1
|
Malayaperumal S, Sriramulu S, Jothimani G, Banerjee A, Zhang H, Mohammed Rafi ST, Ramachandran I, NR RK, Sun XF, Pathak S. MicroRNA-122 overexpression suppresses the colon cancer cell proliferation by downregulating the astrocyte elevated gene-1/metadherin oncoprotein. Ann Med 2025; 57:2478311. [PMID: 40208016 PMCID: PMC11986857 DOI: 10.1080/07853890.2025.2478311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/09/2024] [Accepted: 02/17/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that regulate essential cellular functions, such as cell adhesion, proliferation, migration, invasion, and programmed cell death, and therefore, alterations in miRNAs can contribute to carcinogenesis. Previous studies have shown that miRNA-122 is abundant in the liver and regulates cell proliferation, migration, and apoptosis. However, the expression pattern and mechanism of actions of miR-122 remain primarily unknown in colon cancer. METHODS In this study, we analyzed The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) database to assess the clinical significance of astrocyte elevated gene-1 (AEG-1)/metadherin (MTDH) and miR-122 in colon cancer. MiR-122 overexpression studies were performed in HCT116, SW480, and SW620 cell lines. Dual-luciferase assay was carried out to confirm the interaction between AEG-1 and miR-122. In vivo-JetPEI-transfection reagent was used for in-vivo transient transfection of miR-122 in the AOM/DSS-induced colon tumor mouse model. RESULTS Our results demonstrate that miR-122 was downregulated in colon cancer cells, and it influences the expressions of apoptotic factors and inflammatory cytokines. MiR-122 overexpression in HCT116, SW480, and SW620 cells showed upregulation of Caspase 3, Caspase 9, and BAX and decreased expression of BCL2, which are pro-apoptotic and anti-apoptotic members that maintain a ratio between cellular survival and cell death. In vivo transient transfection of miR-122 mimic in AOM/DSS induced colon tumor mouse model showed less inflammation and disease activity. The TCGA-COAD data indicated that AEG-1 expression was higher in patients with low expression of miR-122 and lower AEG-1 expression in patients with higher expression miR-122. CONCLUSION Our findings highlight the key role of miR-122 in the high grade of colonic inflammation, and possibly in colon cancer, and the use of miR-122 mimic might be a therapeutic option.
Collapse
Affiliation(s)
- Sarubala Malayaperumal
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Sushmitha Sriramulu
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Ganesan Jothimani
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, Örebro, Sweden
| | - Shabana Thabassum Mohammed Rafi
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Rajesh Kanna NR
- Department of Pathology, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Xiao-Feng Sun
- Division of Oncology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| |
Collapse
|
2
|
Sahu VK, Sur S, Agarwal S, Madhyastha H, Ranjan A, Basu S. Unveiling theranostic potential: Insights into cell-free microRNA-protein interactions. Biophys Chem 2025; 322:107421. [PMID: 40048894 DOI: 10.1016/j.bpc.2025.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/02/2024] [Accepted: 03/01/2025] [Indexed: 04/27/2025]
Abstract
MicroRNAs (miRNAs) belong to a short endogenous class of non-coding RNAs which have been well studied for their crucial role in regulating cellular homeostasis. Their role in the modulation of diverse biological pathways by interacting with cellular proteins, genes, and RNAs through cellular communication projects them as promising biomarkers and therapeutic targets. However, studying miRNA-protein interactions specific to disease in the extracellular or cell-free environments for drug discovery and biomarker establishment is challenging and resource-intensive due to their structural complexities. In this study, we present a computational approach to uncover patterns in miRNA-protein interactions in the cell-free milieu leveraging existing experimental data. We employed motif discovery tools, extracted motifs from 3D protein and miRNA structures, and conducted molecular docking analyses to identify and rank these interactions. This in silico-based approach reveals 204 and 2874 consensus sequences in miRNAs and proteins, respectively, within the interactome highlighting their potential roles in the cardiovascular diseases, neurological disorders, and cancers. The role of proteins like METTL3 and AGO2 and miRNAs such as hsa-miR-484 and hsa-miR-30 families, hsa-mir-126-5p has been discussed contextually. Additionally, we discovered simple sequence repeats in the consensus patterns having unexplored functional roles. Our observations provide new insights into the extracellular miRNA-protein interactions that may drive disease initiation and progression offering potential avenues for overcoming challenges like therapy relapse and drug inefficacy. The results of our analysis are available in the miRPin database (https://www.mirna.in/miRPin).
Collapse
Affiliation(s)
- Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Subhayan Sur
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Sanjana Agarwal
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India.
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India.
| |
Collapse
|
3
|
Wang Z, Su X, Zhan Z, Wang H, Zhou S, Mao J, Xu H, Duan S. miR-660: A novel regulator in human cancer pathogenesis and therapeutic implications. Gene 2025; 953:149434. [PMID: 40120868 DOI: 10.1016/j.gene.2025.149434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression. Among these, miR-660, located on chromosome Xp11.23, is increasingly studied for its role in cancer due to its abnormal expression in various biological contexts. It is regulated by 8 competing endogenous RNAs (ceRNAs), which adds complexity to its function. miR- 660 targets 19 genes involved in 6 pathways such as PI3K/AKT/mTOR, STAT3, Wnt/β-catenin, p53, NF‑κB, and RAS, influencing cell cycle, proliferation, apoptosis, and invasion/migration. It also plays a role in resistance to chemotherapies like cisplatin, gemcitabine, and sorafenib in lung adenocarcinoma (LUAD), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC), thus highlighting its clinical importance. Additionally, leveraging liposomes as nanocarriers presents a promising avenue for enhancing cancer drug delivery. Our comprehensive study not only elucidates the aberrant expression patterns, biological functions, and regulatory networks of miR-660 and its ceRNAs but also delves into the intricate signaling pathways implicated. We envisage that our findings will furnish a robust framework and serve as a seminal reference for future investigations of miR-660, fostering advancements in cancer research and potentially catalyzing breakthroughs in cancer diagnosis and treatment paradigms.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhiqing Zhan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hangxuan Wang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shuhan Zhou
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jiasheng Mao
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hening Xu
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zhang J, Yin R, Xue Y, Qin R, Wang X, Wu S, Zhu J, Li YS, Zhang C, Wei Y. Advances in the study of epithelial mesenchymal transition in cancer progression: Role of miRNAs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:69-90. [PMID: 40185337 DOI: 10.1016/j.pbiomolbio.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Epithelial-mesenchymal transition (EMT) has been extensively studied for its roles in tumor metastasis, the generation and maintenance of cancer stem cells and treatment resistance. Epithelial mesenchymal plasticity allows cells to switch between various states within the epithelial-mesenchymal spectrum, resulting in a mixed epithelial/mesenchymal phenotypic profile. This plasticity underlies the acquisition of multiple malignant features during cancer progression and poses challenges for EMT in tumors. MicroRNAs (miRNAs) in the microenvironment affect numerous signaling processes through diverse mechanisms, influencing physiological activities. This paper reviews recent advances in EMT, the role of different hybrid states in tumor progression, and the important role of miRNAs in EMT. Furthermore, it explores the relationship between miRNA-based EMT therapies and their implications for clinical practice, discussing how ongoing developments may enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Jia Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| | - Yongwang Xue
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Rong Qin
- Department of Medical Oncology, Jiangsu University Affiliated People's Hospital, Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Xuequan Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shuming Wu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Jun Zhu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yan-Shuang Li
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| |
Collapse
|
5
|
Sheng N, Liu Y, Gao L, Wang L, Si C, Huang L, Wang Y. Deep-Learning-Based Integration of Sequence and Structure Information for Efficiently Predicting miRNA-Drug Associations. J Chem Inf Model 2025. [PMID: 40380921 DOI: 10.1021/acs.jcim.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
Extensive research has shown that microRNAs (miRNAs) play a crucial role in cancer progression, treatment, and drug resistance. They have been recognized as promising potential therapeutic targets for overcoming drug resistance in cancer treatment. However, limited attention has been paid to predicting the association between miRNAs and drugs by computational methods. Existing approaches typically focus on constructing miRNA-drug interaction graphs, which may result in their performance being limited by interaction density. In this work, we propose a novel deep learning method that integrates sequence and structural information to infer miRNA-drug associations (MDAs), called DLST-MDA. This approach innovates by utilizing attribute information on miRNAs and drugs instead of relying on the commonly used interaction graph information. Specifically, considering the sequence lengths of miRNAs and drugs, DLST-MDA employs multiscale convolutional neural network (CNN) to learn sequence embeddings at different granularity levels from miRNA and drug sequences. Additionally, it leverages the power of graph neural networks to capture structural information from drug molecular graphs, providing a more representational analysis of the drug features. To evaluate DLST-MDA's effectiveness, we manually constructed a benchmark data set for various experiments based on the latest databases. Results indicate that DLST-MDA performs better than other state-of-the-art methods. Furthermore, case studies of three common anticancer drugs can evidence their usefulness in discovering novel MDAs. The data and source code are released at https://github.com/sheng-n/DLST-MDA.
Collapse
Affiliation(s)
- Nan Sheng
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Yunzhi Liu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Ling Gao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Lei Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Chenxu Si
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| |
Collapse
|
6
|
Maurya N, Meena A, Luqman S. Role of microRNAs in lung oncogenesis: Diagnostic implications, resistance mechanisms, and therapeutic strategies. Int J Biol Macromol 2025:144261. [PMID: 40381781 DOI: 10.1016/j.ijbiomac.2025.144261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 04/16/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Lung cancer continues to pose a significant global health concern, presenting a formidable challenge on a worldwide scale, necessitating a deeper understanding of molecular mechanisms underlying its pathogenesis and treatment responses. microRNA (miRNA) modulation in the context of lung cancer therapeutics aims to unravel the complexities of miRNA-mediated regulatory networks. This comprehensive review elucidates microRNA's diverse roles in lung cancer, encompassing their involvement in key signaling pathways, cellular processes, the regulation of oncogenic or tumor-suppressive targets, and drug sensitivity. Moreover, this review critically examines the potential of miRNAs as diagnostic and prognostic biomarkers and their implications in therapeutic interventions for lung cancer. microRNAs are effective in making lung cancer therapy more efficient. They can make tumor cells more responsive to chemotherapy, radiation, and targeted therapies. microRNAs can target the drug efflux mechanism, increasing the effectiveness of chemotherapy agents and decreasing resistance. Furthermore, microRNAs play a crucial role in developing and inhibiting the resistance mechanisms against conventional treatments; improving the dysregulated expression of microRNAs enhances the therapeutic efficacy of existing therapies. By compiling knowledge on miRNA-mediated processes related to lung cancer, this review offers a comprehensive resource for researchers to understand and address the complexities of oncogenesis, diagnostics, resistance mechanisms, and therapeutic strategies.
Collapse
Affiliation(s)
- Nidhi Maurya
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India
| | - Abha Meena
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India.
| |
Collapse
|
7
|
Azad MG, Russell T, Gu X, Zhao X, Richardson V, Wijesinghe TP, Babu G, Guo X, Kaya B, Dharmasivam M, Deng Z, Richardson DR. NDRG1 and its Family Members: More than Just Metastasis Suppressor Proteins and Targets of Thiosemicarbazones. J Biol Chem 2025:110230. [PMID: 40378957 DOI: 10.1016/j.jbc.2025.110230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/19/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
N-Myc downstream regulated gene-1 (NDRG1) and the other three members of this family (NDRG2, 3, and 4) play various functional roles in the cellular stress response, differentiation, migration, and development. These proteins are involved in regulating key signaling proteins and pathways that are often dysregulated in cancer, such as EGFR, PI3K/AKT, c-Met, and the Wnt pathway. NDRG1 is the primary, well-examined member of the NDRG family, and is generally characterized as a metastasis suppressor that inhibits the first step in metastasis, the epithelial-mesenchymal transition. While NDRG1 is well-studied, emerging evidence suggests NDRG2, NDRG3, and NDRG4 also play significant roles in modulating oncogenic signaling and cellular homeostasis. NDRG family members are regulated by multiple mechanisms, including transcriptional control by hypoxia-inducible factors, p53, and Myc, as well as post-translational modifications such as phosphorylation, ubiquitination, and acetylation. Pharmacological targeting of the NDRG family is a therapeutic strategy against cancer. For instance, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) have been extensively shown to up-regulate NDRG1 expression, leading to metastasis suppression and inhibition of tumor growth in multiple cancer models. Similarly, targeting NDRG2 demonstrates its pro-apoptotic and anti-proliferative effects, particularly in glioblastoma and colorectal cancer. This review provides a comprehensive analysis of the structural features, regulatory mechanisms, and biological functions of the NDRG family and their roles in cancer and neurodegenerative diseases. Additionally, NDRG1-4 are explored as therapeutic targets in oncology, focusing on recent advances in anti-cancer agents that induce the expression of these proteins. Implications for future research and clinical applications are also discussed.
Collapse
Affiliation(s)
- Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Tiffany Russell
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Xuanling Gu
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Golap Babu
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Xinnong Guo
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
8
|
Pulito C, Vaccarella S, Palcau AC, Ganci F, Brandi R, Frascolla C, Sacconi A, Canu V, Benedetti A, De Pascale V, Donzelli S, Fisch AS, Manciocco V, Covello R, Pimpinelli F, Morrone A, Fazi F, Pellini R, Muti P, Meens J, Karamboulas C, Nichols AC, Strano S, Klinghammer K, Tinhofer I, Ailles L, Fontemaggi G, Blandino G. MicroRNA-mediated PTEN downregulation as a novel non-genetic mechanism of acquired resistance to PI3Kα inhibitors of head & neck squamous cell carcinoma. Drug Resist Updat 2025; 81:101251. [PMID: 40382983 DOI: 10.1016/j.drup.2025.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
AIMS Head and neck squamous cell carcinomas (HNSCCs) frequently harbor alterations in the PI3K signalling axis and, particularly, in the PIK3CA gene. The promising rationale of using PI3K inhibitors for the treatment of HNSCC has, however, clashed with the spontaneous development of resistance over time. METHODS To identify valuable targets for overcoming acquired resistance to PI3Kα inhibitors in HNSCC, we performed microRNA profiling on a cohort of HNSCC PDXs that were treated with alpelisib, including both responsive and resistant tumors. Using CRISPR/Cas9, siRNA, and PTEN-/- isogenic and alpelisib-resistant cell models, we examined the role of PTEN in resistance acquisition. Phospho-proteomic analysis identified PTEN-dependent phosphorylation events, while PI3Kα inhibitor-resistant organoids were used to assess PLK1 inhibitor efficacy. RESULTS We identified microRNAs altered in resistant PDXs, including members of the miR-17-92 cluster. Mechanistically, we observed that the hyperactive c-Myc was recruited to MIR17HG regulatory regions in alpelisib-resistant cells, sustaining miR-17-5p, miR-19b-3p, and miR-20a-5p expression, which downregulated PTEN. PTEN knockout or depletion conferred alpelisib resistance in HNSCC cells. We identified PTEN-dependent phosphorylation events, such as p-PLK1-T210, involved in resistance. Interestingly, pharmacological inhibition of PLK1 strongly reduced the viability of PI3Kα-resistant organoids derived from HNSCC PDXs and cell line models. CONCLUSION Overall, this study unveils a novel, microRNA-driven, non-genetic mechanism contributing to acquired resistance to PI3Kα inhibitors in HNSCC. Indeed, linking hyperactive c-Myc to sustain miR-17-92 expression and consequent PTEN downregulation, we also propose that targeting PTEN-dependent downstream effectors, such as PLK1, may offer a powerful therapeutic strategy for resistant HNSCC.
Collapse
Affiliation(s)
- Claudio Pulito
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Sebastiano Vaccarella
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Alina Catalina Palcau
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, Rome 00144, Italy
| | - Federica Ganci
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Renata Brandi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Carlotta Frascolla
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Valeria Canu
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Anna Benedetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Valentina De Pascale
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Anne-Sophie Fisch
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Valentina Manciocco
- Department of Otorhinolaryngology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Renato Covello
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, Rome 00144, Italy
| | - Aldo Morrone
- Scientific Director Office, IRCCS San Gallicano Dermatology Institute, Rome 00144, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Raul Pellini
- Department of Otorhinolaryngology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan La Statale, Milan 20122, Italy
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Sabrina Strano
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Konrad Klinghammer
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Giulia Fontemaggi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy.
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy.
| |
Collapse
|
9
|
Oryani MA, Mohammad Al-Mosawi AK, Javid H, Tajaldini M, Karimi-Shahri M. A Bioligical Perspective on the role of miR-206 in Colorectal cancer. Gene 2025; 961:149552. [PMID: 40339768 DOI: 10.1016/j.gene.2025.149552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
MicroRNAs (miRs) have emerged as pivotal regulators in the development and progression of colorectal cancer (CRC), and MicroRNA-206 (miR-206) has garnered attention as a potentially influential factor. However, the specific biological functions and complete mechanistic understanding of miR-206 in CRC remain largely uncharacterized. This study aims to bridge this research gap by providing a comprehensive analysis of miR-206's role in CRC. An exploration of the molecular mechanisms regulated by miR-206, its intricate interplay with target genes, and its significant impact on cellular processes highlights its potential utility as both a diagnostic marker and a therapeutic target. The significance of this research lies in potentially enabling the development of innovative therapeutic approaches, ultimately aiming to improve prognosis and survival rates in CRC patients by elucidating the functions of miR-206. Critical pathways, such as c-Met and PTEN/AKT, play crucial roles within the regulatory network of miR-206 in CRC and impact various cellular processes involved in CRC pathogenesis, metastasis, and treatment response. Understanding the complex interactions between miR-206 and key signaling pathways like c-Met and PTEN/AKT is crucial for understanding the underlying mechanisms driving CRC initiation and progression. This knowledge can inform the development of targeted therapeutic interventions, potentially leading to improved patient outcomes and advances in CRC management.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences. Gorgan, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
10
|
Charmine P, Venkatesan V, Geminiganesan S, Ekambaram S, Nammalwar BR, Parameswari RP, Mohana Priya CD. Deciphering the urinary microRNAs landscape in nephrotic syndrome: implications as prognostic marker-a non-invasive study. Int Urol Nephrol 2025:10.1007/s11255-025-04546-7. [PMID: 40327253 DOI: 10.1007/s11255-025-04546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Nephrotic syndrome is a complex renal condition characterized by abnormal protein permeability into the urine space, leading to edema and renal failure. Recent research suggests that deregulation of microRNAs contributes to the pathogenesis of this disease. MicroRNAs are small, non-coding RNA molecules that regulate gene expression by binding to complementary messenger RNA sequences. In this study, we employed bioinformatics techniques to analyze microRNA expression in urine samples from nephrotic syndrome patients and healthy control participants. Our results revealed a significant disruption of microRNA expression profiles in patients with nephrotic syndrome, indicating that these microRNAs may play a crucial role in the disease. This study highlights the potential of urinary microRNAs as biomarkers for nephrotic syndrome and warrants further investigation into their functional significance in the disease pathogenesis.
Collapse
Grants
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Pricilla Charmine
- Faculty of Clinical Research, SRIHER, No.1 Ramachandra Nagar, Porur, Chennai, 600116, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, SRIHER, No.1 Ramachandra Nagar, Porur, Chennai, 600116, India
| | - Sangeetha Geminiganesan
- Department of Paediatric Nephrology, Kauvery Hospital Chennai - Radial Road, No. 2/473, Radial Road, Kovilambakkam, Chennai, 600 129, India
| | - Sudha Ekambaram
- Pediatric Nephrologist, Greams Lane, 21, Greams Road, Thousand Lights West, Thousand Lights, Chennai, Tamil Nadu, 600006, India
| | - B R Nammalwar
- Dr. Mehta's Hospital, No.2/1,2, 3, Mc Nichols Road 3rd Ln, Chetpet, Chennai, Tamil Nadu, 600031, India
| | - R P Parameswari
- Saveetha University, Thandalam, Kanchipuram - Chennai Road, Chennai, Tamil Nadu, 602105, India
| | - C D Mohana Priya
- Department of Human Genetics, SRIHER, No.1 Ramachandra Nagar, Porur, Chennai, 600116, India.
| |
Collapse
|
11
|
Sohail SK. Natural Products as Modulators of miRNA in Hepatocellular Carcinoma: A Therapeutic Perspective. J Gene Med 2025; 27:e70019. [PMID: 40296860 DOI: 10.1002/jgm.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/07/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025] Open
Abstract
Hepatocellular carcinoma (HCC) continues to pose a substantial worldwide health concern, marked by elevated mortality rates and restricted therapeutic alternatives. Recent studies have highlighted the potential of natural compounds as therapeutic agents in cancer management. This review focuses on the diagnostic and prognostic potential of microRNAs (miRNAs) as biomarkers in HCC, alongside the therapeutic promise of natural products. We explore the intricate role of miRNAs in the pathogenesis of HCC, detailing their regulatory functions in cellular processes such as proliferation, apoptosis, and metastasis. Additionally, we discuss the emerging evidence supporting the use of natural compounds, including phytochemicals, in modulating miRNA expression and their potential synergistic effects with conventional therapies. Key miRNAs discussed include miR-21, an oncogenic factor that promotes tumor growth by targeting the tumor suppressor phosphatase and tensin homolog (PTEN); miR-34a, which enhances apoptosis and may improve treatment efficacy when combined with c-MET inhibitors; miR-203, whose downregulation correlates with poor outcomes and may serve as a prognostic marker; miR-16, which acts as a tumor suppressor and has diagnostic potential when measured alongside traditional markers like alpha-fetoprotein (AFP); and miR-483-3p, associated with resistance to apoptosis and tumor progression. By integrating insights from recent studies, this review aims to highlight the dual role of miRNAs as both biomarkers and therapeutic targets, paving the way for enhanced diagnostic strategies and novel treatment modalities in HCC management.
Collapse
|
12
|
Khazaei-Poul Y, Firouzjaei AA, Paryan M, Tafti A, Mohammadi-Yeganeh S. Evaluation of the impact of miR-3143 on the PI3K/AKT signaling pathway and its subsequent influence on the metastatic phenotype of triple-negative breast cancer cells. Exp Cell Res 2025; 448:114552. [PMID: 40203985 DOI: 10.1016/j.yexcr.2025.114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
MicroRNAs (miRNAs) are recognized to have a pivotal role in the progression and metastatic dissemination encompassing diverse cancer varieties, such as triple-negative breast cancer (TNBC). Recent evidence has suggested that specific miRNA species can directly or indirectly influence the onset, progression, and relapse of TNBC. Previous studies have reported the frequent reduction of miR-3143 in TNBC, which appears to coincide with the activation of proliferative signaling pathways. However, the potential restorative effects of miR-3143 on TNBC cellular behavior remain unexplored. In the present study, we utilized exosome-mediated delivery to introduce miR-3143 into TNBC cells and investigated its impact on the PI3K/AKT pathway and the resulting effects on cellular proliferation, movement, and apoptosis. MDA-MB-231 TNBC cells underwent treatment with miR-3143-electroporated human umbilical cord mesenchymal stem cell (HUCMSC)-derived exosomes. RT-qPCR analysis was utilized to assess the influence of miR-3143 overexpression on the expression of its target genes, PIK3CA and AKT1, which was further validated through dual-luciferase reporter assays. Our results demonstrated that the overexpression of miR-3143 could effectively decline the level of AKT1 and PIK3CA by directly binding to their 3'-UTRs. Furthermore, the introduction of miR-3143 into TNBC cells resulted in a significant enhancement of apoptotic activities. Interestingly, the delivery of miR-3143 via HUCMSC-derived exosomes could inhibit the protumorigenic and prometastatic behaviors of TNBC cells, potentially limiting their malignant progression. Collectively, these findings enhance comprehension of the regulatory mechanisms by which miR-3143 can modulate the metastatic potential of TNBC cells. The insights gained from this study may facilitate the creation of innovative miRNA-targeting approaches to combat the aggressive nature of TNBC andstrengthen treatment effectiveness.
Collapse
Affiliation(s)
- Yalda Khazaei-Poul
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadizad Firouzjaei
- Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Tafti
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Biswas S, Kanodia R, Seervi S, Kaur R, Shukla S, Singh S, Banerjee J, Banerjee S. Portrayal of the complex molecular landscape of multidrug resistance in gastric cancer: Unveiling the potential targets. Exp Cell Res 2025; 449:114580. [PMID: 40306607 DOI: 10.1016/j.yexcr.2025.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Gastric cancer (GC) is an aggressive malignancy among all Gastrointestinal cancer (GIC) types. Worldwide, among all cancer types, gastric cancer incidence and related mortality remain in fifth position. Multidrug resistance (MDR) in GC presents a major challenge to chemotherapy, and it significantly affects patient survival. A better understanding of the dynamic interaction of cellular factors contributing to MDR phenotype, e.g., the presence and expression of variants of MDR-related genes, including various drug-detoxifying and drug-efflux transporters, and expression of regulatory ncRNAs affecting the expression of MDR-related genes, is required to comprehend the molecular mechanisms for MDR development in GCs. This review article provides a holistic discussion of the cellular factors involved in the MDR development in GC cells, i.e., their roles and cross-talk between specific molecules that give rise to drug-sensitive and drug-resistant phenotypes. Moreover, the pharmacological perspective of drug resistance and the underlying biological processes that allow the escape of GC cells from the cytotoxic effects of drugs have also been discussed. Additionally, this review article provides an in-depth discussion on most potential candidates that can serve as MDR biomarkers in GIC cancer and the growing research interest in non-coding RNAs (ncRNAs) in GC. Notably, the miRNAs, circRNAs, and lncRNAs are not only emerging as crucial prognostic biomarkers of MDR in gastric cancers but also as potential targets for personalized medicine to combat the MDR challenge in GC patients.
Collapse
Affiliation(s)
- Siddhant Biswas
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Riya Kanodia
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Suman Seervi
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Rajinder Kaur
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Sakshi Shukla
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Juni Banerjee
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India.
| | - Shuvomoy Banerjee
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
14
|
Gupta H, Raghubansi A, Bharat, Sharma K, Zutshi K, Panchal P, Bhattacharya S, Ranjan P, Puri G, Saini N. Targeting GSK3β and signaling pathways in breast cancer: role of individual members of miR- 23/24/27 cluster. BMC Cancer 2025; 25:737. [PMID: 40254586 PMCID: PMC12010543 DOI: 10.1186/s12885-025-14045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND The high mortality rate of breast cancer and the difficulties associated with therapeutic resistance, especially in cases where targeted treatments are unavailable, make it a serious threat to women's health. This study examines the relationship between three mature microRNAs (miRNAs) that are clustered together, namely miR- 23a, miR- 27a, and miR- 24-2, as well as their potential correlation with breast cancer. METHODS We identified common gene targets of miR- 23a, miR- 27a, and miR- 24-2 using computational analysis. We also checked for the levels of miR- 23a, miR- 27a, and miR- 24-2 in 26 breast tumor tissues (with their matched control) as well as MCF7 and MDA-MB- 231 cell lines using qRT-PCR. Dual-luciferase reporter assay was conducted to validate the binding site of the microRNAs in their target gene. Western blot was performed to study the expression of various breast cancer related genes in the presence of the three microRNAs. In addition, the effect of microRNAs in cancer cell metastasis and cell division was carried out using invasion and cell cycle assay. RESULTS Computational analysis identified key genes, including GSK3β, NCOA1 and SP1, which are functionally linked to tumor progression and various other malignancies. All three microRNAs were found to be significantly downregulated in the breast cancer tissue samples in comparison to their respective controls. Kaplan-Meier plot analysis revealed that the expression levels of these genes and associated microRNAs correlates with breast cancer patient survival rates. Reduced SP1 and NCOA1 levels predicted a worse prognosis, but elevated levels of GSK3β were linked with decreased survival. Moreover, miR- 23a and miR- 24-2 specifically target GSK3β, potentially disrupting the Wnt/β-catenin pathway involved in breast cancer development. Functional tests showed that miR- 23a, miR- 27a and miR- 24-2 affect expression of EMT related genes, influencing cell invasion and migration, impacting ERK signaling and EMT, critical in the spread of breast cancer. CONCLUSION This study unlocks the potential of targeting the microRNA cluster as a therapeutic approach and emphasizes the complex regulatory roles of each individual members of the miR- 23a/27a/24-2 cluster in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Harshi Gupta
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Anushka Raghubansi
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Bharat
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kritika Sharma
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Krittika Zutshi
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Partibha Panchal
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sushant Bhattacharya
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Piyush Ranjan
- Department of Surgical Disciplines, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Gopal Puri
- Department of Surgical Disciplines, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Alonaizan R, Purnama U, Malandraki-Miller S, Gunadasa-Rohling M, Lewis A, Smart N, Carr C. MicroRNA-210 Enhances Cell Survival and Paracrine Potential for Cardiac Cell Therapy While Targeting Mitophagy. J Funct Biomater 2025; 16:147. [PMID: 40278255 PMCID: PMC12028018 DOI: 10.3390/jfb16040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key to enhancing their regenerative capacity. We demonstrate that microRNA-210 (miR-210), known for its role in hypoxic adaptation, significantly improves CPC survival by inhibiting apoptosis through the downregulation of Casp8ap2, a ~40% reduction in caspase activity, and a ~90% decrease in DNA fragmentation. Contrary to the expected induction of Bnip3-dependent mitophagy by hypoxia, miR-210 did not upregulate Bnip3, indicating a distinct anti-apoptotic mechanism. Instead, miR-210 reduced markers of mitophagy and increased mitochondrial biogenesis and oxidative metabolism, suggesting a role in metabolic reprogramming. Furthermore, miR-210 enhanced the secretion of paracrine growth factors from CPCs, with a ~1.6-fold increase in the release of stem cell factor and of insulin growth factor 1, which promoted in vitro endothelial cell proliferation and cardiomyocyte survival. These findings elucidate the multifaceted role of miR-210 in CPC biology and its potential to enhance cell-based therapies for myocardial repair by promoting cell survival, metabolic adaptation, and paracrine signalling.
Collapse
Affiliation(s)
- Rita Alonaizan
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
- King Faisal Specialist Hospital & Research Centre, Riyadh 12713, Saudi Arabia
| | - Ujang Purnama
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
| | | | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
| | - Andrew Lewis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
| | - Nicola Smart
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
| | - Carolyn Carr
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
| |
Collapse
|
16
|
Bresesti C, Carito E, Notaro M, Giacca G, Breggion S, Kerzel T, Mercado CM, Beretta S, Monti M, Merelli I, Canu T, Naldini L, Squadrito ML. Reprogramming liver metastasis-associated macrophages toward an anti-tumoral phenotype through enforced miR-342 expression. Cell Rep 2025; 44:115592. [PMID: 40253698 DOI: 10.1016/j.celrep.2025.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/24/2025] [Accepted: 03/29/2025] [Indexed: 04/22/2025] Open
Abstract
Upon metastatic seeding in the liver, liver macrophages, including Kupffer cells, acquire a transcriptional profile typical of tumor-associated macrophages (TAMs), which support tumor progression. MicroRNAs (miRNAs) fine-tune TAM pro-tumoral functions, making their modulation a promising strategy for macrophage reprogramming into an anti-tumoral phenotype. Here, we analyze the transcriptomic profiles of liver and splenic macrophages, identifying miR-342-3p as a key regulator of liver macrophage function. miR-342-3p is highly active in healthy liver macrophages but significantly downregulated in colorectal cancer liver metastases (CRLMs). Lentiviral vector-engineered liver macrophages enforcing miR-342-3p expression acquire a pro-inflammatory phenotype and reduce CRLM growth. We identify Slc7a11, a cysteine-glutamate antiporter linked to pro-tumoral activity, as a direct miR-342-3p target, which may be at least partially responsible for TAM phenotypic reprogramming. Our findings highlight the potential of in vivo miRNA modulation as a therapeutic strategy for TAM reprogramming, offering an approach to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Chiara Bresesti
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Eleonora Carito
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Notaro
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giovanna Giacca
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sara Breggion
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Thomas Kerzel
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Carl Mirko Mercado
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Monti
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tamara Canu
- Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Naldini
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mario Leonardo Squadrito
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
17
|
Akand SK, Rahman A, Masood M, Tabrez S, Saleem M, Ahmed MZ, Akhter Y, Haque MM, Rub A. hsa-miR-330-5p regulates serine palmitoyltransferase long chain base subunit 1 and augments host protective immune response against Leishmania donovani infection. Arch Microbiol 2025; 207:123. [PMID: 40237871 DOI: 10.1007/s00203-025-04325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Leishmaniasis, caused by the protozoan parasites of the genus Leishmania, poses a significant global health challenge, particularly in the resource-limited regions where it causes high mortality. Regardless in the progress of treatment strategies, the emergence of drug resistance and limited efficacy requires the search of novel therapy and therapeutic targets. MicroRNAs, the crucial post-transcriptional regulators of gene expression, play critical roles in host-pathogen interactions. Here, we screened the miRNAs dysregulated during Leishmania donovani infection through literature search. hsa-miR-330-5p, one of the miRNAs which through human KEGG 2021 and Human Cyc 2016 analysis was found to be involved in multiple pathways including sphingolipid signaling pathway. Sphingolipids are important class of lipids involved in different cellular processes and therefore are the targets of many pathogens including Leishmania. hsa-miR-330-5p was found downregulated after 24 h of Leishmania donovani infection in THP-1 derived human macrophages. Target prediction of sphingolipid biosynthetic genes through in silico prediction tools showed 3/ UTR of serine palmitoyltransferase long chain base subunit 1 to be a target of hsa-miR-330-5p. The in silico target prediction of hsa-miR-330-5p was validated by cloning the 3/ UTR target sequence of gene, transfecting and performing luciferase assay in HEK 293 T cell line. Transfection of mimic of hsa-miR-330-5p reduced the luciferase activity which validated the in silico target prediction. Further, mimic of hsa-miR-330-5p inhibited the expression of the target gene, serine palmitoyltransferase long chain base subunit 1 and augmented the expression of pro-inflammatory cytokines in L. donovani infected THP-1 derived macrophages. Mimic of hsa-miR-330-5p also led to a significant reduction in the intracellular parasite burden in both THP-1 derived as well as primary human macrophages. This study has not only identified the sphingolipid biosynthesis regulatory miRNA but will also help in the development of novel and effective treatment strategy against leishmaniasis in future.
Collapse
Affiliation(s)
- Sajjadul Kadir Akand
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Areeba Rahman
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Mohammad Masood
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Shams Tabrez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Mohammad Saleem
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Kingdom of Saudi Arabia
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Abdur Rub
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| |
Collapse
|
18
|
Amani AM, Tayebi L, Vafa E, Bazargan-Lari R, Abbasi M, Vaez A, Kamyab H, Rajendran S, Azizli MJ. Exploring the revolutionary potential of MXene nanoparticles in breast Cancer therapy: A review of applications and future prospects. Int Immunopharmacol 2025; 152:114411. [PMID: 40090084 DOI: 10.1016/j.intimp.2025.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/18/2025]
Abstract
Breast cancer is a leading cause of cancer-related deaths in women worldwide. Early detection and accurate diagnosis are crucial for successful treatment and improving patient outcomes. Nanoparticles, such as MXenes, have emerged as a promising tool for various breast cancer applications due to their unique properties. MXenes possess a high surface area and excellent biocompatibility, and can be engineered to enhance targeting ability, as well as mechanical, electrochemical, and optical properties. This review article explores the potential of MXenes in breast cancer detection and treatment, including miRNA detection, MRI-guided photothermal therapy, combined therapy, and immunotherapy. MXenes can be used for miRNA detection, which has shown promise as a biomarker for breast cancer. MXenes can also be used for MRI-guided photothermal therapy, where they can absorb light and convert it into heat to destroy cancer cells. Additionally, MXenes can be used in combination therapy with other drugs to enhance their efficacy. MXenes can also be used for immunotherapy by enhancing the immune response against cancer cells. The article also discusses the future prospects of MXenes in breast cancer research and their cytotoxicity effects. The use of MXenes in breast cancer research is a novel approach with great potential for improving patient outcomes.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Institute for Engineering in Medicine, Health & Human Performance (EnMed), Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA 23529, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, M. C., Islamic Azad University, Marvdasht, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito 170527, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | - Saravanan Rajendran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Mohammad Javad Azizli
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Polymer Engineering and Chemical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
19
|
Kou Z, Zhu S, Zhu J, Wang S, Zheng Y, Zhou S, Si Z, Zhu H. Multi-omics analysis identifies DLX4 as a novel biomarker for diagnosis, prognosis, and immune infiltration: from pan-cancer to renal cancer. Discov Oncol 2025; 16:467. [PMID: 40186710 PMCID: PMC11972278 DOI: 10.1007/s12672-025-02258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND DLX4 is involved in the regulation of embryonic development, but its function in cancer remains unclear. Here, we conducted a pan-cancer analysis to investigate the molecular mechanisms of DLX4, with a particular emphasis on its role in renal cancer. METHODS A comprehensive analysis of DLX4 was performed, focusing on differences in expression, prognostic value, somatic mutations, methylation modifications, and immune landscapes across various cancer types using multiple databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were utilized to explore the potential biological functions. Additionally, we evaluated the expression profile, prognostic significance, and immune infiltration of DLX4 in Kidney Renal Clear Cell Carcinoma (KIRC). The effect of DLX4 on KIRC was further validated by Spatial Transcriptomics, Real-time PCR (RT-PCR), and Immunohistochemistry experiments. RESULTS DLX4 was found to be upregulated in 26 cancer types and associated with poor prognosis. It was also correlated with tumor mutational burden (TMB), microsatellite instability, mismatch repair, and methylation, and was significantly enriched in pathways related to cell proliferation. In KIRC, DLX4 expression increased along with TMB and immune scores, likely due to the infiltration of regulatory T cells (Tregs) and T-helper 2 (Th2) cells. Spatial transcriptomics revealed a strong correlation between DLX4 localization and tumor cells. Experimental validation confirmed that DLX4 expression is significantly upregulated in renal cancer tissues. CONCLUSION Our study explored the mechanisms of DLX4 in pan-cancer, especially in renal clear cell carcinoma, identifying it as a promising biomarker and therapeutic target.
Collapse
Affiliation(s)
- Zengshun Kou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shuaizhi Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao West Coast New Area District Hospital, Qingdao, China
| | - Jiaxi Zhu
- Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Canada
| | - Shufei Wang
- College of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Zheng
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Shengjie Zhou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zi'ang Si
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
20
|
Arun B, John G, Raman R. MicroRNA Signatures: Illuminating Minimal Residual Disease Monitoring in Juvenile Myelomonocytic Leukemia - A Review. J Hematol 2025; 14:43-55. [PMID: 40336920 PMCID: PMC12056752 DOI: 10.14740/jh1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 05/09/2025] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive pediatric myelodysplastic/myeloproliferative neoplasm characterized by RAS pathway mutations and significant heterogeneity. Minimal residual disease (MRD) monitoring is crucial for evaluating treatment response and predicting relapse risk. MicroRNA (miRNAs), small non-coding RNAs with pivotal roles in gene regulation, have emerged as promising biomarkers for JMML MRD detection. This review explores the mechanistic role of miRNAs in JMML pathogenesis, emphasizing their diagnostic, prognostic, and therapeutic potential. Dysregulated miRNA profiles correlate with distinct JMML subgroups and disease progression, suggesting utility in non-invasive MRD monitoring. Emerging evidence highlights miR-150-5p as a tumor suppressor targeting STAT5b and its therapeutic potential in ameliorating JMML's aberrant signaling pathways. We compare traditional MRD methods, such as flow cytometry and polymerase chain reaction (PCR), with miRNA-based techniques, underscoring the latter's superior sensitivity, specificity, and non-invasiveness. Recent advances in miRNA profiling technologies, including next-generation sequencing and digital PCR, enable precise detection of residual leukemic cells and support personalized treatment approaches. Despite significant progress, challenges persist in standardizing miRNA-based assays and validating their clinical utility. Ethical considerations, including patient privacy and informed consent, remain critical for integrating miRNA diagnostics into routine care. This review provides a comprehensive synthesis of current knowledge on miRNA signatures in JMML, illuminating their transformative potential in MRD monitoring and paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Bhavyadharshini Arun
- Hasan Lab, Department of Medical Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Geofrey John
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Rajeshkumar Raman
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, Ooty, The Nilgiris, India
| |
Collapse
|
21
|
Al Hashami ZS, van der Vegt B, Mourits MJ, Kluiver J, van den Berg A. miRNA-dependent resistance mechanisms to anti-hormonal therapies in estrogen receptor-positive breast cancer patients. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200941. [PMID: 40190354 PMCID: PMC11969448 DOI: 10.1016/j.omton.2025.200941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The estrogen receptor (ERα) is expressed in 70%-80% of breast cancers and is a target of endocrine therapy. However, resistance to endocrine therapy poses a significant clinical challenge. MicroRNAs (miRNAs) have emerged as critical players in oncogenesis and as modulators of therapy response. This review provides an overview of miRNAs that modulate anti-hormonal drug responses. We identified 56 miRNAs associated with resistance to endocrine therapy. These miRNAs had a total of 40 proven target genes that were grouped based on their function under currently known resistance mechanisms, including ER modulation, signaling pathway activation, cell-cycle modulation, and other mechanisms. For a limited number of miRNA-target gene interactions, the relevance of the identified target gene(s) was confirmed by copy or rescue of the miRNA-induced phenotype. Overall, this review highlights critical roles of miRNAs as crucial mediators of resistance to anti-hormonal therapy. The identified miRNA-target gene interactions can serve as a foundation for future functional studies exploring the potential of selected miRNAs in overcoming drug resistance, which might improve outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Zainab Salam Al Hashami
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| | - Marian J.E. Mourits
- Department of Gynaecological Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
22
|
Roondhe B, Ahuja R, Luo W. Harnessing the Efficiency of Twin Boron Nitride and Graphene Monolayers for Anticancer Drug Delivery: Insights from DFT. ACS APPLIED BIO MATERIALS 2025; 8:2015-2026. [PMID: 39919307 PMCID: PMC11921028 DOI: 10.1021/acsabm.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/12/2025] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
An extensive amount of research has been focused on the development of state-of-the-art methodologies for drug administration. In this study, we have utilized density functional theory (DFT) for assessing the ability of a Twin monolayer of boron nitride and graphene, i.e., Twin-BN and Twin-Gr monolayer, as a carrier for delivering four anticancer drugs (ACDs) 5-fluorouracil (5-FU), gemcitabine (GC), cyclophosphamide (CP), and mercaptopurine (6-MP). Also, the properties of all drug molecules along with the Twin-BN and Twin-Gr and the complex of the ACD-Twin-BN/Gr monolayer were investigated to explore the usefulness of the Twin-BN and Twin-Gr monolayer as ACD carrier. The interaction between the monolayers and ACDs confirmed that the adsorption is feasible as the adsorption energy ranged from -0.41 eV to -0.95 eV in the case of Twin-BN, while it ranged from -0.43 eV to -0.61 eV in the case of Twin-Gr. Additionally, the change in the band gap of the Twin-BN and Twin-Gr monolayers after the adsorption of ACDs was considerable. We can conclude that among both monolayers, Twin-BN can be utilized as a highly effective carrier for delivering ACDs. Our findings showed that the monolayer Twin-BN could be explored as a drug transporter for highly efficient carrying of the considered ACDs.
Collapse
Affiliation(s)
- Basant Roondhe
- Condensed
Matter Theory Group, Materials Theory Division, Department of Physics
and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
| | - Rajeev Ahuja
- Condensed
Matter Theory Group, Materials Theory Division, Department of Physics
and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
- Department
of Physics, Indian Institute of Technology
Ropar, Rupnagar, Punjab 140001, India
| | - Wei Luo
- Condensed
Matter Theory Group, Materials Theory Division, Department of Physics
and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
| |
Collapse
|
23
|
Włodarczyk M, Maryńczak K, Burzyński J, Włodarczyk J, Basak J, Fichna J, Majsterek I, Ciesielski P, Spinelli A, Dziki Ł. The role of miRNAs in the pathogenesis, diagnosis, and treatment of colorectal cancer and colitis-associated cancer. Clin Exp Med 2025; 25:86. [PMID: 40091000 PMCID: PMC11911275 DOI: 10.1007/s10238-025-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/01/2025] [Indexed: 03/19/2025]
Abstract
MicroRNAs (miRNAs) are a group of noncoding single-stranded RNA biomolecules that act in posttranscriptional regulation of gene expression. Their role in the development of inflammatory bowel disease (IBD), colitis-associated cancer (CAC), and colorectal cancer (CRC) is currently under investigation. A few miRNAs present promising results in terms of diagnostic or therapeutic use, for example, miR-21 increases in CRC and inflammation, while also being a possible target for cancer therapy; miR-301a increases in inflammation but only in patients with IBD; miR-31 increases in CRC, especially in advanced stages, namely III-IV in TNM scale; miR-200 family plays a role in carcinogenesis of CRC and other tumors; examined as a group, miR-31-5p, miR-223-3p, and let-7f-5p trigger and exacerbate CAC; miR-19a could potentially be used in therapy and prevention of both CRC and CAC. Here, we discuss available studies and outline future directions concerning the validity of using miRNAs in the diagnosis and/or therapy of IBD, CAC, and CRC. Extensive research confirms that miRNAs play an important role in the pathogenesis of CAC and CRC. Since the significantly altered expression of certain miRNAs is an early prognostic marker for the development of these diseases, miRNAs have the potential to serve as diagnostic tools, enabling quick and straightforward disease detection.
Collapse
Affiliation(s)
- Marcin Włodarczyk
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jacek Burzyński
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jakub Włodarczyk
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Justyna Basak
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Przemysław Ciesielski
- Department of General Surgery, Hospital of Our Lady of Perpetual Help in Wołomin, Wołomin, Poland
| | - Antonino Spinelli
- Colon and Rectal Surgery Division, Humanitas Clinical and Research Center, Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Rozzano, Italy
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
24
|
Vokacova K, Landecka A, Selvi S, Horak J, Novosadova V, Manakova K, Levy M, Vymetalkova V. Plasma miR-122-5p and miR-142-5p and their role in chemoresistance of patients with colon cancer. Mutagenesis 2025; 40:80-86. [PMID: 39275807 DOI: 10.1093/mutage/geae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/11/2024] [Indexed: 09/16/2024] Open
Abstract
Chemoresistance represents a major issue affecting cancer therapy efficacy. Because microRNAs (miRNAs) regulate gene expression on multiple levels, their role in chemoresistance development is reasonably certain. In our previous study, miR-122-5p and miR-142-5p were identified as diagnostic, prognostic, and predictive biomarkers for primary and metastatic rectal cancer. The aim of the present study was to investigate whether these miRNAs can also reflect the disease course of patients with colon cancer (CC). Further, we focused on a deeper understanding of their involvement in 5-fluorouracil (5-FU) chemoresistance development.
Collapse
Affiliation(s)
- Klara Vokacova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
- 1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, 142 20, Czech Republic
| | - Aneta Landecka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Saba Selvi
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, 128 00, Czech Republic
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, Prague, 10000, Czech Republic
| | - Vendula Novosadova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Prague, 252 50, Czech Republic
| | - Katerina Manakova
- 1st Medical Faculty, Charles University, Prague, 142 20, Czech Republic
| | - Miroslav Levy
- First Faculty of Medicine, Department of Surgery, Charles University and Thomayer Hospital, Prague, 140 59, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| |
Collapse
|
25
|
Cortes-Dericks L, Galetta D. An Overview of Cellular and Molecular Determinants Regulating Chemoresistance in Pleural Mesothelioma. Cancers (Basel) 2025; 17:979. [PMID: 40149313 PMCID: PMC11940806 DOI: 10.3390/cancers17060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Malignant pleural mesothelioma (PM) is a highly aggressive disease of the lung pleura associated with poor prognosis. Despite advances in improving the clinical management of this malignancy, there is no effective chemotherapy for refractory or relapsing PM. The acquisition of resistance to standard and targeted therapy in this disease is a foremost concern; therefore, a deeper understanding of the complex factors surrounding the emergence of drug resistance is deemed necessary. In this review, we will present broad insights into various cellular and molecular concepts, accounting for the recalcitrance of PM to chemotherapy, including signaling networks regulating drug tolerance, drug resistance-associated proteins, genes, and miRNAs, as well as the critical role of cancer stem cells. Identification of the biological determinants and their associated mechanisms may provide a framework for the development of appropriate treatment.
Collapse
Affiliation(s)
| | - Domenico Galetta
- Division of Thoracic Surgery, San Giovanni Bosco Hospital, 10154 Turin, Italy;
| |
Collapse
|
26
|
Sun M, Zhang Z, Chen C, Zhong J, Long Z, Shen L, Huang H, Lu J. Exploring the potential mechanisms of sorafenib resistance in hepatocellular carcinoma cell lines based on RNA sequencing. Cancer Cell Int 2025; 25:91. [PMID: 40082884 PMCID: PMC11907981 DOI: 10.1186/s12935-025-03728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Exploring the mechanisms underlying sorafenib resistance that arises in hepatocellular carcinoma (HCC) may provide new treatment perspectives. METHODS Drug-resistant and drug-sensitive HCC cell lines were constructed from existing HepG2 and Huh7 cell lines, and gene expression profiles were determined. Genes differentially expressed between the resistant and sensitive lines were identified and organized into modules based on weighted gene co-expression network analysis. Pathways and biological processes involving the module genes were explored and validated using gene set enrichment analysis. By analyzing the expression differences of Long non-coding ribonucleic acid (RNAs), microRNAs (miR), circular RNAs, and messenger RNAs between drug-resistant and sensitive cell lines, a gene regulatory network was constructed to reveal the mechanism of sorafenib resistance. In addition, we also analyzed the correlation between the candidate sorafenib resistance gene and the survival of patients with liver cancer. RESULTS Our analyses suggested that sorafenib resistance could arise when the circular RNA circ_SPECC1 regulated the microRNA hsa-let-7c-5p, which in turn regulated the cell cycle proteins cyclin-dependent kinase 1 and polo-like kinase 1, as well as interleukin 13 receptor, alpha 1 in the Janus kinase-signal transducer (JAK-STAT) and activator of transcription signaling pathway. Patient survival was associated with miR-18a-z and mitogen-activated protein kinase kinase 4 levels. CONCLUSIONS Sorafenib resistance in HCC may involve the circ_SPECC1, hsa-let-7c-5p, cell cycle, and JAK-STAT signaling pathways. These insights may guide future efforts to mitigate or prevent such resistance.
Collapse
Affiliation(s)
- Minghui Sun
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhi Zhang
- Department of Hepatobiliary Surger, Guangxi Medical University Affliated Wuming Hospital, Nanning, 530199, Guangxi, China
| | - Chunyan Chen
- Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, 201508, Shanghai, China
| | - Juan Zhong
- Department of traditional Chinese medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Zhongrong Long
- Department of Hepatobiliary Surger, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Ling Shen
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Hai Huang
- Department of Hepatobiliary Surger, Guangxi Medical University Affliated Wuming Hospital, Nanning, 530199, Guangxi, China.
| | - Jianxun Lu
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
| |
Collapse
|
27
|
Li Y, Wang S, Zhang Y, Ren C, Liu T, Liu Y, Pang S. IRPCA: An Interpretable Robust Principal Component Analysis Framework for Inferring miRNA-Drug Associations. J Chem Inf Model 2025; 65:2432-2442. [PMID: 39980166 DOI: 10.1021/acs.jcim.4c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Recent evidence indicates that microribonucleic acids (miRNAs) are crucial in modulating drug sensitivity by orchestrating the expression of genes involved in drug metabolism and its pharmacological effects. Existing predictive methods struggle to extract features related to miRNAs and drugs, often overlooking the significance of data noise and the limitations of using a single similarity measure. To address these limitations, we propose an interpretable robust principal component analysis framework (IRPCA). IRPCA enhances the robustness of the model by employing a nonconvex low-rank approximation, thereby offering greater flexibility. Interpretability is ensured by analyzing low-rank matrix decomposition, which clarifies how miRNAs interact with drugs. Gaussian interaction profile kernel (GIPK) similarities are introduced to compute integrated similarities between miRNAs and drugs, addressing the issue of the single similarity feature. IRPCA is subsequently utilized to extract pertinent features, and a fully connected neural network is employed to generate the ultimate prediction scores. To assess the efficacy of IRPCA, we implemented 5-fold cross-validation (CV), which outperformed other leading methods, achieving the highest area under the curve (AUC) value of 0.9653. Additionally, case studies provide additional evidence supporting the efficacy of IRPCA.
Collapse
Affiliation(s)
- Yunyin Li
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), Qingdao 266580, China
| | - Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), Qingdao 266580, China
- State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, China
- Shandong Key Laboratory of Intelligent Oil and Gas Industrial Software, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Chuanru Ren
- School of Computer Science and Technology, Tongji University, Shanghai 201804, China
| | - Tiyao Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), Qingdao 266580, China
| | - Yingye Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), Qingdao 266580, China
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), Qingdao 266580, China
- State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, China
- Shandong Key Laboratory of Intelligent Oil and Gas Industrial Software, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
28
|
Qian L, Chen P, Zhang S, Wang Z, Guo Y, Koutouratsas V, Fleishman JS, Huang C, Zhang S. The uptake of extracellular vesicles: Research progress in cancer drug resistance and beyond. Drug Resist Updat 2025; 79:101209. [PMID: 39893749 DOI: 10.1016/j.drup.2025.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous vesicles released by donor cells that can be taken up by recipient cells, thus inducing cellular phenotype changes. Since their discovery decades ago, roles of EVs in modulating initiation, growth, survival and metastasis of cancer have been revealed. Recent studies from multifaceted perspectives have further detailed the contribution of EVs to cancer drug resistance; however, the role of EV uptake in conferring drug resistance seems to be overlooked. In this comprehensive review, we update the EV subtypes and approaches for determining EV uptake. The biological basis of EV uptake is systematically summarized. Moreover, we focus on the diverse uptake mechanisms by which EVs carry out the intracellular delivery of functional molecules and drug resistance signaling. Furthermore, we highlight how EV uptake confers drug resistance and identify potential strategies for targeting EV uptake to overcome drug resistance. Finally, we discuss the research gap on the role of EV uptake in promoting drug resistance. This updated knowledge provides a new avenue to overcome cancer drug resistance by targeting EV uptake.
Collapse
Affiliation(s)
- Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Pangzhou Chen
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Zhenglu Wang
- Department of Pathology, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Centre Hospital, Tianjin 300192, China
| | - Yuan Guo
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Vasili Koutouratsas
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chuanqiang Huang
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Esmaili M, Jafari N, Ahmadzadeh F, Toosi SMV, Abediankenari S. Effect of conditioned medium from miRNA-34a transfected gastric cancer-associated fibroblast on peripheral blood mononuclear cells. BMC Immunol 2025; 26:9. [PMID: 40000950 PMCID: PMC11854116 DOI: 10.1186/s12865-025-00688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Cancer-associated fibroblast (CAF) cells play an important role in gastric malignancy. MiRNA dysregulation has been detected in CAF cells, which is related to the tumor progression ability of these cells. Therefore, this study aimed to evaluate the function of miRNA34a in CAF cells in gastric carcinoma. METHOD We transiently transfected miRNA-34a mimic in CAF cells and examined the effect of the overexpressed miRNA on PD-L1 expression using real-time PCR. Next, we evaluated the role of transfected CAF-conditioned medium (CM) on the immune response and viability of gastric cancer cell lines. RESULTS We have shown that miRNA-34a significantly reduced PD-L1 expression in CAF cells (p < 0.05). However, the conditioned medium of transfected cells had no significant effect on the immune response. We also found that CM of miRNA-34a transfected CAF cells significantly suppressed gastric cancer cell line viability relative to the control group (P < 0.05). CONCLUSION We indicated that CM of miRNA-34a transfected CAF can reduce gastric cancer cell line proliferation. Additionally, miRNA-34a in these cells may improve immune response via PD-L1 reduction. Thus, miRNA-34a could be a potential therapeutic agent in gastric cancer treatment. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Mozhgan Esmaili
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Ahmadzadeh
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
30
|
Lim JX, Yong YK, Dewi FRP, Chan SY, Lim V. Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches. Drug Deliv Transl Res 2025:10.1007/s13346-025-01790-3. [PMID: 39955406 DOI: 10.1007/s13346-025-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.
Collapse
Affiliation(s)
- Jian Xin Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
31
|
Tufail M, Jiang CH, Li N. Tumor dormancy and relapse: understanding the molecular mechanisms of cancer recurrence. Mil Med Res 2025; 12:7. [PMID: 39934876 PMCID: PMC11812268 DOI: 10.1186/s40779-025-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Cancer recurrence, driven by the phenomenon of tumor dormancy, presents a formidable challenge in oncology. Dormant cancer cells have the ability to evade detection and treatment, leading to relapse. This review emphasizes the urgent need to comprehend tumor dormancy and its implications for cancer recurrence. Despite notable advancements, significant gaps remain in our understanding of the mechanisms underlying dormancy and the lack of reliable biomarkers for predicting relapse. This review provides a comprehensive analysis of the cellular, angiogenic, and immunological aspects of dormancy. It highlights the current therapeutic strategies targeting dormant cells, particularly combination therapies and immunotherapies, which hold promise in preventing relapse. By elucidating these mechanisms and proposing innovative research methodologies, this review aims to deepen our understanding of tumor dormancy, ultimately facilitating the development of more effective strategies for preventing cancer recurrence and improving patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
32
|
Deng J, Miao X, Wang X, Wen SY, Zhou Z, Li S, Jiang J, Yang X, Yang S. Galactose oxidase oxidation and glycosidase digestion for glycoRNA analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:964-971. [PMID: 39780722 DOI: 10.1039/d4ay02046d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Ribonucleic acid (RNA), essential for protein production and immune function, undergoes glycosylation, a process that attaches glycans to RNA, generating unique glycoRNAs. These glycan-coated RNA molecules regulate immune responses and may be related to immune disorders. However, studying them is challenging due to RNA's fragility. Therefore, a robust method for identifying glycoRNA is important. To address this, we optimized parameters for RNA stability, oxidation, and digestion, thereby enriching and identifying glycoRNAs. This breakthrough paves the way for exploring their potential interactions with immune receptors and tumor suppression. Our approach involved investigating factors such as preservation reagent, enzyme buffer, digestion temperature, oxidant, glycosidase, and incubation time. We successfully optimized digestion conditions, achieving efficient cleavage of N-linked glycoRNAs at room temperature using 25 mM ammonium bicarbonate, demonstrating the effectiveness of this method. Additionally, RNA preservation in RNAlater at -80 °C allows controlled release of glycoRNAs within hours. While sequential digestion of different glycoRNA types is possible, significant degradation occurs after the first glycosidase step. Therefore, we recommend separate harvesting for each glycoRNA type. We also established RNA-seq analysis for identifying various glycoRNA types, including snoRNAs and tRNAs. The optimized SPCgRNA method paves the way for further research on N-glycosylation in health and disease.
Collapse
Affiliation(s)
- Jianbo Deng
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.
| | - Xinyu Miao
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Xiaotong Wang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Department of Hepatology and Gastroenterology, The Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
| | - Sheng-Ye Wen
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Zeyang Zhou
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.
| | - Shuwei Li
- Nanjing Apollomics Biotech Inc., Nanjing, Jiangsu 210033, China
| | - Junhong Jiang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China.
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
33
|
Chaudhari R, Patel V, Malvi B, Misra SK, Kumar A. Maximising efficacy in HER2-positive breast cancer: immunoliposomal co-delivery of miR155 inhibitor and paclitaxel for targeted therapy. J Mater Chem B 2025; 13:1350-1362. [PMID: 39660623 DOI: 10.1039/d4tb01090f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Breast cancer, particularly the HER2 positive subtype, presents a formidable challenge in clinical oncology, necessitating innovative therapeutic strategies. Here, we present a novel immunoliposome-based formulation designed for targeted delivery of paclitaxel and miRNA inhibitors to HER2-positive breast cancer cells. Through a rigorous preclinical evaluation encompassing in vitro cellular studies and an in vivo tumor xenograft model, we demonstrate the formulation's remarkable efficacy in inhibiting cell proliferation, inducing apoptosis, and suppressing tumor growth. Histopathological assessments reveal a favourable safety profile with minimal adverse effects on normal tissues. Furthermore, the study unveils the synergistic interaction between paclitaxel and miRNA inhibitor within the formulation, offering a potential avenue for combination therapy. The novelty of the study lies in the development of a precise and targeted therapeutic approach tailored to HER2-positive breast cancer, addressing critical gaps in current treatment modalities. Our findings underscore this innovative formulation's clinical relevance and translational potential, paving the way for personalised and effective therapies in HER2-positive breast cancer management.
Collapse
Affiliation(s)
- Ramesh Chaudhari
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Vishva Patel
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Bharti Malvi
- Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Superb K Misra
- Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Ashutosh Kumar
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
34
|
Mohammadi F, Nejatollahi M, Sheikhnia F, Ebrahimi Y, Mohammadi M, Rashidi V, Alizadeh-Fanalou S, Azizzadeh B, Majidinia M. MiRNAs: main players of cancer drug resistance target ABC transporters. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03719-y. [PMID: 39808313 DOI: 10.1007/s00210-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters. Furthermore, additional mechanisms, such as the malfunctioning of apoptosis, alterations in DNA repair systems, and resistance mechanisms inherent to cancer stem cells, exacerbate the issue. Intriguingly, microRNAs (miRNAs) have demonstrated potential in modulating chemoresistance by specifically targeting ABC transporters, thereby offering promising new avenues for overcoming drug resistance. This narrative review aims to elucidate the molecular underpinnings of drug resistance, with a particular focus on the roles of ABC transporters and the regulatory influence of miRNAs on these transporters.
Collapse
Affiliation(s)
- Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Masoumeh Nejatollahi
- Research Center for High School Students, Education System Zanjan Province, Zanjan, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
35
|
Suomela T, Zhang L, Vera J, Bruns H, Lai X. A Practical Guideline for MicroRNA Sequencing Data Analysis in Chronic Lymphocytic Leukemia. Methods Mol Biol 2025; 2883:403-426. [PMID: 39702719 DOI: 10.1007/978-1-0716-4290-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. They have been associated with several diseases and cancers, including chronic lymphocytic leukemia (CLL). CLL is the most common form of adult leukemia, and its pathogenesis is driven by the deletion of miRNAs, such as the miR-15a/16-1 cluster. In addition to initiating the development of CLL, the function of miRNAs in regulating the progression of this tumor remains to be investigated. Here, we present a computational pipeline, from the processing of miRNA sequencing files to functional analysis, including differential gene expression and gene set enrichment analysis.We exemplified the utility of the pipeline by applying it to genome-wide small RNA sequencing data from a cohort of CLL patients. The analysis revealed dysregulated expression profiles of miRNAs in CLL. The target genes of these miRNAs are not only associated with the response of CLL patients to current therapies but also involved in several cancer hallmarks, including the avoidance of cell death, the deregulation of cellular energetics, the activation of invasion and metastasis, and genome instability. The identified miRNA-gene interactions offer valuable insights for developing targeted therapies for CLL. In addition, we underscored the importance of a practical and robust computational pipeline to ensure the reliability and reproducibility of miRNA sequencing data analysis.
Collapse
Affiliation(s)
- Tuulikki Suomela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Liang Zhang
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xin Lai
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
36
|
Sabokrouh A, Ghaffari N, Karimi Tafreshi Z, Atabi F, Sharifi Z, Shokouhi Mostavafi SK. Comparison of Anticancer Effects between Platinum Levetiracetam and Platinum Azidothymidine through the Expression of Biomarker Genes on Cancer Cell Lines. Avicenna J Med Biotechnol 2025; 17:24-30. [PMID: 40094094 PMCID: PMC11910025 DOI: 10.18502/ajmb.v17i1.17674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/02/2024] [Indexed: 03/19/2025] Open
Abstract
Background The utilization of biomarkers is a way to assess the efficacy of recently created anticancer drugs. MiRNAs, telomerase, and Bcl-2 are extensively utilized as biomarkers for this purpose. This study aims to evaluate the comparison of the newly synthesized platinum compounds such as Platinum Azidothymidine (Pt-AZT) with Platinum Levetiracetam (Pt-Lev) on HepG2 cancer cell lines via the biomarkers. Methods In this study, cells were divided into four groups: Group A (HDF cells) were the normal negative control group, group B were HepG2 untreated cancer cells, and groups C and D were treated cancer cells with Pt-AZT and Pt-Lev, respectively. After evaluating the LC50 for the drugs by MTT test, the relative gene expression of the biomarkers was determined by qPCR. Results The results showed a significant decrease for antiapoptotic genes including miRNA-21 (5.1±0.014), telomerase (0.56±0.48), Bcl-2 (0.41±0.276) in group D, whereas in group C was more than group D for miRNA-21 (6.0±0.141), telomerase (3.49±0.231), Bcl-2 (4.93±0.276) also there was a significant increase in miRNA-122 (33.97±0.04) in group D, whereas in group C was (28.36±0.007) and so lower than group D. Most of the investigated groups showed a significant difference (p<0.05). In addition, there were widespread apoptotic regions in Pt-Lev treatment compared to Pt-AZT. Conclusion The advantages of using Pt-Lev were more powerful anticancer effects on biomarkers through inhibition of antiapoptotic and stimulation proapoptotic factors and also lower side effects and lower drug resistance than Pt-AZT; therefore, it can be considered a more effective anti-cancer therapy.
Collapse
Affiliation(s)
- Abdolreza Sabokrouh
- Department of Biochemistry, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasim Ghaffari
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Karimi Tafreshi
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Freshteh Atabi
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | |
Collapse
|
37
|
He Y, Liao K, Peng H, Zou X, Guo Z. Advances in MiRNAs Involved in Endometrial Carcinoma. Comb Chem High Throughput Screen 2025; 28:3-11. [PMID: 38504572 DOI: 10.2174/0113862073299444240308145725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Endometrial carcinoma (EC) is a common malignancy worldwide. Existing evidence has revealed that EC could be associated with abnormal gene expression. Meantime, evidence supports that miRNAs act as critical regulators in gene expression through the binding to the 3'- untranslated region (3'-UTR). Accordingly, this review concludes some recent studies focusing on miRNAs that influence EC, aiming at understanding the association between miRNAs and EC more clearly and providing a reference for further studies on miRNA-related drugs treating EC.
Collapse
Affiliation(s)
- Yan He
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ke Liao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hua Peng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Institute of Traffic Engineering, Hengyang, Hunan, 421019, China
| | - Xiangman Zou
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
38
|
Bernasconi R, Kuster GM. Non-coding RNAs and their potential exploitation in cancer therapy-related cardiotoxicity. Br J Pharmacol 2025; 182:296-315. [PMID: 38802331 DOI: 10.1111/bph.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Life expectancy in cancer patients has been extended in recent years, thanks to major breakthroughs in therapeutic developments. However, this also unmasked an increased incidence of cardiovascular diseases in cancer survivors, which is in part attributable to cancer therapy-related cardiovascular toxicity. Non-coding RNAs (ncRNAs) have received much appreciation due to their impact on gene expression. NcRNAs, which include microRNAs, long ncRNAs and circular RNAs, are non-protein-coding transcripts that are involved in the regulation of various biological processes, hence shaping cell identity and behaviour. They have also been implicated in disease development, including cardiovascular diseases, cancer and, more recently, cancer therapy-associated cardiotoxicity. This review outlines key features of cancer therapy-associated cardiotoxicity, what is known about the roles of ncRNAs in these processes and how ncRNAs could be exploited as therapeutic targets for cardioprotection. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
39
|
Haque S, Mathkor DM, Bhat SA, Musayev A, Khituova L, Ramniwas S, Phillips E, Swamy N, Kumar S, Yerer MB, Tuli HS, Yadav V. A Comprehensive Review Highlighting the Prospects of Phytonutrient Berberine as an Anticancer Agent. J Biochem Mol Toxicol 2025; 39:e70073. [PMID: 39717894 DOI: 10.1002/jbt.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Berberine, an isoquinoline alkaloid derived from various medicinal plants, emerges as a potential therapeutic agent against diverse human diseases. It has particularly shown notable anticancer efficacy against breast, colorectal, lung, prostate, and liver cancer. Berberine results in inhibition of cancer cell proliferation, induction of apoptosis, and suppressing angiogenesis, positioning it as a versatile, multitargeted therapeutic tool against cancer. Notably, berberine enhances the effectiveness of conventional chemotherapeutic drugs, mitigating associated drug resistance. Mechanistically, it has been shown to exert its efficacy by targeting molecules like nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and phosphoinositide 3-kinase (PI3K)/Akt, thereby inhibiting survival pathways and promoting apoptosis of cancer cells. Moreover, berberine influences the expression of tumor suppressor genes, curtails cancer cell migration and invasion, and modulates the tumour microenvironment. Despite promising preclinical evidence, further research is essential to comprehensively elucidate its mechanisms of action and evaluate its safety and efficacy in clinical settings. In the present review, we have highlighted the pharmacokinetics, biosynthesis, and recent research work done pertaining to berberine's strong anticancer activity. We have also emphasised on the research being done on nanoformulations of berberine, which aim to improve its stability and bioavailability.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Bhat
- Department of Biochemistry, International Medical School, University of International Business (UIB), Almaty, Kazakhstan
| | - Abdugani Musayev
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Lidiya Khituova
- Department of Pediatrics with a Course of Children's Infectious Diseases, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Enosh Phillips
- Department of Biotechnology, St. Aloysius' College, Jabalpur, Madhya Pradesh, India
| | - Nitin Swamy
- Department of Biotechnology, St. Aloysius' College, Jabalpur, Madhya Pradesh, India
| | - Suneel Kumar
- Department of Botany, Government Girls College, Khargone, Madhya Pradesh, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
40
|
Song S, Ko P, Keum S, Jeong J, Hwang YE, Lee M, Choi JH, Jung YS, Kim SH, Rhee S. Microtubule acetylation and PERK activation facilitate eribulin-induced mitochondrial calcium accumulation and cell death. Cell Mol Life Sci 2024; 82:32. [PMID: 39741209 DOI: 10.1007/s00018-024-05565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance. Notably, treating non-resistant breast cancer cells with eribulin led to increased microtubule acetylation around the nucleus and cell death. Conversely, eribulin-resistant (EriR) cells did not exhibit a similar increase in acetylation, even at half-maximal inhibitory concentrations. Interestingly, silencing the ATAT1 gene, which encodes the α-tubulin N-acetyltransferase 1 (the enzyme responsible for microtubule acetylation), induces eribulin resistance, mirroring the phenotype of EriR cells. Moreover, eribulin-induced acetylation of microtubules facilitates the transport of Ca2+ from the ER to the mitochondria, releasing cytochrome c and subsequent cell death. Transcriptome analysis of EriR cells revealed a significant downregulation of ER stress-induced apoptotic signals, particularly the activity of protein kinase RNA-like ER kinase (PERK), within the unfolded protein response signaling system. Pharmacological induction of microtubule acetylation through a histone deacetylase 6 inhibitor combined with the activation of PERK signaling using the PERK activator CCT020312 in EriR cells enhanced mitochondrial Ca2+ accumulation and subsequent cell death. These findings reveal a novel mechanism by which eribulin-induced microtubule acetylation and increased PERK activity lead to Ca2+ overload from the ER to the mitochondria, ultimately triggering cell death. This study offers new insights into strategies for overcoming resistance to microtubule-targeting agents.
Collapse
Affiliation(s)
- Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minwoo Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hyun Kim
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
41
|
Moldasheva A, Zhakupova A, Aljofan M. Antiproliferative Mechanisms of Metformin in Breast Cancer: A Systematic Review of the Literature. Int J Mol Sci 2024; 26:247. [PMID: 39796103 PMCID: PMC11719601 DOI: 10.3390/ijms26010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025] Open
Abstract
Metformin is an antidiabetic drug with reported potential antiproliferative activity against different cancer types including breast cancer. However, the mechanism of action of how metformin can induce its antiproliferative activity is still unclear. Thus, the current study is a systematic review of the literature aiming to explore the reported antiproliferative mechanisms of metformin against breast cancer. The study included seventeen research articles that describe different mechanisms of action against breast cancer. While the majority of the studies confirm the antiproliferative potential of metformin, albeit at different potencies, there appear to be various mechanisms and factors that can influence this effect. There are a number of questions yet to be answered pertaining the use of metformin as an anti-cancer agent, warranting further investigation into this emerging area of research.
Collapse
Affiliation(s)
- Aiman Moldasheva
- Department of Biomedical Sciences, School of Medicine Nazarbayev University, Astana 010000, Kazakhstan; (A.M.); (A.Z.)
| | - Assem Zhakupova
- Department of Biomedical Sciences, School of Medicine Nazarbayev University, Astana 010000, Kazakhstan; (A.M.); (A.Z.)
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine Nazarbayev University, Astana 010000, Kazakhstan; (A.M.); (A.Z.)
- Laboratory of Drug Discovery and Development, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
42
|
Shaikh M, Doshi G. Unraveling non-coding RNAs in breast cancer: mechanistic insights and therapeutic potential. Med Oncol 2024; 42:37. [PMID: 39730979 DOI: 10.1007/s12032-024-02589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Breast cancer remains a leading global health challenge requiring innovative, therapeutic strategies to improve patient outcomes. This review explores the pivotal roles of non-coding RNAs (ncRNAs), including long non-coding RNA, micro RNA, and circular RNA, in breast cancer biology. We highlight how these molecules regulate critical signaling pathways, influence tumor microenvironments, and contribute to treatment resistance. Our findings underscore the potential of ncRNAs as biomarkers for early diagnosis and as treatment targets for personalized treatment strategies. To pave the way for innovative cancer management approaches, we investigate the complex interactions of ncRNAs and their impact on tumor progression. This comprehensive review enhances our understanding of breast cancer biology while emphasizing the translational significance of ncRNA research in developing effective treatment strategies. Additional research and clinical studies are required to confirm the diagnostic and medicinal value of ncRNAs in breast cancer. Investigating the complex networks of ncRNA interactions and their links to other biological pathways can lead to the discovery of new treatment targets. Furthermore, leveraging advanced technologies, such as machine learning and multi-omics methods, will be critical in improving our understanding of ncRNAs biomarkers and translating these insights into impactful clinical applications.
Collapse
Affiliation(s)
- Muqtada Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
43
|
Amiri R, Nabi PN, Fazilat A, Roshani F, Nouhi Kararoudi A, Hemmati-Dinarvand M, Valilo M. Crosstalk between miRNAs and signaling pathways in the development of drug resistance in breast cancer. Horm Mol Biol Clin Investig 2024:hmbci-2024-0066. [PMID: 39665256 DOI: 10.1515/hmbci-2024-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
One of the biggest challenges of today's society is cancer, which imposes a significant financial, emotional and spiritual burden on human life. Breast cancer (BC) is one of the most common cancers that affects people in society, especially women, and due to advanced treatment strategies and primary prevention, it is still the second cause of cancer-related deaths in society. Various genetic and environmental factors are involved in the development of BC. MicroRNAs (miRNA)s are non-coding RNAs, that the degradation or inhibition of them plays an important role in the prevention or development of cancer by modulating many cellular pathways including apoptosis, drug resistance, and tumorigenesis. Drug resistance is one of the important defense mechanisms of cancer cells against anticancer drugs and is considered one of the main causes of cancer treatment failure. Different miRNAs, including mir-7, mir-21, mir-31, and mir-124 control different cell activities, including drug resistance, through different pathways, including PI3K/AKT/mTOR, TGF-β, STAT3, and NF-kB. Therefore, cell signaling pathways are one of the important factors that miRNAs control cellular activities. Hence, in this study, we decided to highlight an overview of the relationship between miRNAs and signaling pathways in the development of drug resistance in BC.
Collapse
Affiliation(s)
- Reza Amiri
- Nargund College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bengaluru, Karnataka, India
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Roshani
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohsen Hemmati-Dinarvand
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Valilo
- Department of Biochemistry, 37555 Faculty of Medicine, Urmia University of Medical Sciences , Urmia, Iran
| |
Collapse
|
44
|
Hashem J, Alsukhni F, Abushukair H, Ayesh M. The Effect of Atorvastatin on Oncogenic miRNAs in Hematological Malignancies: A Central Study. Biomolecules 2024; 14:1559. [PMID: 39766267 PMCID: PMC11673652 DOI: 10.3390/biom14121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
The efficacy of statins as anti-cancer drugs has been demonstrated in several malignancies but has been poorly investigated in hematological malignancies (HM). By studying its effect on oncogenic miRNAs, we investigated the effect of statin therapy on HM patients. The data were used to identify enriched pathways that were altered due to statin treatment. The main aim of this study was to identify significantly differentially expressed miRNAs and involved regulatory pathways post-atorvastatin treatment in HM patients. A panel of 95 plasma circulating miRNAs involved in tumorigenesis, apoptosis, and differentiation were relatively quantified using qPCR for blood samples obtained from 12 HM patients, 4 with Chronic Myeloid Leukemia (CML), 4 with Non-Hodgkin Lymphoma (NHL), and 4 with Essential Thrombocythemia. Pre- and post-administration of a 6-week atorvastatin course miRNA expression levels were measured. Significantly differentially expressed miRNAs were those with a fold change >2 or <0.5 using the Livak method with a two-sided p-value < 0.05. To further understand the underlying mechanism of statin regulated miRNA, GO and KEGG pathway enrichment analyses were conducted for identified target genes using the DAVID 6.8 bioinformatics tool. Out of 95 miRNAs, 14 exhibited significant fold changes post-treatment with statins including miR-198, miR-29a+b+c, miR-204, miR-222, miR-224, miR-155, miR-128b, miR-296, miR-199a+b, miR-194, miR-125a, miR-200a, and the let-7-family that were upregulated and miR-150 that was downregulated post-statin treatment. Higher mir-222, mir-194, mir-128b, and mir-199b expressions were significantly associated with better overall survival using the Cancer Genomic Atlas leukemia and lymphoma patient cohorts. Enrichment analysis identified the PI3k-Akt pathway as well as other pathways involved in the epithelial-mesenchymal transition. Atorvastatin upregulated several tumor suppressor genes involved in mediating better prognosis. The data can be used to enhance personalized treatments for patients with hematological malignancies by helping to predict the different pathways that may be targeted and, therefore, result in better survival outcomes in these patients.
Collapse
Affiliation(s)
- Jood Hashem
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Farah Alsukhni
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hassan Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud Ayesh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
45
|
Sajid GA, Uddin MJ, Al-Janabi SAA, Ibrahim AN, Cinar MU. MicroRNA expression profiling of ovine epithelial cells stimulated with the Staphylococcus aureus in vitro. Mamm Genome 2024; 35:673-682. [PMID: 39215776 DOI: 10.1007/s00335-024-10062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) act as key gene expression regulators, influencing intracellular biological and pathological processes. They are of significant interest in animal genetics as potential biomarkers for animal selection and health. This study aimed to unravel the complex miRNA signature involved in mastitis in in vitro cell culture. For this purpose, we constructed a control and treatment model in ovarian mammary epithelial cells to analyze miRNA responses upon Staphylococcus aureus (S. aureus) stimulation. The high-throughput Illumina Small RNA protocol was employed, generating an average of 7.75 million single-end reads per sample, totaling 46.54 million reads. Standard bioinformatics analysis, including cleaning, filtering, miRNA quantification, and differential expression was performed using the miRbase database as a reference for ovine miRNAs. The results indicated differential expression of 63 miRNAs, including 33 up-regulated and 30 down-regulated compared to the control group. Notably, miR-10a, miR-10b, miR-21, and miR-99a displayed a significant differential expression (p ≤ 0.05) associated to signal transduction, transcriptional pathways, diseases of signal transduction by growth factor receptors and second messengers, MAPK signaling pathway, NF-κB pathway, TNFα, Toll Like Receptor 4 (TLR4) cascade, and breast cancer. This study contributes expanding miRNA databases, especially for sheep miRNAs, and identifies potential miRNA candidates for further study in biomarker identification for mastitis resistance and diagnosis.
Collapse
Affiliation(s)
- Ghulam Asghar Sajid
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
| | - Muhammad Jasim Uddin
- Center for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
- The School of Veterinary Medicine, Murdoch University, South Street, Murdoch, 6150, Australia
| | - Saif Adil Abbood Al-Janabi
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
- Ministry of Agriculture, Office of Technical Deputy, Baghdad, Iraq
| | - Abdiaziz Nur Ibrahim
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye.
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
46
|
Prasad M, Sekar R, Priya MDL, Varma SR, Karobari MI. A new perspective on diagnostic strategies concerning the potential of saliva-based miRNA signatures in oral cancer. Diagn Pathol 2024; 19:147. [PMID: 39548527 PMCID: PMC11568613 DOI: 10.1186/s13000-024-01575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Oral cancer, the most prevalent cancer worldwide, is far more likely to occur after the age of forty-five, according to the World Health Organization. Although many biomarkers have been discovered over the years using non-invasive saliva samples, biopsies, and human blood, these biomarkers have not been incorporated into standard clinical practice. Investigating the function of microRNAs (miRNAs) in the diagnosis, aetiology, prognosis, and treatment of oral cancer has drawn more attention in recent years. Though salivary microRNA can act as a window into the molecular environment of the tumour, there are challenges due to the heterogeneity of oral squamous cell carcinoma (OSCC), diversity in sample collection, processing techniques, and storage conditions. The up and downregulation of miRNAs has been found to have a profound role in OSCC as it regulates tumour stages by targeting many genes. As a result, the regulatory functions of miRNAs in OSCC underscore their significance in the field of cancer biology. Salivary miRNAs are useful diagnostic and prognostic indicators because their abnormal expression profiles shed light on tumour behaviour and patient prognosis. In addition to their diagnostic and prognostic value, miRNAs hold promise as therapeutic targets for oral cancer intervention. The current review sheds light on the challenges and potentials of microRNA studies that could lead to a better understanding of oral cancer prognosis, diagnosis, and therapeutic intervention. Furthermore, the clinical translation of OSCC biomarkers requires cooperation between investigators, physicians, regulatory bodies, and business partners. There is much potential for improving early identification, tracking therapy response, and forecasting outcomes in OSCC patients by including saliva-based miRNAs as biomarkers.
Collapse
Affiliation(s)
- Monisha Prasad
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Ramya Sekar
- Department of Oral and Maxillofacial Pathology & Oral Microbiology, Meenakshi Ammal Dental College and Hospital, MAHER, Alapakkam Main Road, Maduravoyal, Chennai, Tamil Nadu, 600095, India
| | | | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman University, Ajman - 346, Ajman, UAE
| | - Mohmed Isaqali Karobari
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
47
|
Pan W, Miao Q, Yin W, Li X, Ye W, Zhang D, Deng L, Zhang J, Chen M. The role and clinical applications of exosomes in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:43. [PMID: 39624083 PMCID: PMC11609145 DOI: 10.20517/cdr.2024.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025]
Abstract
Tumor-secreted exosomes are heterogeneous multi-signal messengers that support cancer growth and dissemination by mediating intercellular crosstalk and activating signaling pathways. Distinct from previous reviews, we focus intently on exosome-therapeutic resistance dynamics and summarize the new findings about the regulation of cancer treatment resistance by exosomes, shedding light on the complex processes via which these nanovesicles facilitate therapeutic refractoriness across various malignancies. Future research in exosome biology can potentially transform diagnostic paradigms and therapeutic interventions for cancer management. This review synthesizes recent insights into the exosome-driven regulation of cancer drug resistance, illuminates the sophisticated mechanisms by which these nanovesicles facilitate therapeutic refractoriness across various malignancies, and summarizes some strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Wenxuan Pan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Authors contributed equally
| | - Qun Miao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Authors contributed equally
| | - Wenqian Yin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaobo Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lijuan Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Junqiu Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Minfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
48
|
Thomas SS, Abhinand K, Menon AM, Nair BG, Kumar GB, Arun KB, Edison LK, Madhavan A. Epigenetic Mechanisms Induced by Mycobacterium tuberculosis to Promote Its Survival in the Host. Int J Mol Sci 2024; 25:11801. [PMID: 39519352 PMCID: PMC11546203 DOI: 10.3390/ijms252111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis caused by the obligate intracellular pathogen, Mycobacterium tuberculosis, is one among the prime causes of death worldwide. An urgent remedy against tuberculosis is of paramount importance in the current scenario. However, the complex nature of this appalling disease contributes to the limitations of existing medications. The quest for better treatment approaches is driving the research in the field of host epigenomics forward in context with tuberculosis. The interplay between various host epigenetic factors and the pathogen is under investigation. A comprehensive understanding of how Mycobacterium tuberculosis orchestrates such epigenetic factors and favors its survival within the host is in increasing demand. The modifications beneficial to the pathogen are reversible and possess the potential to be better targets for various therapeutic approaches. The mechanisms, including histone modifications, DNA methylation, and miRNA modification, are being explored for their impact on pathogenesis. In this article, we are deciphering the role of mycobacterial epigenetic regulators on various strategies like cytokine expression, macrophage polarization, autophagy, and apoptosis, along with a glimpse of the potential of host-directed therapies.
Collapse
Affiliation(s)
- Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Kuniyil Abhinand
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Arjun M. Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Geetha B. Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - K. B. Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India
| | - Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| |
Collapse
|
49
|
Alshamrani AA, Bin Salman SB, Alsaleh NB, Assiri MA, Almutairi MM, Almudimeegh S, Alwhaibi A, As Sobeai HM. miRNA-driven sensitization of breast cancer cells to Doxorubicin treatment following exposure to low dose of Zinc Oxide nanoparticles. Saudi Pharm J 2024; 32:102169. [PMID: 39318640 PMCID: PMC11421238 DOI: 10.1016/j.jsps.2024.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
The impact of Engineered nanomaterials (ENMs) (i.e., Zinc Oxide nanoparticles (ZnO NPs)) on human health has been investigated at high and unrealistic exposure levels, overlooking the potential indirect harm of subtoxic and long exposures. Therefore, this study aimed to investigate the impacts of subtoxic concentrations of zinc oxide (ZnO NPs) on breast cancer cells' response to Doxorubicin. Zinc oxide nanoparticles caused a concentration-dependent reduction of cell viability in multiple breast cancer cell lines. A subtoxic concentration of 1.56 µg/mL (i.e., no observed adverse effect level) was used in subsequent mechanistic studies. Molecularly, miRNA profiling revealed significant downregulation of 13 oncogenic miRNAs (OncomiRs) in cells exposed to the sub-toxic dose of ZnO NPs followed by doxorubicin treatment. Our comprehensive bioinformatic analysis has identified 617 target genes enriched in ten pathways, mainly regulating gene expression and transcription, cell cycle, and apoptotic cell death. Several tumor suppressor genes emerged as validated direct targets of the 13 OncomiRs, including TFDP2, YWHAG, SMAD2, SMAD4, CDKN1A, CDKN1B, BCL2L11, and TGIF2. This study insinuates the importance of miRNAs in regulating the responsiveness of cancer cells to chemotherapy. Our findings further indicate that being exposed to environmental ENMs, even at levels below toxicity, might still modulate cancer cells' response to chemotherapy, which highlights the need to reestablish endpoints of ENM exposure and toxicity in cancer patients receiving chemotherapeutics.
Collapse
Affiliation(s)
- Ali A. Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami B. Bin Salman
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alwhaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
50
|
Diamantopoulos MA, Adamopoulos PG, Scorilas A. Small non-coding RNAs as diagnostic, prognostic and predictive biomarkers of gynecological cancers: an update. Expert Rev Mol Diagn 2024; 24:979-995. [PMID: 39390687 DOI: 10.1080/14737159.2024.2408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins. These findings further highlight the hypothesis that ncRNAs constitute therapeutic targets and point out their clinical potential as stratification biomarkers. AREAS COVERED The review outlines the use of small ncRNAs, including miRNAs, tRNA-derived small RNAs, PIWI-interacting RNAs and circular RNAs, for diagnostic, prognostic, and predictive purposes in gynecological cancers. It aims to increase our knowledge of their functions in tumor biology and their translation into clinical practice. EXPERT OPINION By leveraging interdisciplinary collaborations, scientists can decipher the riddle of small ncRNA biomarkers as diagnostic, prognostic and predictive biomarkers of gynecological tumors. Integrating small ncRNA-based assays into clinical practice will allow clinicians to provide cure plans for each patient, reducing the likelihood of adverse responses. Nevertheless, addressing challenges such as standardizing experimental methodologies and refining diagnostic assays is imperative for advancing small ncRNA research in gynecological cancer.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|