1
|
Theodorakis N, Kreouzi M, Hitas C, Anagnostou D, Nikolaou M. Adipokines and Cardiometabolic Heart Failure with Preserved Ejection Fraction: A State-of-the-Art Review. Diagnostics (Basel) 2024; 14:2677. [PMID: 39682585 DOI: 10.3390/diagnostics14232677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cardiometabolic heart failure with preserved ejection fraction (HFpEF) is largely driven by obesity-related factors, including adipokines and bioactive peptides primarily secreted by the adipose tissue, such as leptin, adiponectin, and resistin. These molecules link metabolic dysregulation to cardiovascular dysfunction, influencing HFpEF progression and patient outcomes Methods: A comprehensive literature search was conducted in PubMed up to 20 November 2024, using keywords and MeSH terms, such as "HFpEF", "adipokines", "leptin", "adiponectin", and "resistin", yielding 723 results. Boolean operators refined the search, and reference lists of key studies were reviewed. After screening for duplicates and irrelevant studies, 103 articles were included, providing data on adipokines' roles in HFpEF pathophysiology, biomarkers, and therapeutic implications. RESULTS Both preclinical and clinical studies have demonstrated that adipokines play a role in modulating cardiovascular function, thereby contributing to the development of cardiometabolic HFpEF. Leptin promotes myocardial hypertrophy, fibrosis, endothelial dysfunction, and inflammation, though contradictory evidence suggests potential cardioprotective roles in subgroups like obese African American women. Adiponectin generally offers protective effects but presents a paradox, where elevated levels may correlate with worse outcomes, which may reflect either a compensatory response to cardiac dysfunction or a maladaptive state characterized by adiponectin resistance. Resistin is associated with increased cardiovascular risk through pro-inflammatory and pro-fibrotic effects, though its role in HFpEF requires further clarification. Other adipokines, like retinol-binding protein 4 and omentin-1, have emerged as potential contributors. Despite growing insights, clinical translation remains limited, underscoring a significant gap between experimental evidence and therapeutic application. CONCLUSIONS Future research should focus on targeted interventions that modulate adipokine pathways to potentially improve HFpEF outcomes. Innovative treatment strategies addressing underlying metabolic disturbances and adipokine dysregulation are essential for advancing the management of this challenging condition.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece
| | - Magdalini Kreouzi
- Department of Internal Medicine, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece
| | - Christos Hitas
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece
| | - Dimitrios Anagnostou
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece
| | - Maria Nikolaou
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece
| |
Collapse
|
2
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Exploring cytokines dynamics: Uncovering therapeutic concepts for metabolic disorders in postmenopausal women- diabetes, metabolic bone diseases, and non-alcohol fatty liver disease. Ageing Res Rev 2024; 101:102505. [PMID: 39307315 DOI: 10.1016/j.arr.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Menopause is an age-related change that persists for around one-third of a woman's life. Menopause increases the risk of metabolic illnesses such as diabetes, osteoporosis (OP), and nonalcoholic fatty liver disease (NAFLD). Immune mediators (pro-inflammatory cytokines), such as interleukin-1 (IL-1), IL-6, IL-17, transforming growth factor (TGF), and tumor necrosis factor (TNF), exacerbate the challenges of a woman undergoing menopause by causing inflammation and contributing to the development of these metabolic diseases in postmenopausal women. Furthermore, studies have shown that anti-inflammatory cytokines such as interleukin-1 receptor antagonists (IL-1Ra), IL-2, and IL-10 have a double-edged effect on diabetes and OP. Likewise, several interferon (IFN) members are double-edged swords in the OP. Therefore, addressing these immune mediators precisely may be an approach to improving the health of postmenopausal women. Hence, considering the significant changes in these cytokines, the present review focuses on the latest findings concerning the molecular mechanisms by which pro- and anti-inflammatory cytokines (interleukins) impact postmenopausal women with diabetes, OP, and NAFLD. Furthermore, we comprehensively discuss the therapeutic approaches that identify cytokines as therapeutic targets, such as hormonal therapy, physical activities, natural inhibitors (drugs), and others. Finally, this review aims to provide valuable insights into the role of cytokines in postmenopausal women's diabetes, OP, and NAFLD. Deeply investigating the mechanisms and therapeutic interventions involved will address the characteristics of immune mediators (cytokines) and improve the management of these illnesses, thereby enhancing the general quality of life and health of the corresponding populations of women.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Feng Y, Liu J, Gong L, Han Z, Zhang Y, Li R, Liao H. Inonotus obliquus (Chaga) against HFD/STZ-induced glucolipid metabolism disorders and abnormal renal functions by regulating NOS-cGMP-PDE5 signaling pathway. Chin J Nat Med 2024; 22:619-631. [PMID: 39059831 DOI: 10.1016/s1875-5364(24)60571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 07/28/2024]
Abstract
Our prior investigations have established that Inonotus obliquus (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg-1 for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Yating Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Yan Zhang
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Hui Liao
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China.
| |
Collapse
|
4
|
Kopczyńska J, Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front Immunol 2024; 15:1380476. [PMID: 38605957 PMCID: PMC11008232 DOI: 10.3389/fimmu.2024.1380476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.
Collapse
Affiliation(s)
- Julia Kopczyńska
- Laboratory of Lactic Acid Bacteria Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
5
|
Vuong E, Peer N, Chirwa E, Mhlongo S, Lombard C, Hemmings S, Kengne AP, Abrahams N, Seedat S. Prospective Association of Circulating Adipokines with Cardiometabolic Risk Profile Among Women: The Rape Impact Cohort Evaluation Study. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2022; 3:820-833. [PMID: 36340478 PMCID: PMC9629977 DOI: 10.1089/whr.2022.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Sexual violence is associated with poor cardiometabolic outcomes, yet the etiopathogenic pathways remain unclear. Adipokines may contribute to pathways in the development of cardiometabolic disease (CMD), including in vulnerable populations. Further investigation of adipokines among sexually traumatized individuals may inform cardiometabolic screening. This study aimed to investigate the association between circulating adipokines, metabolic syndrome (MetS), and longitudinal change in MetS components (namely abdominal obesity, blood pressure, lipid profile, and glycemic status) over a 1-year period in a cohort of rape exposed (RE) and rape unexposed (RUE) females. MATERIALS AND METHODS Seven hundred seventy-eight RE and 617 RUE black South African women aged 18-40 years were recruited for the Rape Impact Cohort Evaluation study. Nonfasting blood samples were analyzed for cardiometabolic variables and adipokine levels using enzyme-linked immunosorbent assay. Serum adiponectin was measured in both RE and RUE and resistin, leptin, and leptin/adiponectin (L/A) ratio in RE only. Associations between baseline serum adipokines, MetS, and its components were assessed at baseline and follow-up using adjusted linear and logistic regressions. RESULTS In the RE group, adiponectin, leptin, and L/A ratio were significantly associated with MetS prevalence cross-sectionally (all p ≤ 0.001). No adipokine marker was related to incident MetS at 12-month follow-up. In the RE group, significant longitudinal associations with high-density lipoprotein cholesterol were shown for adiponectin (β = 0.146 [0.064], p = 0.022) and leptin (β = 0.001 [0.002], p = 0.012). CONCLUSIONS Findings suggest that adipokines may have a potential role as biomarkers to identify RE individuals at high risk for CMD.
Collapse
Affiliation(s)
- Eileen Vuong
- South African Research Chairs Initiative (SARChI), PTSD Program, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa.,Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa.,Address correspondence to: Eileen Vuong, MBchB, MMed(Psych), Department of Psychiatry, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa,
| | - Nasheeta Peer
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Esnat Chirwa
- Gender and Health Research Unit, South African Medical Research Council, Tygerberg, South Africa.,School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Shibe Mhlongo
- Gender and Health Research Unit, South African Medical Research Council, Tygerberg, South Africa
| | - Carl Lombard
- Biostatistics Unit, South African Medical Research Council, Tygerberg, South Africa
| | - Sian Hemmings
- South African Research Chairs Initiative (SARChI), PTSD Program, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa.,SAMRC/SU Genomics of Brain Disorders Unit, Stellenbosch University, South Africa
| | - Andre Pascal Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Naeemah Abrahams
- Gender and Health Research Unit, South African Medical Research Council, Tygerberg, South Africa.,Faculty of Health Sciences, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- South African Research Chairs Initiative (SARChI), PTSD Program, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa.,Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa.,SAMRC/SU Genomics of Brain Disorders Unit, Stellenbosch University, South Africa
| |
Collapse
|
6
|
Abstract
The dramatic rise in obesity has recently made it a global health issue. About 1.9 billion were overweight, and 650 million global populations were obese in 2016. Obese women suffer longer conception time, lowered fertility rates, and greater rates of miscarriage. Obesity alters hormones such as adiponectin and leptin, affecting all levels within the hypothalamic-pituitary-gonadal axis. Advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are inflammatory cytokines that may play an important role in the pathophysiology of ovarian dysfunction in obesity. In obese males, there are altered sperm parameters, reduced testosterone, increased estradiol, hypogonadism, and epigenetic modifications transmitted to offspring. The focus of this article is on the possible adverse effects on reproductive health resulting from obesity and sheds light on different molecular pathways linking obesity with infertility in both female and male subjects. Electronic databases such as Google Scholar, Embase, Science Direct, PubMed, and Google Search Engine were utilized to find obesity and infertility-related papers. The search strategy is detailed in the method section. Even though multiple research work has shown that obesity impacts fertility in both male and female negatively, it is significant to perform extensive research on the molecular mechanisms that link obesity to infertility. This is to find therapeutics that may be developed aiming at these mechanisms to manage and prevent the negative effects of obesity on the reproductive system.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Physiology, Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
7
|
Russo GT, Manicardi V, Rossi MC, Orsi E, Solini A. Sex- and gender-differences in chronic long-term complications of type 1 and type 2 diabetes mellitus in Italy. Nutr Metab Cardiovasc Dis 2022; 32:2297-2309. [PMID: 36064685 DOI: 10.1016/j.numecd.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
AIMS This review summarizes the contribution of Italian diabetologists devoted to a better understanding of the complex relationship linking sex/gender and long-term complications of type 1 (T1DM) and type 2 diabetes (T2DM) over the last fifteen years. DATA SYNTHESIS Microvascular and macrovascular complications of diabetes show sex- and gender-related differences, involving pathophysiological mechanisms, epidemiological features and clinical presentation, due to the interaction between biological and psychosocial factors. These differences greatly impact on the progression of diabetes and its long-term complications, especially in the cardiovascular, renal and liver districts. CONCLUSION A better knowledge of such sex- and gender-related characteristics is required for a more precise patient phenotypization, and for the choice of a personalized antihyperglycemic treatment. Despite such mounting evidence, current diabetes clinical guidelines do not as yet adequately consider sex/gender differences.
Collapse
Affiliation(s)
- G T Russo
- Department of Clinical and Experimental Medicine, University of Messina, Italy.
| | | | - M C Rossi
- CORESEARCH - Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - E Orsi
- IRCCS Foundation Cà Grande Ospedale Maggiore, Milan, Italy
| | - A Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Italy.
| |
Collapse
|
8
|
Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:3908. [PMID: 36010901 PMCID: PMC9405791 DOI: 10.3390/cancers14163908] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major microenvironment of breast cancer. Obesity changes the composition, structure, and function of adipose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adipose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvironment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both directly through cell-cell contact and indirectly via the secretome released by ASC/MSC, which is considered to be the main effector of their supportive, angiogenic, and immunomodulatory functions. In this narrative review, we aim to address the impact of obesity on ASCs/MSCs, summarize the current knowledge regarding the potential pathological roles of ASCs/MSCs in the development of breast cancer, discuss related molecular mechanisms, underline the possible clinical significance, and highlight related research perspectives. In particular, we underscore the roles of ASCs/MSCs in breast cancer cell progression, including proliferation and survival, angiogenesis, migration and invasion, the epithelial-mesenchymal transition, cancer stem cell development, immune evasion, therapy resistance, and the potential impact of breast cancer cells on ASCS/MSCs by educating them to become cancer-associated fibroblasts. We conclude that ASCs/MSCs, especially obese ASCs/MSCs, may be key players in the breast cancer microenvironment. Targeting these cells may provide a new path of effective breast cancer treatment.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | | | | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
9
|
Sex-Specific Impact of Different Obesity/Metabolic Phenotypes on Long-Term Cardiovascular Outcomes in Acute Coronary Syndrome Patients. Biomedicines 2022; 10:biomedicines10020424. [PMID: 35203633 PMCID: PMC8962273 DOI: 10.3390/biomedicines10020424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity, a major risk factor for acute coronary syndrome (ACS), is a multifaceted disease with different metabolic phenotypes and sex-specific features. Here, we evaluated the long-term cardiovascular risk by different obesity/metabolic phenotypes and by sex in ACS patients. The occurrence of the composite outcome of death, nonfatal reinfarction with or without PCI and/or stroke was evaluated in 674 patients (504 men; 170 women), consecutively hospitalized for ACS and followed-up for 7 years, who were stratified in metabolically healthy (MHNW) and unhealthy normal weight (MUNW), and in metabolically healthy (MHO) and unhealthy obese (MUO) groups. At baseline, 54.6% of patients were included in the MHNW group, 26.4% in the MUNW, 5.9% in the MHO and 13.1% in the MUO, with no sex-differences in the distribution of phenotypes. The overall rate of major outcome (100 person-years) in the reference group (MHNW) was higher in men than in women (RR: 1.19 vs. 0.6). The Kaplan–Meier curves for cumulative survival free from cardiovascular events according to obesity/metabolic status diverged significantly according to sex (log rank test, p = 0.006), this effect being more prominent in men (log 11.20; p = 0.011), than in women (log 7.98; p = 0.047). Compared to MHNW, the risk increased in obese men (RR: 2.2; 95% 1.11–1.54 in MUO group), whereas in women the risk was confined to metabolically unhealthy subjects (RR: 3.2; 95% CI 1.23–9.98, MUNW group). Our data show a sex-specific impact of obesity phenotypes on long-term cardiovascular risk in patients hospitalized for ACS.
Collapse
|