1
|
Buzova D, Petrilli LL, Frohlich J, Tsoneva DK, Bianco SD, Braghini MR, Alisi A, Mastronuzzi A, Cerveny J, Mazza T, Vinci M, Vinciguerra M. Extracellular Histones Profiles of Pediatric H3K27-Altered Diffuse Midline Glioma. Mol Diagn Ther 2024:10.1007/s40291-024-00754-6. [PMID: 39514166 DOI: 10.1007/s40291-024-00754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Diffuse midline glioma, H3 K27-altered (DMG) is a fatal tumour that arises in the midline structures of the brain. When located in the pons, it is more commonly referred to as diffuse intrinsic pontine glioma (DIPG). DMG/DIPG is usually diagnosed when children are < 10 years, and it has a median overall survival of < 12 months after diagnosis. Radiological imaging is still the gold standard for DIPG diagnosis while the use of biopsy procedures led to our knowledge on its biology, such as with the identification of the canonical histone H3K27M mutation. However, the need to improve survival encourages the development of non-invasive, fast and inexpensive assays on biofluids for optimizing molecular diagnoses in DMG/DIPG. Here, we propose a rapid, new, imaging and epigenetics-based approach to diagnose DMG/DIPG in the plasma of paediatric patients. METHODS A total of 20 healthy children (mean age: 10.5 years) and 24 children diagnosed with DMG/DIPG (mean age: 8.5 years) were recruited. Individual histones (H2A, H2B, H3, H4, macroH2A1.1 and macroH2A1.2), histone dimers and nucleosomes were assayed in biofluids by means of a new advanced flow cytometry ImageStream(X)-adapted method. RESULTS We report a significant increase in circulating histone dimers and tetramers (macroH2A1.1/H2B versus control: p value < 0.0001; macroH2A1.2/H2B versus control: p value < 0.0001; H2A/H2B versus control: p value < 0.0001; H3/H4 versus control: p value = 0.008; H2A/H2B/H3/H4 versus control: p value < 0.0001) and a significant downregulation of individual histones (H2B versus control: p value < 0.0001; H3 versus control: p value < 0.0001; H4 versus control: p value < 0.0001). Moreover, histones were also detectable in the cerebrospinal fluid (CSF) of patients with DMG/DIPG and in the supernatant of SF8628, OPBG-DIPG002 and OPBG-DIPG004 DMG/DIPG cell lines, with patterns mostly similar to each other, but distinct compared to blood plasma. CONCLUSIONS In summary, we identified circulating histone signatures able to detect the presence of DMG/DIPG in biofluids of children, using a rapid and non-invasive ImageStream(X)-based imaging technology, which may improve diagnosis and benefit the patients.
Collapse
Affiliation(s)
- Diana Buzova
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
| | - Lucia Lisa Petrilli
- Research Unit of Genetics and Epigenetics of Pediatric Cancer, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Jan Frohlich
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Desislava K Tsoneva
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Salvatore Daniele Bianco
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, (FG), Italy
| | - Maria Rita Braghini
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Neuro-Oncology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jan Cerveny
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
| | - Tommaso Mazza
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
| | - Maria Vinci
- Research Unit of Genetics and Epigenetics of Pediatric Cancer, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute of the Medical University of Varna, Varna, Bulgaria.
- Faculty of Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
2
|
Yin X, Zeng D, Liao Y, Tang C, Li Y. The Function of H2A Histone Variants and Their Roles in Diseases. Biomolecules 2024; 14:993. [PMID: 39199381 PMCID: PMC11352661 DOI: 10.3390/biom14080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation, which is characterized by reversible and heritable genetic alterations without changing DNA sequences, has recently been increasingly studied in diseases. Histone variant regulation is an essential component of epigenetic regulation. The substitution of canonical histones by histone variants profoundly alters the local chromatin structure and modulates DNA accessibility to regulatory factors, thereby exerting a pivotal influence on gene regulation and DNA damage repair. Histone H2A variants, mainly including H2A.Z, H2A.B, macroH2A, and H2A.X, are the most abundant identified variants among all histone variants with the greatest sequence diversity. Harboring varied chromatin occupancy and structures, histone H2A variants perform distinct functions in gene transcription and DNA damage repair. They are implicated in multiple pathophysiological mechanisms and the emergence of different illnesses. Cancer, embryonic development abnormalities, neurological diseases, metabolic diseases, and heart diseases have all been linked to histone H2A variant alterations. This review focuses on the functions of H2A histone variants in mammals, including H2A.Z, H2A.B, macroH2A, and H2A.X, and their current roles in various diseases.
Collapse
Affiliation(s)
- Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yingjun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
3
|
Sun T, Chen J, Xu Y, Li Y, Liu X, Li H, Fu R, Liu W, Xue F, Ju M, Dong H, Wang W, Chi Y, Yang R, Chen Y, Zhang L. Proteomics landscape and machine learning prediction of long-term response to splenectomy in primary immune thrombocytopenia. Br J Haematol 2024; 204:2418-2428. [PMID: 38513635 DOI: 10.1111/bjh.19420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
This study aimed to identify key proteomic analytes correlated with response to splenectomy in primary immune thrombocytopenia (ITP). Thirty-four patients were retrospectively collected in the training cohort and 26 were prospectively enrolled as validation cohort. Bone marrow biopsy samples of all participants were collected prior to the splenectomy. A total of 12 modules of proteins were identified by weighted gene co-expression network analysis (WGCNA) method in the developed cohort. The tan module positively correlated with megakaryocyte counts before splenectomy (r = 0.38, p = 0.027), and time to peak platelet level after splenectomy (r = 0.47, p = 0.005). The blue module significantly correlated with response to splenectomy (r = 0.37, p = 0.0031). KEGG pathways analysis found that the PI3K-Akt signalling pathway was predominantly enriched in the tan module, while ribosomal and spliceosome pathways were enriched in the blue module. Machine learning algorithm identified the optimal combination of biomarkers from the blue module in the training cohort, and importantly, cofilin-1 (CFL1) was independently confirmed in the validation cohort. The C-index of CFL1 was >0.7 in both cohorts. Our results highlight the use of bone marrow proteomics analysis for deriving key analytes that predict the response to splenectomy, warranting further exploration of plasma proteomics in this patient population.
Collapse
Affiliation(s)
- Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Chiodi V, Rappa F, Lo Re O, Chaldakov GN, Lelouvier B, Micale V, Domenici MR, Vinciguerra M. Deficiency of histone variant macroH2A1.1 is associated with sexually dimorphic obesity in mice. Sci Rep 2023; 13:19123. [PMID: 37926763 PMCID: PMC10625986 DOI: 10.1038/s41598-023-46304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Obesity has a major socio-economic health impact. There are profound sex differences in adipose tissue deposition and obesity-related conditions. The underlying mechanisms driving sexual dimorphism in obesity and its associated metabolic disorders remain unclear. Histone variant macroH2A1.1 is a candidate epigenetic mechanism linking environmental and dietary factors to obesity. Here, we used a mouse model genetically depleted of macroH2A1.1 to investigate its potential epigenetic role in sex dimorphic obesity, metabolic disturbances and gut dysbiosis. Whole body macroH2A1 knockout (KO) mice, generated with the Cre/loxP technology, and their control littermates were fed a high fat diet containing 60% of energy derived from fat. The diet was administered for three months starting from 10 to 12 weeks of age. We evaluated the progression in body weight, the food intake, and the tolerance to glucose by means of a glucose tolerance test. Gut microbiota composition, visceral adipose and liver tissue morphology were assessed. In addition, adipogenic gene expression patterns were evaluated in the visceral adipose tissue. Female KO mice for macroH2A1.1 had a more pronounced weight gain induced by high fat diet compared to their littermates, while the increase in body weight in male mice was similar in the two genotypes. Food intake was generally increased upon KO and decreased by high fat diet in both sexes, with the exception of KO females fed a high fat diet that displayed the same food intake of their littermates. In glucose tolerance tests, glucose levels were significantly elevated upon high fat diet in female KO compared to a standard diet, while this effect was absent in male KO. There were no differences in hepatic histology. Upon a high fat diet, in female adipocyte cross-sectional area was larger in KO compared to littermates: activation of proadipogenic genes (ACACB, AGT, ANGPT2, FASN, RETN, SLC2A4) and downregulation of antiadipogenic genes (AXIN1, E2F1, EGR2, JUN, SIRT1, SIRT2, UCP1, CCND1, CDKN1A, CDKN1B, EGR2) was detected. Gut microbiota profiling showed increase in Firmicutes and a decrease in Bacteroidetes in females, but not males, macroH2A1.1 KO mice. MacroH2A1.1 KO mice display sexual dimorphism in high fat diet-induced obesity and in gut dysbiosis, and may represent a useful model to investigate epigenetic and metabolic differences associated to the development of obesity-associated pathological conditions in males and females.
Collapse
Affiliation(s)
- Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- International Clinical Research Center (FNUSA-ICRC), St'Anne University Hospital, Brno, Czech Republic
| | - George N Chaldakov
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| | | | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Maria Rosaria Domenici
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.
- International Clinical Research Center (FNUSA-ICRC), St'Anne University Hospital, Brno, Czech Republic.
- Liverpool Centre for Cardiovascular Science (LCCS), Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
5
|
Buzova D, Frohlich J, Zapletalova D, Raffaele M, Lo Re O, Tsoneva DK, Sterba J, Cerveny J, Vinciguerra M. Detection of cell-free histones in the cerebrospinal fluid of pediatric central nervous system malignancies by imaging flow cytometry. Front Mol Biosci 2023; 10:1254699. [PMID: 38028540 PMCID: PMC10646437 DOI: 10.3389/fmolb.2023.1254699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Pediatric brain tumours (PBT) are one of the most common malignancies during childhood, with variable severity according to the location and histological type. Certain types of gliomas, such a glioblastoma and diffuse intrinsic pontine glioma (DIPG), have a much higher mortality than ependymoma and medulloblastoma. Early detection of PBT is essential for diagnosis and therapeutic interventions. Liquid biopsies have been demonstrated using cerebrospinal fluid (CSF), mostly restricted to cell free DNA, which display limitations of quantity and integrity. In this pilot study, we sought to demonstrate the detectability and robustness of cell free histones in the CSF. Methods: We collected CSF samples from a pilot cohort of 8 children with brain tumours including DIPG, medulloblastoma, glioblastoma, ependymoma and others. As controls, we collected CSF samples from nine children with unrelated blood malignancies and without brain tumours. We applied a multichannel flow imaging approach on ImageStream(X) to image indiviual histone or histone complexes on different channels. Results: Single histones (H2A, macroH2A1.1, macroH2A1.2 H2B, H3, H4 and histone H3 bearing the H3K27M mutation), and histone complexes are specifically detectable in the CSF of PBT patients. H2A and its variants macroH2A1.1/macroH2A1/2 displayed the strongest signal and abundance, together with disease associated H3K27M. In contrast, mostly H4 is detectable in the CSF of pediatric patients with blood malignancies. Discussion: In conclusion, free histones and histone complexes are detectable with a strong signal in the CSF of children affected by brain tumours, using ImageStream(X) technology and may provide additive diagnostic and predictive information.
Collapse
Affiliation(s)
- Diana Buzova
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czechia
| | - Jan Frohlich
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Danica Zapletalova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marco Raffaele
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Oriana Lo Re
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
- Department of Stem Cell Biology and Transplantology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Desislava K. Tsoneva
- Department of Stem Cell Biology and Transplantology, Research Institute of the Medical University of Varna, Varna, Bulgaria
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
| | - Jaroslav Sterba
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jan Cerveny
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czechia
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
- Department of Stem Cell Biology and Transplantology, Research Institute of the Medical University of Varna, Varna, Bulgaria
- Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
6
|
Giallongo C, Dulcamare I, Giallongo S, Duminuco A, Pieragostino D, Cufaro MC, Amorini AM, Lazzarino G, Romano A, Parrinello N, Di Rosa M, Broggi G, Caltabiano R, Caraglia M, Scrima M, Pasquale LS, Tathode MS, Li Volti G, Motterlini R, Di Raimondo F, Tibullo D, Palumbo GA. MacroH2A1.1 as a crossroad between epigenetics, inflammation and metabolism of mesenchymal stromal cells in myelodysplastic syndromes. Cell Death Dis 2023; 14:686. [PMID: 37852977 PMCID: PMC10584900 DOI: 10.1038/s41419-023-06197-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Ineffective hematopoiesis is a hallmark of myelodysplastic syndromes (MDS). Hematopoietic alterations in MDS patients strictly correlate with microenvironment dysfunctions, eventually affecting also the mesenchymal stromal cell (MSC) compartment. Stromal cells are indeed epigenetically reprogrammed to cooperate with leukemic cells and propagate the disease as "tumor unit"; therefore, changes in MSC epigenetic profile might contribute to the hematopoietic perturbations typical of MDS. Here, we unveil that the histone variant macroH2A1 (mH2A1) regulates the crosstalk between epigenetics and inflammation in MDS-MSCs, potentially affecting their hematopoietic support ability. We show that the mH2A1 splicing isoform mH2A1.1 accumulates in MDS-MSCs, correlating with the expression of the Toll-like receptor 4 (TLR4), an important pro-tumor activator of MSC phenotype associated to a pro-inflammatory behavior. MH2A1.1-TLR4 axis was further investigated in HS-5 stromal cells after ectopic mH2A1.1 overexpression (mH2A1.1-OE). Proteomic data confirmed the activation of a pro-inflammatory signature associated to TLR4 and nuclear factor kappa B (NFkB) activation. Moreover, mH2A1.1-OE proteomic profile identified several upregulated proteins associated to DNA and histones hypermethylation, including S-adenosylhomocysteine hydrolase, a strong inhibitor of DNA methyltransferase and of the methyl donor S-adenosyl-methionine (SAM). HPLC analysis confirmed higher SAM/SAH ratio along with a metabolic reprogramming. Interestingly, an increased LDHA nuclear localization was detected both in mH2A1.1-OE cells and MDS-MSCs, probably depending on MSC inflammatory phenotype. Finally, coculturing healthy mH2A1.1-OE MSCs with CD34+ cells, we found a significant reduction in the number of CD34+ cells, which was reflected in a decreased number of colony forming units (CFU-Cs). These results suggest a key role of mH2A1.1 in driving the crosstalk between epigenetic signaling, inflammation, and cell metabolism networks in MDS-MSCs.
Collapse
Affiliation(s)
- C Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - I Dulcamare
- Division of Hematology, AOU Policlinico, Catania, Italy
| | - S Giallongo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy.
| | - A Duminuco
- Division of Hematology, AOU Policlinico, Catania, Italy
| | - D Pieragostino
- Department of Innovative Technologies and Medicine & Odontoiatry, University G. D'Annunzio, Chieti-Pescara, Italy
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - M C Cufaro
- Department of Innovative Technologies and Medicine & Odontoiatry, University G. D'Annunzio, Chieti-Pescara, Italy
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - A M Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - A Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - N Parrinello
- Division of Hematology, AOU Policlinico, Catania, Italy
| | - M Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - R Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - M Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - M Scrima
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - L S Pasquale
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - M S Tathode
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - G Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - R Motterlini
- Faculty of Health, University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - F Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - D Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G A Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
7
|
Liorni N, Napoli A, Castellana S, Giallongo S, Řeháková D, Re OL, Koutná I, Mazza T, Vinciguerra M. Integrative CUT&Tag-RNA-Seq analysis of histone variant macroH2A1-dependent orchestration of human induced pluripotent stem cell reprogramming. Epigenomics 2023; 15:863-877. [PMID: 37846557 DOI: 10.2217/epi-2023-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Aim: Human induced pluripotent stem cells (iPSCs) are inefficiently derived from somatic cells by overexpression of defined transcription factors. Overexpression of H2A histone variant macroH2A1.1, but not macroH2A1.2, leads to increased iPSC reprogramming by unclear mechanisms. Materials & methods: Cleavage under targets and tagmentation (CUT&Tag) allows robust epigenomic profiling of a low cell number. We performed an integrative CUT&Tag-RNA-Seq analysis of macroH2A1-dependent orchestration of iPSCs reprogramming using human endothelial cells. Results: We demonstrate wider genome occupancy, predicted transcription factors binding, and gene expression regulated by macroH2A1.1 during reprogramming, compared to macroH2A1.2. MacroH2A1.1, previously associated with neurodegenerative pathologies, specifically activated ectoderm/neural processes. Conclusion: CUT&Tag and RNA-Seq data integration is a powerful tool to investigate the epigenetic mechanisms occurring during cell reprogramming.
Collapse
Affiliation(s)
- Niccolò Liorni
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza,71013, San Giovanni Rotondo, Italy
| | - Alessandro Napoli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza,71013, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza,71013, San Giovanni Rotondo, Italy
| | - Sebastiano Giallongo
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Biomedical & Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Daniela Řeháková
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Oriana Lo Re
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute, Medical University of Varna (RIMUV), 9002, Varna, Bulgaria
| | - Irena Koutná
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Histology & Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza,71013, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute, Medical University of Varna (RIMUV), 9002, Varna, Bulgaria
- Faculty of Health, Liverpool John Moores University, L2 2ER, Liverpool, UK
| |
Collapse
|
8
|
Kirkiz E, Meers O, Grebien F, Buschbeck M. Histone Variants and Their Chaperones in Hematological Malignancies. Hemasphere 2023; 7:e927. [PMID: 37449197 PMCID: PMC10337764 DOI: 10.1097/hs9.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Epigenetic regulation occurs on the level of compacting DNA into chromatin. The functional unit of chromatin is the nucleosome, which consists of DNA wrapped around a core of histone proteins. While canonical histone proteins are incorporated into chromatin through a replication-coupled process, structural variants of histones, commonly named histone variants, are deposited into chromatin in a replication-independent manner. Specific chaperones and chromatin remodelers mediate the locus-specific deposition of histone variants. Although histone variants comprise one of the least understood layers of epigenetic regulation, it has been proposed that they play an essential role in directly regulating gene expression in health and disease. Here, we review the emerging evidence suggesting that histone variants have a role at different stages of hematopoiesis, with a particular focus on the histone variants H2A, H3, and H1. Moreover, we discuss the current knowledge on how the dysregulation of histone variants can contribute to hematopoietic malignancies.
Collapse
Affiliation(s)
- Ecem Kirkiz
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- PhD Programme in Biomedicine, University of Barcelona, Spain
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
9
|
Guberovic I, Farkas M, Corujo D, Buschbeck M. Evolution, structure and function of divergent macroH2A1 splice isoforms. Semin Cell Dev Biol 2022; 135:43-49. [PMID: 35422391 DOI: 10.1016/j.semcdb.2022.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
The replacement of replication-coupled histones with non-canonical histone variants provides chromatin with additional properties and contributes to the plasticity of the epigenome. MacroH2A histone variants are counterparts of the replication-coupled histone H2A. They are characterized by a unique tripartite structure, consisting of a histone fold, an unstructured linker, and a globular macrodomain. MacroH2A1.1 and macroH2A1.2 are the result of alternative splicing of the MACROH2A1 gene and can have opposing biological functions. Here, we discuss the structural differences between the macrodomains of the two isoforms, resulting in differential ligand binding. We further discuss how this modulates gene regulation by the two isoforms, in cases resulting in opposing role of macroH2A1.1 and macroH2A1.2 in development and differentiation. Finally, we share recent insight in the evolution of macroH2As. Taken together, in this review, we aim to discuss in unprecedented detail distinct properties and functions of the fascinating macroH2A1 splice isoforms.
Collapse
Affiliation(s)
- Iva Guberovic
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
| | - Marina Farkas
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
| | - David Corujo
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain; Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain.
| |
Collapse
|
10
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
11
|
Giallongo S, Řeháková D, Biagini T, Lo Re O, Raina P, Lochmanová G, Zdráhal Z, Resnick I, Pata P, Pata I, Mistrík M, de Magalhães JP, Mazza T, Koutná I, Vinciguerra M. Histone Variant macroH2A1.1 Enhances Nonhomologous End Joining-dependent DNA Double-strand-break Repair and Reprogramming Efficiency of Human iPSCs. Stem Cells 2022; 40:35-48. [PMID: 35511867 PMCID: PMC9199840 DOI: 10.1093/stmcls/sxab004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023]
Abstract
DNA damage repair (DDR) is a safeguard for genome integrity maintenance. Increasing DDR efficiency could increase the yield of induced pluripotent stem cells (iPSC) upon reprogramming from somatic cells. The epigenetic mechanisms governing DDR during iPSC reprogramming are not completely understood. Our goal was to evaluate the splicing isoforms of histone variant macroH2A1, macroH2A1.1, and macroH2A1.2, as potential regulators of DDR during iPSC reprogramming. GFP-Trap one-step isolation of mtagGFP-macroH2A1.1 or mtagGFP-macroH2A1.2 fusion proteins from overexpressing human cell lines, followed by liquid chromatography-tandem mass spectrometry analysis, uncovered macroH2A1.1 exclusive interaction with Poly-ADP Ribose Polymerase 1 (PARP1) and X-ray cross-complementing protein 1 (XRCC1). MacroH2A1.1 overexpression in U2OS-GFP reporter cells enhanced specifically nonhomologous end joining (NHEJ) repair pathway, while macroH2A1.1 knock-out (KO) mice showed an impaired DDR capacity. The exclusive interaction of macroH2A1.1, but not macroH2A1.2, with PARP1/XRCC1, was confirmed in human umbilical vein endothelial cells (HUVEC) undergoing reprogramming into iPSC through episomal vectors. In HUVEC, macroH2A1.1 overexpression activated transcriptional programs that enhanced DDR and reprogramming. Consistently, macroH2A1.1 but not macroH2A1.2 overexpression improved iPSC reprogramming. We propose the macroH2A1 splicing isoform macroH2A1.1 as a promising epigenetic target to improve iPSC genome stability and therapeutic potential.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Řeháková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tommaso Biagini
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
| | - Priyanka Raina
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Gabriela Lochmanová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Igor Resnick
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
- Program for Hematology, Immunology, BMT and Cell therapy, St. Marina University Hospital, Varna, Bulgaria
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
| | - Pille Pata
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- IVEX Lab, Akadeemia 15, Tallinn, Estonia
| | - Illar Pata
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Mistrík
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Tommaso Mazza
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
| | - Irena Koutná
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
| |
Collapse
|
12
|
Kim SP, Srivatsan SN, Chavez M, Shirai CL, White BS, Ahmed T, Alberti MO, Shao J, Nunley R, White LS, Bednarski J, Pehrson JR, Walter MJ. Mutant U2AF1-induced alternative splicing of H2afy (macroH2A1) regulates B-lymphopoiesis in mice. Cell Rep 2021; 36:109626. [PMID: 34469727 PMCID: PMC8454217 DOI: 10.1016/j.celrep.2021.109626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/19/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Somatic mutations in spliceosome genes are found in ∼50% of patients with myelodysplastic syndromes (MDS), a myeloid malignancy associated with low blood counts. Expression of the mutant splicing factor U2AF1(S34F) alters hematopoiesis and mRNA splicing in mice. Our understanding of the functionally relevant alternatively spliced target genes that cause hematopoietic phenotypes in vivo remains incomplete. Here, we demonstrate that reduced expression of H2afy1.1, an alternatively spliced isoform of the histone H2A variant gene H2afy, is responsible for reduced B cells in U2AF1(S34F) mice. Deletion of H2afy or expression of U2AF1(S34F) reduces expression of Ebf1 (early B cell factor 1), a key transcription factor for B cell development, and mechanistically, H2AFY is enriched at the EBF1 promoter. Induced expression of H2AFY1.1 in U2AF1(S34F) cells rescues reduced EBF1 expression and B cells numbers in vivo. Collectively, our data implicate alternative splicing of H2AFY as a contributor to lymphopenia induced by U2AF1(S34F) in mice and MDS.
Collapse
Affiliation(s)
- Sanghyun P Kim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sridhar N Srivatsan
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Monique Chavez
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Cara L Shirai
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Brian S White
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tanzir Ahmed
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Michael O Alberti
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jin Shao
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ryan Nunley
- Department of Orthopedic Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO 63110, USA
| | - Lynn S White
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jeff Bednarski
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John R Pehrson
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J Walter
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
13
|
Chiodi V, Domenici MR, Biagini T, De Simone R, Tartaglione AM, Di Rosa M, Lo Re O, Mazza T, Micale V, Vinciguerra M. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J 2021; 35:e21793. [PMID: 34320234 DOI: 10.1096/fj.202100569r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Gene expression and epigenetic processes in several brain regions regulate physiological processes such as cognitive functions and social behavior. MacroH2A1.1 is a ubiquitous variant of histone H2A that regulates cell stemness and differentiation in various organs. Whether macroH2A1.1 has a modulatory role in emotional behavior is unknown. Here, we employed macroH2A1.1 knock-out (-/- ) mice to perform a comprehensive battery of behavioral tests, and an assessment of hippocampal synaptic plasticity (long-term potentiation) accompanied by whole hippocampus RNA sequencing. MacroH2A1.1-/- mice exhibit a stunningly enhancement both of sociability and of active stress-coping behavior, reflected by the increased social behavior in social activity tests and higher mobility time in the forced swim test, respectively. They also display an increased hippocampal synaptic plasticity, accompanied by significant neurotransmission transcriptional networks changes. These results suggest that systemic depletion of histone macroH2A1.1 supports an epigenetic control necessary for hippocampal function and social behavior.
Collapse
Affiliation(s)
- Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rosaria Domenici
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Roberta De Simone
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Vincenzo Micale
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.,Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic.,ERA Chair in Translational Stem Cell Biology, Medical University-Varna, Varna, Bulgaria.,Division of Medicine, University College London (UCL), London, UK
| |
Collapse
|
14
|
Otero-Albiol D, Carnero A. Cellular senescence or stemness: hypoxia flips the coin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:243. [PMID: 34325734 PMCID: PMC8323321 DOI: 10.1186/s13046-021-02035-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a complex physiological state whose main feature is proliferative arrest. Cellular senescence can be considered the reverse of cell immortalization and continuous tumor growth. However, cellular senescence has many physiological functions beyond being a putative tumor suppressive trait. It remains unknown whether low levels of oxygen or hypoxia, which is a feature of every tissue in the organism, modulate cellular senescence, altering its capacity to suppress the limitation of proliferation. It has been observed that the lifespan of mammalian primary cells is increased under low oxygen conditions. Additionally, hypoxia promotes self-renewal and pluripotency maintenance in adult and embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and cancer stem cells (CSCs). In this study, we discuss the role of hypoxia facilitating senescence bypass during malignant transformation and acquisition of stemness properties, which all contribute to tumor development and cancer disease aggressiveness.
Collapse
Affiliation(s)
- Daniel Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain.,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
15
|
Hsu CJ, Meers O, Buschbeck M, Heidel FH. The Role of MacroH2A Histone Variants in Cancer. Cancers (Basel) 2021; 13:cancers13123003. [PMID: 34203934 PMCID: PMC8232725 DOI: 10.3390/cancers13123003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The structural unit of chromatin is the nucleosome that is composed of DNA wrapped around a core of eight histone proteins. Histone variants can replace ‘standard’ histones at specific sites of the genome. Thus, histone variants modulate all functions in the context of chromatin, such as gene expression. Here, we provide a concise review on a group of histone variants termed macroH2A. They contain two additional domains that contribute to their increased size. We discuss how these domains mediate molecular functions in normal cells and the role of macroH2As in gene expression and cancer. Abstract The epigenome regulates gene expression and provides a molecular memory of cellular events. A growing body of evidence has highlighted the importance of epigenetic regulation in physiological tissue homeostasis and malignant transformation. Among epigenetic mechanisms, the replacement of replication-coupled histones with histone variants is the least understood. Due to differences in protein sequence and genomic distribution, histone variants contribute to the plasticity of the epigenome. Here, we focus on the family of macroH2A histone variants that are particular in having a tripartite structure consisting of a histone fold, an intrinsically disordered linker and a globular macrodomain. We discuss how these domains mediate different molecular functions related to chromatin architecture, transcription and DNA repair. Dysregulated expression of macroH2A histone variants has been observed in different subtypes of cancer and has variable prognostic impact, depending on cellular context and molecular background. We aim to provide a concise review regarding the context- and isoform-dependent contributions of macroH2A histone variants to cancer development and progression.
Collapse
Affiliation(s)
- Chen-Jen Hsu
- Internal Medicine C, Greifswald University Medicine, 17475 Greifswald, Germany;
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain;
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain;
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Campus Can Ruti, 08916 Badalona, Spain
- Correspondence: (M.B.); (F.H.H.); Tel.: +34-935-572-800 (M.B.); +49-383-486-6698 (F.H.H.); Fax: +49-383-486-6713 (F.H.H.)
| | - Florian H. Heidel
- Internal Medicine C, Greifswald University Medicine, 17475 Greifswald, Germany;
- Leibniz Institute on Aging, Fritz-Lipmann Institute, 07745 Jena, Germany
- Correspondence: (M.B.); (F.H.H.); Tel.: +34-935-572-800 (M.B.); +49-383-486-6698 (F.H.H.); Fax: +49-383-486-6713 (F.H.H.)
| |
Collapse
|
16
|
Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death Dis 2021; 12:421. [PMID: 33927191 PMCID: PMC8085011 DOI: 10.1038/s41419-021-03704-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Abstract
Liver fibrosis (LF) is a dangerous clinical condition with no available treatment. Inflammation plays a critical role in LF progression. Glucocorticoid-induced leucine zipper (GILZ, encoded in mice by the Tsc22d3 gene) mimics many of the anti-inflammatory effects of glucocorticoids, but its role in LF has not been directly addressed. Here, we found that GILZ deficiency in mice was associated with elevated CCL2 production and pro-inflammatory leukocyte infiltration at the early LF stage, resulting in enhanced LF development. RNA interference-mediated in vivo silencing of the CCL2 receptor CCR2 abolished the increased leukocyte recruitment and the associated hepatic stellate cell activation in the livers of GILZ knockout mice. To highlight the clinical relevance of these findings, we found that TSC22D3 mRNA expression was significantly downregulated and was inversely correlated with that of CCL2 in the liver samples of patients with LF. Altogether, these data demonstrate a protective role of GILZ in LF and uncover the mechanism, which can be targeted therapeutically. Therefore, modulating GILZ expression and its downstream targets represents a novel avenue for pharmacological intervention for treating LF and possibly other liver inflammatory disorders.
Collapse
|
17
|
Giallongo S, Rehakova D, Raffaele M, Lo Re O, Koutna I, Vinciguerra M. Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation. Antioxid Redox Signal 2021; 34:335-349. [PMID: 32567336 DOI: 10.1089/ars.2019.7983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Since their discovery, induced pluripotent stem cells (iPSCs) had generated considerable interest in the scientific community for their great potential in regenerative medicine, disease modeling, and cell-based therapeutic approach, due to their unique characteristics of self-renewal and pluripotency. Recent Advances: Technological advances in iPSC genome-wide epigenetic profiling led to the elucidation of the epigenetic control of cellular identity during nuclear reprogramming. Moreover, iPSC physiology and metabolism are tightly regulated by oxidation-reduction events that mainly occur during the respiratory chain. In theory, iPSC-derived differentiated cells would be ideal for stem cell transplantation as autologous cells from donors, as the risks of rejection are minimal. Critical Issues: However, iPSCs experience high oxidative stress that, in turn, confers a high risk of increased genomic instability, which is most often linked to DNA repair deficiencies. Genomic instability has to be assessed before iPSCs can be used in therapeutic designs. Future Directions: This review will particularly focus on the links between redox balance and epigenetic modifications-in particular based on the histone variant macroH2A1-that determine DNA damage response in iPSCs and derived differentiated cells, and that might be exploited to decrease the teratogenic potential on iPSC transplantation. Antioxid. Redox Signal. 34, 335-349.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Rehakova
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Faculty of Informatics, Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic
| | - Marco Raffaele
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic
| | - Oriana Lo Re
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic
| | - Irena Koutna
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Faculty of Informatics, Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
18
|
A single copy of large tumor suppressor 1 or large tumor suppressor 2 is sufficient for normal hematopoiesis. Chin Med J (Engl) 2020; 133:1943-1951. [PMID: 32826458 PMCID: PMC7462215 DOI: 10.1097/cm9.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Hematopoietic stem cells (HSCs) have the ability to differentiate into all subsets of blood cells and self-renew. Large tumor suppressor 1 (LATS1) and large tumor suppressor 2 (LATS2) kinases are essential for cell cycle regulation, organism fitness, genome integrity, and cancer prevention. Here, we investigated whether Lats1 and Lats2 are critical for the maintenance of the self-renewal and quiescence capacities of HSCs in mice. Methods Quantitative reverse transcription-polymerase chain reaction was used to determine the expression levels of Lats1 and Lats2 in subsets of progenitor cells and mature bone marrow cells. A clustered regularly interspaced short palindromic repeats system was used to generate Lats1 or Lats2 knockout mice. Complete blood cell counts were used to compare the absolute number of white blood cells, lymphocytes, monocytes, neutrophils, and platelets between Lats1 or Lats2 heterozygotes and littermates. Flow cytometry was used to assess the size of hematopoietic progenitor cells (HPCs) and HSC pools in Lats1 or Lats2 heterozygotes and littermates. The comparison between the two groups was analyzed using Student's t test. Results Lats1 and Lats2 were widely expressed in hematopoietic cells with higher expression levels in primitive hematopoietic cells than in mature cells. Lats1 or Lats2 knockout mice were generated, with the homozygotes showing embryonic lethality. The size of the HPC and HSC pools in Lats1 (HPC: wild-type [WT] vs. heterozygote, 220,426.77 ± 54,384.796 vs. 221,149.4 ± 42,688.29, P = 0.988; HSC: WT vs. heterozygote, 2498.932 ± 347.856 vs. 3249.763 ± 370.412, P = 0.105) or Lats2 (HPC: WT vs. heterozygote, 425,540.52 ± 99,721.86 vs. 467,127.8 ± 89,574.48, P = 0.527; HSC: WT vs. heterozygote, 4760.545 ± 1518.01 vs. 5327.437 ± 873.297, P = 0.502) heterozygotes were not impaired. Moreover, the depletion of Lats1 or Lats2 did not affect the overall survival of the heterozygotes (Lats1: P = 0.654; Lats2: P = 0.152). Conclusion These results indicate that a single allele of Lats1 or Lats2 may be sufficient for normal hematopoiesis.
Collapse
|
19
|
Buzova D, Maugeri A, Liguori A, Napodano C, Lo Re O, Oben J, Alisi A, Gasbarrini A, Grieco A, Cerveny J, Miele L, Vinciguerra M. Circulating histone signature of human lean metabolic-associated fatty liver disease (MAFLD). Clin Epigenetics 2020; 12:126. [PMID: 32819448 PMCID: PMC7441674 DOI: 10.1186/s13148-020-00917-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Although metabolic associate fatty liver disease (MAFLD) is associated with obesity, it can also occur in lean patients. MAFLD is more aggressive in lean patients compared to obese patients, with a higher risk of mortality. Specific biomarkers to diagnose differentially lean or overweight MAFLD are missing. Histones and nucleosomes are released in the bloodstream upon cell death. Here, we propose a new, fast, imaging and epigenetics based approach to investigate the severity of steatosis in lean MAFLD patients. Results A total of 53 non-obese patients with histologically confirmed diagnosis of MAFLD were recruited. Twenty patients displayed steatosis grade 1 (0–33%), 24 patients with steatosis grade 2 (34–66%) and 9 patients with steatosis grade 3 (67–100%). The levels of circulating nucleosomes were assayed using enzyme-linked immunosorbent assay, while individual histones or histone dimers were assayed in serum samples by means of a new advanced flow cytometry ImageStream(X)-adapted method. Circulating nucleosome levels associated poorly with MAFLD in the absence of obesity. We implemented successfully a multi-channel flow methodology on ImageStream(X), to image single histone staining (H2A, H2B, H3, H4, macroH2A1.1 and macroH2A1.2). We report here a significant depletion of the levels of histone variants macroH2A1.1 and macroH2A1.2 in the serum of lean MAFLD patients, either individually or in complex with H2B. Conclusions In summary, we identified a new circulating histone signature able to discriminate the severity of steatosis in individuals with lean MAFLD, using a rapid and non-invasive ImageStream(X)-based imaging technology.
Collapse
Affiliation(s)
- Diana Buzova
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
| | - Andrea Maugeri
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic.,Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Antonio Liguori
- Department of Gastroenterological, Endocrine-Metabolic and Nephro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cecilia Napodano
- Department of Gastroenterological, Endocrine-Metabolic and Nephro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Jude Oben
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Gastroenterological, Endocrine-Metabolic and Nephro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Grieco
- Department of Gastroenterological, Endocrine-Metabolic and Nephro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jan Cerveny
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
| | - Luca Miele
- Department of Gastroenterological, Endocrine-Metabolic and Nephro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic. .,Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK.
| |
Collapse
|
20
|
Hematopoietic regeneration under the spell of epigenetic-epitranscriptomic factors and transposable elements. Curr Opin Hematol 2020; 27:264-272. [DOI: 10.1097/moh.0000000000000585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Loss of macroH2A1 decreases mitochondrial metabolism and reduces the aggressiveness of uveal melanoma cells. Aging (Albany NY) 2020; 12:9745-9760. [PMID: 32401230 PMCID: PMC7288915 DOI: 10.18632/aging.103241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumour in adults. The most accurate prognostic factor of UM is classification by gene expression profiling. Currently, the role of epigenetics is much less defined compared to genetic mechanisms. We recently showed a strong prognostic role of the expression levels of histone variant macroH2A1 in UM patients. Here, we assessed the mechanistic effects of macroH2A1 on UM progression. UM cell lines were stably knocked down (KD) for macroH2A1, and proliferation and colony formation capacity were evaluated. Mitochondrial function was assayed through qPCR and HPLC analyses. Correlation between mitochondrial gene expression and cancer aggressiveness was studied using a bioinformatics approach. MacroH2A1 loss significantly attenuated UM cells proliferation and aggressiveness. Furthermore, genes involved in oxidative phosphorylation displayed a decreased expression in KD cells. Consistently, macroH2A1 loss resulted also in a significant decrease of mitochondrial transcription factor A (TFAM) expression, suggesting impaired mitochondrial replication. Bioinformatics analyses uncovered that the expression of genes involved in mitochondrial metabolism correlates with macroH2A1 and with cancer aggressiveness in UM patients. Altogether, our results suggest that macroH2A1 controls UM cells progression and it may represent a molecular target to develop new pharmacological strategies for UM treatment.
Collapse
|
22
|
Hurtado-Bagès S, Knobloch G, Ladurner AG, Buschbeck M. The taming of PARP1 and its impact on NAD + metabolism. Mol Metab 2020; 38:100950. [PMID: 32199820 PMCID: PMC7300387 DOI: 10.1016/j.molmet.2020.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Poly-ADP-ribose polymerases (PARPs) are key mediators of cellular stress response. They are intimately linked to cellular metabolism through the consumption of NAD+. PARP1/ARTD1 in the nucleus is the major NAD+ consuming activity and plays a key role in maintaining genomic integrity. Scope of review In this review, we discuss how different organelles are linked through NAD+ metabolism and how PARP1 activation in the nucleus can impact the function of distant organelles. We discuss how differentiated cells tame PARP1 function by upregulating an endogenous inhibitor, the histone variant macroH2A1.1. Major conclusions The presence of macroH2A1.1, particularly in differentiated cells, raises the threshold for the activation of PARP1 with consequences for DNA repair, gene transcription, and NAD+ homeostasis. Beyond DNA repair, PARP1 is essential for metabolic homeostasis. Epigenetic mechanisms prevent metabolic disorders through PARP1 taming. Beyond cancer, the development of PARP1 inhibitors offers diverse clinical potential.
Collapse
Affiliation(s)
- Sarah Hurtado-Bagès
- Josep Carreras Leukemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gunnar Knobloch
- Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Andreas G Ladurner
- Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany; Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, 81377, Munich, Germany.
| | - Marcus Buschbeck
- Josep Carreras Leukemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain; Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916, Badalona, Spain.
| |
Collapse
|