standard treatment due to the pathophysiological heterogeneity in rheumatoid arthritis, resulting in an overall poor prognosis. Understanding the role of individual variation in cellular and molecular mechanisms related to rheumatoid arthritis will considerably improve clinical care and patient outcomes. In this review, we discuss the source of pathophysiological heterogeneity derived from genetic, molecular, and cellular heterogeneity and their possible impact on precision medicine and personalized treatment of rheumatoid arthritis. We provide emphasized description of the heterogeneity derived from mast cells, monocyte cell, macrophage fibroblast-like synoviocytes and, interactions within immune cells and with inflammatory cytokines, as well as the potential as a new therapeutic target to develop a novel treatment approach. Finally, we summarize the latest clinical trials of treatment options for rheumatoid arthritis and provide a suggestive framework for implementing preclinical and clinical experimental results into clinical practice.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
26
|
Li X, Tang X, Wang Y, Chai C, Zhao Z, Zhang H, Peng Y, Wu L. CS-semi5 Inhibits NF-κB Activation to Block Synovial Inflammation, Cartilage Loss and Bone Erosion Associated With Collagen-Induced Arthritis. Front Pharmacol 2021; 12:655101. [PMID: 34305585 PMCID: PMC8298759 DOI: 10.3389/fphar.2021.655101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects 1% of the population. CS-semi5 is a semisynthetic chondroitin sulfate. In this study, CS-semi5 was shown to have positive effects on a model of collagen-induced arthritis (CIA). CS-semi5 treatment had obvious effects on weight loss and paw swelling in CIA mice. Post-treatment analysis revealed that CS-semi5 alleviated three main pathologies (i.e., synovial inflammation, cartilage erosion and bone loss) in a dose-dependent manner. Further study showed that CS-semi5 could effectively reduce TNF-α and IL-1β production in activated macrophages via the NF-κB pathway. CS-semi5 also blocked RANKL-trigged osteoclast differentiation from macrophages. Therefore, CS-semi5 may effectively ameliorate synovial inflammation, cartilage erosion and bone loss in RA through NF-κB deactivation.
Collapse
Affiliation(s)
- Xiang Li
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaonan Tang
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yufei Wang
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changwei Chai
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhehui Zhao
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haijing Zhang
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Peng
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianqiu Wu
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Bhuyan F, de Jesus AA, Mitchell J, Leikina E, VanTries R, Herzog R, Onel KB, Oler A, Montealegre Sanchez GA, Johnson KA, Bichell L, Marrero B, De Castro LF, Huang Y, Calvo KR, Collins MT, Ganesan S, Chernomordik LV, Ferguson PJ, Goldbach-Mansky R. Novel Majeed Syndrome-Causing LPIN2 Mutations Link Bone Inflammation to Inflammatory M2 Macrophages and Accelerated Osteoclastogenesis. Arthritis Rheumatol 2021; 73:1021-1032. [PMID: 33314777 PMCID: PMC8252456 DOI: 10.1002/art.41624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022]
Abstract
Objective To identify novel heterozygous LPIN2 mutations in a patient with Majeed syndrome and characterize the pathomechanisms that lead to the development of sterile osteomyelitis. Methods Targeted genetic analysis and functional studies assessing monocyte responses, macrophage differentiation, and osteoclastogenesis were conducted to compare the pathogenesis of Majeed syndrome to interleukin‐1 (IL‐1)–mediated diseases including neonatal‐onset multisystem inflammatory disease (NOMID) and deficiency of the IL‐1 receptor antagonist (DIRA). Results A 4‐year‐old girl of mixed ethnic background presented with sterile osteomyelitis and elevated acute‐phase reactants. She had a 17.8‐kb deletion on the maternal LPIN2 allele and a splice site mutation, p.R517H, that variably spliced out exons 10 and 11 on the paternal LPIN2 allele. The patient achieved long‐lasting remission receiving IL‐1 blockade with canakinumab. Compared to controls, monocytes and monocyte‐derived M1‐like macrophages from the patient with Majeed syndrome and those with NOMID or DIRA had elevated caspase 1 activity and IL‐1β secretion. In contrast, lipopolysaccharide‐stimulated, monocyte‐derived, M2‐like macrophages from the patient with Majeed syndrome released higher levels of osteoclastogenic mediators (IL‐8, IL‐6, tumor necrosis factor, CCL2, macrophage inflammatory protein 1α/β, CXCL8, and CXCL1) compared to NOMID patients and healthy controls. Accelerated osteoclastogenesis in the patient with Majeed syndrome was associated with higher NFATc1 levels, enhanced JNK/MAPK, and reduced Src kinase activation, and partially responded to JNK inhibition and IL‐1 (but not IL‐6) blockade. Conclusion We report 2 novel compound heterozygous disease‐causing mutations in LPIN2 in an American patient with Majeed syndrome. LPIN2 deficiency drives differentiation of proinflammatory M2‐like macrophages and enhances intrinsic osteoclastogenesis. This provides a model for the pathogenesis of sterile osteomyelitis which differentiates Majeed syndrome from other IL‐1–mediated autoinflammatory diseases.
Collapse
Affiliation(s)
- Farzana Bhuyan
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Adriana A de Jesus
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Jacob Mitchell
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Evgenia Leikina
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Rachel VanTries
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | | | - Andrew Oler
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Kim A Johnson
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Lena Bichell
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Bernadette Marrero
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Yan Huang
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Michael T Collins
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Sundar Ganesan
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Leonid V Chernomordik
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | | | | |
Collapse
|
28
|
Norwood I, Szondi D, Ciocca M, Coudert A, Cohen-Solal M, Rucci N, Teti A, Maurizi A. Transcriptomic and bioinformatic analysis of Clcn7-dependent Autosomal Dominant Osteopetrosis type 2. Preclinical and clinical implications. Bone 2021; 144:115828. [PMID: 33359007 DOI: 10.1016/j.bone.2020.115828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/26/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Autosomal Dominant Osteopetrosis type 2 (ADO2) is a rare genetic disease characterized by dense yet fragile bones. To date, the radiological approach remains the gold standard for ADO2 diagnosis. However, recent observations unveiled that ADO2 is a systemic disease affecting various organs beyond bone, including lung, kidney, muscle, and brain. Monitoring disease status and progression would greatly benefit from specific biomarkers shared by the affected organs. In this work, data derived from RNA deep sequencing (RNA dSeq) of bone, lung, kidney, muscle, brain, and osteoclasts isolated from wildtype (WT) and Clcn7G213R ADO2 mice were subjected to gene ontology and pathway analyses. Results showed the presence of alterations in gene ontology terms and pathways associated with bone metabolism and osteoclast biology, including JAK-STAT, cytokine-cytokine receptor, and hematopoietic cell lineage. Furthermore, in line with the multiorgan alterations caused by ADO2, the analysis of soft organs showed an enrichment of PPAR and neuroactive ligand-receptor interaction pathways known to be involved in the onset of tissue fibrosis and behavioral alterations, respectively. Finally, we observed the modulations of potential ADO2 biomarkers in organs and cells of ADO2 mice and in the peripheral blood mononuclear cells of patients, using conventional methods. Of note, some of these biomarkers could be possibly responsive to an effective experimental therapy based on a mutation-specific siRNA. Overall, the identified gene signature and the soluble forms of the encoded proteins could potentially represent reliable disease biomarkers that could improve the ADO2 diagnosis, the monitoring of both the skeletal and non-skeletal dysfunctions, and the assessment of the response to therapy.
Collapse
Affiliation(s)
- Iona Norwood
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Denis Szondi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michela Ciocca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Amélie Coudert
- Université de Paris, INSERM U 1132 Bioscar and Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Martine Cohen-Solal
- Université de Paris, INSERM U 1132 Bioscar and Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
29
|
Liu Y, Jing J, Yu H, Zhang J, Cao Q, Zhang X, Liu J, Zhang S, Cheng W. Expression profiles of long non-coding RNAs in the cartilage of patients with knee osteoarthritis and normal individuals. Exp Ther Med 2021; 21:365. [PMID: 33732338 PMCID: PMC7903471 DOI: 10.3892/etm.2021.9796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022] Open
Abstract
Knee osteoarthritis is caused by a multifactorial imbalance in the synthesis and degradation of knee chondrocytes, subchondral bone and extracellular matrix. Abnormal expression of long non-coding RNAs (lncRNAs) affects the metabolism, synovitis, autophagy and apoptosis of chondrocytes, as well as the production of cartilage matrix. The aim of the present study was to identify novel targets for the treatment of osteoarthritis and to examine the pathogenesis of the disease. The lncRNA expression profiles of seven patients with knee osteoarthritis and six healthy controls were examined by RNA-sequencing. Differentially expressed lncRNAs were selected for bioinformatics analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Reverse transcription-quantitative PCR (RT-qPCR) was used to further investigate the differential expression of the lncRNAs. A total of 23,583 lncRNAs were identified in osteoarthritis cartilage, including 5,255 upregulated and 5,690 downregulated lncRNAs, compared with normal cartilage. Although there were more downregulated lncRNAs compared with upregulated lncRNAs, among the changed lncRNAs (fold-change >6), there were more upregulated lncRNAs compared with downregulated lncRNAs. Several lncRNAs exhibiting differences were identified as potential therapeutic targets in knee osteoarthritis. GO and KEGG pathway analyses were performed for the target genes of the differentially expressed lncRNAs. RT-qPCR validation was performed on three randomly selected upregulated and downregulated lncRNAs. The results of RT-qPCR were consistent with the findings obtained by RNA-sequencing analysis. The findings from the present study may contribute to the diagnosis of osteoarthritis and may predict the development of osteoarthritis. Furthermore, the differentially expressed lncRNAs may aid in the identification of novel candidate targets for the treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- Yanchang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Juehua Jing
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Haoran Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jisen Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qiliang Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xin Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jianjun Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Shuo Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Wendan Cheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
30
|
Insights into the mechanism of vascular endothelial cells on bone biology. Biosci Rep 2021; 41:227494. [PMID: 33403387 PMCID: PMC7816070 DOI: 10.1042/bsr20203258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In the skeletal system, blood vessels not only function as a conduit system for transporting gases, nutrients, metabolic waste, or cells but also provide multifunctional signal molecules regulating bone development, regeneration, and remodeling. Endothelial cells (ECs) in bone tissues, unlike in other organ tissues, are in direct contact with the pericytes of blood vessels, resulting in a closer connection with peripheral connective tissues. Close-contact ECs contribute to osteogenesis and osteoclastogenesis by secreting various cytokines in the paracrine or juxtacrine pathways. An increasing number of studies have revealed that extracellular vesicles (EVs) derived from ECs can directly regulate maturation process of osteoblasts and osteoclasts. The different pathways focus on targets at different distances, forming the basis of the intimate spatial and temporal link between bone tissue and blood vessels. Here, we provide a systematic review to elaborate on the function of ECs in bone biology and its underlying mechanisms based on three aspects: paracrine, EVs, and juxtacrine. This review proposes the possibility of a therapeutic strategy targeting blood vessels, as an adjuvant treatment for bone disorders.
Collapse
|
31
|
Nrf2-ARE Signaling Partially Attenuates Lipopolysaccharide-Induced Mammary Lesions via Regulation of Oxidative and Organelle Stresses but Not Inflammatory Response in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8821833. [PMID: 33505589 PMCID: PMC7810562 DOI: 10.1155/2021/8821833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 11/30/2022]
Abstract
The incidence of mastitis is high during the postpartum stage, which causes severe pain and hinders breast feeding in humans and reduces milk production in dairy cows. Studies suggested that inflammation in multiple organs is associated with oxidative stress and nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element pathway is one of the most important antioxidant pathways, but the effects of Nrf2 on antioxidation in the mammary gland during mastitis are still unclear. In this study, intramammary lipopolysaccharide (LPS) challenge was carried out in wild-type (WT) and Nrf2 knockout mice. Results showed that the expression of Nrf2 affected the expression of milk protein genes (Csn2 and Csn3). Importantly, LPS treatment increased the expression of Nrf2 and HO-1 and the content of glutathione in the mammary gland of WT mice, but not in Nrf2(-/-) mice. The expression levels of glutathione synthesis genes (GCLC, GCLM, and xCT) were lower in Nrf2(-/-) mice than in WT mice. Moreover, mitochondrial-dependent apoptotic and endoplasmic reticulum stress were significantly relieved in WT mice compared with that in Nrf2(-/-) mice. In summary, the expression of Nrf2 may play an important role in prevention of oxidative and organelle stresses during endotoxin-induced mastitis in mouse mammary gland.
Collapse
|
32
|
Saruga T, Imaizumi T, Kawaguchi S, Seya K, Matsumiya T, Sasaki E, Sasaki N, Uesato R, Ishibashi Y. Role of MDA5 in regulating CXCL10 expression induced by TLR3 signaling in human rheumatoid fibroblast-like synoviocytes. Mol Biol Rep 2021; 48:425-433. [PMID: 33387195 PMCID: PMC7884359 DOI: 10.1007/s11033-020-06069-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022]
Abstract
C-X-C motif chemokine 10 (CXCL10) is an inflammatory chemokine and a key molecule in the pathogenesis of rheumatoid arthritis (RA). Melanoma differentiation-associated gene 5 (MDA5) is an RNA helicase that plays a role in innate immune and inflammatory reactions. The details of the regulatory mechanisms of CXCL10 production and the precise role of MDA5 in RA synovitis have not been fully elucidated. The aim of this study was to examine the role of MDA5 in regulating CXCL10 expression in cultured human rheumatoid fibroblast-like synoviocytes (RFLS). RFLS was stimulated with Toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid (poly I:C), a synthetic double-stranded RNA mimetic. Expression of interferon beta (IFN-β), MDA5, and CXCL10 was measured by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, and enzyme-linked immunosorbent assay. A neutralizing antibody of IFN-β and siRNA-mediated MDA5 knockdown were used to determine the role of these molecules in regulating CXCL10 expression downstream of TLR3 signaling in RFLS. Poly I:C induced IFN-β, MDA5, and CXCL10 expression in a concentration- and time-dependent manner. IFN-β neutralizing antibody suppressed the expression of MDA5 and CXCL10, and knockdown of MDA5 decreased a part of CXCL10 expression (p < 0.001). The TLR3/IFN-β/CXCL10 axis may play a crucial role in the inflammatory responses in RA synovium, and MDA5 may be partially involved in this axis.
Collapse
Affiliation(s)
- Tatsuro Saruga
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Eiji Sasaki
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Norihiro Sasaki
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Ryoko Uesato
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
33
|
Liu F, Dong J, Zhou D, Zhang Q. Identification of Key Candidate Genes Related to Inflammatory Osteolysis Associated with Vitamin E-Blended UHMWPE Debris of Orthopedic Implants by Integrated Bioinformatics Analysis and Experimental Confirmation. J Inflamm Res 2021; 14:3537-3554. [PMID: 34345178 PMCID: PMC8323865 DOI: 10.2147/jir.s320839] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE This study aims to identify differentially expressed genes (DEGs) in macrophages exposed to ultra-high-molecular-weight polyethylene (UHMWPE) or vitamin E-blended UHMWPE (VE-UHMWPE) particles, thereby providing potential targets for the treatment of inflammatory osteolysis. METHODS The GSE104589 dataset of genome expression in macrophages exposed to UHMWPE and VE-UHMWPE was downloaded from the Gene Expression Omnibus database to identify DEGs. Functional enrichment analysis was performed using DAVID, and the corresponding protein-protein interaction (PPI) network was constructed from the STRING database. Important modules were selected using the molecular complex detection algorithm, and hub genes were identified in cytoHubba. MicroRNAs targeting these DEGs were obtained from the TarBase, miRTarBase, and miRecords databases, while transcription factors (TFs) targeting DEGs were predicted from the ENCODE database. Finally, the top five DEGs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS A total of 112 DEGs (44 upregulated and 68 downregulated DEGs) were screened. Immune and inflammatory responses were significantly related in gene ontology analysis, and 18 signaling pathways were enriched according to Kyoto Encyclopedia of Genes and Genomes pathway analysis. The PPI network involving 85 nodes and 266 protein pairs indicated that IL1β, CXCL1, ICAM1, CCL5 and CCL4 showed higher degrees. qRT-PCR analysis of the top five DEGs revealed a decreasing trend in the VE-UHMWPE group compared with the UHMWPE group. Key microRNAs (hsa-miR-144, hsa-miR-21, and hsa-miR-221) and TFs (RELA and NFKB1) were predicted to be correlated with the pathogenesis of inflammatory osteolysis through microRNA-TF regulatory network analysis. CONCLUSION The present study helps shed light on the molecular mechanisms underlying the changes in the wear-induced inflammatory process after blending vitamin E with UHMWPE. Hub genes including IL1β, CXCL1, ICAM1, CCL5, and CCL4, key microRNAs (hsa-miR-144, hsa-miR-21, and hsa-miR-221) and TFs (RELA and NFKB1) may serve as prognostic and therapeutic targets of inflammatory osteolysis.
Collapse
Affiliation(s)
- Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jun Dong
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Dongsheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Qingyu Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Qingyu Zhang Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of ChinaTel/Fax +86-0531-68773201 Email
| |
Collapse
|
34
|
Chae YK, Shin SY, Kang SW, Choi SC, Nam OH. Differential gene expression profiles of periodontal soft tissue from rat teeth after immediate and delayed replantation: a pilot study. J Periodontal Implant Sci 2021; 52:127-140. [PMID: 35505574 PMCID: PMC9064781 DOI: 10.5051/jpis.2104300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose In dental avulsion, delayed replantation usually has an uncertain prognosis. After tooth replantation, complex inflammatory responses promote a return to periodontal tissue homeostasis. Various types of cytokines are produced in the inflammatory microenvironment, and these cytokines determine the periodontal tissue response. This study aimed to identify the gene expression profiles of replanted teeth and evaluate the functional differences between immediate and delayed replantation. Methods Maxillary molars from Sprague-Dawley rats were extracted, exposed to a dry environment, and then replanted. The animals were divided into 2 groups according to the extra-oral time: immediate replantation (dry for 5 minutes) and delayed replantation (dry for 60 minutes). Either 3 or 7 days after replantation, the animals were sacrificed. Periodontal soft tissues were harvested for mRNA sequencing. Hallmark gene set enrichment analysis was performed to predict the function of gene-gene interactions. The normalized enrichment score (NES) was calculated to determine functional differences. Results The hallmark gene sets enriched in delayed replantation at 3 days were oxidative phosphorylation (NES=2.82, Q<0.001) and tumor necrosis factor-alpha (TNF-α) signaling via the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway (NES=1.52, Q=0.034). At 7 days after delayed replantation, TNF-α signaling via the NF-κB pathway (NES=–1.82, Q=0.002), angiogenesis (NES=–1.66, Q=0.01), and the transforming growth factor-beta signaling pathway (NES=–1.46, Q=0.051) were negatively highlighted. Conclusions Differentially expressed gene profiles were significantly different between immediate and delayed replantation. TNF-α signaling via the NF-κB pathway was marked during the healing process. However, the enrichment score of this pathway changed in a time-dependent manner between immediate and delayed replantation.
Collapse
Affiliation(s)
- Yong Kwon Chae
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seo Young Shin
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sang Wook Kang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Sung Chul Choi
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
35
|
Nakayama T, Yoshimura M, Higashioka K, Miyawaki K, Ota Y, Ayano M, Kimoto Y, Mitoma H, Ono N, Arinobu Y, Kikukawa M, Yamada H, Akashi K, Horiuchi T, Niiro H. Type 1 helper T cells generate CXCL9/10-producing T-bet + effector B cells potentially involved in the pathogenesis of rheumatoid arthritis. Cell Immunol 2020; 360:104263. [PMID: 33387686 DOI: 10.1016/j.cellimm.2020.104263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023]
Abstract
Efficacy of B-cell depletion therapy highlights the antibody-independent effector functions of B cells in rheumatoid arthritis (RA). Given type 1 helper T (Th1) cells abundant in synovial fluid (SF) of RA, we have determined whether Th1 cells could generate novel effector B cells. Microarray and qPCR analysis identified CXCL9/10 transcripts as highly expressed genes upon BCR/CD40/IFN-γ stimulation. Activated Th1 cells promoted the generation of CXCL9/10-producing T-bet+ B cells. Expression of CXCL9/10 was most pronounced in CXCR3+ switched memory B cells. Compared with peripheral blood, SFRA enriched highly activated Th1 cells that coexisted with abundant CXCL9/10-producing T-bet+ B cells. Intriguingly, anti-IFN-γ antibody and JAK inhibitors significantly abrogated the generation of CXCL9/10-producing T-bet+ B cells. B cell derived CXCL9/10 significantly facilitated the migration of CD4+ T cells. These findings suggest that Th1 cells generate the novel CXCL9/10-producing T-bet+ effector B cells that could be an ideal pathogenic B cell target for RA therapy.
Collapse
Affiliation(s)
- Tsuyoshi Nakayama
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Motoki Yoshimura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuhiko Higashioka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuri Ota
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine and Clinical Immunology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroki Mitoma
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuyuki Ono
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Makoto Kikukawa
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hisakata Yamada
- Department of Arthritis and Immunology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine and Clinical Immunology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
36
|
A therapeutic oxygen carrier isolated from Arenicola marina decreased P. gingivalis induced inflammation and tissue destruction. Sci Rep 2020; 10:14745. [PMID: 32901057 PMCID: PMC7479608 DOI: 10.1038/s41598-020-71593-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The control of inflammation and infection is crucial for periodontal wound healing and regeneration. M101, an oxygen carrier derived from Arenicola marina, was tested for its anti-inflammatory and anti-infectious potential based on its anti-oxidative and tissue oxygenation properties. In vitro, no cytotoxicity was observed in oral epithelial cells (EC) treated with M101. M101 (1 g/L) reduced significantly the gene expression of pro-inflammatory markers such as TNF-α, NF-κΒ and RANKL in P. gingivalis-LPS stimulated and P. gingivalis-infected EC. The proteome array revealed significant down-regulation of pro-inflammatory cytokines (IL-1β and IL-8) and chemokine ligands (RANTES and IP-10), and upregulation of pro-healing mediators (PDGF-BB, TGF-β1, IL-10, IL-2, IL-4, IL-11 and IL-15) and, extracellular and immune modulators (TIMP-2, M-CSF and ICAM-1). M101 significantly increased the gene expression of Resolvin-E1 receptor. Furthermore, M101 treatment reduced P. gingivalis biofilm growth over glass surface, observed with live/dead analysis and by decreased P. gingivalis 16 s rRNA expression (51.7%) (p < 0.05). In mice, M101 reduced the clinical abscess size (50.2%) in P. gingivalis-induced calvarial lesion concomitant with a decreased inflammatory score evaluated through histomorphometric analysis, thus, improving soft tissue and bone healing response. Therefore, M101 may be a novel therapeutic agent that could be beneficial in the management of P. gingivalis associated diseases.
Collapse
|
37
|
Feng SY, Lei J, Chen HM, Wang YX, Yap AUJ, Fu KY. Increased chemokine RANTES in synovial fluid and its role in early-stage degenerative temporomandibular joint disease. J Oral Rehabil 2020; 47:1150-1160. [PMID: 32609901 DOI: 10.1111/joor.13041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Degenerative joint disease (DJD) of the temporomandibular joints (TMJs) in adolescents and young adults is closely associated with disc displacement without reduction (DDw/oR). OBJECTIVE This study aimed to determine the pathogenesis of early-stage TMJ DJD induced by DDw/oR. METHODS 31 female subjects aged 12-30 years were enrolled, comprising 12 patients with DDw/oR without DJD, 13 with DDw/oR and early-stage DJD, and 6 healthy volunteers. The synovial fluid samples of the subjects were screened for 27 inflammatory-related cytokines using multiple cytokine array. Significantly increased cytokines and a key regulator of osteoclastogenesis "receptor activator of nuclear factor-κB ligand" (RANKL) were further determined by sandwich immunoassay. These factors were also assessed for the possible pathophysiologic actions on RAW264.7 cell proliferation, migration, osteoclastogenesis and bone-resorbing activity using Cell Counting Kit-8, Transwell system, tartrate-resistant acid phosphatase staining and osteo assay plates. RESULTS Macrophage-derived inflammatory protein-1 beta (MIP-1β) and regulated upon activation normal T cell expressed and secreted (RANTES) were found to vary significantly in relation to the controls. In contrast to an unchanged concentration of RANKL, a strong increase in the level of RANTES was detected in subjects with DDw/oR and early-stage DJD. MIP-1β concentrations were only elevated in subjects with DDw/oR without DJD. Functionally, both MIP-1β and RANTES could enhance macrophage migration in a concentration-dependent manner, while only RANTES exhibited a promoting effect on osteoclast formation and bone-resorbing activity. CONCLUSIONS Chemokine RANTES was significantly upregulated and might be a key regulator of osteoclastogenesis contributing to DDw/oR-induced early-stage TMJ DJD.
Collapse
Affiliation(s)
- Shi-Yang Feng
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China
| | - Jie Lei
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China
| | - Hui-Min Chen
- National Clinical Research Center for Oral Diseases, Beijing, China.,Department of General Dentistry II, Peking University School & Hospital of Stomatology, Beijing, China
| | - Yi-Xiang Wang
- National Clinical Research Center for Oral Diseases, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Adrian U-Jin Yap
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,Department of Dentistry, Ng Teng Fong General Hospital, National University Health System, Singapore.,Faculty of Dentistry, National University of Singapore, Singapore.,Duke-NUS Medical School and National Dental Research Institute Singapore, National Dental Centre, SingHealth, Singapore
| | - Kai-Yuan Fu
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China
| |
Collapse
|
38
|
Søe K, Delaisse JM, Borggaard XG. Osteoclast formation at the bone marrow/bone surface interface: Importance of structural elements, matrix, and intercellular communication. Semin Cell Dev Biol 2020; 112:8-15. [PMID: 32563679 DOI: 10.1016/j.semcdb.2020.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Osteoclasts, the multinucleated cells responsible for bone resorption, have an enormous destructive power which demands to be kept under tight control. Accordingly, the identification of molecular signals directing osteoclastogenesis and switching on their resorptive activity have received much attention. Mandatory factors were identified, but a very essential aspect of the control mechanism of osteoclastic resorption, i.e. its spatial control, remains poorly understood. Under physiological conditions, multinucleated osteoclasts are only detected on the bone surface, while their mono-nucleated precursors are only in the bone marrow. How are pre-osteoclasts targeted to the bone surface? How is their progressive differentiation coordinated with their approach to the bone surface sites to be resorbed, which is where they finally fuse? Here we review the information on the bone marrow distribution of differentiating pre-osteoclasts relative to the position of the mandatory factors for their differentiation as well as relative to physical entities that may affect their access to the remodelling sites. This info allows recognizing an "osteoclastogenesis route" through the bone marrow and leading to the coincident fusion/resorption site - but also points to what still remains to be clarified regarding this route and regarding the restriction of fusion at the resorption site. Finally, we discuss the mechanism responsible for the start of resorption and its spatial extension. This review underscores that fully understanding the control of bone resorption requires to consider it in both space and time - which demands taking into account the context of bone tissue.
Collapse
Affiliation(s)
- Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Xenia Goldberg Borggaard
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
39
|
Elemam NM, Hachim MY, Hannawi S, Maghazachi AA. Differentially Expressed Genes of Natural Killer Cells Can Distinguish Rheumatoid Arthritis Patients from Healthy Controls. Genes (Basel) 2020; 11:genes11050492. [PMID: 32365786 PMCID: PMC7290970 DOI: 10.3390/genes11050492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases, while its molecular triggers are not fully understood. A few studies have shown that natural killer (NK) cells may play either a pathogenic or a protective role in RA. In this study, we sought to explore NK cell markers that could be plausibly used in evaluating the differences among healthy controls and RA patients. Publicly available transcriptome datasets from RA patients and healthy volunteers were analyzed, in order to identify differentially expressed genes (DEGs) between 1. different immune cells as compared to NK cells, and 2. NK cells of RA patients and healthy controls. The identified DEGs were validated using 16 healthy controls and 17 RA patients. Peripheral blood mononuclear cells (PBMCs) were separated by Ficoll density gradient method, while NK cells were isolated using RosetteSep technique. RNA was extracted and gene expression was assessed using RT-qPCR. All selected genes were differentially expressed in NK cells compared to PBMCs. CD56, CXCL16, PECAM-1, ITGB7, BTK, TLR10, and IL-1β were significantly upregulated, while CCL2, CCR4, RELA and IBTK were downregulated in the NK cells of RA patients when compared to healthy controls. Therefore, these NK specific genes might be used as promising biomarkers for RA diagnosis.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
- Correspondence:
| | - Mahmood Yaseen Hachim
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
| | - Suad Hannawi
- Department of Rheumatology, Ministry of Health and Prevention, Dubai 1853, UAE;
| | - Azzam A. Maghazachi
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
| |
Collapse
|
40
|
Li XF, Chen X, Bao J, Xu L, Zhang L, Huang C, Meng XM, Li J. PTEN negatively regulates the expression of pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes in adjuvant-induced arthritis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3687-3696. [PMID: 31842626 DOI: 10.1080/21691401.2019.1661849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by tumor-like expansion of the synovium and the subsequent destruction of adjacent articular cartilage and bone. The latest studies proved phosphatase and tension homolog deleted on chromosome 10 (PTEN) might contribute to the surviving, proliferation and pro-inflammatory cytokines in RA. The purpose of this study was to explore the function and underlying mechanisms of PTEN in RA pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes (FLSs). Increased level of PTEN was observed in adjuvant-induced arthritis (AIA) FLSs in comparison to normal rats. Increased concentrations of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), chemokines (CCL-2 and CCL-3), VCAM-1 and VEGF-α expression were observed in FLSs with PTEN inhibitor bpv or PTEN-RNAi. Moreover, co-incubation FLSs with overexpression vector with PTEN-GV141 reduced the expression of pro-inflammatory cytokines, chemokines, VCAM-1 and VEGF-α in AIA. Interestingly, we also found DNA methylation could regulate PTEN expression and activation of AKT signaling was with a change of PTEN. Altogether, our findings in the present study suggested that PTEN might play a pivotal role during pro-inflammatory cytokines and chemokines of FLSs through activation of AKT signaling pathway. In addition, PTEN expression may be regulated by DNA methylation in the pathogenesis of AIA.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jing Bao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Hematology Department, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Le Xu
- Departments of Stomatology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
41
|
Maldonado A, Pirracchio L, Imber JC, Bürgin W, Möller B, Sculean A, Eick S. Citrullination in periodontium is associated with Porphyromonas gingivalis. Arch Oral Biol 2020; 114:104695. [PMID: 32315811 DOI: 10.1016/j.archoralbio.2020.104695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To analyse the citrulline level in the periodontium in association with the presence of or antibody levels against Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. DESIGN Gingival crevicular fluid (GCF), subgingival biofilm and blood serum were sampled from 98 subjects (26 with RA, 72 without RA (NoRA)). GCF was analyzed for the level of citrulline, for interleukin (IL)-1β, IL-17, IL-10 and monocyte-chemoattractant protein (MCP)-1. Microorganisms were identified in subgingival biofilms. Antibodies againstP. gingivalis, and Aggregatibacter actinomycetemcomitans were quantified in serum. RESULTS GCF citrulline level was the lowest (by trend) in NoRA group without periodontitis. In NoRA, but not in RA an association between GCF citrulline level and P. gingivalis antibody levels was found and the GCF citrulline levels were higher in P. gingivalis positive samples. Any association of A. actinomycetemcomitans with GCF citrulline level did not exist. A model of univariate variance analysis (p = 0.001) showed a dependence of GCF citrulline level from the number of sites with PD (probing depth) ≥5 mm (p = 0.003) and the GCF MCP-1/CCL2 level (p = 0.019). Compared with NoRA in RA the number of teeth was lower, the number of sites with PD ≥ 5 mm was less, GCF levels of interleukin-17 and MCP-1/CCL2 were higher and those of IL-10 lower. Yeasts were only cultured in 15 RA patients (p < 0.001). CONCLUSION Citrullination in periodontium might be associated with P. gingivalis supporting the potential role as a trigger in the development of RA. Pathogenesis of periodontal disease in RA patients seems to differ from that in NoRA and should be investigated further.
Collapse
Affiliation(s)
- Alejandra Maldonado
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland.
| | - Luca Pirracchio
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| | - Jean-Claude Imber
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| | - Walter Bürgin
- Ressort Research, University of Bern, School of Dental Medicine, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Burkhard Möller
- Clinic of Rheumatology, Immunology and Allergology, University Hospital Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| | - Sigrun Eick
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| |
Collapse
|
42
|
Elemam NM, Hannawi S, Maghazachi AA. Role of Chemokines and Chemokine Receptors in Rheumatoid Arthritis. Immunotargets Ther 2020; 9:43-56. [PMID: 32211348 PMCID: PMC7074856 DOI: 10.2147/itt.s243636] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases and a prototypic inflammatory disease, affecting the small joints of the hands and feet. Chemokines and chemokine receptors play a critical role in RA pathogenesis via immune cells recruitment. Several chemokines and chemokine receptors are abundant in the peripheral blood and in the local inflamed joints of RA. Furthermore, synthetic and biologics disease modifying anti rheumatic drugs have been reported to affect chemokines expression. Thus, many studies have focused on targeting chemokines and chemokine receptors, where some have shown positive promising results. However, most of the chemokine blockers in human trials of RA treatment displayed some failures that can be attributed to several reasons in their structures and binding affinities. Nevertheless, targeting chemokines will continue to be under development, in order to improve their therapeutic potentials in RA and other autoimmune diseases. In this review we provide an up-to-date knowledge regarding the role of chemokines and chemokine receptors in RA with an emphasis on their activities on immune cells. We also discussed the effects of drugs targeting those molecules in RA. This knowledge might provide impetus for developing new therapeutic modalities to treat this chronic disease.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Suad Hannawi
- Ministry of Health and Prevention, Department of Rheumatology, Dubai, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
43
|
Mease P, Husni ME, Kafka S, Chakravarty SD, Harrison DD, Lo KH, Xu S, Hsia EC, Kavanaugh A. Inhibition of radiographic progression across levels of composite index-defined disease activity in patients with active psoriatic arthritis treated with intravenous golimumab: results from a phase-3, double-blind, placebo-controlled trial. Arthritis Res Ther 2020; 22:43. [PMID: 32143685 PMCID: PMC7059340 DOI: 10.1186/s13075-020-2126-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background In the GO-VIBRANT trial of intravenous golimumab in psoriatic arthritis (PsA), golimumab significantly inhibited radiographic progression. In post hoc analyses, we evaluated changes in total PsA-modified Sharp/van der Heijde scores (SHS) across levels of composite index-defined disease activity following treatment. Methods In this phase-3, double-blind, placebo-controlled trial, 480 bio-naïve patients with active PsA randomly received intravenous golimumab 2 mg/kg (N = 241; week 0, week 4, every 8 weeks [q8w]) or placebo (N = 239; week 0, week 4, week 12, week 20) followed by golimumab (week 24, week 28, q8w) through week 52. Week 24 and week 52 SHS changes in patient subgroups, defined by levels of disease activity as assessed by several composite measures (minimal disease activity [MDA], very low disease activity [VLDA], Psoriatic ArthritiS Disease Activity Score [PASDAS], Disease Activity in Psoriatic Arthritis [DAPsA], Clinical Disease Activity Index [CDAI]), were evaluated post hoc in 474 patients with evaluable radiographic data. Partially (last-observation-carried-forward methodology) and completely (nonresponder methodology) missing data were imputed. Results Across indices, golimumab-treated patients demonstrated less radiographic progression than placebo-treated patients, regardless of disease activity state achieved via golimumab, from week 0 to 24 (e.g., mean changes in PsA-modified SHS were − 0.83 vs. 0.91, respectively, in patients achieving MDA and − 0.05 vs. 1.49, respectively, in those not achieving MDA). Treatment differences observed at week 24 persisted through week 52, despite placebo-randomized patients crossing over to golimumab at week 24 (e.g., mean changes in PsA-modified SHS from week 0 to 52 for golimumab- vs. placebo→golimumab-treated patients achieving MDA were − 1.16 vs. 1.19, respectively) and regardless of whether low disease activity was achieved (0.03 vs. 1.50, respectively, in those not achieving MDA). Consistent patterns were observed for disease activity assessed using VLDA, PASDAS, DAPsA, and CDAI composite endpoints. Conclusions The extent of structural damage inhibition afforded by up to 1 year of intravenous golimumab treatment paralleled levels of PsA activity, with greater progression of structural damage observed in patients with sustained higher disease activity. Among patients not achieving low levels of disease activity across several composite indices, golimumab-randomized patients appeared to exhibit far less progression of structural damage than placebo-randomized PsA patients, illustrating a potential disconnect between responses, wherein golimumab can inhibit structural damage independent of clinical effect. Trial registration ClinicalTrials.gov. NCT02181673. Registered 04 July 2014.
Collapse
Affiliation(s)
- Philip Mease
- Seattle Rheumatology Associates, Swedish Medical Center/Providence St. Joseph Health and University of Washington School of Medicine, 601 Broadway, Suite 600, Seattle, WA, 98122, USA.
| | | | - Shelly Kafka
- Janssen Scientific Affairs, LLC, Horsham, PA, USA
| | - Soumya D Chakravarty
- Janssen Scientific Affairs, LLC, Horsham, PA, USA.,Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Kim Hung Lo
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Stephen Xu
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Elizabeth C Hsia
- Janssen Research & Development, LLC, Spring House, PA, USA.,University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
44
|
Li J, Li X, Liu D, Hamamura K, Wan Q, Na S, Yokota H, Zhang P. eIF2α signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice. Cell Death Dis 2019; 10:921. [PMID: 31801950 PMCID: PMC6892793 DOI: 10.1038/s41419-019-2159-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022]
Abstract
Bone loss in postmenopausal osteoporosis is induced chiefly by an imbalance of bone-forming osteoblasts and bone-resorbing osteoclasts. Salubrinal is a synthetic compound that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Phosphorylation of eIF2α alleviates endoplasmic reticulum (ER) stress, which may activate autophagy. We hypothesized that eIF2α signaling regulates bone homeostasis by promoting autophagy in osteoblasts and inhibiting osteoclast development. To test the hypothesis, we employed salubrinal to elevate the phosphorylation of eIF2α in an ovariectomized (OVX) mouse model and cell cultures. In the OVX model, salubrinal prevented abnormal expansion of rough ER and decreased the number of acidic vesiculars. It regulated ER stress-associated signaling molecules such as Bip, p-eIF2α, ATF4 and CHOP, and promoted autophagy of osteoblasts via regulation of eIF2α, Atg7, LC3, and p62. Salubrinal markedly alleviated OVX-induced symptoms such as reduction of bone mineral density and bone volume fraction. In primary bone-marrow-derived cells, salubrinal increased the differentiation of osteoblasts, and decreased the formation of osteoclasts by inhibiting nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Live cell imaging and RNA interference demonstrated that suppression of osteoclastogenesis is in part mediated by Rac1 GTPase. Collectively, this study demonstrates that ER stress-autophagy axis plays an important role in OVX mice. Bone-forming osteoblasts are restored by maintaining phosphorylation of eIF2α, and bone-resorbing osteoclasts are regulated by inhibiting NFATc1 and Rac1 GTPase.
Collapse
Affiliation(s)
- Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, 300070, Tianjin, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, 300070, Tianjin, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, 300070, Tianjin, China
| | - Kazunori Hamamura
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Qiaoqiao Wan
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, 300070, Tianjin, China.
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, 300052, Tianjin, China.
| |
Collapse
|
45
|
Yang XW, Huang HX, Wang F, Zhou QL, Huang YQ, Qin RZ. Elevated plasma CXCL12/SDF-1 levels are linked with disease severity of postmenopausal osteoporosis. Innate Immun 2019; 26:222-230. [PMID: 31640442 PMCID: PMC7144032 DOI: 10.1177/1753425919883365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study was designed to determine whether plasma CXCL12 levels in postmenopausal osteoporosis (PMOP) patients are related to disease severity. A total of 91 PMOP females were recruited, and 88 postmenopausal non-osteoporotic (PMNOP) women and 90 healthy females were incorporated as controls. Dual-energy X-ray absorptiometry was utilised to explore bone-mineral density (BMD). The Genant semi-quantitative grading scale was used for vertebral fractures, and plasma CXCL12/SDF-1 levels were investigated by ELISA. Plasma TNF-α and C-telopeptide cross-linked collagen type 1 (CTX-1) were also tested. The Oswestry Disability Index (ODI) and a visual analogue scale (VAS) were completed in order to assess clinical severity. Plasma CXCL12 levels were considerably elevated in PMOP females compared to PMNOP women and healthy controls. Plasma CXCL12 concentrations were positively correlated with the Genant grading system. We observed significant and negative correlations of plasma CXCL12 levels with lumbar spine, femoral neck and total hip BMD. Moreover, plasma CXCL12 concentrations were positively correlated to VAS and ODI, as well as plasma TNF-α and CTX-1 levels. In conclusion, elevated plasma CXCL12 levels are correlated with disease severity in PMOP females.
Collapse
Affiliation(s)
- Xian-Wen Yang
- Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, PR China.,The Third Affiliated Hospital of GuangZhou University of Chinese Medicine, PR China
| | - Hong-Xing Huang
- The Third Affiliated Hospital of GuangZhou University of Chinese Medicine, PR China
| | - Fei Wang
- Air Force General Hospital, PR China
| | - Qi-Lin Zhou
- Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, PR China
| | - Yan-Qiang Huang
- Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, PR China
| | - Ru-Zi Qin
- Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, PR China
| |
Collapse
|
46
|
Lian WS, Ko JY, Chen YS, Ke HJ, Hsieh CK, Kuo CW, Wang SY, Huang BW, Tseng JG, Wang FS. MicroRNA-29a represses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12. Cell Death Dis 2019; 10:705. [PMID: 31543513 PMCID: PMC6755134 DOI: 10.1038/s41419-019-1942-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
Osteoporosis deteriorates bone mass and biomechanical strength, becoming a life-threatening cause to the elderly. MicroRNA is known to regulate tissue remodeling; however, its role in the development of osteoporosis remains elusive. In this study, we uncovered that silencing miR-29a expression decreased mineralized matrix production in osteogenic cells, whereas osteoclast differentiation and pit formation were upregulated in bone marrow macrophages as co-incubated with the osteogenic cells in transwell plates. In vivo, decreased miR-29a expression occurred in ovariectomy-mediated osteoporotic skeletons. Mice overexpressing miR-29a in osteoblasts driven by osteocalcin promoter (miR-29aTg/OCN) displayed higher bone mineral density, trabecular volume and mineral acquisition than wild-type mice. The estrogen deficiency-induced loss of bone mass, trabecular morphometry, mechanical properties, mineral accretion and osteogenesis of bone marrow mesenchymal cells were compromised in miR-29aTg/OCN mice. miR-29a overexpression also attenuated the estrogen loss-mediated excessive osteoclast surface histopathology, osteoclast formation of bone marrow macrophages, receptor activator nuclear factor-κ ligand (RANKL) and C–X–C motif chemokine ligand 12 (CXCL12) expression. Treatment with miR-29a precursor improved the ovariectomy-mediated skeletal deterioration and biomechanical property loss. Mechanistically, miR-29a inhibited RANKL secretion in osteoblasts through binding to 3′-UTR of RANKL. It also suppressed the histone acetyltransferase PCAF-mediated acetylation of lysine 27 in histone 3 (H3K27ac) and decreased the H3K27ac enrichment in CXCL12 promoters. Taken together, miR-29a signaling in osteogenic cells protects bone tissue from osteoporosis through repressing osteoclast regulators RANKL and CXCL12 to reduce osteoclastogenic differentiation. Arrays of analyses shed new light on the miR-29a regulation of crosstalk between osteogenic and osteoclastogenic cells. We also highlight that increasing miR-29a function in osteoblasts is beneficial for bone anabolism to fend off estrogen deficiency-induced excessive osteoclastic resorption and osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huei-Jing Ke
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chin-Kuei Hsieh
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chung-Wen Kuo
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Bo-Wun Huang
- Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung, Taiwan
| | - Jung-Ge Tseng
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
47
|
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive systemic disease of the connective tissue, which is particularly manifested with destructive alterations to the joints. Inflammatory reactions in the synovium lead to the influx of peripheral inflammatory cells as well as the activation of local cells. Released growth factors, chemokines and especially cytokines play a key role in chronic inflammatory responses. In addition to the central lymphocytes, the T and B cells and their subpopulations, locally resident cells, such as neutrophils, macrophages and fibroblasts as well as cells of bone metabolism are activated by the inflammatory milieu and contribute to and drive inflammation and tissue damage. The destruction of cartilage and bone substance by local tissue cells, synovial fibroblasts and osteoclasts is characteristic for this disease. Untreated, the local inflammatory and destructive processes as well as systemic inflammatory factors lead to progressive and irreversible joint destruction. Cellular and immunological processes in RA are closely interwoven; therefore, besides the general inhibition of immunological processes, specific inhibition of central key molecules can reduce or completely stop the inflammatory destructive processes; however, a high heterogeneity can be observed among RA patients and disease progression. Therefore, an expansion of the therapeutic options is desirable as not all patients are able to equally benefit from the therapeutic treatment. It is important to characterize new molecular mechanisms, which could lead to the development of new therapeutic options. Some of the more recent insights are summarized in this overview.
Collapse
Affiliation(s)
- E Neumann
- Rheumatologie und Klinische Immunologie, Campus Kerckhoff, Justus-Liebig-Universität Gießen, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland.
| | - K Frommer
- Rheumatologie und Klinische Immunologie, Campus Kerckhoff, Justus-Liebig-Universität Gießen, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland
| | - M Diller
- Rheumatologie und Klinische Immunologie, Campus Kerckhoff, Justus-Liebig-Universität Gießen, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland
| | - U Müller-Ladner
- Rheumatologie und Klinische Immunologie, Campus Kerckhoff, Justus-Liebig-Universität Gießen, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland
| |
Collapse
|
48
|
Xiong Y, Mi BB, Liu MF, Xue H, Wu QP, Liu GH. Bioinformatics Analysis and Identification of Genes and Molecular Pathways Involved in Synovial Inflammation in Rheumatoid Arthritis. Med Sci Monit 2019; 25:2246-2256. [PMID: 30916045 PMCID: PMC6448456 DOI: 10.12659/msm.915451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) has a high prevalence in the elderly population. The genes and pathways in the inflamed synovium in patients with RA are poorly understood. This study aimed to identify differentially expressed genes (DEGs) linked to the progression of synovial inflammation in RA using bioinformatics analysis. MATERIAL AND METHODS Gene expression profiles of datasets GSE55235 and GSE55457 were acquired from the Gene Expression Omnibus (GEO) database. DEGs were identified using Morpheus software, and co-expressed DEGs were identified with Venn diagrams. Protein-protein interaction (PPI) networks were assembled with Cytoscape software and separated into subnetworks using the Molecular Complex Detection (MCODE) algorithm. The functions of the top module were assessed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. RESULTS DEGs that were upregulated were significantly enhanced in protein binding, the cell cytosol, organization of the extracellular matrix (ECM), regulation of RNA transcription, and cell adhesion. DEGs that were downregulated were associated with control of the immune response, B-cell and T-cell receptor signaling pathway regulation. KEGG pathway analysis showed that upregulated DEGs enhanced pathways associated with the cell adherens junction, osteoclast differentiation, and hereditary cardiomyopathies. Downregulated DEGs were enriched in primary immunodeficiency, cell adhesion molecules (CAMs), cytokine-cytokine receptor interaction, and hematopoietic cell lineages. CONCLUSIONS The findings from this bioinformatics network analysis study identified molecular mechanisms and the key hub genes that may contribute to synovial inflammation in patients with RA.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Meng-Fei Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Qi-Peng Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
49
|
Menegatti S, Bianchi E, Rogge L. Anti-TNF Therapy in Spondyloarthritis and Related Diseases, Impact on the Immune System and Prediction of Treatment Responses. Front Immunol 2019; 10:382. [PMID: 30941119 PMCID: PMC6434926 DOI: 10.3389/fimmu.2019.00382] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs), such as spondyloarthritis (SpA), psoriasis, Crohn's disease (CD), and rheumatoid arthritis (RA) remain challenging illnesses. They often strike at a young age and cause lifelong morbidity, representing a considerable burden for the affected individuals and society. Pioneering studies have revealed the presence of a TNF-dependent proinflammatory cytokine cascade in several IMIDs, and the introduction of anti-TNF therapy 20 years ago has proven effective to reduce inflammation and clinical symptoms in RA, SpA, and other IMID, providing unprecedented clinical benefits and a valid alternative in case of failure or intolerable adverse effects of conventional disease-modifying antirheumatic drugs (DMARDs, for RA) or non-steroidal anti-inflammatory drugs (NSAIDs, for SpA). However, our understanding of how TNF inhibitors (TNFi) affect the immune system in patients is limited. This question is relevant because anti-TNF therapy has been associated with infectious complications. Furthermore, clinical efficacy of TNFi is limited by a high rate of non-responsiveness (30–40%) in RA, SpA, and other IMID, exposing a substantial fraction of patients to side-effects without clinical benefit. Despite the extensive use of TNFi, it is still not possible to determine which patients will respond to TNFi before treatment initiation. The recent introduction of antibodies blocking IL-17 has expanded the therapeutic options for SpA, as well as psoriasis and psoriatic arthritis. It is therefore essential to develop tools to guide treatment decisions for patients affected by SpA and other IMID, both to optimize clinical care and contain health care costs. After a brief overview of the biology of TNF, its receptors and currently used TNFi in the clinics, we summarize the progress that has been made to increase our understanding of the action of TNFi on the immune system in patients. We then summarize efforts dedicated to identify biomarkers that can predict treatment responses to TNFi and we conclude with a section dedicated to the recently introduced inhibitors of IL-17A and IL-23 in SpA and related diseases. The focus of this review is on SpA, however, we also refer to RA on topics for which only limited information is available on SpA in the literature.
Collapse
Affiliation(s)
- Silvia Menegatti
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Elisabetta Bianchi
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France
| | - Lars Rogge
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France
| |
Collapse
|
50
|
Flemingia philippinensis Flavonoids Relieve Bone Erosion and Inflammatory Mediators in CIA Mice by Downregulating NF- κB and MAPK Pathways. Mediators Inflamm 2019; 2019:5790291. [PMID: 30906224 PMCID: PMC6397971 DOI: 10.1155/2019/5790291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/29/2018] [Accepted: 12/30/2018] [Indexed: 12/19/2022] Open
Abstract
Background The dry root of Flemingia philippinensis has been widely used in the treatment of rheumatism, arthropathy, and osteoporosis in traditional Chinese medicine; the therapeutic effects of Flemingia philippinensis are associated with antiarthritis in traditional Chinese medicine theory. This study was undertaken to investigate the mechanism of bone erosion protection and anti-inflammatory effect of Flemingia philippinensis flavonoids (FPF) in collagen-induced arthritis (CIA) in mice. Methods Flavonoids were extracted from the dry root of Flemingia philippinensis. Collagen-induced arthritis in C57BL/6 mice was used as a rheumatoid arthritis model, and the mice were orally fed with FPF prior to induction to mimic clinical prophylactic therapy for a total of 39 days. After treatment, histology and immunohistochemistry staining were performed, and the levels of anti-collagen type II (CII) antibody and inflammatory mediators, as well as the key proteins of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, were detected in the samples taken from ankle joints, plasma, and paws. Results FPF administration significantly suppressed the paw swelling and arthritic score in CIA mice. FPF reduced inflammatory infiltration and pannus formation, articular cartilage destruction and osteoclast infiltration, and the expression of MMP-9 and cathepsin K in the ankle joint. FPF inhibited plasma anti-CII antibody levels and the production of inflammatory cytokines and chemokines in CIA paws. FPF treatment suppressed the activation of NF-κB as indicated by downregulating the phosphorylation of NF-κB p65 and mitogen-activated protein kinases in CIA paws. Additionally, FPF significantly inhibited inflammation signaling by suppressing the activation of activator protein-1 subset and signal transducers and activators of transcription 3 (STAT3). Conclusions Our data suggest that FPF might be an active therapeutic agent for rheumatoid arthritis and the preventive effect of FPF on arthritis is attributable to an anti-inflammatory effect on CIA by preventing bone destruction, regulating inflammatory mediators, and suppressing NF-κB and MAPK signaling pathways.
Collapse
|