1
|
Myllymäki V, Ylöstalo P, Suominen AL, Knuuttila M, Rajala U, Keinänen-Kiukaanniemi S, Anttila S, Saxlin T. Association of Periodontal Condition With Impaired Glucose Tolerance: Results of a 15-Year Follow-Up Study. Clin Exp Dent Res 2024; 10:e70023. [PMID: 39400977 DOI: 10.1002/cre2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVES The aim of this study was to investigate whether periodontal condition is associated with the development of impaired glucose tolerance (IGT). MATERIAL AND METHODS This study was based on a subpopulation of a cohort of persons born in 1935 and living in Oulu, Finland, on October 1, 1990. The participants were normoglycemic (no previously diagnosed diabetes mellitus and a 2-h oral glucose tolerance test [OGTT] blood glucose < 7.8 mmol/L) in the baseline examinations (1990-1992) and had fasting blood glucose < 7.0 mmol/L in the follow-up examinations (2007-2008) (n = 225). The outcome was IGT on follow-up, measured by a blood glucose level of ≥ 7.8 mmol/L after OGTT. The exposure was the periodontal condition at baseline categorized into four groups: 0, 1-6, ≥ 7 sites with deepened (≥ 4 mm) periodontal pockets, and edentulousness. RESULTS A total of 23% of the participants developed IGT. The adjusted incidence rate ratios with 95% confidence intervals (CI) for dentate participants with 1-6 sites and ≥ 7 sites with deepened periodontal pockets, and edentate participants (reference category dentate participants without deepened periodontal pockets) were 1.5 (95% CI, 0.6-4.0), 1.8 (95% CI, 0.7-4.4), and 1.6 (95% CI, 0.6-4.0), respectively. CONCLUSIONS Poor periodontal condition may predispose individuals to IGT; however, further studies on this matter are warranted.
Collapse
Affiliation(s)
- Ville Myllymäki
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, University of Helsinki, Helsinki, Finland
| | - Pekka Ylöstalo
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Oral and Maxillofacial Surgery, Oulu University Hospital, Oulu, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anna Liisa Suominen
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
- Odontology Education Unit, Kuopio University Hospital, Kuopio, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Matti Knuuttila
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ulla Rajala
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland
- Wellbeing Services County of North Ostrobothnia, Pyhäjärvi, Finland
| | - Sirpa Anttila
- Dental Training Clinic, Oral Health Care, Wellbeing Services County of North Ostrobothnia, Finland
| | - Tuomas Saxlin
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
- Odontology Education Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Luo S, Zhang L, Li X, Tong C. Annexin A1 protects periodontal ligament cells against lipopolysaccharide-induced inflammatory response and cellular senescence: An implication in periodontitis. Biotechnol Appl Biochem 2024. [PMID: 39318270 DOI: 10.1002/bab.2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Periodontitis is an inflammatory condition that affects the tooth-supporting structures, triggered by the host's immune response toward the bacterial deposits around the teeth. Annexin A1 (AnxA1), a vital member of the annexin superfamily, is known for its diverse physiological functions, particularly its anti-inflammatory and anti-senescence properties. We hypothesized that AnxA1 has a protective effect against lipopolysaccharide (LPS)-induced inflammatory responses and cellular damage in periodontal ligament cells (PDLCs). In this study, we demonstrate that LPS stimulation significantly reduced telomerase activity in PDLCs, a decline that was dose-dependently reversed by AnxA1. Importantly, AnxA1 protected the cells from LPS-induced cellular senescence and the downregulation of human telomerase reverse transcriptase (hTERT) expression. In line with this, AnxA1 suppressed the LPS-induced expression of p21 and p16 at both the mRNA and protein levels. Furthermore, AnxA1 demonstrated potent anti-inflammatory effects by inhibiting the secretion of interleukin 6 (IL-6), interleukin 8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). It also mitigated LPS-induced oxidative stress by reducing the levels of phosphorylated Foxo3a (Ser253) and restored sirtuin 1 (SIRT1) expression. Notably, SIRT1 silencing abolished AnxA1's protective effects on Foxo3a phosphorylation and cellular senescence, suggesting that SIRT1 mediates AnxA1's actions. In conclusion, AnxA1 protected PDLCs against LPS-triggered inflammation and cell senescence by activating SIRT1 signal pathway. These findings indicate that AnxA1 could serve as a promising therapeutic strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Shuwen Luo
- Department of Stomatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Lin Zhang
- Department of Stomatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Xiaoyu Li
- Department of Stomatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Chunshi Tong
- Department of Stomatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Zhao Q, Wang K, Hou L, Guo L, Liu X. Based on network pharmacology and molecular docking to explore the potential mechanism of shikonin in periodontitis. BMC Oral Health 2024; 24:839. [PMID: 39048977 PMCID: PMC11270799 DOI: 10.1186/s12903-024-04618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES To investigate the potential mechanisms of shikonin in preventing and treating periodontitis using network pharmacology and molecular docking methods. MATERIALS AND METHODS The targets of shikonin were obtained in TCMSP and SEA databases, and targets of periodontitis were gathered from the OMIM, GeneCards and Drugbank Databases. The intersecting targets were entered into the DAVID database to obtain the relevant biological functions and pathways by GO and KEGG enrichment analysis. The obtained targets were analysed the protein-protein interaction (PPI) in STRING platform. In Cytoscape 3.8.0, the network analysis function with the MCODE plug-in were used to obtain the key targets, of shikonin and periodontitis. Molecular docking and molecular dynamics simulation (MD) were used to assess the affinity between the shikonin and the key targets. RESULTS Shikonin was screened for 22 targets and periodontitis was screened for 944 targets, the intersecting targets were considered as potential therapeutic targets. The targets played important roles in cellular response to hypoxia, response to xenobiotic stimulus and positive regulates of apoptotic process by GO enrichment analysis. 10 significant pathways were analyzed by KEGG, such as human cytomegalovirus infection and PI3K-Akt signaling pathway, etc. Cytoscape software screened the key genes including AKT1, CCL5, CXCR4, PPARG, PTEN, PTGS2 and TP53. Molecular docking and MD results showed that shikonin could bind stably to the targets. CONCLUSIONS The present study enriched the molecular mechanisms in periodontitis with shikonin, providing potential therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Qingliang Zhao
- Department of Stomatology, Harbin the First Hospital, Harbin, 150010, China
| | - Kun Wang
- Department of Central Sterile Supply, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Lin Hou
- Department of Stomatology, Harbin the First Hospital, Harbin, 150010, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town,Jinghai District, Tianjin, 301617, China.
| | - Xiangyan Liu
- Department of Stomatology, Harbin the First Hospital, Harbin, 150010, China.
| |
Collapse
|
4
|
Hernandez Martinez CDJ, Glessner J, Finoti LS, Silva PF, Messora M, Coletta RD, Hakonarson H, Palioto DB. Methylome-wide analysis in systemic microbial-induced experimental periodontal disease in mice with different susceptibility. Front Cell Infect Microbiol 2024; 14:1369226. [PMID: 39086605 PMCID: PMC11289848 DOI: 10.3389/fcimb.2024.1369226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Objective The study delved into the epigenetic factors associated with periodontal disease in two lineages of mice, namely C57bl/6 and Balb/c. Its primary objective was to elucidate alterations in the methylome of mice with distinct genetic backgrounds following systemic microbial challenge, employing high-throughput DNA methylation analysis as the investigative tool. Methods Porphyromonas gingivalis (Pg)was orally administered to induce periodontitis in both Balb/c and C57bl/6 lineage. After euthanasia, genomic DNA from both maxilla and blood were subjected to bisulfite conversion, PCR amplification and genome-wide DNA methylation analysis using the Ovation RRBS Methyl-Seq System coupled with the Illumina Infinium Mouse Methylation BeadChip. Results Of particular significance was the distinct methylation profile observed within the Pg-induced group of the Balb/c lineage, contrasting with both the control and Pg-induced groups of the C57bl/6 lineage. Utilizing rigorous filtering criteria, we successfully identified a substantial number of differentially methylated regions (DMRs) across various tissues and comparison groups, shedding light on the prevailing hypermethylation in non-induced cohorts and hypomethylation in induced groups. The comparison between blood and maxilla samples underscored the unique methylation patterns specific to the jaw tissue. Our comprehensive methylome analysis further unveiled statistically significant disparities, particularly within promoter regions, in several comparison groups. Conclusion The differential DNA methylation patterns observed between C57bl/6 and Balb/c mouse lines suggest that epigenetic factors contribute to the variations in disease susceptibility. The identified differentially methylated regions associated with immune regulation and inflammatory response provide potential targets for further investigation. These findings emphasize the importance of considering epigenetic mechanisms in the development and progression of periodontitis.
Collapse
Affiliation(s)
- Cristhiam de Jesus Hernandez Martinez
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joseph Glessner
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Livia Sertori Finoti
- Laboratory of Rebecca Ahrens-Nicklas,Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Pedro Felix Silva
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel Messora
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Della Coletta
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniela Bazan Palioto
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Sun T, Liu B, Cai L, Zhou Y, Yang W, Li Y. Suberanilohydroxamic acid (SAHA), a HDAC inhibitor, suppresses the effect of Treg cells by targeting the c-Myc/CCL1 pathway in glioma stem cells and improves PD-L1 blockade therapy. J Neurooncol 2024; 168:457-471. [PMID: 38652401 DOI: 10.1007/s11060-024-04689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE A strong immunosuppressive tumor microenvironment (TME) represents the major barrier responsible for the failure of current immunotherapy approaches in treating Glioblastoma Multiforme (GBM). Within the TME, the regulatory T cells (Tregs) exert immunosuppressive effects on CD8+ T cell - mediated anti-cancer immune killing. Consequently, targeting and inhibiting their immunosuppressive function emerges as an effective therapeutic strategy for GBM. The present study aimed to investigate the mechanisms and effects of Suberanilohydroxamic Acid (SAHA), a histone deacetylase inhibitor, on immunosuppressive Tregs. METHODS The tumor-infiltrating immune cells in the immunocompetent GBM intracranial implanted xenograft mouse model were analyzed by immunohistochemistry and flow cytometry techniques. The mRNA expressions were assessed through the RT-qPCR method, while the related protein expressions were determined using western blot, ELISA, immunofluorescence (IF), and flow cytometry techniques. The relationship between c-Myc and C-C motif Chemokine Ligand 1 (CCL1) promotor was validated through a dual-luciferase reporter assay system and chromatin immunoprecipitation. RESULTS SAHA suppressed effectively tumor growth and extended significantly overall survival in the immunocompetent GBM intracranial xenograft mouse model. Additionally, it promoted the infiltration of CD8+ T lymphocytes while suppressed the infiltration of CD4+ CD25+ Tregs. Furthermore, SAHA enhanced anti-PD-L1 immune therapy in the intracranial xenograft of mice. Mechanistically, SAHA exerted its effects by inhibiting histone deacetylase 2 (HDAC2), thereby suppressing the binding between c-Myc and the CCL1 promotor. CONCLUSION SAHA inhibited the binding of c-Myc with the CCL1 promoter and then suppressed the transcription of CCL1.Additionally, it effectively blocked the interplay of CCL1-CCR8, resulting in reduced activity of Tregs and alleviation of tumor immunosuppression.
Collapse
Affiliation(s)
- Ting Sun
- The Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bin Liu
- The Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- The Department of Neurosurgery at Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Lize Cai
- The Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Youxin Zhou
- The Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Wei Yang
- The State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine at, Soochow University, Suzhou, Jiangsu Province, China.
| | - Yanyan Li
- The Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
6
|
Liaw A, Liu C, Bartold M, Ivanovski S, Han P. Effect of non-surgical periodontal therapy on salivary histone deacetylases expression: A prospective clinical study. J Clin Periodontol 2024; 51:926-935. [PMID: 38468415 DOI: 10.1111/jcpe.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
AIM To evaluate the effect of non-surgical periodontal therapy (NSPT) on salivary histone deacetylases (HDACs) gene expression in patients with Stage III-IV periodontitis at baseline and at 3 and 6 months post NSPT treatment. MATERIALS AND METHODS Twenty patients completed the study. Periodontitis (as well as the corresponding staging and grading) was diagnosed according to the 2017 World Workshop Classification. Clinical measures were recorded and whole unstimulated saliva was collected at baseline and at 3 and 6 months after NSPT. The expression of 11 HDACs was determined using reverse-transcription PCR, and the respective changes over time were evaluated. RESULTS Six months after NSPT, significant improvements in all clinical periodontal parameters were observed, concomitant with significant up-regulation of HDAC2, 4, 6, 8, 9 and 11 expressions. Subgroup analyses of non-responders and responders revealed no significant differences in HDACs mRNA expression between groups at any time point. CONCLUSIONS This prospective clinical study identified longitudinal changes in salivary HDACs expression in response to NSPT, which provides new insights into the epigenetic mechanisms underlying the pathobiology of periodontitis and creates avenues for the discovery of novel biomarkers.
Collapse
Affiliation(s)
- Andrew Liaw
- School of Dentistry, The University of Queensland, Brisbane, Australia
- School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Australia
| | - Chun Liu
- School of Dentistry, The University of Queensland, Brisbane, Australia
- School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Australia
| | - Mark Bartold
- School of Dentistry, The University of Queensland, Brisbane, Australia
- School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Australia
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, Australia
- School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Australia
| | - Pingping Han
- School of Dentistry, The University of Queensland, Brisbane, Australia
- School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Dashti P, Lewallen EA, Gordon JAR, Montecino MA, Davie JR, Stein GS, van Leeuwen JPTM, van der Eerden BCJ, van Wijnen AJ. Epigenetic regulators controlling osteogenic lineage commitment and bone formation. Bone 2024; 181:117043. [PMID: 38341164 DOI: 10.1016/j.bone.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | - Martin A Montecino
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile; Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada.
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | | | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
8
|
Xie Z, Gao B, Liu J, He J, Liu Y, Gao F. Gallic Acid-Modified Polyethylenimine-Polypropylene Carbonate-Polyethylenimine Nanoparticles: Synthesis, Characterization, and Anti-Periodontitis Evaluation. ACS OMEGA 2024; 9:14475-14488. [PMID: 38559964 PMCID: PMC10976379 DOI: 10.1021/acsomega.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The aim of the research was to develop novel gallic acid (GA)-modified amphiphilic nanoparticles of polyethylenimine (PEI)-polypropylene carbonate (PPC)-PEI (PEPE) and comprehensively assess its properties as an antiperiodontitis nanoparticle targeting the Toll-like receptor (TLR). The first step is to evaluate the binding potential of GA to the core trigger receptors TLR2 and TLR4/MD2 for periodontitis using molecular docking techniques. Following this, we conducted NMR, transmission electron microscopy, and dynamic light scattering analyses on the synthesized PEPE nanoparticles. As the final step, we investigated the synthetic results and in vitro antiperiodontitis properties of GA-PEPE nanoparticles. The investigation revealed that GA exhibits potential for targeted binding to TLR2 and the TLR4/MD2 complex. Furthermore, we successfully developed 91.19 nm positively charged PEPE nanoparticles. Spectroscopic analysis indicated the successful synthesis of GA-modified PEPE. Additionally, CCK8 results demonstrated that GA modification significantly reduced the biotoxicity of PEPE. The in vitro antiperiodontitis properties assessment illustrated that 6.25 μM of GA-PEPE nanoparticles significantly reduced the expression of pro-inflammatory factors TNF-α, IL-1β, and IL-6. The GA-PEPE nanoparticles, with their targeted TLR binding capabilities, were found to possess excellent biocompatibility and antiperiodontitis properties. GA-PEPE nanoparticles will provide highly innovative input into the development of anti- periodontitis nanoparticles.
Collapse
Affiliation(s)
- Zunxuan Xie
- Department
of endodontics, Jilin University, Hospital
of stomatology, Changchun 130041, China
| | - Boyang Gao
- Department
of endodontics, Jilin University, Hospital
of stomatology, Changchun 130041, China
| | - Jinyao Liu
- Department
of endodontics, Jilin University, Hospital
of stomatology, Changchun 130041, China
| | - Jiaming He
- Department
of endodontics, Jilin University, Hospital
of stomatology, Changchun 130041, China
| | - Yuyan Liu
- Department
of endodontics, Jilin University, Hospital
of stomatology, Changchun 130041, China
| | - Fengxiang Gao
- Chinese
Academy of Sciences, Changchun Institute of Applied Chemistry, Changchun 130022, China
| |
Collapse
|
9
|
Wu Q, Zhang W, Lu Y, Li H, Yang Y, Geng F, Liu J, Lin L, Pan Y, Li C. Association between periodontitis and inflammatory comorbidities: The common role of innate immune cells, underlying mechanisms and therapeutic targets. Int Immunopharmacol 2024; 128:111558. [PMID: 38266446 DOI: 10.1016/j.intimp.2024.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Periodontitis, which is related to various systemic diseases, is a chronic inflammatory disease caused by periodontal dysbiosis of the microbiota. Multiple factors can influence the interaction of periodontitis and associated inflammatory disorders, among which host immunity is an important contributor to this interaction. Innate immunity can be activated aberrantly because of the systemic inflammation induced by periodontitis. This aberrant activation not only exacerbates periodontal tissue damage but also impairs systemic health, triggering or aggravating inflammatory comorbidities. Therefore, innate immunity is a potential therapeutic target for periodontitis and associated inflammatory comorbidities. This review delineates analogous aberrations of innate immune cells in periodontitis and comorbid conditions such as atherosclerosis, diabetes, obesity, and rheumatoid arthritis. The mechanisms behind these changes in innate immune cells are discussed, including trained immunity and clonal hematopoiesis of indeterminate potential (CHIP), which can mediate the abnormal activation and myeloid-biased differentiation of hematopoietic stem and progenitor cells. Besides, the expansion of myeloid-derived suppressor cells (MDSCs), which have immunosuppressive and osteolytic effects on peripheral tissues, also contributes to the interaction between periodontitis and its inflammatory comorbidities. The potential treatment targets for relieving the risk of both periodontitis and systemic conditions are also elucidated, such as the modulation of innate immunity cells and mediators, the regulation of trained immunity and CHIP, as well as the inhibition of MDSCs' expansion.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weijia Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Lu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hongxia Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yaru Yang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jinwen Liu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
10
|
Yang L, Tao W, Xie C, Chen Q, Zhao Y, Zhang L, Xiao X, Wang S, Zheng X. Interleukin-37 ameliorates periodontitis development by inhibiting NLRP3 inflammasome activation and modulating M1/M2 macrophage polarization. J Periodontal Res 2024; 59:128-139. [PMID: 37947055 DOI: 10.1111/jre.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Our study was designed to explore the role of IL-37 in M1/M2 macrophage polarization imbalance in the pathogenesis of periodontitis. BACKGROUND Periodontitis is a chronic progressive inflammatory disease featured by gingival inflammation and alveolar bone resorption. Recent research has revealed that regulating macrophage polarization is a viable method to ameliorate periodontal inflammation. IL-37 is an anti-inflammatory cytokine, which has been reported to inhibit innate and adaptive immunity. METHODS For in vitro experiment, mouse macrophage RAW264.7 cells were pretreated with 0.1 ng/mL recombinant human IL-37. M1 and M2 polarizations of RAW264.7 cells were induced by 100 ng/mL LPS and 20 ng/mL IL-4, respectively. The expression of M1 (iNOS, TNF-α, and IL-6) and M2 (CD206, Arg1, and IL-10) phenotype markers in RAW264.7 cells was detected by RT-qPCR, western blotting, and immunofluorescence staining. For in vivo experiment, experimental periodontitis mouse models were established by sterile silk ligation (5-0) around the bilateral maxillary second molar of mice for 1 week. H&E staining of the maxillary alveolar bone was used to show the resorption of root cementum and dentin. Alveolar bone loss in mouse models was evaluated through micro-CT analysis. The expression of iNOS and CD206 in gingival tissues was assessed by immunohistochemistry staining. NLRP3 inflammasome activation was confirmed by western blotting. RESULTS IL-37 pretreatment reduced iNOS, TNF-α, and IL-6 expression in LPS-treated RAW264.7 cells but increased CD206, Arg1, and IL-10 in IL-4-treated RAW264.7 cells. LPS-induced upregulation in NLRP3, GSDMD, cleaved-IL-1β, and cleaved-caspase-1 expression was antagonized by IL-37 treatment. In addition, IL-37 administration ameliorated the resorption of root cementum and dentin in periodontitis mouse models. IL-37 prominently decreased iNOS+ cell population but increased CD206+ cell population in gingival tissues of periodontitis mice. The enhancement in NLRP3, GSDMD, cleaved-IL-1β, and cleaved-caspase-1 expression in the gingival tissues of periodontitis mice was offset by IL-37 administration. CONCLUSION IL-37 prevents the progression of periodontitis by suppressing NLRP3 inflammasome activation and mediating M1/M2 macrophage polarization.
Collapse
Affiliation(s)
- Liyan Yang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Tao
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chen Xie
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Qiuye Chen
- Department of Stomatology, Hainan Cancer Hospital, Haikou, China
| | - Yunshan Zhao
- Integrated Department, Hainan Stomatological Hospital, Haikou, China
| | - Li Zhang
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Xu Xiao
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shilu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xu Zheng
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
Chen R, Zhang H, Li L, Li J, Xie J, Weng J, Tan H, Liu Y, Guo T, Wang M. Roles of ubiquitin-specific proteases in inflammatory diseases. Front Immunol 2024; 15:1258740. [PMID: 38322269 PMCID: PMC10844489 DOI: 10.3389/fimmu.2024.1258740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Linke Li
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiang Xie
- Department of Pediatrics, Chengdu Third People's Hospital, Chengdu, Sichuan, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huan Tan
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tailin Guo
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Liu X, Wang J, Lao M, Liu F, Zhu H, Man K, Zhang J. Study on the effect of protein lysine lactylation modification in macrophages on inhibiting periodontitis in rats. J Periodontol 2024; 95:50-63. [PMID: 37436722 DOI: 10.1002/jper.23-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Protein lysine lactylation (Kla) has been proved to be closely related to inflammatory diseases, but its role in periodontitis (PD) is unclear. Therefore, this study aimed to establish the global profiling of Kla in PD models in rats. METHODS Clinical periodontal samples were collected, the inflammatory state of tissues was verified by H&E staining, and lactate content was detected by a lactic acid kit. Kla levels were detected by immunohistochemistry (IHC) and Western blot. Subsequently, the rat model of PD was developed and its reliability verified by micro-CT and H&E staining. Mass spectrometry analysis was conducted to explore the expression profile of proteins and Kla in periodontal tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed, and a protein-protein interaction (PPI) network was constructed. The lactylation in RAW264.7 cells was confirmed by IHC, immunofluorescence and Western blot. The relative expression levels of inflammatory factors IL-1β, IL-6, TNF-α, macrophage polarization-related factors CD86, iNOS, Arg1, and CD206 in RAW264.7 cells were detected by real time-quantitative polymerase chain reaction (RT-qPCR). RESULTS We observed substantial inflammatory cell infiltration in the PD tissues, and the lactate content and lactylation levels were significantly increased. The expression profiles of protein and Kla were obtained by mass spectrometry based on the established rat model of PD. Kla was confirmed in vitro and in vivo. After inhibiting the "writer" of lactylation P300 in RAW264.7 cells, the lactylation levels decreased, and the expression of inflammatory factors IL-1β, IL-6, and TNF-α increased. Meanwhile, the levels of CD86 and iNOS increased, and Arg1 and CD206 decreased. CONCLUSIONS Kla may play an important role in PD, regulating the release of inflammatory factors and polarization of macrophages.
Collapse
Affiliation(s)
- Xiaochuan Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jinsi Wang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Mo Lao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Fuyu Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Hong Zhu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jingying Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
13
|
Benahmed AG, Tippairote T, Gasmi A, Noor S, Avdeev O, Shanaida Y, Mojgani N, Emadali A, Dadar M, Bjørklund G. Periodontitis Continuum: Antecedents, Triggers, Mediators, and Treatment Strategies. Curr Med Chem 2024; 31:6775-6800. [PMID: 39428847 DOI: 10.2174/0109298673265862231020051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2024]
Abstract
Periodontitis (PD) is a chronic inflammatory disease of the periodontium characterized by the formation of gingival pockets and gingival recession. The local inflammatory environment can lead to the destruction of the extracellular matrix and subsequent bone loss. The pathophysiology of PD involves interactions between genetic predisposition, lifestyle, environmental factors, the oral microbiota condition, systemic health disorders, innate and adaptive immune responses, and various host defenses. The review highlighted the importance of the oral cavity condition in systemic health. Thus, a correlation between harmful oral microbiota and cardiovascular disease (CVD)/diabetes/ arthritis, etc, progressions through inflammation and bacterial translocation was highlighted. Antecedents increase an individual's risk of developing PD, trigger initiate microbe-host immunologic responses, and mediators sustain inflammatory interactions. Generally, this review explores the antecedents, triggers, and mediators along the pathophysiological continuum of PD. An analysis of modern approaches to treating periodontitis, including antibiotics for systemic and local use, was carried out. The potential role of natural ingredients such as herbal extracts, phytoconstituents, propolis, and probiotics in preventing and treating PD was highlighted.
Collapse
Affiliation(s)
| | - Torsak Tippairote
- Department of Research, HP Medical Centre, Bangkok, Thailand
- Thailand Initiatives for Functional Medicine, Bangkok, Thailand
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Naheed Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Alireza Emadali
- School of Dentistry Medicine, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
14
|
Torumtay Cin G, Lektemur Alpan A, Çevik Ö. Efficacy of injectable platelet-rich fibrin on clinical and biochemical parameters in non-surgical periodontal treatment: a split-mouth randomized controlled trial. Clin Oral Investig 2023; 28:46. [PMID: 38153510 DOI: 10.1007/s00784-023-05447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES The purpose of this clinical trial was to evaluate the potential clinical and biochemical effects of injectable platelet-rich fibrin (i-PRF) application adjunct to scaling and root planning (ScRp) in deep periodontal pockets. MATERIALS AND METHODS In this split-mouth-designed study, 17 patients with 34 deep periodontal pockets were randomly treated with ScRp + i-PRF (test group) and ScRp + saline (control group). Clinical periodontal measurements were recorded at baseline, 1st, 3rd, and 6th months after the treatments. The levels of vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), and interleukin (IL)-10 in gingival crevicular fluid (GCF) samples were analyzed using the ELISA method at baseline, 7th, and 14th days. RESULTS Clinical periodontal parameters showed significant improvements with both treatment modalities. Mean pocket reduction (PD) and clinical attachment (CAL) gain were significantly higher in the test group than in controls at follow-up visits (p < 0.05). In the test group, gingival recession (GR) values were significantly lower compared to the control group. VEGF and IL-10 levels in the test group were significantly higher than in controls at the 14th day, and TNF-α levels were found significantly lower in the test group at the 7th and 14th days. CONCLUSIONS Especially in the test group, the significant increase in VEGF and IL-10 expressions and the decrease in TNF-α levels may have accelerated the periodontal healing observed in the clinical parameters. CLINICAL RELEVANCE The result of the present study demonstrated the beneficial effects of adjunctive i-PRF administration during non-surgical periodontal treatment of deep periodontal pockets. CLINICAL TRIAL REGISTRATION NUMBER NCT05753631.
Collapse
Affiliation(s)
- Gizem Torumtay Cin
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey.
| | - Aysan Lektemur Alpan
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Özge Çevik
- Department of Medical Biochemistry, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
15
|
Cai H, Wang Z, Zhang Z, Dai J, Si W, Fu Q, Yang J, Tian Y. Morinda officinalis polysaccharides inhibit the expression and activity of NOD-like receptor thermal protein domain associated protein 3 in inflammatory periodontal ligament cells by upregulating silent information regulator sirtuin 1. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:662-670. [PMID: 38597031 PMCID: PMC10722461 DOI: 10.7518/hxkq.2023.2023114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/27/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVES This study aims to investigate the effect of morinda officinalis polysaccharides (MOP) in inflammatory microenvironment on the expression of silent information regulator sirtuin 1 (SIRT1) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) in periodontal ligament cells. METHODS Thirty rats were randomly divided into control group (n=6) and model group (n=24). The model group used orthodontic wire ligation to establish periodontitis, and six rats from each group were killed after 3 weeks. The successful modeling was confirmed by Micro-CT. The remaining rats in the model group were randomly divided into natural recovery group, normal saline (NS) group, and MOP group. In the MOP group, MOP [200 mg/(kg·3d), 50 µL for 4 weeks] was injected into the palatal side of the left maxillary first molar of the rats, while the NS group was injected with equal volume of NS. The natural recovery group did not undergo any treatment. The left maxilla tissues of the rats were collected, and pathological changes in perio-dontal ligament cells were observed by hematoxylin-eosin (HE) staining. The expression of SIRT1 and NLRP3 was detected by immunohistochemistry. Cultivate periodontal ligament fibroblasts in vitro and detect the effect of MOP on cell activity using CCK-8. The 4th generation cells were divided into control group, inflammation group (10 µg/mL lipopolysaccharide), and experimental group (5 µmol/L MOP, 5 µmol/L MOP+10 µg/mL lipopolysaccharide). The expression of SIRT1 and NLRP3 was detected by quantitative realtime polymerase chain reaction (qRT-PCR) and Western blot analyses. The acetylation of NLRP3 and the contents of interleukin (IL)-1β and IL-18 were detected by immunoprecipitation and enzyme-linked immunosorbent assay, respectively. Statistical analysis of data was conducted using Prism 9.0 software. RESULTS In the vivo experiments, the expression of NLRP3 and SIRT1 in the MOP group decreased significantly compared with that in the natural recovery group and NS group, while the expression of SIRT1 increased (P<0.05) and inflammatory cell infiltration decreased. In the in vitro experiments, the expression of NLRP3 mRNA and protein in the inflammation group increased (P<0.05), while the expression of SIRT1 significantly decreased (P<0.01); MOP upregulated the expression of SIRT1 in inflammatory cells (P<0.05), reduced the expression of NLRP3 and its acetylation level significantly (P<0.05), suppressed the content of IL-1β and IL-18 in the supernatant (P<0.01). CONCLUSIONS The SIRT1 expression decreased, and that of NLRP3 expression increased in inflammatory periodontal ligament cells. MOP intervention promoted SIRT1 expression, resulting in the inhibition of NLRP3. Meanwhile, the acetylation level of NLRP3 reduced through deacetylation, leading to the decreased activity of NLRP3. Thus, MOP acted as inflammatory suppressor.
Collapse
Affiliation(s)
- Hongxuan Cai
- School of Stomatology, Hainan Medical University, Haikou 570100, China
| | - Zheng'an Wang
- Dept. of Stomatology, The First Affiliated Hospital of Hainan Medical College, Haikou 570100, China
| | - Zan Zhang
- School of Stomatology, Hainan Medical University, Haikou 570100, China
| | - Jingyi Dai
- School of Stomatology, Hainan Medical University, Haikou 570100, China
| | - Weixing Si
- School of Stomatology, Hainan Medical University, Haikou 570100, China
| | - Qiya Fu
- School of Stomatology, Hainan Medical University, Haikou 570100, China
| | - Jingwen Yang
- Dept. of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100080, China
| | - Yaguang Tian
- Dept. of Stomatology, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570100, China
- Dept. of Stomatology, Hainan General Hospital, Haikou 570100, China
| |
Collapse
|
16
|
Asa'ad F, Petrenya N, Jönsson B, Holde GE, Oscarson N, Hadler-Olsen E, Vieira AR, Petzold M, Larsson L. Polymorphism in epigenetic regulating genes in relation to periodontitis, number of teeth, and levels of high-sensitivity C-reactive protein and glycated hemoglobin: The Tromsø Study 2015-2016. J Periodontol 2023; 94:1324-1337. [PMID: 37382343 DOI: 10.1002/jper.23-0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND The aim of this study was to investigate the association between periodontitis and four single nucleotide polymorphisms (SNPs) in genes involved in epigenetic regulation of DNA, and between these same SNPs and tooth loss, high-sensitivity C-reactive protein (hs-CRP), and glycated hemoglobin (HbA1c) levels. METHODS We included participants with periodontal examination (n = 3633, aged: 40-93 years) from the Tromsø Study seventh survey (2015-2016), Norway. Periodontitis was defined according to the 2017 AAP/EFP classification system as no periodontitis, grades A, B, or C. Salivary DNA was extracted and genotyping was performed to investigate four SNPs (rs2288349, rs35474715, rs34023346, and rs10010325) in the sequence of the genes DNMT1, IDH2, TET1, and TET2. Association between SNPs and periodontitis was analyzed by logistic regression adjusted for age, sex, and smoking. Subgroup analyses on participants aged 40-49 years were performed. RESULTS In participants aged 40-49 years, homozygous carriage of minor A-allele of rs2288349 (DNMT1) was associated with decreased susceptibility to periodontitis (grade A: odds ratio [OR] 0.55; p = 0.014: grade B/C OR 0.48; p = 0.004). The minor A-allele of rs10010325 (TET2) was associated with increased susceptibility to periodontitis (grade A OR 1.69; p = 0.035: grade B/C OR 1.90; p = 0.014). In the entire sample, homozygous carriage of the G-allele of rs35474715 (IDH2) was associated with having ≤24 teeth (OR 1.31; p = 0.018). Homozygous carriage of the A-allele of TET2 was associated with hs-CRP≥3 mg/L (OR 1.37; p = 0.025) and HbA1c≥6.5% (OR 1.62; p = 0.028). CONCLUSIONS In this Norwegian population, there were associations between polymorphism in genes related to DNA methylation and periodontitis, tooth loss, low-grade inflammation, and hyperglycemia.
Collapse
Affiliation(s)
- Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oral Biochemistry, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Natalia Petrenya
- The Public Dental Health Service Competence Centre of Northern Norway, Tromsø, Norway
| | - Birgitta Jönsson
- The Public Dental Health Service Competence Centre of Northern Norway, Tromsø, Norway
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gro Eirin Holde
- The Public Dental Health Service Competence Centre of Northern Norway, Tromsø, Norway
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Nils Oscarson
- Clinic of Periodontology, The Public Dental Service, Region Västra Götaland, Skövde, Sweden
| | - Elin Hadler-Olsen
- The Public Dental Health Service Competence Centre of Northern Norway, Tromsø, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT the Artic University of Norway, Tromsø, Norway
| | - Alexandre R Vieira
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Max Petzold
- School of Public Health and Community Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Ge W, Luo S, Zhang K, Liu L, Zhou Z, Liu Y. Role of histone deacetylase 9 in human periodontal ligament stem cells autophagy in a tumour necrosis factor α-induced inflammatory environment. Tissue Cell 2023; 82:102113. [PMID: 37262978 DOI: 10.1016/j.tice.2023.102113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/08/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Histone deacetylases (HDACs) play important roles in the post-translational modification of histones, which can affect the biological properties of cells, thereby altering disease progression and outcomes. However, it remains unclear how HDAC9, a class II HDAC, affects the autophagy of human periodontal ligament stem cells (hPDLSCs). We aimed to identify its role in autophagy in hPDLSCs in an inflammatory environment and to explore the potential regulatory mechanisms. A rat periodontitis model was induced by ligating the molars with silk thread. Expression of autophagy-related genes and TNF-α was elevated in this model. TNF-α was used to stimulate hPDLSCs to establish an inflammatory environment. In the TNF-α-stimulated hPDLSCs, the expression of ATG7, ATG12, Beclin-1, LC3 and HDAC9 was upregulated, and that of p62 was downregulated. When HDAC9 expression was inhibited, autophagy-related genes expression was downregulated, and p62 expression was upregulated in TNF-α-treated hPDLSCs, indicating that autophagy was inhibited under these conditions. ERK pathway inhibition significantly reduced HDAC9-mediated autophagy in TNF-α-treated hPDLSCs. These findings reveal that autophagy occurred in our rat periodontitis model and that HDAC9 regulated autophagy via ERK pathways in hPDLSCs in the inflammatory environment. HDAC9 is therefore a potential target for the treatment of periodontitis.
Collapse
Affiliation(s)
- Wenbin Ge
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan Province 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Shitong Luo
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan Province 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Kun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan Province 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Lizhiyi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan Province 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Zhi Zhou
- Department of Orthodontics, the Affiliated Hospital of Yunnan University, Kunming, Yunnan Province 650021, China.
| | - Yali Liu
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan Province 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China.
| |
Collapse
|
18
|
Laberge S, Akoum D, Wlodarczyk P, Massé JD, Fournier D, Semlali A. The Potential Role of Epigenetic Modifications on Different Facets in the Periodontal Pathogenesis. Genes (Basel) 2023; 14:1202. [PMID: 37372382 DOI: 10.3390/genes14061202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that affects the supporting structures of teeth. In the literature, the association between the pathogenicity of bacteria and environmental factors in this regard have been extensively examined. In the present study, we will shed light on the potential role that epigenetic change can play on different facets of its process, more particularly the modifications concerning the genes involved in inflammation, defense, and immune systems. Since the 1960s, the role of genetic variants in the onset and severity of periodontal disease has been widely demonstrated. These make some people more susceptible to developing it than others. It has been documented that the wide variation in its frequency for various racial and ethnic populations is due primarily to the complex interplay among genetic factors with those affecting the environment and the demography. In molecular biology, epigenetic modifications are defined as any change in the promoter for the CpG islands, in the structure of the histone protein, as well as post-translational regulation by microRNAs (miRNAs), being known to contribute to the alteration in gene expression for complex multifactorial diseases such as periodontitis. The key role of epigenetic modification is to understand the mechanism involved in the gene-environment interaction, and the development of periodontitis is now the subject of more and more studies that attempt to identify which factors are stimulating it, but also affect the reduced response to therapy.
Collapse
Affiliation(s)
- Samuel Laberge
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Daniel Akoum
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Piotr Wlodarczyk
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jean-Daniel Massé
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
19
|
Gao W, Liang Y, Wu D, Deng S, Qiu R. Graphene quantum dots enhance the osteogenic differentiation of PDLSCs in the inflammatory microenvironment. BMC Oral Health 2023; 23:331. [PMID: 37244994 DOI: 10.1186/s12903-023-03026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/09/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Graphene quantum dots (GQDs), a type of carbon-based nanomaterial, have remarkable biological, physical, and chemical properties. This study investigated the biological mechanisms of the proliferation and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) induced by GQDs in an inflammatory microenvironment. MATERIALS AND METHODS PDLSCs were cultured in osteogenic-induced medium with various concentrations of GQDs in standard medium or medium mimicking a proinflammatory environment. The effects of GQDs on the proliferation and osteogenic differentiation activity of PDLSCs were tested by CCK-8 assay, Alizarin Red S staining, and qRT‒PCR. In addition, Wnt/β-catenin signalling pathway-related gene expression was measured by qRT‒PCR. RESULTS Compared with the control group, the mRNA expression levels of ALP, RUNX2, and OCN and the number of mineralized nodules were all increased in PDLSCs after treatment with GQDs. Moreover, during the osteogenic differentiation of PDLSCs, the expression levels of LRP6 and β-catenin, which are Wnt/β-catenin signalling pathway-related genes, were upregulated. CONCLUSION In the inflammatory microenvironment, GQDs might promote the osteogenic differentiation ability of PDLSCs by activating the Wnt/β-catenin signalling pathway.
Collapse
Grants
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
Collapse
Affiliation(s)
- Wanshan Gao
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Yan Liang
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Dongyan Wu
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Sicheng Deng
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Rongmin Qiu
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China.
- Key Laboratory of Research and Application of Stomatological Equipment College of Stomatology Hospital of Stomatology Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China, 530021.
| |
Collapse
|
20
|
Jun L, Yuanyuan L, Zhiqiang W, Manlin F, Chenrui H, Ouyang Z, Jiatong L, Xi H, Zhihua L. Multi-omics study of key genes, metabolites, and pathways of periodontitis. Arch Oral Biol 2023; 153:105720. [PMID: 37285682 DOI: 10.1016/j.archoralbio.2023.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE This study aimed to explore the key genes, metabolites, and pathways that influence periodontitis pathogenesis by integrating transcriptomic and metabolomic studies. DESIGN Gingival crevicular fluid samples from periodontitis patients and healthy controls were collected for liquid chromatography/tandem mass-based metabolomics. RNA-seq data for periodontitis and control samples were obtained from the GSE16134 dataset. Differential metabolites and differentially expressed genes (DEGs) between the two groups were then compared. Based on the protein-protein interaction (PPI) network module analysis, key module genes were selected from immune-related DEGs. Correlation and pathway enrichment analyses were performed for differential metabolites and key module genes. A multi-omics integrative analysis was performed using bioinformatic methods to construct a gene-metabolite-pathway network. RESULTS From the metabolomics study, 146 differential metabolites were identified, which were mainly enriched in the pathways of purine metabolism and Adenosine triphosphate binding cassette transporters (ABC transporters). The GSE16134 dataset revealed 102 immune-related DEGs (458 upregulated and 264 downregulated genes), 33 of which may play core roles in the key modules of the PPI network and are involved in cytokine-related regulatory pathways. Through a multi-omics integrative analysis, a gene-metabolite-pathway network was constructed, including 28 genes (such as platelet derived growth factor D (PDGFD), neurturin (NRTN), and interleukin 2 receptor, gamma (IL2RG)); 47 metabolites (such as deoxyinosine); and 8 pathways (such as ABC transporters). CONCLUSION PDGFD, NRTN, and IL2RG may be potential biomarkers of periodontitis and may affect disease progression by regulating deoxyinosine to participate in the ABC transporter pathway.
Collapse
Affiliation(s)
- Luo Jun
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Li Yuanyuan
- Pingxiang People's Hospital, Pingxiang, China
| | - Wan Zhiqiang
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Fan Manlin
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Hu Chenrui
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Zhiqiang Ouyang
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Liu Jiatong
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Hu Xi
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China; Pingxiang People's Hospital, Pingxiang, China
| | - Li Zhihua
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
21
|
Wielento A, Lagosz-Cwik K, Potempa J, Grabiec A. The Role of Gingival Fibroblasts in the Pathogenesis of Periodontitis. J Dent Res 2023; 102:489-496. [PMID: 36883660 PMCID: PMC10249005 DOI: 10.1177/00220345231151921] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Gingival fibroblasts (GFs) are essential components of the periodontium, which are responsible for the maintenance of tissue structure and integrity. However, the physiological role of GFs is not restricted to the production and remodeling of the extracellular matrix. GFs also act as sentinel cells that modulate the immune response to oral pathogens invading the gingival tissue. As an important "nonclassical" component of the innate immune system, GFs respond to bacteria and damage-related signals by producing cytokines, chemokines, and other inflammatory mediators. Although the activation of GFs supports the elimination of invading bacteria and the resolution of inflammation, their uncontrolled or excessive activation may promote inflammation and bone destruction. This occurs in periodontitis, a chronic inflammatory disease of the periodontium initiated and sustained by dysbiosis. In the inflamed gingival tissue, GFs acquire imprinted proinflammatory phenotypes that promote the growth of inflammophilic pathogens, stimulate osteoclastogenesis, and contribute to the chronicity of inflammation. In this review, we discuss the biological functions of GFs in healthy and inflamed gingival tissue, highlighting recent studies that provide insight into their role in the pathogenesis of periodontal diseases. We also draw parallels with the recently discovered fibroblast populations identified in other tissues and their roles in health and disease. This knowledge should be used in future studies to discover more about the role of GFs in periodontal diseases, especially chronic periodontitis, and to identify therapeutic strategies targeting their pathological interactions with oral pathogens and the immune system.
Collapse
Affiliation(s)
- A. Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - K.B. Lagosz-Cwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - J. Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - A.M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
22
|
Liaw A, Liu C, Bartold M, Ivanovski S, Han P. Salivary histone deacetylase in periodontal disease: A cross-sectional pilot study. J Periodontal Res 2023; 58:433-443. [PMID: 36717759 DOI: 10.1111/jre.13104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The objective of the study was to profile the expression level of histone deacetylase enzymes (HDACs) in human saliva in periodontal health, gingivitis and periodontitis. BACKGROUND HDACs are epigenetic modulators and a group of enzymes that catalyse the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. HDACs have been detected in gingival tissues and may provide valuable insight into the periodontal inflammatory response. However, no studies have investigated the expression of HDACs in saliva from periodontitis-affected individuals and their capacity for periodontal diagnostics and screening. MATERIALS AND METHODS Whole unstimulated saliva was collected from 53 participants (17 healthy, 14 gingivitis and 22 stages III/IV periodontitis). The expression of 11 HDACs in saliva samples was determined using RT-qPCR and diagnostic power was calculated using the receiver operating characteristic (ROC) curves and area under the ROC Curve (AUC). RESULTS Relative to health, the expression of HDAC4, 8 and 10 was downregulated in gingivitis, and the expression of HDAC4, 6, 8 and 9 was downregulated in periodontitis. Increased HDAC1 and decreased HDAC9 expression were observed in periodontitis compared to gingivitis. Higher HDAC1 and lower HDAC6 and 9 expression was observed in periodontitis compared to non-periodontitis (combining health and gingivitis). Expression of HDAC3, 4, 8, 9 and 10 was significantly decreased in periodontal disease (combining gingivitis and periodontitis) compared to health. HDAC4 and 8 exhibited an excellent diagnostic capacity for distinguishing gingivitis and periodontal disease from health (AUC 0.79-0.86). HDAC9 showed an acceptable power in discriminating periodontitis from health, gingivitis and non-periodontitis (AUC 0.76-0.80). Salivary HDAC enzyme activity showed no significant difference among the groups. CONCLUSION This pilot study has demonstrated the differential expression of HDACs in human saliva for the first time and identified HDAC4, 8 and 9 as potential biomarkers in periodontal diagnosis.
Collapse
Affiliation(s)
- Andrew Liaw
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia.,The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Chun Liu
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia.,The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Mark Bartold
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia.,The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia.,The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Pingping Han
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia.,The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Zou X, Liu C, Wu X, Yuan Z, Yan F. Changes in N6-methyladenosine RNA methylomes of human periodontal ligament cells in response to inflammatory conditions. J Periodontal Res 2023; 58:444-455. [PMID: 36733232 DOI: 10.1111/jre.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the changes in the m6A methylation modification profile of human periodontal ligament cells (hPDLCs) in response to inflammatory conditions. BACKGROUND Periodontitis is an infectious disease of the periodontal support tissue that leads to the loss of alveolar bone. HPDLCs are primary cells that can repair periodontal tissue defects caused by periodontitis. However, the inflammatory conditions induce inflammatory damage and decrease ossification of hPDLCs. This inflammatory response depends on genetic and epigenetic mechanisms, including m6A methylation. METHODS HPDLCs were cultured with osteogenic induction medium (NC group), while TNF-α (10 ng/mL) and IL-1β (5 ng/mL) were added to simulate inflammatory conditions (Inflam group). Then RNA-seq and MeRIP-seq analyses were performed to identify m6A methylation modification in the transcriptome range of hPDLCs. RESULTS The results showed that the osteogenic differentiation of hPDLCs was inhibited under inflammatory conditions. RNA-seq analysis also revealed that the decreased genes in response to inflammatory conditions were primarily annotated in processes associated with ossification. Compared with the NC group, differentially m6A-methylated genes were primarily enriched in histone modification processes. Among 145 histone modification genes, 25 genes have been reported to be involved in the regulation of osteogenic differentiation, and they include KAT6B, EP300, BMI1, and KDMs (KDM1A, KDM2A, KDM3A, KDM4B, and KDM5A). CONCLUSION This study demonstrated that the m6A landscape of hPDLCs was changed in response to inflammation. M6A methylation differences among histone modification genes may act on the osteogenic differentiation of hPDLCs.
Collapse
Affiliation(s)
- Xihong Zou
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaoyi Liu
- Hangzhou Stomatological Hospital, Hangzhou, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Alghamdi B, Jeon HH, Ni J, Qiu D, Liu A, Hong JJ, Ali M, Wang A, Troka M, Graves DT. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:128-146. [PMID: 36862360 PMCID: PMC10696608 DOI: 10.1007/s11914-023-00774-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement. RECENT FINDINGS Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process. Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Bushra Alghamdi
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
- Department of Restorative Dental Sciences, College of Dentistry, Taibah University, Medina, 42353, Kingdom of Saudi Arabia
| | - Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxu Qiu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssia Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Julie J Hong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Mamoon Ali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Albert Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Michael Troka
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA.
| |
Collapse
|
25
|
Wang Z, Chen H, Peng L, He Y, Wei J, Zhang X. DNER and GNL2 are differentially m6A methylated in periodontitis in comparison with periodontal health revealed by m6A microarray of human gingival tissue and transcriptomic analysis. J Periodontal Res 2023; 58:529-543. [PMID: 36941720 DOI: 10.1111/jre.13117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE This study aims to investigate the differences in the epigenomic patterns of N6-methyladenosine (m6A) methylation in gingival tissues between patients with periodontitis (PD) and healthy controls, identifying potential biomarkers. BACKGROUND As a multifactorial disease, PD involves multiple genetic and environmental effects. The m6A modification is the most prevalent internal mRNA modification and linked to various inflammatory diseases. However, the m6A modification pattern and m6A-related signatures in PD remain unclear. MATERIALS AND METHODS An m6A microarray of human gingival tissues was conducted in eight subjects: four diagnosed with PD and four healthy controls. Microarray analysis was performed to identify the differentially m6A methylated mRNAs (DMGs) and the differentially expressed mRNAs (DEGs). The differentially methylated and expressed mRNAs (DMEGs) were subjected to functional enrichment analysis by Metascape. The weighted gene co-expression network analysis (WGCNA) algorithm, the least absolute shrinkage and selection operator (LASSO) regression, and univariate logistic regression were performed to identify potential biomarkers. The cell type localization of the target genes was determined using single-cell RNA-seq (scRNA-seq) analysis. The m6A methylation level and gene expression of hub genes were subsequently verified by m6A methylated RNA immunoprecipitation (MeRIP) and quantitative real-time PCR (qRT-PCR). RESULTS In total, 458 DMGs, 750 DEGs, and 279 DMEGs were identified based on our microarray. Pathway analyses conducted for the DMEGs revealed that biological functions were mainly involved in the regulation of stem cell differentiation, ossification, circadian rhythm, and insulin secretion pathways. Besides, the genes involved in crucial biological processes were mainly expressed in fibroblast and epithelial cells. Furthermore, the m6A methylation and expression levels of two hub biomarkers (DNER and GNL2) were validated. CONCLUSION The current study exhibited a distinct m6A epitranscriptome, identified and verified two PD-related biomarkers (DNER and GNL2), which may provide novel insights into revealing the new molecular mechanisms and latent targets of PD.
Collapse
Affiliation(s)
- Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Jingjing Wei
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| |
Collapse
|
26
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
27
|
Lagosz-Cwik KB, Melnykova M, Nieboga E, Schuster A, Bysiek A, Dudek S, Lipska W, Kantorowicz M, Tyrakowski M, Darczuk D, Kaczmarzyk T, Gilijamse M, de Vries TJ, Potempa J, Grabiec AM. Mapping of DNA methylation-sensitive cellular processes in gingival and periodontal ligament fibroblasts in the context of periodontal tissue homeostasis. Front Immunol 2023; 14:1078031. [PMID: 36776856 PMCID: PMC9909404 DOI: 10.3389/fimmu.2023.1078031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Interactions between gingival fibroblasts (GFs) and oral pathogens contribute to the chronicity of inflammation in periodontitis. Epigenetic changes in DNA methylation are involved in periodontitis pathogenesis, and recent studies indicate that DNA methyltransferase (DNMT) inhibitors may protect against epithelial barrier disruption and bone resorption. To assess the impact of DNMT inhibition on GFs, cells were cultured with decitabine (5-aza-2'-deoxycytidine, DAC) for 12 days to induce DNA hypomethylation. We observed several potentially detrimental effects of DAC on GF biological functions. First, extended treatment with DAC reduced GF proliferation and induced necrotic cell death. Second, DAC amplified Porphyromonas gingivalis- and cytokine-induced expression and secretion of the chemokine CCL20 and several matrix metalloproteinases (MMPs), including MMP1, MMP9, and MMP13. Similar pro-inflammatory effects of DAC were observed in periodontal ligament fibroblasts. Third, DAC upregulated intercellular adhesion molecule-1 (ICAM-1), which was associated with increased P. gingivalis adherence to GFs and may contribute to bacterial dissemination. Finally, analysis of DAC-induced genes identified by RNA sequencing revealed increased expression of CCL20, CCL5, CCL8, CCL13, TNF, IL1A, IL18, IL33, and CSF3, and showed that the most affected processes were related to immune and inflammatory responses. In contrast, the genes downregulated by DAC were associated with extracellular matrix and collagen fibril organization. Our observations demonstrate that studies of DNMT inhibitors provide important insights into the role of DNA methylation in cells involved in periodontitis pathogenesis. However, the therapeutic potential of hypomethylating agents in periodontal disease may be limited due to their cytotoxic effects on fibroblast populations and stimulation of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Katarzyna B. Lagosz-Cwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mariia Melnykova
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elwira Nieboga
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Aureliusz Schuster
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Bysiek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Slawomir Dudek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Weronika Lipska
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Malgorzata Kantorowicz
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Michal Tyrakowski
- Chair of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Dagmara Darczuk
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Kaczmarzyk
- Chair of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Marjolijn Gilijamse
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, Netherlands
- Department of Oral and Maxillofacial Surgery, OLVG Hospital, Amsterdam, Netherlands
| | - Teun J. de Vries
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Aleksander M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
28
|
Tian X, Zheng J, Luo Y, Wei C, Ma J, Wang D, Li K. Identification of abnormally methylated differentially expressed genes in chronic periodontitis by integrated bioinformatics analysis. Technol Health Care 2022; 31:809-819. [PMID: 36617795 DOI: 10.3233/thc-220137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND DNA methylation plays a vital role as an epigenetic change that contributes to chronic periodontitis. OBJECTIVE This study aimed to integrate two methylation datasets (GSE173081 and GSE59962) and two gene expression datasets (GSE10334 and GES16134) to identify abnormally methylated differentially expressed genes related to chronic periodontitis. METHODS Differentially methylated genes were obtained. Functional enrichment analysis of DMGs was performed. The protein-protein interaction (PPI) network was constructed using STRING and Cytoscape software. Finally, the hub genes were selected from the PPI network by using CytoHubba. RESULTS In total, 122 hypomethylated and highly expressed genes were enriched in the biological mechanisms that are involved in the differentiation of extracellular matrix organization, extracellular structure organization, and cell chemotaxis. The three selected hub genes of the PPI network were IL1B, KDR, and MMP9. A total of 122 hypermethylated and lowly expressed genes were identified, and biological processes, such as cornification, epidermis development, skin development, and keratinocyte differentiation were enriched. CDSN DSG1, and KRT2 were identified as the top 3 hub genes of the PPI network. CONCLUSION Based on the comprehensive bioinformatics analysis, six hub genes (IL1B, KDR, MMP9, CDSN DSG1, and KRT2) were associated with chronic periodontitis. Our findings provide novel insights into the mechanisms underlying epigenetic changes in chronic periodontitis.
Collapse
Affiliation(s)
- Xiufen Tian
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China.,Department of Orthopaedics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Juan Zheng
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, China.,Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yuanyuan Luo
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Chengshi Wei
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jing Ma
- Department of Scientific Research, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Dawei Wang
- Department of Orthopaedics, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Keyi Li
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
29
|
Han F, Wang W, Shi M, Zhou H, Yao Y, Li C, Shang A. Outer membrane vesicles from bacteria: Role and potential value in the pathogenesis of chronic respiratory diseases. Front Cell Infect Microbiol 2022; 12:1093327. [PMID: 36569192 PMCID: PMC9772277 DOI: 10.3389/fcimb.2022.1093327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases are the leading cause of death in both adults and children, with respiratory infections being the leading cause of death. A growing body of evidence suggests that bacterially released extracellular membrane vesicles play an important role in bacterial pathogenicity by targeting and (de)regulating host cells through the delivery of nucleic acids, proteins, lipids, and carbohydrates. Among the many factors contributing to bacterial pathogenicity are the outer membrane vesicles produced by the bacteria themselves. Bacterial membrane vesicles are being studied in more detail because of their potential role as deleterious mediators in bacterial infections. This review provides an overview of the most current information on the emerging role of bacterial membrane vesicles in the pathophysiology of pneumonia and its complications and their adoption as promising targets for future preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Fei Han
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Wang
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang & The Oncology Hospitals of Lianyungang, Lianyungang, China
| | - Meng Shi
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hao Zhou
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang & The Oncology Hospitals of Lianyungang, Lianyungang, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Caiyun Li
- Department of Laboratory Medicine, Pukou Branch of Jiangsu People’s Hospital & Nanjing Pukou District Central Hospital, Nanjing, China,*Correspondence: Anquan Shang, ; Caiyun Li,
| | - Anquan Shang
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang & The Oncology Hospitals of Lianyungang, Lianyungang, China,*Correspondence: Anquan Shang, ; Caiyun Li,
| |
Collapse
|
30
|
Shirazi S, Ravindran S, Cooper LF. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022; 291:121903. [PMID: 36410109 PMCID: PMC10148651 DOI: 10.1016/j.biomaterials.2022.121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.
Collapse
Affiliation(s)
- Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
31
|
Therapeutic and Metagenomic Potential of the Biomolecular Therapies against Periodontitis and the Oral Microbiome: Current Evidence and Future Perspectives. Int J Mol Sci 2022; 23:ijms232213708. [PMID: 36430182 PMCID: PMC9693164 DOI: 10.3390/ijms232213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The principles of periodontal therapy are based on the control of microbial pathogens and host factors that contribute to biofilm dysbiosis, with the aim of modulating the progression of periodontitis and periodontal tissue destruction. It is currently known how differently each individual responds to periodontal treatment, depending on both the bacterial subtypes that make up the dysbiotic biofilm and interindividual variations in the host inflammatory response. This has allowed the current variety of approaches for the management of periodontitis to be updated by defining the goals of target strategies, which consist of reducing the periodontopathogenic microbial flora and/or modulating the host-mediated response. Therefore, this review aims to update the current variety of approaches for the management of periodontitis based on recent target therapies. Recently, encouraging results have been obtained from several studies exploring the effects of some targeted therapies in the medium- and long-term. Among the most promising target therapies analyzed and explored in this review include: cell-based periodontal regeneration, mediators against bone resorption, emdogain (EMD), platelet-rich plasma, and growth factors. The reviewed evidence supports the hypothesis that the therapeutic combination of epigenetic modifications of periodontal tissues, interacting with the dysbiotic biofilm, is a key step in significantly reducing the development and progression of disease in periodontal patients and improving the therapeutic response of periodontal patients. However, although studies indicate promising results, these need to be further expanded and studied to truly realize the benefits that targeted therapies could bring in the treatment of periodontitis.
Collapse
|
32
|
Suzuki S, Yamada S. Epigenetics in susceptibility, progression, and diagnosis of periodontitis. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:183-192. [PMID: 35754944 PMCID: PMC9218144 DOI: 10.1016/j.jdsr.2022.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is characterized by irreversible destruction of periodontal tissue. At present, the accepted etiology of periodontitis is based on a three-factor theory including pathogenic bacteria, host factors, and acquired factors. Periodontitis development usually takes a decade or longer and is therefore called chronic periodontitis (CP). To search for genetic factors associated with CP, several genome-wide association study (GWAS) analyses were conducted; however, polymorphisms associated with CP have not been identified. Epigenetics, on the other hand, involves acquired transcriptional regulatory mechanisms due to reversibly altered chromatin accessibility. Epigenetic status is a condition specific to each tissue and cell, mostly determined by the responses of host cells to stimulations by local factors, like bacterial inflammation, and systemic factors such as nutrition status, metabolic diseases, and health conditions. Significantly, epigenetic status has been linked with the onset and progression of several acquired diseases. Thus, epigenetic factors in periodontal tissues are attractive targets for periodontitis diagnosis and treatments. In this review, we introduce accumulating evidence to reveal the epigenetic background effects related to periodontitis caused by genetic factors, systemic diseases, and local environmental factors, such as smoking, and clarify the underlying mechanisms by which epigenetic alteration influences the susceptibility of periodontitis.
Collapse
Key Words
- 5mC, 5-methylcytocine
- AP, aggressive periodontitis
- ATAC-seq, assay for transposase-accessible chromatin sequencing
- CP, chronic periodontitis
- DNA methylation
- ECM, extracellular matrix
- Epigenetics
- Epigenome
- GWAS, genome-wide association study
- H3K27ac, acetylation of histone H3 lysine 27
- H3K27me3, trimethylation of histone H3 lysine 27
- H3K4me3, trimethylation of histone H3 lysine 4
- H3K9ac, histone H3 lysine 9
- HATs, histone acetyltransferases
- HDACs, histone deacetylases
- Histone modifications
- LPS, lipopolysaccharide
- PDL, periodontal ligament
- Periodontal ligament
- Periodontitis
- ceRNA, competing endogenous RNA
- lncRNAs, long ncRNAs
- m6A, N6-methyladenosine
- ncRNAs, non-coding RNAs
- sEV, small extracellular vesicles
Collapse
Affiliation(s)
- Shigeki Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
33
|
Local and systemic effects produced in different models of experimental periodontitis in mice: a systematic review. Arch Oral Biol 2022; 143:105528. [DOI: 10.1016/j.archoralbio.2022.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022]
|
34
|
Jiang W, Xu T, Yuan S, Wei Y, Song Z, Li Q, She S, Wang X, Wang C, Yang G, Cao J, Sun F, Shi M, Li S, Liu Z, Mo Y, Lv P, Zhang Y, Wang Y, Hu W. Critical roles for CCR2 and the therapeutic potential of cenicriviroc in periodontitis: a pre-clinical study. J Clin Periodontol 2022; 49:1203-1216. [PMID: 35817437 DOI: 10.1111/jcpe.13699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
AIM CCR2 plays important roles in many inflammatory and bone metabolic diseases, but its specific role in periodontitis is unknown. In the present study, we aimed to explore the role of CCR2 in the progression of periodontitis and evaluate the effect of cenicriviroc (CVC) on periodontitis. METHODS The expression of CCR2 was studied in patients with periodontitis and in ligation-induced murine model of periodontitis. The role of CCR2 in promoting inflammation and bone resorption in periodontitis was evaluated in Ccr2-/- mice and wild-type mice. The effect of CVC in the prevention and treatment of periodontitis was evaluated by systemic and local medication. Micro-CT, Hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, real-time qPCR, ELISA, and flow cytometric were used for histomorphology, molecular biology and cytology analysis respectively. RESULTS In this study, we demonstrated that CCR2 was highly expressed in human and murine periodontitis and that CCR2 deficiency was associated with decreased inflammation, alveolar bone resorption, osteoclast number, monocyte and macrophage infiltration. Prevention and treatment with CVC significantly reduced the severity of periodontitis, regardless of whether it was administered systemically or locally. CONCLUSION CCR2 plays an important role in the development and progression of periodontitis and CVC is a potential drug for the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Wenting Jiang
- Department of Periodontology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tao Xu
- Department of Emergency, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shasha Yuan
- Department of Periodontology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Wei
- Department of Periodontology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhanming Song
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Shaoping She
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| | - Xuekang Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Cui Wang
- Department of Periodontology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Gang Yang
- Department of Periodontology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jie Cao
- Department of Periodontology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Fei Sun
- Department of Periodontology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Meng Shi
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siqi Li
- Department of Periodontology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhongtian Liu
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yaqian Mo
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Ping Lv
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.,Center for Human Disease Genomics, Peking University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.,Center for Human Disease Genomics, Peking University, Beijing, China
| | - Wenjie Hu
- Department of Periodontology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University, Beijing, China
| |
Collapse
|
35
|
Zheng Y, Zhu C, Zhu M, Lei L. Difference in the alveolar bone remodeling between the adolescents and adults during upper incisor retraction: a retrospective study. Sci Rep 2022; 12:9161. [PMID: 35650260 PMCID: PMC9160063 DOI: 10.1038/s41598-022-12967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to compare the difference of alveolar bone remodeling between the adolescents and adults in the maxillary incisor area during retraction. This retrospective study included 72 female patients who needed moderate anchorage to correct the bimaxillary protrusion. Subjects were further divided into the minor group (n = 36, 11-16 years old) and adult group (n = 36, 18-35 years old). Digital lateral cephalography and cone beam CT scanning were taken in each patient before (T0) and after treatment (T1). Cephalometry was conducted to assess incisor retraction, while alveolar bone thickness (ABT), alveolar bone distance (ABD), and alveolar bone area (ABA) were detected to assess changes in the alveolar bone. No difference in the inclination of upper incisors was observed at both T0 and T1 between two groups. Changes in the alveolar bone showed a similar tendency with bone apposition on the labial side and bone resorption on the palatal side in both groups. Less increase in the labial ABT (T1-T0) and more decrease in the palatal ABT (T1-T0) was found in the adult group, leading to less total ABT in the adult group. Higher reduction in ABD (T1-T0) was found in the adult group. Moreover, more decrease in the ABA (T1-T0) was found in the adult group. Adult patients have less alveolar bone support after treatment when compared with young adolescents. Orthodontists should take the age into consideration to reduce the potential periodontal risks during the treatment planning.
Collapse
Affiliation(s)
- Ya Zheng
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Chenjing Zhu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Meng Zhu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Lang Lei
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
36
|
Dias LNDS, Coêlho MDC, Persuhn DC, Ribeiro ILA, Freire EAM, de Oliveira NFP, de Aquino SG. DNMT3B (rs2424913) polymorphism is associated with systemic lupus erythematosus alone and with co-existing periodontitis in a Brazilian population. J Appl Oral Sci 2022; 30:e20210567. [PMID: 35507987 PMCID: PMC9064189 DOI: 10.1590/1678-7757-2021-0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
The association between Periodontitis and Systemic Lupus Erythematosus (SLE) has been primarily based on their similar pathophysiology and both are associated with genetic polymorphisms. OBJECTIVES To investigate an association between the methylation-related gene polymorphisms DNMT3B (rs2424913) and MTHFR (rs1801133) to Systemic Lupus Erythematosus (SLE) and Periodontitis. METHODOLOGY In total, 196 individuals of all genders aged 24 to 60 years old were allocated into four groups based on their systemic and periodontal status, namely: Healthy control (n=60), periodontitis (n=51), SLE (n=47), and SLE + periodontitis (n=38). Individuals with SLE were stratified according to disease activity (SLEDAI) in inactive or active. We performed polymorphism analysis using PCR-RFLP with genomic DNA from mouthwash. We analyzed data using Fisher's Exact, Chi-square test, and regression models. RESULTS Periodontal status were similar in subjects with periodontitis alone and combined with SLE. SLE patients with periodontitis had a longer SLE diagnosis than SLE only (p=0.001). For DNMT3 B polymorphism, the periodontitis, SLE, and Inactive SLE + periodontitis groups showed a higher frequency of T allele and TT genotypes compared to healthy controls (p<0.05). Regression analyses showed that the TT genotype is a strong risk factor for periodontitis (OR=4.53; CI95%=1.13-18.05) and also for SLE without periodontitis (OR=11.57; CI95%=3.12-42.84) and SLE with periodontitis (OR=5.27; CI95%=1.25-22.11) when compared to control. CONCLUSION SLE patients with periodontitis had a longer length of SLE diagnosis. The DNMT3B (rs2424913) polymorphism was associated with periodontitis and SLE alone or combined with periodontitis. Our study contributes to understanding the genetic mechanisms involved in periodontitis and SLE susceptibility.
Collapse
Affiliation(s)
- Larissa Nadine da Silva Dias
- Universidade Federal da ParaíbaCentro de Ciências da SaúdePrograma de Pós Graduação em OdontologiaJoão PessoaPBBrasilUniversidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós Graduação em Odontologia, João Pessoa, PB, Brasil.
| | - Marina de Castro Coêlho
- Universidade Federal da ParaíbaCentro de Ciências da SaúdePrograma de Pós Graduação em OdontologiaJoão PessoaPBBrasilUniversidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós Graduação em Odontologia, João Pessoa, PB, Brasil.
| | - Darlene Camati Persuhn
- Universidade Federal da ParaíbaCentro de Ciências Exatas e da NaturezaDepartamento de Biologia MolecularJoão PessoaPBBrasilUniversidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, João Pessoa, PB, Brasil.
| | - Isabella Lima Arrais Ribeiro
- Universidade Federal da ParaíbaCentro de Ciências da SaúdePrograma de Pós Graduação em OdontologiaJoão PessoaPBBrasilUniversidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós Graduação em Odontologia, João Pessoa, PB, Brasil.
| | - Eutilia Andrade Medeiros Freire
- Universidade Federal da ParaíbaCentro de Ciências MédicasDepartamento de Medicina InternaJoão PessoaPBBrasilUniversidade Federal da Paraíba - UFPB, Centro de Ciências Médicas, Departamento de Medicina Interna, João Pessoa, PB-Brasil.
| | - Naila Francis Paulo de Oliveira
- Universidade Federal da ParaíbaCentro de Ciências da SaúdePrograma de Pós Graduação em OdontologiaJoão PessoaPBBrasilUniversidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós Graduação em Odontologia, João Pessoa, PB, Brasil.
- Universidade Federal da ParaíbaCentro de Ciências Exatas e da NaturezaDepartamento de Biologia MolecularJoão PessoaPBBrasilUniversidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, João Pessoa, PB, Brasil.
| | - Sabrina Garcia de Aquino
- Universidade Federal da ParaíbaCentro de Ciências da SaúdeDepartamento de Odontologia Clínica e SocialJoão PessoaPBBrasilUniversidade Federal da Paraíba- UFPB, Centro de Ciências da Saúde, Departamento de Odontologia Clínica e Social, João Pessoa, PB, Brasil.
| |
Collapse
|
37
|
Liu Y, Tan Y, Huang J, Wu C, Fan X, Stalin A, Lu S, Wang H, Zhang J, Zhang F, Wu Z, Li B, Huang Z, Chen M, Cheng G, Mou Y, Wu J. Revealing the Mechanism of Huazhi Rougan Granule in the Treatment of Nonalcoholic Fatty Liver Through Intestinal Flora Based on 16S rRNA, Metagenomic Sequencing and Network Pharmacology. Front Pharmacol 2022; 13:875700. [PMID: 35559233 PMCID: PMC9086680 DOI: 10.3389/fphar.2022.875700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The incidence of Nonalcoholic Fatty Liver (NAFL) is increasing year by year, growing evidence suggests that the intestinal flora plays a causative role in NAFL. Huazhi Rougan Granule (HRG) is commonly used in the clinical treatment of NAFL. It is reported that it can reduce lipids and protect the liver, but no research has confirmed whether the drug's effect is related to the intestinal flora. Therefore, we investigated whether the effect of HRG is related to the regulation of intestinal flora to further explore the mechanism of HRG in the treatment of NAFL through intestinal flora. Methods: In this study, C57BL/6J mice were fed a high-fat diet for 8 weeks, and the high-fat diet plus HRG or polyene phosphatidylcholine capsules were each administered by gavage for 4 weeks. High-throughput sequencing, network pharmacology, and molecular docking were used to explore the mechanism of HRG in the treatment of NAFL through intestinal flora. Results: HRG treatment can reduce body weight gain, lipid accumulation in liver and lipogenesis and reduce serum biochemical indexes in high-fat-fed mice. Analysis of intestinal flora showed that HRG changed the composition of intestinal flora, which was characterized by a decrease in the Firmicutes/Bacteroidetes ratio. Moreover, the species distribution was significantly correlated with AKP, HDL-C, and TG. Metagenetic analysis showed that HRG altered the functional composition and functional diversity of microorganisms, which was mainly characterized by an increase in the abundance of metabolic pathways. The network pharmacology results show that the mechanism of HRG in the treatment of NAFL through intestinal flora is mainly reflected in the biological process of gene function and related to infectious diseases, immune systems, and signal transduction pathways, such as cytokine-cytokine receptor interaction, Chagas disease, IL-17 signaling pathway and other signaling pathways. Conclusion: These results strongly suggest that HRG may alleviate NAFL by preventing IFD.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotian Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fanqin Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meilin Chen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Yanfang Mou
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Silva DNDA, Monajemzadeh S, Pirih FQ. Systems Biology in Periodontitis. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.853133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Systems biology is a promising scientific discipline that allows an integrated investigation of host factors, microbial composition, biomarkers, immune response and inflammatory mediators in many conditions such as chronic diseases, cancer, neurological disorders, and periodontitis. This concept utilizes genetic decoding, bioinformatic, flux-balance analysis in a comprehensive approach. The aim of this review is to better understand the current literature on systems biology and identify a clear applicability of it to periodontitis. We will mostly focus on the association between this condition and topics such as genomics, transcriptomics, proteomics, metabolomics, as well as contextualize delivery systems for periodontitis treatment, biomarker detection in oral fluids and associated systemic conditions.
Collapse
|
39
|
Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Front Immunol 2022; 13:827461. [PMID: 35222410 PMCID: PMC8866697 DOI: 10.3389/fimmu.2022.827461] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease results from the inflammatory infiltration by the microbial community which is marked through tooth mobility and alveolar bone resorption. The inflammation in periodontal disease is mediated by CD4+ T cells through cytokine secretion and osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is described through disruption of the balance between two subsets of T helper cells which are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more and more studies have found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also involved in the pathogenesis of periodontal diseases. Growing evidence proves that helper T cells differentiation, activation, and subset determination are under the strong impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell differentiation and inhibit Treg commitment through different mTOR complexes, therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases by regulating CD4+ T cell subsets. This review aims to integrate the topical researches about the role of different types of Th cells in the pathogenesis of periodontal diseases, as well as the regulation of mTOR signaling in the specification and selection of Th cell commitment.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenjing Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuefeng Zhao
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
40
|
Schuldt L, Reimann M, von Brandenstein K, Steinmetz J, Döding A, Schulze-Späte U, Jacobs C, Symmank J. Palmitate-Triggered COX2/PGE2-Related Hyperinflammation in Dual-Stressed PdL Fibroblasts Is Mediated by Repressive H3K27 Trimethylation. Cells 2022; 11:955. [PMID: 35326406 PMCID: PMC8946768 DOI: 10.3390/cells11060955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
The interrelationships between periodontal disease, obesity-related hyperlipidemia and mechanical forces and their modulating effects on the epigenetic profile of periodontal ligament (PdL) cells are assumed to be remarkably complex. The PdL serves as a connective tissue between teeth and alveolar bone and is involved in pathogen defense and the inflammatory responses to mechanical stimuli occurring during tooth movement. Altered inflammatory signaling could promote root resorption and tooth loss. Hyperinflammatory COX2/PGE2 signaling was reported for human PdL fibroblasts (HPdLFs) concomitantly stressed with Porphyromonas gingivalis lipopolysaccharides and compressive force after exposure to palmitic acid (PA). The aim of this study was to investigate the extent to which this was modulated by global and gene-specific changes in histone modifications. The expression of key epigenetic players and global H3Kac and H3K27me3 levels were quantitatively evaluated in dual-stressed HPdLFs exposed to PA, revealing a minor force-related reduction in repressive H3K27me3. UNC1999-induced H3K27me3 inhibition reversed the hyperinflammatory responses of dual-stressed PA cultures characterized by increased COX2 expression, PGE2 secretion and THP1 adhesion. The reduced expression of the gene encoding the anti-inflammatory cytokine IL-10 and the increased presence of H3K27me3 at its promoter-associated sites were reversed by inhibitor treatment. Thus, the data highlight an important epigenetic interplay between the different stimuli to which the PdL is exposed.
Collapse
Affiliation(s)
- Lisa Schuldt
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Michael Reimann
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Katrin von Brandenstein
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Julia Steinmetz
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Collin Jacobs
- Center for Dental, Oral and Maxillofacial Medicine, Department of Orthodontics, University Hospital Jena, 07743 Jena, Germany;
| | - Judit Symmank
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| |
Collapse
|
41
|
Starzyńska A, Wychowański P, Nowak M, Sobocki BK, Jereczek-Fossa BA, Słupecka-Ziemilska M. Association between Maternal Periodontitis and Development of Systematic Diseases in Offspring. Int J Mol Sci 2022; 23:2473. [PMID: 35269617 PMCID: PMC8910384 DOI: 10.3390/ijms23052473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontal disease (PD) is one of the most common oral conditions affecting both youths and adults. There are some research works suggesting a high incidence of PD in pregnant women. As an inflammatory disease of bacterial origin, PD may result in the activation of the pathways affecting the course and the pregnancy outcome. The authors, based on the literature review, try to answer the PICO question: Does maternal periodontitis (exposure) influence the incidence of complications rates in pregnancy and the development of systemic diseases in childhood and adult offspring (outcome) in the humans of any race (population) compared to the offspring of mothers with healthy periodontium (comparison)? The authors try to describe the molecular pathways and mechanisms of these interdependencies. There is some evidence that maternal periodontitis may affect the pregnancy course and outcome, resulting in preeclampsia, preterm delivery, vulvovaginitis and low birth weight. It can be suggested that maternal periodontitis may affect offspring epigenome and result in some health consequences in their adult life.
Collapse
Affiliation(s)
- Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Piotr Wychowański
- Department of Oral Surgery, Medical University of Warsaw, 6 Binieckiego Street, 02-097 Warsaw, Poland;
- Specialized Private Implantology Clinic Wychowanski Stomatologia, 9/33 Rakowiecka Street, 02-517 Warsaw, Poland
| | - Maciej Nowak
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 6 Binieckiego Street, 02-097 Warsaw, Poland;
| | - Bartosz Kamil Sobocki
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20-112 Milan, Italy;
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20-141 Milan, Italy
| | - Monika Słupecka-Ziemilska
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
42
|
Virgin Coconut Oil as a New Concept for Periodontal Tissue Regeneration via Expressions of TNF-α and TGF-β1. Int J Biomater 2022; 2022:7562608. [PMID: 35178093 PMCID: PMC8847019 DOI: 10.1155/2022/7562608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Background Virgin coconut oil is a natural product from coconut that has many benefits such as antibacterial, anti-inflammatory, and antioxidant. Inflammatory disease of the periodontal tissues has a high prevalence worldwide. The main etiology of periodontitis plaque of biofilm contains colonies of pathogenic microorganisms. The occurrence of inflammation in the periodontal tissue stimulates the release of inflammatory mediators, such as TNF-α and TGF-β. Treatment for periodontitis can be performed starting from initial therapy and usually accompanied by additional therapy such as local drug delivery. VCO can be used as an alternative to antibiotics. Objective To determine the effectiveness of VCO gel on periodontal tissue regeneration materials through the expression of TNF-α and TGF-β1. Methods This is an experimental laboratory with a posttest-only control group design. VCO was made from grated fresh coconut and then mixed with NaCMC to obtain gel viscosity. The subjects of this study were 30 male periodontitis-induced Wistar rats by injecting Porphyromonas gingivalis into the gingival sulcus. Wistar rats were then divided into 3 groups. On the 7th and 14th days, the rats were sacrificed and the jaw was sampled to determine the amount of TNF-α and TGF-β1 expression in the regenerative process of periodontal tissue. Result The amount of TNF-α and TGF-β1 increased significantly in the treatment group, but not as much as the increase in the positive control and negative control groups. Conclusion VCO gel can affect the expression of TNF-α and TGF-β1 in the regeneration process of periodontal tissue in periodontitis-induced rats.
Collapse
|
43
|
Zhao C, Zou T, Tang R, Zhu C. Placenta-specific 8 (PLAC8) mediates inflammation and mobility of the hPDLCs via MEK/ERK signaling pathway. Int Immunopharmacol 2021; 103:108459. [PMID: 34954560 DOI: 10.1016/j.intimp.2021.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Placenta-specific 8 (PLAC8) is reported to regulate cellular functions in the progression of various diseases. However, its role in periodontitis is still unclear. METHODS Human periodontal ligament cells (hPDLCs) were treated with lipopolysaccharide of Porphyromonas Gingivalis (LPS-PG) to mimic periodontitis in vitro. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to measure the mRNA expression levels and western blot was for protein levels. Wound healing and transwell migration assays were performed to assess the cell mobility of hPDLCs. Both mRNA and protein levels of inflammatory cytokines including IFN-γ, IL-17, TNF-α, IL-4, IL-10 and IL-13 were accessed to evaluated process of periodontitis in vitro. Furthermore, the protein expressions of mitogen-activated protein kinase kinase (MEK), extracellular regulated protein kinase (ERK) and their phosphorylated products quantified by western blotting assay were determined to confirm the activation of the MEK/ERK signaling pathway. RESULTS The microarray analysis results showed that PLAC8 was most significantly downregulated in periodontium samples of patients with periodontitis, which participates in blood coagulation and integrin-mediated signaling pathway. PLAC8 was also markedly downregulated in the LPS-PG-treated hPDLCs. Moreover, overexpression of PLAC8 ameliorated inflammation and promoted cell mobility of LPS-PG-treated hPDLCs, while inhibition of PLAC8 exhibited the opposite effects. MEK/ERK was selected based on analyses of the protein-protein interaction (PPI) network as the potential signaling pathway interacted with PLAC8, and PLAC8 showed regulatory function on activation of the MEK/ERK pathway. Additionally, U0126, the inhibitor of MEK, abrogated the effects of PLAC8 on inflammation and cell mobility of LPS-PG-treated hPDLCs. CONCLUSION Overexpression of PLAC8 protected hPDLCs from dysfunction of inflammation and cell mobility via activating MEK/ERK pathway, indicating a novel therapeutic target for periodontitis.
Collapse
Affiliation(s)
| | - Tingqian Zou
- Department of Stomatology, Jingmen Second People's Hospital
| | - Ruiping Tang
- Medical College of Jingchu University of Technology
| | - Chengzhi Zhu
- Department of Stomatology, Affiliated Hospital of Hubei Three Gorges Polytechnic.
| |
Collapse
|
44
|
Shi J, Zhang Y, Zhang X, Chen R, Wei J, Hou J, Wang B, Lai H, Huang Y. Remodeling immune microenvironment in periodontitis using resveratrol liposomes as an antibiotic-free therapeutic strategy. J Nanobiotechnology 2021; 19:429. [PMID: 34930286 PMCID: PMC8686397 DOI: 10.1186/s12951-021-01175-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periodontitis is a complicated inflammatory disease that damages the tooth-supporting tissues, with limited pharmacotherapy available. Macrophage-targeting therapy is promising for inflammatory diseases. Resveratrol (RSV), a nonflavonoid polyphenol, is known for its anti-inflammatory and immunomodulatory effects. However, its medical application is limited by its poor stability and water-solubility, as well as its low bioavailability. RESULT A therapeutic resveratrol-loaded liposomal system (Lipo-RSV) was developed to treat periodontitis. The physical properties of Lipo-RSV and its ability to regulate macrophages were investigated. The results showed that Lipo-RSV had good biocompatibility and could re-educate the inflammatory macrophages from M1- to M2-like phenotype through activating p-STAT3 and downregulating p-STAT1. Besides, the Lipo-RSV could scavenge ROS and inhibit the NF-κB signal and inflammasomes, thereby reducing the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. CONCLUSION These results revealed that Lipo-RSV could be a potential therapeutic system for the antibiotic-free treatment for periodontal diseases.
Collapse
Affiliation(s)
- Junyu Shi
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yi Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Xiaomeng Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ruiying Chen
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jianxu Wei
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiazhen Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Bing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Hongchang Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, 528437, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, 201203, China.
- Taizhou University, School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou, 318000, China.
| |
Collapse
|
45
|
The Receptor AT1 Appears to Be Important for the Maintenance of Bone Mass and AT2 Receptor Function in Periodontal Bone Loss Appears to Be Regulated by AT1 Receptor. Int J Mol Sci 2021; 22:ijms222312849. [PMID: 34884653 PMCID: PMC8657877 DOI: 10.3390/ijms222312849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
A large number of experimental studies has demonstrated that angiotensin II (Ang II) is involved in key events of the inflammatory process. This study aimed to evaluate the role of Ang II type 1 (AT1) and Ang II type 2 (AT2) receptors on periodontitis. Methods: Experimental periodontitis was induced by placing a 5.0 nylon thread ligature around the second upper left molar of AT1 mice, no-ligature or ligature (AT1-NL and AT1-L), AT2 (AT2-NL or AT2-L) and wild type (WT-NL or L). Alveolar bone loss was scanned using Micro-CT. Cytokines, peptides and enzymes were analyzed from gingival tissues by Elisa and RT-PCR. Results: The blockade of AT1 receptor resulted in bone loss, even in healthy animals. Ang II receptor blockades did not prevent linear bone loss. Ang II and Ang 1-7 levels were significantly increased in the AT2-L (p < 0.01) group compared to AT2-NL and AT1-L. The genic expression of the Mas receptor was significantly increased in WT-L and AT2-L compared to (WT-NL and AT2-NL, respectively) and in AT1-L. Conclusions: Our data suggest that the receptor AT1 appears to be important for the maintenance of bone mass. AT2 receptor molecular function in periodontitis appears to be regulated by AT1.
Collapse
|
46
|
Martínez-García M, Hernández-Lemus E. Periodontal Inflammation and Systemic Diseases: An Overview. Front Physiol 2021; 12:709438. [PMID: 34776994 PMCID: PMC8578868 DOI: 10.3389/fphys.2021.709438] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a common inflammatory disease of infectious origins that often evolves into a chronic condition. Aside from its importance as a stomatologic ailment, chronic periodontitis has gained relevance since it has been shown that it can develop into a systemic condition characterized by unresolved hyper-inflammation, disruption of the innate and adaptive immune system, dysbiosis of the oral, gut and other location's microbiota and other system-wide alterations that may cause, coexist or aggravate other health issues associated to elevated morbi-mortality. The relationships between the infectious, immune, inflammatory, and systemic features of periodontitis and its many related diseases are far from being fully understood and are indeed still debated. However, to date, a large body of evidence on the different biological, clinical, and policy-enabling sources of information, is available. The aim of the present work is to summarize many of these sources of information and contextualize them under a systemic inflammation framework that may set the basis to an integral vision, useful for basic, clinical, and therapeutic goals.
Collapse
Affiliation(s)
- Mireya Martínez-García
- Sociomedical Research Unit, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mèxico, Mexico City, Mexico
| |
Collapse
|
47
|
Dai Y, Wei T, Shen Z, Bei Y, Lin H, Dai H. Classical HDACs in the regulation of neuroinflammation. Neurochem Int 2021; 150:105182. [PMID: 34509559 DOI: 10.1016/j.neuint.2021.105182] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/22/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation is a key factor of the pathology of various neurological diseases (brain injury, depression, neurodegenerative diseases). It is a complex and orderly process that relies on various types of glial cells and peripheral immune cells. Inhibition of neuroinflammation can reduce the severity of neurological diseases. The initiation, progression, and termination of inflammation require gene activation, epigenetic modification, transcriptional translation, and post-translational regulation, all of which are tightly regulated by different enzymes. Epigenetics refers to the regulation of epigenetic gene expression by epigenetic changes (DNA methylation, histone modification, and non-coding RNAs such as miRNA) that are not dependent on changes in gene sequence and are heritable. Histone deacetylases (HDACs) are a group of important enzymes that regulate epigenetics. They can remove the acetyl group on the lysine ϵ-amino group of the target protein, thereby affecting gene transcription or altering protein activity. HDACs are involved in the regulation of immunity and inflammation. HDAC inhibitor (HDACi) has also become a new hotspot in the research of anti-inflammatory drugs. Therefore, the aim of the current review is to discuss and summarize the role and mechanism of different HDACs in neuroinflammation and the corresponding role of HDACi in neurological diseases, and to providing new ideas for future research on neuroinflammation-related diseases and drug development.
Collapse
Affiliation(s)
- Yunjian Dai
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Taofeng Wei
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Zexu Shen
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Yun Bei
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Haoran Lin
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Haibin Dai
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
48
|
ZFP36 family members regulate the pro-inflammatory features of psoriatic dermal fibroblasts. J Invest Dermatol 2021; 142:402-413. [PMID: 34333017 DOI: 10.1016/j.jid.2021.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Dermal fibroblasts are strategically positioned underneath the basal epidermis layer to support keratinocyte proliferation and extracellular matrix production. In inflammatory conditions, these fibroblasts produce cytokines and chemokines that promote the chemoattraction of immune cells into the dermis and the hyperplasia of the epidermis, two characteristic hallmarks of Psoriasis (Pso). However, how dermal fibroblasts specifically contribute to Pso development remains largely uncharacterized. Here we investigated through which cytokines and signaling pathways dermal fibroblasts contribute to the inflammatory features of psoriatic skin. We show that dermal fibroblasts from lesional Pso skin are important producers of inflammatory mediators, including IL6, CXCL8 and CXCL2. This increased cytokine production was found to be regulated by ZFP36 family members ZFP36, ZFP36L1 and ZPF36L2, RNA-binding proteins with mRNA-degrading properties. Additionally, the expression of ZFP36 family proteins was found reduced in chronic inflammatory conditions that mimic psoriatic lesional skin. Collectively, these results indicate that dermal fibroblasts are important producers of cytokines in psoriatic skin, and that reduced expression of ZFP36 members in Pso dermal fibroblasts contributes to their inflammatory phenotype.
Collapse
|
49
|
Levine M, Lohinai ZM. Resolving the Contradictory Functions of Lysine Decarboxylase and Butyrate in Periodontal and Intestinal Diseases. J Clin Med 2021; 10:jcm10112360. [PMID: 34072136 PMCID: PMC8198195 DOI: 10.3390/jcm10112360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontal disease is a common, bacterially mediated health problem worldwide. Mastication (chewing) repeatedly traumatizes the gingiva and periodontium, causing traces of inflammatory exudate, gingival crevicular fluid (GCF), to appear in crevices between the teeth and gingiva. Inadequate tooth cleaning causes a dentally adherent microbial biofilm composed of commensal salivary bacteria to appear around these crevices where many bacteria grow better on GCF than in saliva. We reported that lysine decarboxylase (Ldc) from Eikenella corrodens depletes the GCF of lysine by converting it to cadaverine and carbon dioxide. Lysine is an amino acid essential for the integrity and continuous renewal of dentally attached epithelium acting as a barrier to microbial products. Unless removed regularly by oral hygiene, bacterial products invade the lysine-deprived dental attachment where they stimulate inflammation that enhances GCF exudation. Cadaverine increases and supports the development of a butyrate-producing microbiome that utilizes the increased GCF substrates to slowly destroy the periodontium (dysbiosis). A long-standing paradox is that acid-induced Ldc and butyrate production support a commensal (probiotic) microbiome in the intestine. Here, we describe how the different physiologies of the respective tissues explain how the different Ldc and butyrate functions impact the progression and control of these two chronic diseases.
Collapse
Affiliation(s)
- Martin Levine
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| | - Zsolt M. Lohinai
- Department of Conservative Dentistry, Semmelweis University, H-1088 Budapest, Hungary;
| |
Collapse
|
50
|
Abasijiang A, Lin J, Ma T, Zhao J. Evaluation of the Genetic Association and Methylation of Immune Response Pathway Genes with the Risk of Chronic Periodontitis in the Uighur Population. Genet Test Mol Biomarkers 2021; 25:317-324. [PMID: 33945309 DOI: 10.1089/gtmb.2020.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: The aim of this study was to explore the possible associations between single nucleotide polymorphisms (SNPs) and DNA methylation levels of seven genes in the inflammatory response pathway with susceptibility to chronic periodontitis (CP) among the Uighur population of the Xinjiang Autonomous Region of China. Methods: A total of 444 eligible subjects (279 CP patients and 165 healthy controls) were enrolled in the study. Genomic DNA was obtained from gingival tissue for genotyping eight SNPs and performing methylation measurements of seven genes. Results: SNP rs2070745 in the formyl peptide receptor 1 (FPR1) gene achieved statistical significance in a standard allelic association analysis for CP (p = 0.02). The frequency of the rs2070745 minor allele G was higher in the cases than in controls (0.367 vs. 0.291). Additionally, rs2070745 was significantly associated with CP under the dominant genetic model (p = 0.03). Using logistic regression analysis, rs2070745 was found to be consistently associated with CP under the additive dominant model, and this association remained significant after covariates were taken into account [odds ratio (OR) = 1.49 (1.09-2.05), p = 0.014; OR = 1.58 (1.04-2.40), p = 0.031, respectively]. No significant gene-gene interactions were identified. Although we did not find a polymorphism in interleukin 6 (IL6) associated with CP in our study, the methylation level of a CpG island region located within the promoter region of IL6 was significantly less in CP patients compared with controls (p < 0.05). Conclusions: The genetic polymorphism rs2070745 in FPR1 and the methylation level of the promoter region of IL6 might be associated with CP in the Uighur population of China.
Collapse
Affiliation(s)
- Aisaiti Abasijiang
- Department of Endodontics, First Affiliated Hospital of Xinjiang Medical University, and College of Stomatology of Xinjiang Medical University, Urumqi, China
| | - Jing Lin
- Department of Endodontics, First Affiliated Hospital of Xinjiang Medical University, and College of Stomatology of Xinjiang Medical University, Urumqi, China
| | - Ting Ma
- Department of Endodontics, First Affiliated Hospital of Xinjiang Medical University, and College of Stomatology of Xinjiang Medical University, Urumqi, China
| | - Jin Zhao
- Department of Endodontics, First Affiliated Hospital of Xinjiang Medical University, and College of Stomatology of Xinjiang Medical University, Urumqi, China
| |
Collapse
|