1
|
Pollastri A, Kovacs P, Keller M. Circulating Cell-Free DNA in Metabolic Diseases. J Endocr Soc 2025; 9:bvaf006. [PMID: 39850787 PMCID: PMC11756337 DOI: 10.1210/jendso/bvaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Indexed: 01/25/2025] Open
Abstract
Metabolic diseases affect a consistent part of the human population, leading to rising mortality rates. This raises the need for diagnostic tools to monitor the progress of these diseases. Lately, circulating cell-free DNA (cfDNA) has emerged as a promising biomarker for various metabolic diseases, including obesity, type 2 diabetes, and metabolic-associated fatty liver disease. CfDNA is released from apoptotic and necrotic cells into the bloodstream and other body fluids, and it retains various molecular signatures of its tissue of origin. Thus, cfDNA load and composition can reflect tissue pathologies and systemic metabolic dysfunctions. In addition to its potential as a diagnostic biomarker, interest in cfDNA derives from its recently discovered role in adipose tissue inflammation in obesity. This review discusses detection methods and clinical significance of cfDNA in metabolic diseases.
Collapse
Affiliation(s)
- Alessio Pollastri
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany
| | - Peter Kovacs
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg 85764, Germany
| | - Maria Keller
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany
| |
Collapse
|
2
|
Joglekar MV, Kaur S, Pociot F, Hardikar AA. Prediction of progression to type 1 diabetes with dynamic biomarkers and risk scores. Lancet Diabetes Endocrinol 2024; 12:483-492. [PMID: 38797187 DOI: 10.1016/s2213-8587(24)00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/29/2024]
Abstract
Identifying biomarkers of functional β-cell loss is an important step in the risk stratification of type 1 diabetes. Genetic risk scores (GRS), generated by profiling an array of single nucleotide polymorphisms, are a widely used type 1 diabetes risk-prediction tool. Type 1 diabetes screening studies have relied on a combination of biochemical (autoantibody) and GRS screening methodologies for identifying individuals at high-risk of type 1 diabetes. A limitation of these screening tools is that the presence of autoantibodies marks the initiation of β-cell loss, and is therefore not the best biomarker of progression to early-stage type 1 diabetes. GRS, on the other hand, represents a static biomarker offering a single risk score over an individual's lifetime. In this Personal View, we explore the challenges and opportunities of static and dynamic biomarkers in the prediction of progression to type 1 diabetes. We discuss future directions wherein newer dynamic risk scores could be used to predict type 1 diabetes risk, assess the efficacy of new and emerging drugs to retard, or prevent type 1 diabetes, and possibly replace or further enhance the predictive ability offered by static biomarkers, such as GRS.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | | | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
3
|
Muralidharan C, Huang F, Enriquez JR, Wang JE, Nelson JB, Nargis T, May SC, Chakraborty A, Figatner KT, Navitskaya S, Anderson CM, Calvo V, Surguladze D, Mulvihill MJ, Yi X, Sarkar S, Oakes SA, Webb-Robertson BJM, Sims EK, Staschke KA, Eizirik DL, Nakayasu ES, Stokes ME, Tersey SA, Mirmira RG. Inhibition of the eukaryotic initiation factor-2α kinase PERK decreases risk of autoimmune diabetes in mice. J Clin Invest 2024; 134:e176136. [PMID: 38889047 PMCID: PMC11324307 DOI: 10.1172/jci176136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eukaryotic translation initiation factor-2α (eIF2α). In T1D, maladaptive unfolded protein response (UPR) in insulin-producing β cells renders these cells susceptible to autoimmunity. We found that inhibition of the eIF2α kinase PKR-like ER kinase (PERK), a common component of the UPR and ISR, reversed the mRNA translation block in stressed human islets and delayed the onset of diabetes, reduced islet inflammation, and preserved β cell mass in T1D-susceptible mice. Single-cell RNA-Seq of islets from PERK-inhibited mice showed reductions in the UPR and PERK signaling pathways and alterations in antigen-processing and presentation pathways in β cells. Spatial proteomics of islets from these mice showed an increase in the immune checkpoint protein programmed death-ligand 1 (PD-L1) in β cells. Golgi membrane protein 1, whose levels increased following PERK inhibition in human islets and EndoC-βH1 human β cells, interacted with and stabilized PD-L1. Collectively, our studies show that PERK activity enhances β cell immunogenicity and that inhibition of PERK may offer a strategy for preventing or delaying the development of T1D.
Collapse
Affiliation(s)
- Charanya Muralidharan
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Fei Huang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jacob R. Enriquez
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jiayi E. Wang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jennifer B. Nelson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Titli Nargis
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Sarah C. May
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Advaita Chakraborty
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Kayla T. Figatner
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Svetlana Navitskaya
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Cara M. Anderson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Scott A. Oakes
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | | | - Emily K. Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, and
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology and the Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Sarah A. Tersey
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Muralidharan C, Huang F, Enriquez JR, Wang JE, Nelson JB, Nargis T, May SC, Chakraborty A, Figatner KT, Navitskaya S, Anderson CM, Calvo V, Surguladze D, Mulvihill MJ, Yi X, Sarkar S, Oakes SA, Webb-Robertson BJM, Sims EK, Staschke KA, Eizirik DL, Nakayasu ES, Stokes ME, Tersey SA, Mirmira RG. Inhibition of the Eukaryotic Initiation Factor-2-α Kinase PERK Decreases Risk of Autoimmune Diabetes in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561126. [PMID: 38895427 PMCID: PMC11185543 DOI: 10.1101/2023.10.06.561126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing β cells renders these cells susceptible to autoimmunity. We show that inhibition of the eIF2α kinase PERK, a common component of the UPR and ISR, reverses the mRNA translation block in stressed human islets and delays the onset of diabetes, reduces islet inflammation, and preserves β cell mass in T1D-susceptible mice. Single-cell RNA sequencing of islets from PERK-inhibited mice shows reductions in the UPR and PERK signaling pathways and alterations in antigen processing and presentation pathways in β cells. Spatial proteomics of islets from these mice shows an increase in the immune checkpoint protein PD-L1 in β cells. Golgi membrane protein 1, whose levels increase following PERK inhibition in human islets and EndoC-βH1 human β cells, interacts with and stabilizes PD-L1. Collectively, our studies show that PERK activity enhances β cell immunogenicity, and inhibition of PERK may offer a strategy to prevent or delay the development of T1D.
Collapse
Affiliation(s)
- Charanya Muralidharan
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Fei Huang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Jacob R. Enriquez
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Jiayi E. Wang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Jennifer B. Nelson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Titli Nargis
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Sarah C. May
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Advaita Chakraborty
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Kayla T. Figatner
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Svetlana Navitskaya
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Cara M. Anderson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | | | | | | | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Scott A. Oakes
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Emily K. Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, and the Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology and the Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Sarah A. Tersey
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Zhang L, Li J. Unlocking the secrets: the power of methylation-based cfDNA detection of tissue damage in organ systems. Clin Epigenetics 2023; 15:168. [PMID: 37858233 PMCID: PMC10588141 DOI: 10.1186/s13148-023-01585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Detecting organ and tissue damage is essential for early diagnosis, treatment decisions, and monitoring disease progression. Methylation-based assays offer a promising approach, as DNA methylation patterns can change in response to tissue damage. These assays have potential applications in early detection, monitoring disease progression, evaluating treatment efficacy, and assessing organ viability for transplantation. cfDNA released into the bloodstream upon tissue or organ injury can serve as a biomarker for damage. The epigenetic state of cfDNA, including DNA methylation patterns, can provide insights into the extent of tissue and organ damage. CONTENT Firstly, this review highlights DNA methylation as an extensively studied epigenetic modification that plays a pivotal role in processes such as cell growth, differentiation, and disease development. It then presents a variety of highly precise 5-mC methylation detection techniques that serve as powerful tools for gaining profound insights into epigenetic alterations linked with tissue damage. Subsequently, the review delves into the mechanisms underlying DNA methylation changes in organ and tissue damage, encompassing inflammation, oxidative stress, and DNA damage repair mechanisms. Next, it addresses the current research status of cfDNA methylation in the detection of specific organ tissues and organ damage. Finally, it provides an overview of the multiple steps involved in identifying specific methylation markers associated with tissue and organ damage for clinical trials. This review will explore the mechanisms and current state of research on cfDNA methylation-based assay detecting organ and tissue damage, the underlying mechanisms, and potential applications in clinical practice.
Collapse
Affiliation(s)
- Lijing Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Xu Z, He J, Han P, Dai P, Lv W, Liu N, Liu L, Liu L, Pan X, Xiang X, Li H, Ge F, Gao S, Liao Z, Luo Y, Li Y. Plasma extrachromosomal circular DNA is a pathophysiological hallmark of short-term intensive insulin therapy for type 2 diabetes. Clin Transl Med 2023; 13:e1437. [PMID: 37859516 PMCID: PMC10587738 DOI: 10.1002/ctm2.1437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA) has emerged as a promising biomarker for disease diagnosis and prognosis prediction. However, its role in type 2 diabetes remains unexplored. OBJECTIVE To investigate the characteristics and dynamics of circulating eccDNAs in newly diagnosed type 2 diabetes mellitus (T2DM) patients undergoing short-term intensive insulin therapy (SIIT), a highly effective treatment for inducing long-term glycemic remission. METHODS We conducted Circle-Seq analysis on plasma samples from 35 T2DM patients at three time points: pre-SIIT, post-SIIT, and 1-year post-SIIT. Our analysis encompassed the characterization of eccDNA features, including GC content, eccDNA length distribution, genomic distribution, and the genes in eccDNAs. RESULTS Following SIIT, we observed an increase in plasma eccDNA load, suggesting metabolic alterations during therapy. Notably, a correlation was identified between eccDNA profiles and glycemia in T2DM, both quantitatively and genetically. Our analysis also revealed the frequent presence of metabolism-related genes within T2DM plasma eccDNAs, some of which spanned gene exons and/or fractions. CONCLUSION This study represents the first report of cell-free eccDNA in T2DM and underscores a compelling association between cell-free eccDNA and profound glycemic changes. These findings highlight the potential of eccDNAs as crucial players in the context of T2DM and glycemic control.
Collapse
Affiliation(s)
- Zhe Xu
- College of Life SciencesUniversity of Chinese Academy of ScienceBeijingChina
| | - Junyu He
- Department of EndocrinologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Peng Han
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesBGI ResearchQingdaoChina
| | - Peiji Dai
- Department of EndocrinologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Wei Lv
- College of Life SciencesUniversity of Chinese Academy of ScienceBeijingChina
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesBGI ResearchQingdaoChina
| | - Nian Liu
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Liyi Liu
- Department of EndocrinologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Liehua Liu
- Department of EndocrinologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesBGI ResearchQingdaoChina
| | - Xi Xiang
- Scientific Research CenterThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenPeople's Republic of China
| | | | - Fangfang Ge
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesBGI ResearchQingdaoChina
| | - Shan Gao
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesBGI ResearchQingdaoChina
| | - Zhihong Liao
- Department of EndocrinologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesBGI ResearchQingdaoChina
- BGI ResearchShenzhenChina
| | - Yanbing Li
- Department of EndocrinologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Berezina TA, Berezin AE. Cell-free DNA as a plausible biomarker of chronic kidney disease. Epigenomics 2023; 15:879-890. [PMID: 37791402 DOI: 10.2217/epi-2023-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Circulating cell-free DNA (cf-DNA) is released from dead and/or apoptotic leukocytes and due to neutrophil extracellular traps contributing to an inflammatory response. Previous clinical studies have reported that the peak concentrations and dynamic changes of cf-DNA may be used as a noninvasive biomarker of worsening kidney function as well as a guide to the management of kidney allograft rejection. We hypothesized that the pattern and dynamic changes of cf-DNA might be a plausible predictive biomarker for patients at risk of chronic kidney disease (CKD), including individuals with type 2 diabetes mellitus, heart failure, cardiovascular disease and established CKD. Along with it, pre- and posthemodialysis levels of serum cf-DNA appear to be a independent predictor for all-cause mortality in patients with end-stage kidney disease.
Collapse
Affiliation(s)
- Tetiana A Berezina
- VitaCenter, Department of Internal Medicine and Nephrology, Zaporozhye, 69000, Ukraine
| | - Alexander E Berezin
- Paracelsus Medical University, Department of Internal Medicine II, Division of Cardiology, Salzburg, 5020, Austria
| |
Collapse
|
9
|
Linares-Pineda TM, Gutiérrez-Repiso C, Peña-Montero N, Molina-Vega M, Rubio FL, Arana MS, Tinahones FJ, Picón-César MJ, Morcillo S. Higher β cell death in pregnant women, measured by DNA methylation patterns of cell-free DNA, compared to new-onset type 1 and type 2 diabetes subjects: a cross-sectional study. Diabetol Metab Syndr 2023; 15:115. [PMID: 37264478 DOI: 10.1186/s13098-023-01096-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Diabetes is a metabolic disorder of glucose homeostasis in which β cell destruction occurs silently and is detected mainly when symptoms appear. In the last few years, it has emerged a great interest in developing markers capable of detecting pancreatic β cell death focused on improving early diagnosis and getting a better treatment response, mainly in type 1 diabetes. But other types of diabetes would also benefit from early detection of β cell death. Differentially methylated circulating DNA is being studied as minimally invasive biomarker of cell death. We aimed to explore whether the unmethylated/methylated ratio of the insulin and amylin genes might be a good biomarker of β cell death in different types of diabetes. A lower index ∆Ct indicates a higher rate of β-cell death. Plasma samples from subjects without diabetes, pregnant women, pregnant with gestational diabetes (GDM), type 1 diabetes and type 2 diabetes were analyzed. A qPCR reaction with specific primers for both methylated and unmethylated fragments of insulin and amylin genes were carried out. Pregnant women, GDM and non- GDM, showed a higher β-cell death for both markers (∆INS = 3.8 ± 2.1 and ∆Amylin = 8.5 ± 3.6), whereas T1D presented lower rate (∆INS = 6.2 ± 2.1 and ∆Amylin = 10.7 ± 2.9) comparable to healthy subjects. The insulin methylation index was associated with the newborn birth weight (r = 0.46; p = 0.033) and with insulin resistance (r = -0.533; p = 0.027) in the GDM group. The higher rate of β-cell death was observed in pregnant women independently of their metabolic status. These indexes could be a good indicator of β cell death in processes caused by defects on insulin secretion, insulin action, or both.
Collapse
Affiliation(s)
- Teresa María Linares-Pineda
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Carolina Gutiérrez-Repiso
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Nerea Peña-Montero
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - María Molina-Vega
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Fuensanta Lima Rubio
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - María Suárez Arana
- Department of Obstetrics and Gynecology, Hospital Regional Universitario de Málaga, IBIMA, Málaga, Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - María José Picón-César
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - Sonsoles Morcillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Humardani FM, Mulyanata LT, Dwi Putra SE. Adipose cell-free DNA in diabetes. Clin Chim Acta 2023; 539:191-197. [PMID: 36549639 DOI: 10.1016/j.cca.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Cancer-associated necrosis is a well-known source of cell-free DNA (cfDNA). However, the origins of cfDNA are not strictly limited to cancer. Additionally, dietary exposure induces apoptosis-induced proliferation in adipocytes, leading to the release of cfDNA. The genetic information derived from cfDNA as a result of apoptosis-induced proliferation contains specific methylation patterns in adipose tissue that can be used as a marker to detect the risk of developing Type 2 diabetes Mellitus (T2DM) in the future. cfDNA is superior to peripheral blood leukocytes (PBL) and whole blood samples for reflecting tissue pathology due to the frequent use of PBL and whole blood samples that do not match tissue pathology. The difficulty of demonstrating that cfDNA is derived from adipose tissue. We propose several promising techniques by analyzing cfDNA derived from adipose tissue to detect T2DM risk. First, adipose-specific genes such as ADIPOQ and Leptin were utilized. Second, MCTA-Seq, EpiSCORE, deconvolution, multiplexing, and automated machine learning (AutoML) were used to determine the proportion of total methylation in related genes.
Collapse
Affiliation(s)
| | | | - Sulistyo Emantoko Dwi Putra
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia; Raya Kalingrungkut Road, Kali Rungkut, State of Rungkut, Surabaya City, East Java 60293, Indonesia.
| |
Collapse
|
11
|
Mei X, Zhang B, Zhao M, Lu Q. An update on epigenetic regulation in autoimmune diseases. J Transl Autoimmun 2022; 5:100176. [PMID: 36544624 PMCID: PMC9762196 DOI: 10.1016/j.jtauto.2022.100176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases (AIDs) generally manifest as chronic immune disorders characterized by significant heterogeneity and complex symptoms. The discordant incidence of AIDs between monozygotic twins guided people to attach importance to environmental factors. Epigenetics is one of the major ways to be influenced, some of them can even occur years before clinical diagnosis. With the advent of high-throughput omics times, the mysterious veil of epigenetic modification in AIDs has been gradually unraveled, and some progress has been made in utilizing it as indicators of diagnosis and disease activity. For example, the hypomethylated IFI44L promoter in diagnosing systematic lupus erythematosus (SLE). More recently, newly identified noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are also believed to be involved in the etiology of AIDs while the initial factor behind those epigenetic alterations can be diverse from metabolism to microbiota. Update and comprehensive insights into epigenetics in AIDs can help us understand the pathogenesis and further orchestrate it to benefit patients in the future. Therefore, we reviewed the latest epigenetic findings in SLE, rheumatoid arthritis (RA), Type 1 diabetes (T1D), systemic sclerosis (SSc) primarily from cellular levels.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China
| | - Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Ben Nasr M, D’Addio F, Montefusco L, Usuelli V, Loretelli C, Rossi A, Pastore I, Abdelsalam A, Maestroni A, Dell’Acqua M, Ippolito E, Assi E, Seelam AJ, Fiorina RM, Chebat E, Morpurgo P, Lunati ME, Bolla AM, Abdi R, Bonventre JV, Rusconi S, Riva A, Corradi D, Santus P, Clark P, Nebuloni M, Baldi G, Finzi G, Folli F, Zuccotti GV, Galli M, Herold KC, Fiorina P. Indirect and Direct Effects of SARS-CoV-2 on Human Pancreatic Islets. Diabetes 2022; 71:1579-1590. [PMID: 35499468 PMCID: PMC9490452 DOI: 10.2337/db21-0926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/04/2022] [Indexed: 01/08/2023]
Abstract
Recent studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may induce metabolic distress, leading to hyperglycemia in patients affected by coronavirus disease 19 (COVID-19). We investigated the potential indirect and direct effects of SARS-CoV-2 on human pancreatic islets in 10 patients who became hyperglycemic after COVID-19. Although there was no evidence of peripheral anti-islet autoimmunity, the serum of these patients displayed toxicity on human pancreatic islets, which could be abrogated by the use of anti-interleukin-1β (IL-1β), anti-IL-6, and anti-tumor necrosis factor α, cytokines known to be highly upregulated during COVID-19. Interestingly, the receptors of those aforementioned cytokines were highly expressed on human pancreatic islets. An increase in peripheral unmethylated INS DNA, a marker of cell death, was evident in several patients with COVID-19. Pathology of the pancreas from deceased hyperglycemic patients who had COVID-19 revealed mild lymphocytic infiltration of pancreatic islets and pancreatic lymph nodes. Moreover, SARS-CoV-2-specific viral RNA, along with the presence of several immature insulin granules or proinsulin, was detected in postmortem pancreatic tissues, suggestive of β-cell-altered proinsulin processing, as well as β-cell degeneration and hyperstimulation. These data demonstrate that SARS-CoV-2 may negatively affect human pancreatic islet function and survival by creating inflammatory conditions, possibly with a direct tropism, which may in turn lead to metabolic abnormalities observed in patients with COVID-19.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
- Nephrology Division, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Francesca D’Addio
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Laura Montefusco
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
| | - Vera Usuelli
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
| | - Cristian Loretelli
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
| | - Antonio Rossi
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Ahmed Abdelsalam
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
| | - Marco Dell’Acqua
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Elio Ippolito
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
| | - Emma Assi
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
| | - Andy Joe Seelam
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
| | - Roberta Maria Fiorina
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
| | - Enrica Chebat
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Paola Morpurgo
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Maria Elena Lunati
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Andrea Mario Bolla
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Reza Abdi
- Transplantation Research Center and Nephrology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Joseph V. Bonventre
- Transplantation Research Center and Nephrology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Stefano Rusconi
- Infectious Diseases Unit, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Agostino Riva
- Infectious Diseases Unit, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Domenico Corradi
- Unit of Pathology, Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Pierachille Santus
- Division of Respiratory Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
- Department of Biomedical and Clinical Sciences, DIBIC, Università di Milano, Milan, Italy
| | - Pamela Clark
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | - Manuela Nebuloni
- Department of Biomedical and Clinical Sciences, DIBIC, Università di Milano, Milan, Italy
- Department of Pathology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Gabriella Baldi
- Endocrinology Laboratory, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Giovanna Finzi
- Department of Pathology, University Hospital ASST-Settelaghi, Varese, Italy
| | - Franco Folli
- Endocrinology and Metabolism, Department of Health Science, Università di Milano, ASST Santi Paolo e Carlo, Milan, Italy
| | | | - Massimo Galli
- Infectious Diseases Unit, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | - Paolo Fiorina
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche (DIBIC), Università di Milano, Milan, Italy
- Nephrology Division, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
13
|
Zhu T, Liu J, Beck S, Pan S, Capper D, Lechner M, Thirlwell C, Breeze CE, Teschendorff AE. A pan-tissue DNA methylation atlas enables in silico decomposition of human tissue methylomes at cell-type resolution. Nat Methods 2022; 19:296-306. [PMID: 35277705 PMCID: PMC8916958 DOI: 10.1038/s41592-022-01412-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Bulk-tissue DNA methylomes represent an average over many different cell types, hampering our understanding of cell-type-specific contributions to disease development. As single-cell methylomics is not scalable to large cohorts of individuals, cost-effective computational solutions are needed, yet current methods are limited to tissues such as blood. Here we leverage the high-resolution nature of tissue-specific single-cell RNA-sequencing datasets to construct a DNA methylation atlas defined for 13 solid tissue types and 40 cell types. We comprehensively validate this atlas in independent bulk and single-nucleus DNA methylation datasets. We demonstrate that it correctly predicts the cell of origin of diverse cancer types and discovers new prognostic associations in olfactory neuroblastoma and stage 2 melanoma. In brain, the atlas predicts a neuronal origin for schizophrenia, with neuron-specific differential DNA methylation enriched for corresponding genome-wide association study risk loci. In summary, the DNA methylation atlas enables the decomposition of 13 different human tissue types at a high cellular resolution, paving the way for an improved interpretation of epigenetic data. This resource presents an in silico generated DNA methylation atlas that can be used for cell-type deconvolution of human tissues.
Collapse
|
14
|
Karaglani M, Panagopoulou M, Cheimonidi C, Tsamardinos I, Maltezos E, Papanas N, Papazoglou D, Mastorakos G, Chatzaki E. Liquid Biopsy in Type 2 Diabetes Mellitus Management: Building Specific Biosignatures via Machine Learning. J Clin Med 2022; 11:1045. [PMID: 35207316 PMCID: PMC8876363 DOI: 10.3390/jcm11041045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The need for minimally invasive biomarkers for the early diagnosis of type 2 diabetes (T2DM) prior to the clinical onset and monitoring of β-pancreatic cell loss is emerging. Here, we focused on studying circulating cell-free DNA (ccfDNA) as a liquid biopsy biomaterial for accurate diagnosis/monitoring of T2DM. METHODS ccfDNA levels were directly quantified in sera from 96 T2DM patients and 71 healthy individuals via fluorometry, and then fragment DNA size profiling was performed by capillary electrophoresis. Following this, ccfDNA methylation levels of five β-cell-related genes were measured via qPCR. Data were analyzed by automated machine learning to build classifying predictive models. RESULTS ccfDNA levels were found to be similar between groups but indicative of apoptosis in T2DM. INS (Insulin), IAPP (Islet Amyloid Polypeptide-Amylin), GCK (Glucokinase), and KCNJ11 (Potassium Inwardly Rectifying Channel Subfamily J member 11) levels differed significantly between groups. AutoML analysis delivered biosignatures including GCK, IAPP and KCNJ11 methylation, with the highest ever reported discriminating performance of T2DM from healthy individuals (AUC 0.927). CONCLUSIONS Our data unravel the value of ccfDNA as a minimally invasive biomaterial carrying important clinical information for T2DM. Upon prospective clinical evaluation, the built biosignature can be disruptive for T2DM clinical management.
Collapse
Affiliation(s)
- Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.K.); (M.P.); (C.C.)
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.K.); (M.P.); (C.C.)
| | - Christina Cheimonidi
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.K.); (M.P.); (C.C.)
| | - Ioannis Tsamardinos
- JADBio Gnosis DA, Science and Technology Park of Crete, 71500 Heraklion, Greece;
| | - Efstratios Maltezos
- Diabetes Centre, 2nd Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece; (E.M.); (N.P.); (D.P.)
| | - Nikolaos Papanas
- Diabetes Centre, 2nd Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece; (E.M.); (N.P.); (D.P.)
| | - Dimitrios Papazoglou
- Diabetes Centre, 2nd Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece; (E.M.); (N.P.); (D.P.)
| | - George Mastorakos
- Endocrine Unit, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, “Aretaieion” University Hospital, 11528 Athens, Greece;
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.K.); (M.P.); (C.C.)
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71003 Heraklion, Greece
| |
Collapse
|
15
|
Aleotti V, Catoni C, Poggiana C, Rosato A, Facchinetti A, Scaini MC. Methylation Markers in Cutaneous Melanoma: Unravelling the Potential Utility of Their Tracking by Liquid Biopsy. Cancers (Basel) 2021; 13:6217. [PMID: 34944843 PMCID: PMC8699653 DOI: 10.3390/cancers13246217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023] Open
Abstract
Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| |
Collapse
|
16
|
Redondo MJ, Balasubramanyam A. Toward an Improved Classification of Type 2 Diabetes: Lessons From Research into the Heterogeneity of a Complex Disease. J Clin Endocrinol Metab 2021; 106:e4822-e4833. [PMID: 34291809 PMCID: PMC8787852 DOI: 10.1210/clinem/dgab545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Accumulating evidence indicates that type 2 diabetes (T2D) is phenotypically heterogeneous. Defining and classifying variant forms of T2D are priorities to better understand its pathophysiology and usher clinical practice into an era of "precision diabetes." EVIDENCE ACQUISITION AND METHODS We reviewed literature related to heterogeneity of T2D over the past 5 decades and identified a range of phenotypic variants of T2D. Their descriptions expose inadequacies in current classification systems. We attempt to link phenotypically diverse forms to pathophysiology, explore investigative methods that have characterized "atypical" forms of T2D on an etiological basis, and review conceptual frameworks for an improved taxonomy. Finally, we propose future directions to achieve the goal of an etiological classification of T2D. EVIDENCE SYNTHESIS Differences among ethnic and racial groups were early observations of phenotypic heterogeneity. Investigations that uncover complex interactions of pathophysiologic pathways leading to T2D are supported by epidemiological and clinical differences between the sexes and between adult and youth-onset T2D. Approaches to an etiological classification are illustrated by investigations of atypical forms of T2D, such as monogenic diabetes and syndromes of ketosis-prone diabetes. Conceptual frameworks that accommodate heterogeneity in T2D include an overlap between known diabetes types, a "palette" model integrated with a "threshold hypothesis," and a spectrum model of atypical diabetes. CONCLUSION The heterogeneity of T2D demands an improved, etiological classification scheme. Excellent phenotypic descriptions of emerging syndromes in different populations, continued clinical and molecular investigations of atypical forms of diabetes, and useful conceptual models can be utilized to achieve this important goal.
Collapse
Affiliation(s)
- Maria J Redondo
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
18
|
Cell-Free DNA Fragments as Biomarkers of Islet β-Cell Death in Obesity and Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms22042151. [PMID: 33670079 PMCID: PMC7926743 DOI: 10.3390/ijms22042151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes (T2D) typically occurs in the setting of obesity and insulin resistance, where hyperglycemia is associated with decreased pancreatic β-cell mass and function. Loss of β-cell mass has variably been attributed to β-cell dedifferentiation and/or death. In recent years, it has been proposed that circulating epigenetically modified DNA fragments arising from β cells might be able to report on the potential occurrence of β-cell death in diabetes. Here, we review published literature of DNA-based β-cell death biomarkers that have been evaluated in human cohorts of islet transplantation, type 1 diabetes, and obesity and type 2 diabetes. In addition, we provide new data on the applicability of one of these biomarkers (cell free unmethylated INS DNA) in adult cohorts across a spectrum from obesity to T2D, in which no significant differences were observed, and compare these findings to those previously published in youth cohorts where differences were observed. Our analysis of the literature and our own data suggest that β-cell death may occur in subsets of individuals with obesity and T2D, however a more sensitive method or refined study designs are needed to provide better alignment of sampling with disease progression events.
Collapse
|
19
|
Pant R, Firmal P, Shah VK, Alam A, Chattopadhyay S. Epigenetic Regulation of Adipogenesis in Development of Metabolic Syndrome. Front Cell Dev Biol 2021; 8:619888. [PMID: 33511131 PMCID: PMC7835429 DOI: 10.3389/fcell.2020.619888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is one of the biggest public health concerns identified by an increase in adipose tissue mass as a result of adipocyte hypertrophy and hyperplasia. Pertaining to the importance of adipose tissue in various biological processes, any alteration in its function results in impaired metabolic health. In this review, we discuss how adipose tissue maintains the metabolic health through secretion of various adipokines and inflammatory mediators and how its dysfunction leads to the development of severe metabolic disorders and influences cancer progression. Impairment in the adipocyte function occurs due to individuals' genetics and/or environmental factor(s) that largely affect the epigenetic profile leading to altered gene expression and onset of obesity in adults. Moreover, several crucial aspects of adipose biology, including the regulation of different transcription factors, are controlled by epigenetic events. Therefore, understanding the intricacies of adipogenesis is crucial for recognizing its relevance in underlying disease conditions and identifying the therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Richa Pant
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Priyanka Firmal
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Aftab Alam
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Samit Chattopadhyay
- National Centre for Cell Science, SP Pune University Campus, Pune, India.,Department of Biological Sciences, BITS Pilani, Goa, India
| |
Collapse
|