1
|
Zaman A, Setton R, Catmur C, Russell C. What is autonoetic consciousness? Examining what underlies subjective experience in memory and future thinking. Cognition 2024; 253:105934. [PMID: 39216189 DOI: 10.1016/j.cognition.2024.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Autonoetic consciousness is the awareness that an event we remember is one that we ourselves experienced. It is a defining feature of our subjective experience of remembering and imagining future events. Given its subjective nature, there is ongoing debate about how to measure it. Our goal was to develop a framework to identify cognitive markers of autonoetic consciousness. Across two studies (N = 342) we asked young, healthy participants to provide written descriptions of two autobiographical memories, two plausible future events, and an experimentally encoded video. Participants then rated their subjective experience during remembering and imagining. Exploratory Factor Analysis of this data uncovered the latent variables underlying autonoetic consciousness across these different events. In contrast to work that emphasizes the distinction between Remember and Know as being key to autonoetic consciousness, Re-experiencing, and Pre-experiencing for future events, were consistently identified as core markers of autonoetic consciousness. This was alongside Mental Time Travel in all types of memory events, but not for imagining the future. In addition, our factor analysis allows us to demonstrate directly - for the first time - the features of mental imagery associated with the sense of autonoetic consciousness in autobiographical memory; vivid, visual imagery from a first-person perspective. Finally, with regression analysis, the emergent factor structure of autonoetic consciousness was able to predict the richness of autobiographical memory texts, but not of episodic recall of the encoded video. This work provides a novel way to assess autonoetic consciousness, illustrates how autonoetic consciousness manifests differently in memory and imagination and defines the mental representations intrinsic to this process.
Collapse
Affiliation(s)
- Andreea Zaman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| | - Roni Setton
- Department of Psychology, Harvard University, United States
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Charlotte Russell
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
2
|
Chua J, Tan B, Wong D, Garhöfer G, Liew XW, Popa-Cherecheanu A, Loong Chin CW, Milea D, Li-Hsian Chen C, Schmetterer L. Optical coherence tomography angiography of the retina and choroid in systemic diseases. Prog Retin Eye Res 2024; 103:101292. [PMID: 39218142 DOI: 10.1016/j.preteyeres.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Optical coherence tomography angiography (OCTA) has transformed ocular vascular imaging, revealing microvascular changes linked to various systemic diseases. This review explores its applications in diabetes, hypertension, cardiovascular diseases, and neurodegenerative diseases. While OCTA provides a valuable window into the body's microvasculature, interpreting the findings can be complex. Additionally, challenges exist due to the relative non-specificity of its findings where changes observed in OCTA might not be unique to a specific disease, variations between OCTA machines, the lack of a standardized normative database for comparison, and potential image artifacts. Despite these limitations, OCTA holds immense potential for the future. The review highlights promising advancements like quantitative analysis of OCTA images, integration of artificial intelligence for faster and more accurate interpretation, and multi-modal imaging combining OCTA with other techniques for a more comprehensive characterization of the ocular vasculature. Furthermore, OCTA's potential future role in personalized medicine, enabling tailored treatment plans based on individual OCTA findings, community screening programs for early disease detection, and longitudinal studies tracking disease progression over time is also discussed. In conclusion, OCTA presents a significant opportunity to improve our understanding and management of systemic diseases. Addressing current limitations and pursuing these exciting future directions can solidify OCTA as an indispensable tool for diagnosis, monitoring disease progression, and potentially guiding treatment decisions across various systemic health conditions.
Collapse
Affiliation(s)
- Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Damon Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Xin Wei Liew
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alina Popa-Cherecheanu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Emergency University Hospital, Department of Ophthalmology, Bucharest, Romania
| | - Calvin Woon Loong Chin
- Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Dan Milea
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Fondation Ophtalmologique Adolphe De Rothschild, Paris, France
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Fondation Ophtalmologique Adolphe De Rothschild, Paris, France; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Premnath P, Nester CO, Krishnan A, Quinn CG, Bodek H, Paré N, Warren DE, Rabin L. Incremental validity of the test of practical judgment (TOP-J) in the prediction of diagnosis in preclinical dementia. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024:1-16. [PMID: 39376002 DOI: 10.1080/13825585.2024.2411981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
The Test of Practical Judgment (TOP-J) has not been thoroughly investigated in terms of its incremental validity. In the current study, we explored whether the TOP-J adds unique and meaningful information to the neuropsychological assessment beyond other executive functioning tests that are often used as proxies for practical judgment. Ninety-seven older adults who were classified as cognitively unimpaired, with subjective cognitive decline, or with mild cognitive impairment completed a comprehensive neuropsychological evaluation. Incremental validity was assessed through hierarchical ordinal regression analysis by modeling the TOP-J (Forms A and B, 15-item and 9-item versions), in addition to widely used tests of executive function, with participant classification/diagnosis as the outcome. The addition of the TOP-J (both 15-item versions) added incremental validity beyond traditional executive functioning measures to predict diagnosis. Including the TOP-J within neuropsychological evaluations of older adults may enhance differentiation of preclinical dementia diagnoses and provide clinically valuable information to the exam.
Collapse
Affiliation(s)
- Pranitha Premnath
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, USA
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Caroline O Nester
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, USA
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Anjali Krishnan
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | | | - Hannah Bodek
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nadia Paré
- Gaylord Specialty Hospital, Wallingford, CT, USA
| | - David E Warren
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura Rabin
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| |
Collapse
|
4
|
Parker J, Moris JM, Goodman LC, Paidisetty VK, Vanegas V, Turner HA, Melgar D, Koh Y. A multifactorial lens on risk factors promoting the progression of Alzheimer's disease. Brain Res 2024; 1846:149262. [PMID: 39374837 DOI: 10.1016/j.brainres.2024.149262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The prevalence of Alzheimer's disease (AD) among adults has continued to increase over the last two decades, which has sparked a significant increase in research that focuses on the topic of "brain health." While AD is partially determined by a genetic predisposition, there are still numerous pathophysiological factors that require further research. This research requirement stems from the acknowledgment that AD is a multifactorial disease that to date, cannot be prevented. Therefore, addressing and understanding the potential AD risk factors is necessary to increase the quality of life of an aging population. To raise awareness of critical pathways that impact AD progression, this review manuscript describes AD etiologies, structural impairments, and biomolecular changes that can significantly increase the risk of AD. Among them, a special highlight is given to inflammasomes, which have been shown to bolster neuroinflammation. Alike, the role of brain-derived neurotrophic factor, an essential neuropeptide that promotes the preservation of cognition is presented. In addition, the functional role of neurovascular units to regulate brain health is highlighted and contrasted to inflammatory conditions, such as cellular senescence, vascular damage, and increased visceral adiposity, who all increase the risk of neuroinflammation. Altogether, a multifactorial interventional approach is warranted to reduce the risk of AD.
Collapse
Affiliation(s)
- Jenna Parker
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Jose M Moris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Lily C Goodman
- School of Medicine, Creighton University, Phoenix, AZ, USA
| | - Vineet K Paidisetty
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Vicente Vanegas
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Haley A Turner
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Daniel Melgar
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA.
| |
Collapse
|
5
|
Desai U, Gomes DA, Chandler J, Ye W, Daly M, Kirson N, Dennehy EB. Understanding the impact of slowing disease progression for individuals with biomarker-confirmed early symptomatic Alzheimer's disease. Curr Med Res Opin 2024; 40:1719-1725. [PMID: 39175422 DOI: 10.1080/03007995.2024.2394602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Recent advances in development of amyloid-targeting therapies support the potential to slow the rate of progression of Alzheimer's disease. We conducted a narrative review of published evidence identified through a targeted search of the MEDLINE and EMBASE databases (2020-2023), recent presentations at disease-specific conferences, and data updates from cohort studies in Alzheimer's disease to describe the trajectory of the progression of Alzheimer's disease. Our findings enable the interpretation of clinical trial results and the value associated with slowing disease progression across outcomes of relevance to patients, care partners, clinicians, researchers and policymakers. Even at the earliest stages, Alzheimer's disease imposes a substantial burden on individuals, care partners, and healthcare systems. The magnitude of the burden increases with the rate of disease progression and symptom severity, as worsening cognitive decline and physical impairment result in loss of functional independence. Data from cohort studies also indicate that slowing disease progression is associated with decreased likelihood of needing extensive clinical care over at least 5 years, decreased care partner burden, and substantial individual and societal cost savings. Slowed disease progression is of significant benefit to individuals with Alzheimer's disease, their loved ones, and the healthcare system. As clinicians and policymakers devise strategies to improve access to treatment earlier in the disease spectrum, they should carefully weigh the benefits of slowing progression early in the disease (e.g. preservation of cognitive and functional abilities, as well as relative independence) to individuals, their loved ones, and broader society.
Collapse
Affiliation(s)
| | | | - Julie Chandler
- Value, Evidence, and Outcomes, Eli Lilly and Company, Indianapolis, IN, USA
| | - Wenyu Ye
- Value, Evidence, and Outcomes, Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Ellen B Dennehy
- Value, Evidence, and Outcomes, Eli Lilly and Company, Indianapolis, IN, USA
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Sun Y, Zhang R, Mao Z, Yin J, Zhou Y, Wu Y. Association between Multi-Domain Lifestyle and Objective Cognitive Impairment in Elderly People with SCD and MCI in Chinese Communities. Healthcare (Basel) 2024; 12:1879. [PMID: 39337220 PMCID: PMC11431377 DOI: 10.3390/healthcare12181879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Controlling the lifestyle associated with dementia risk can delay the process of cognitive decline. Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are early states in the development of dementia and are also the window period for early intervention in dementia. The purpose of this study was to explore the association between multi-domain lifestyle and objective cognitive impairment in elderly people with SCD and MCI in Chinese communities and to provide reference for effective implementation of precise health management measures to reduce the risk of dementia. METHODS A total of 265 middle-aged and elderly volunteers recruited from the community were divided into SCD group (107 cases), MCI group (80 cases), and healthy control (HC) group (78 cases). All participants received clinical interview, examination, and cognitive assessments. RESULTS The total Dementia Risk Reduction Lifestyle Scale (DRRLS) scores in the HC, SCD, and MCI groups [110.00 (11.25) vs. 101.00 (10.00) vs. 79.50 (20.75)] exhibited statistically significant differences among them. The total score of the DRRLS showed a significant negative correlation with the Trail-Making Test (TMT), and significant positive correlations with both the Verbal Fluency Test (VFT) and Auditory Verbal Learning Test (AVLT) scores (p < 0.05). After adjusting for confounding factors, such as age and years of education, multiple linear regression analysis revealed several points. In the SCD group, brain-strengthening exercise and interpersonal relationship scores were negatively correlated with TMT scores (β = -11.257, -15.077; all p < 0.05), while health responsibility, smoking control behavior, and interpersonal relationship scores were positively correlated with AVLT scores (β = 0.485, 0.344, and 0.406; all p < 0.05). In the MCI Group, brain-strengthening exercise, brain-healthy diet, and interpersonal relationship were negatively correlated with TMT (β = -22.011, -16.206, -11.696; all p < 0.01), whereas health responsibility, mental activity, smoking control behavior, interpersonal relationship, and stress management were positively correlated with AVLT (β = 0.450, 0.435, 0.308, 0.256, 0.607; all p < 0.05). CONCLUSIONS In Chinese communities, the unhealthy lifestyle of elderly individuals with SCD and MCI is significantly associated with cognitive function impairment. The greater their unhealthy lifestyle habits, the more pronounced the scope and severity of cognitive function impairment becomes. Furthermore, different dimensions of lifestyle have varying impacts on cognitive domains.
Collapse
Affiliation(s)
- Yuqin Sun
- Department of Geriatric Psychiatry, the Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214151, China
- Department of Nursing, Wuxi Medical College, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214062, China
| | - Ruifen Zhang
- Department of Geriatric Psychiatry, the Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214151, China
| | - Zhiqun Mao
- Department of Geriatric Psychiatry, the Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214151, China
| | - Jiajun Yin
- Department of Medical Clinical Laboratory, the Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214151, China
| | - Yuanyuan Zhou
- Department of Psychotherapy, the Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214151, China
| | - Yue Wu
- Department of Geriatric Psychiatry, the Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214151, China
- Department of Nursing, Wuxi Medical College, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214062, China
| |
Collapse
|
7
|
Hari E, Ulasoglu-Yildiz C, Kurt E, Bayram A, Gurvit H, Demiralp T. Volumetric and functional connectivity changes of the thalamic nuclei in different stages of Alzheimer's disease. Clin Neurophysiol 2024; 165:127-137. [PMID: 39029273 DOI: 10.1016/j.clinph.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/04/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Memory processes known to be impaired in Alzheimer's disease (AD) are maintained by a large-scale neurocognitive network with subcortical components, including the thalamus. Therefore, we aimed to examine the volumetric and functional changes of the thalamic nuclei at different scales across AD stages. METHODS MRI data of patients diagnosed with 20 AD dementia (ADD), 30 amnestic mild cognitive impairment (MCI), and 30 subjective cognitive impairment (SCI) were used. Volumetric and functional connectivity analyzes were performed by dividing the thalamus into anterior, medial, posterior, lateral and intralaminar nucleus groups and their specific subnuclei. RESULTS In the course of AD, the volume of the medial group nuclei, especially the mediodorsal medial magnocellular (MDm) nucleus, decreases. Medial group nuclei and MDm functional connectivity with frontal areas were decreased both in ADD and MCI compared to SCI group, while both of them increased their functional connectivity with visual areas in the ADD group compared to the MCI group. CONCLUSIONS Our study suggests that the medial group of the thalamus, and specifically the MDm, may be affected in AD. SIGNIFICANCE Specific thalamic nuclei may be a critical anatomical region for investigating structural and functional changes in AD.
Collapse
Affiliation(s)
- Emre Hari
- Graduate School of Health Sciences, Istanbul University, 34216 Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Cigdem Ulasoglu-Yildiz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Elif Kurt
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Hakan Gurvit
- Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey.
| | - Tamer Demiralp
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| |
Collapse
|
8
|
Ioannou K, Bucci M, Tzortzakakis A, Savitcheva I, Nordberg A, Chiotis K. Tau PET positivity predicts clinically relevant cognitive decline driven by Alzheimer's disease compared to comorbid cases; proof of concept in the ADNI study. Mol Psychiatry 2024:10.1038/s41380-024-02672-9. [PMID: 39179903 DOI: 10.1038/s41380-024-02672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 08/26/2024]
Abstract
β-amyloid (Aβ) pathology is not always coupled with Alzheimer's disease (AD) relevant cognitive decline. We assessed the accuracy of tau PET to identify Aβ(+) individuals who show prospective disease progression. 396 cognitively unimpaired and impaired individuals with baseline Aβ and tau PET and a follow-up of ≥ 2 years were selected from the Alzheimer's Disease Neuroimaging Initiative dataset. The participants were dichotomously grouped based on either clinical conversion (i.e., change of diagnosis) or cognitive deterioration (fast (FDs) vs. slow decliners (SDs)) using data-driven clustering of the individual annual rates of cognitive decline. To assess cognitive decline in individuals with isolated Aβ(+) or absence of both Aβ and tau (T) pathologies, we investigated the prevalence of non-AD comorbidities and FDG PET hypometabolism patterns suggestive of AD. Baseline tau PET uptake was higher in Aβ(+)FDs than in Aβ(-)FD/SDs and Aβ(+)SDs, independently of baseline cognitive status. Baseline tau PET uptake identified MCI Aβ(+) Converters and Aβ(+)FDs with an area under the curve of 0.85 and 0.87 (composite temporal region of interest) respectively, and was linearly related to the annual rate of cognitive decline in Aβ(+) individuals. The T(+) individuals constituted largely a subgroup of those being Aβ(+) and those clustered as FDs. The most common biomarker profiles in FDs (n = 70) were Aβ(+)T(+) (n = 34, 49%) and Aβ(+)T(-) (n = 19, 27%). Baseline Aβ load was higher in Aβ(+)T(+)FDs (M = 83.03 ± 31.42CL) than in Aβ(+)T(-)FDs (M = 63.67 ± 26.75CL) (p-value = 0.038). Depression diagnosis was more prevalent in Aβ(+)T(-)FDs compared to Aβ(+)T(+)FDs (47% vs. 15%, p-value = 0.021), as were FDG PET hypometabolism pattern not suggestive of AD (86% vs. 50%, p-value = 0.039). Our findings suggest that high tau PET uptake is coupled with both Aβ pathology and accelerated cognitive decline. In cases of isolated Aβ(+), cognitive decline may be associated with changes within the AD spectrum in a multi-morbidity context, i.e., mixed AD.
Collapse
Affiliation(s)
- Konstantinos Ioannou
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Marco Bucci
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Antonios Tzortzakakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
9
|
Ji Q, Chen J, Li Y, Tao E, Zhan Y. Incidence and prevalence of Alzheimer's disease in China: a systematic review and meta-analysis. Eur J Epidemiol 2024; 39:701-714. [PMID: 39088069 DOI: 10.1007/s10654-024-01144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
As China faces demographic shifts and socioeconomic changes, the burden of Alzheimer's disease (AD) and associated cognitive impairments is increasing dramatically, with significant implications for public health and the economy. This systematic review and meta-analysis aims to provide a comprehensive assessment of the prevalence and incidence of AD across China. Drawing from an extensive search of international and Chinese databases up to August 27, 2023, including PubMed, Embase, and the Cochrane Library, we synthesized data from 105 studies. Our analysis reveals a combined prevalence of AD of 3.48% within a sample of 626,276 elderly individuals and an incidence rate of 7.90 per 1000 person-years. Subgroup and meta-regression analyses highlight age and gender as pivotal factors influencing these epidemiological patterns. Notably, significant heterogeneity exists due to variations in diagnostic criteria and study quality, impacting the comparability of findings. This meta-analysis underscores the need for continued research into demographic and modifiable risk factors influencing AD, while emphasizing standardized reporting practices to address these limitations and improve the understanding of AD's challenge in China.
Collapse
Affiliation(s)
- Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Jingqi Chen
- School of Medicine, Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Yafei Li
- School of Medicine, Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Enxiang Tao
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025 Shennan Zhong Road, Futian District, Shenzhen, 518033, Guangdong, China.
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
10
|
Haniff ZR, Bocharova M, Mantingh T, Rucker JJ, Velayudhan L, Taylor DM, Young AH, Aarsland D, Vernon AC, Thuret S. Psilocybin for dementia prevention? The potential role of psilocybin to alter mechanisms associated with major depression and neurodegenerative diseases. Pharmacol Ther 2024; 258:108641. [PMID: 38583670 DOI: 10.1016/j.pharmthera.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.
Collapse
Affiliation(s)
- Zarah R Haniff
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mariia Bocharova
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David M Taylor
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Wolfson Centre for Age Related Diseases, Division of Neuroscience of the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Stavanger University Hospital, Stavanger, Norway
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom.
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
11
|
Niimi Y, Janelidze S, Sato K, Tomita N, Tsukamoto T, Kato T, Yoshiyama K, Kowa H, Iwata A, Ihara R, Suzuki K, Kasuga K, Ikeuchi T, Ishii K, Ito K, Nakamura A, Senda M, Day TA, Burnham SC, Iaccarino L, Pontecorvo MJ, Hansson O, Iwatsubo T. Combining plasma Aβ and p-tau217 improves detection of brain amyloid in non-demented elderly. Alzheimers Res Ther 2024; 16:115. [PMID: 38778353 PMCID: PMC11112892 DOI: 10.1186/s13195-024-01469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Maximizing the efficiency to screen amyloid-positive individuals in asymptomatic and non-demented aged population using blood-based biomarkers is essential for future success of clinical trials in the early stage of Alzheimer's disease (AD). In this study, we elucidate the utility of combination of plasma amyloid-β (Aβ)-related biomarkers and tau phosphorylated at threonine 217 (p-tau217) to predict abnormal Aβ-positron emission tomography (PET) in the preclinical and prodromal AD. METHODS We designed the cross-sectional study including two ethnically distinct cohorts, the Japanese trial-ready cohort for preclinica and prodromal AD (J-TRC) and the Swedish BioFINDER study. J-TRC included 474 non-demented individuals (CDR 0: 331, CDR 0.5: 143). Participants underwent plasma Aβ and p-tau217 assessments, and Aβ-PET imaging. Findings in J-TRC were replicated in the BioFINDER cohort including 177 participants (cognitively unimpaired: 114, mild cognitive impairment: 63). In both cohorts, plasma Aβ(1-42) (Aβ42) and Aβ(1-40) (Aβ40) were measured using immunoprecipitation-MALDI TOF mass spectrometry (Shimadzu), and p-tau217 was measured with an immunoassay on the Meso Scale Discovery platform (Eli Lilly). RESULTS Aβ-PET was abnormal in 81 participants from J-TRC and 71 participants from BioFINDER. Plasma Aβ42/Aβ40 ratio and p-tau217 individually showed moderate to high accuracies when detecting abnormal Aβ-PET scans, which were improved by combining plasma biomarkers and by including age, sex and APOE genotype in the models. In J-TRC, the highest AUCs were observed for the models combining p-tau217/Aβ42 ratio, APOE, age, sex in the whole cohort (AUC = 0.936), combining p-tau217, Aβ42/Aβ40 ratio, APOE, age, sex in the CDR 0 group (AUC = 0.948), and combining p-tau217/Aβ42 ratio, APOE, age, sex in the CDR 0.5 group (AUC = 0.955), respectively. Each subgroup results were replicated in BioFINDER, where the highest AUCs were seen for models combining p-tau217, Aβ42/40 ratio, APOE, age, sex in cognitively unimpaired (AUC = 0.938), and p-tau217/Aβ42 ratio, APOE, age, sex in mild cognitive impairment (AUC = 0.914). CONCLUSIONS Combination of plasma Aβ-related biomarkers and p-tau217 exhibits high performance when predicting Aβ-PET positivity. Adding basic clinical information (i.e., age, sex, APOE ε genotype) improved the prediction in preclinical AD, but not in prodromal AD. Combination of Aβ-related biomarkers and p-tau217 could be highly useful for pre-screening of participants in clinical trials of preclinical and prodromal AD.
Collapse
Affiliation(s)
- Yoshiki Niimi
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Kenichiro Sato
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Tomita
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Tadashi Tsukamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kenji Yoshiyama
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisatomo Kowa
- Graduate School of Health Sciences, Kobe University, Hyogo, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Ryoko Ihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kazushi Suzuki
- Division of Neurology, Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Ishii
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatric and Gerontology, Tokyo, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Michio Senda
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, Hyogo, Japan
| | | | | | | | | | - Oskar Hansson
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- Memory Clinic, Skåne University Hospital, Lund, Sweden.
| | - Takeshi Iwatsubo
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Ham HJ, Lee YS, Koo JK, Yun J, Son DJ, Han SB, Hong JT. Inhibition of Amyloid-β (Aβ)-Induced Cognitive Impairment and Neuroinflammation in CHI3L1 Knockout Mice through Downregulation of ERK-PTX3 Pathway. Int J Mol Sci 2024; 25:5550. [PMID: 38791588 PMCID: PMC11122210 DOI: 10.3390/ijms25105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Several clinical studies reported that the elevated expression of Chitinase-3-like 1 (CHI3L1) was observed in patients suffering from a wide range of diseases: cancer, metabolic, and neurological diseases. However, the role of CHI3L1 in AD is still unclear. Our previous study demonstrated that 2-({3-[2-(1-Cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}culfanyl)-N-(4-ethylphenyl)butanamide, a CHI3L1 inhibiting compound, alleviates memory and cognitive impairment and inhibits neuroinflammation in AD mouse models. In this study, we studied the detailed correlation of CHI3L1 and AD using serum from AD patients and using CHI3L1 knockout (KO) mice with Aβ infusion (300 pmol/day, 14 days). Serum levels of CHI3L1 were significantly elevated in patients with AD compared to normal subjects, and receiver operating characteristic (ROC) analysis data based on serum analysis suggested that CHI3L1 could be a significant diagnostic reference for AD. To reveal the role of CHI3L1 in AD, we investigated the CHI3L1 deficiency effect on memory impairment in Aβ-infused mice and microglial BV-2 cells. In CHI3L1 KO mice, Aβ infusion resulted in lower levels of memory dysfunction and neuroinflammation compared to that of WT mice. CHI3L1 deficiency selectively inhibited phosphorylation of ERK and IκB as well as inhibition of neuroinflammation-related factors in vivo and in vitro. On the other hand, treatment with recombinant CHI3L1 increased neuroinflammation-related factors and promoted phosphorylation of IκB except for ERK in vitro. Web-based gene network analysis and our results showed that CHI3L1 is closely correlated with PTX3. Moreover, in AD patients, we found that serum levels of PTX3 were correlated with serum levels of CHI3L1 by Spearman correlation analysis. These results suggest that CHI3L1 deficiency could inhibit AD development by blocking the ERK-dependent PTX3 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| |
Collapse
|
13
|
He R, Al-Tamimi J, Sánchez-Benavides G, Montaña-Valverde G, Domingo Gispert J, Grau-Rivera O, Suárez-Calvet M, Minguillon C, Fauria K, Navarro A, Hinzen W. Atypical cortical hierarchy in Aβ-positive older adults and its reflection in spontaneous speech. Brain Res 2024; 1830:148806. [PMID: 38365129 DOI: 10.1016/j.brainres.2024.148806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Abnormal deposition of Aβ amyloid is an early neuropathological marker of Alzheimer's disease (AD), arising long ahead of clinical symptoms. Non-invasive measures of associated early neurofunctional changes, together with easily accessible behavioral readouts of these changes, could be of great clinical benefit. We pursued this aim by investigating large-scale cortical gradients of functional connectivity with functional MRI, which capture the hierarchical integration of cortical functions, together with acoustic-prosodic features from spontaneous speech, in cognitively unimpaired older adults with and without Aβ positivity (total N = 188). We predicted distortions of the cortical hierarchy associated with prosodic changes in the Aβ + group. Results confirmed substantially altered cortical hierarchies and less variability in these in the Aβ + group, together with an increase in quantitative prosodic measures, which correlated with gradient variability as well as digit span test scores. Overall, these findings confirm that long before the clinical stage and objective cognitive impairment, increased risk of cognitive decline as indexed by Aβ accumulation is marked by neurofunctional changes in the cortical hierarchy, which are related to automatically extractable speech patterns and alterations in working memory functions.
Collapse
Affiliation(s)
- Rui He
- Department of Translation & Language Sciences, Universitat Pompeu Fabra, 08018 Barcelona, Spain.
| | - Jalal Al-Tamimi
- Université Paris Cité, Laboratoire de Linguistique Formelle (LLF), CNRS, 75013 Paris, France
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Neurosciences Department, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Neurosciences Department, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Neurosciences Department, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servei de Neurologia, Hospital del Mar, 08003 Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Neurosciences Department, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servei de Neurologia, Hospital del Mar, 08003 Barcelona, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Neurosciences Department, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Arcadi Navarro
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain; Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain; CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Wolfram Hinzen
- Department of Translation & Language Sciences, Universitat Pompeu Fabra, 08018 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
14
|
Marcolini S, Mondragón JD, Dominguez‐Vega ZT, De Deyn PP, Maurits NM. Clinical variables contributing to the identification of biologically defined subgroups within cognitively unimpaired and mild cognitive impairment individuals. Eur J Neurol 2024; 31:e16235. [PMID: 38411289 PMCID: PMC11235959 DOI: 10.1111/ene.16235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND A lack of consensus exists in linking demographic, behavioral, and cognitive characteristics to biological stages of dementia, defined by the ATN (amyloid, tau, neurodegeneration) classification incorporating amyloid, tau, and neuronal injury biomarkers. METHODS Using a random forest classifier we investigated whether 27 demographic, behavioral, and cognitive characteristics allowed distinction between ATN-defined groups with the same cognitive profile. This was done separately for three cognitively unimpaired (CU) (112 A-T-N-; 46 A+T+N+/-; 65 A-T+/-N+/-) and three mild cognitive impairment (MCI) (128 A-T-N-; 223 A+T+N+/-; 94 A-T+/-N+/-) subgroups. RESULTS Classification-balanced accuracy reached 39% for the CU and 52% for the MCI subgroups. Logical Delayed Recall (explaining 16% of the variance), followed by the Alzheimer's Disease Assessment Scale 13 (14%) and Everyday Cognition Informant (10%), were the most relevant characteristics for classification of the MCI subgroups. Race and ethnicity, marital status, and Everyday Cognition Patient were not relevant (0%). CONCLUSIONS The demographic, behavioral, and cognitive measures used in our model were not informative in differentiating ATN-defined CU profiles. Measures of delayed memory, general cognition, and activities of daily living were the most informative in differentiating ATN-defined MCI profiles; however, these measures alone were not sufficient to reach high classification performance.
Collapse
Affiliation(s)
- Sofia Marcolini
- University Medical Center Groningen, Department of NeurologyUniversity of GroningenGroningenThe Netherlands
| | - Jaime D. Mondragón
- University Medical Center Groningen, Department of NeurologyUniversity of GroningenGroningenThe Netherlands
| | - Zeus T. Dominguez‐Vega
- University Medical Center Groningen, Department of NeurologyUniversity of GroningenGroningenThe Netherlands
| | - Peter P. De Deyn
- University Medical Center Groningen, Department of NeurologyUniversity of GroningenGroningenThe Netherlands
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology UnitUniversity of AntwerpAntwerpBelgium
| | - Natasha M. Maurits
- University Medical Center Groningen, Department of NeurologyUniversity of GroningenGroningenThe Netherlands
| | | |
Collapse
|
15
|
Di Martino G, della Valle C, Centorbi M, Buonsenso A, Fiorilli G, Calcagno G, Iuliano E, di Cagno A. Enhancing Behavioural Changes: A Narrative Review on the Effectiveness of a Multifactorial APP-Based Intervention Integrating Physical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:233. [PMID: 38397722 PMCID: PMC10888703 DOI: 10.3390/ijerph21020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
The rapid evolution of technologies is a key innovation in the organisation and management of physical activities (PA) and sports. The increase in benefits and opportunities related to the adoption of technologies for both the promotion of a healthy lifestyle and the management of chronic diseases is evident. In the field of telehealth, these devices provide personalised recommendations, workout monitoring and injury prevention. The study aimed to provide an overview of the landscape of technology application to PA organised to promote active lifestyles and improve chronic disease management. This review identified specific areas of focus for the selection of articles: the utilisation of mobile APPs and technological devices for enhancing weight loss, improving cardiovascular health, managing diabetes and cancer and preventing osteoporosis and cognitive decline. A multifactorial intervention delivered via mobile APPs, which integrates PA while managing diet or promoting social interaction, is unquestionably more effective than a singular intervention. The main finding related to promoting PA and a healthy lifestyle through app usage is associated with "behaviour change techniques". Even when individuals stop using the APP, they often maintain the structured or suggested lifestyle habits initially provided by the APP. Various concerns regarding the excessive use of APPs need to be addressed.
Collapse
Affiliation(s)
- Giulia Di Martino
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.D.M.); (C.d.V.); (M.C.); (A.B.); (G.F.)
| | - Carlo della Valle
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.D.M.); (C.d.V.); (M.C.); (A.B.); (G.F.)
- Department of Neurosciences, Biomedicine and Movement, University of Verona, 37129 Verona, Italy
| | - Marco Centorbi
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.D.M.); (C.d.V.); (M.C.); (A.B.); (G.F.)
| | - Andrea Buonsenso
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.D.M.); (C.d.V.); (M.C.); (A.B.); (G.F.)
| | - Giovanni Fiorilli
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.D.M.); (C.d.V.); (M.C.); (A.B.); (G.F.)
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.D.M.); (C.d.V.); (M.C.); (A.B.); (G.F.)
| | - Enzo Iuliano
- Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic;
- Faculty of Psychology, eCampus University, 22060 Novedrate, Italy
| | - Alessandra di Cagno
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| |
Collapse
|
16
|
Chen A, Li Q, Huang Y, Li Y, Chuang YN, Hu X, Guo S, Wu Y, Guo Y, Bian J. Feasibility of Identifying Factors Related to Alzheimer's Disease and Related Dementia in Real-World Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.10.24302621. [PMID: 38405723 PMCID: PMC10889002 DOI: 10.1101/2024.02.10.24302621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A comprehensive view of factors associated with AD/ADRD will significantly aid in studies to develop new treatments for AD/ADRD and identify high-risk populations and patients for prevention efforts. In our study, we summarized the risk factors for AD/ADRD by reviewing existing meta-analyses and review articles on risk and preventive factors for AD/ADRD. In total, we extracted 477 risk factors in 10 categories from 537 studies. We constructed an interactive knowledge map to disseminate our study results. Most of the risk factors are accessible from structured Electronic Health Records (EHRs), and clinical narratives show promise as information sources. However, evaluating genomic risk factors using RWD remains a challenge, as genetic testing for AD/ADRD is still not a common practice and is poorly documented in both structured and unstructured EHRs. Considering the constantly evolving research on AD/ADRD risk factors, literature mining via NLP methods offers a solution to automatically update our knowledge map.
Collapse
Affiliation(s)
- Aokun Chen
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Qian Li
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yu Huang
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yongqiu Li
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yu-neng Chuang
- Department of Computer Science, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005
| | - Xia Hu
- Department of Computer Science, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005
| | - Serena Guo
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, 1225 Center Drive, Gainesville, FL 32610
| | - Yonghui Wu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yi Guo
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| |
Collapse
|
17
|
Huang L, Li Q, Lu Y, Pan F, Cui L, Wang Y, Miao Y, Chen T, Li Y, Wu J, Chen X, Jia J, Guo Q. Consensus on rapid screening for prodromal Alzheimer's disease in China. Gen Psychiatr 2024; 37:e101310. [PMID: 38313393 PMCID: PMC10836380 DOI: 10.1136/gpsych-2023-101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia, characterised by cerebral amyloid-β deposition, pathological tau and neurodegeneration. The prodromal stage of AD (pAD) refers to patients with mild cognitive impairment (MCI) and evidence of AD's pathology. At this stage, disease-modifying interventions should be used to prevent the progression to dementia. Given the inherent heterogeneity of MCI, more specific biomarkers are needed to elucidate the underlying AD's pathology. Although the uses of cerebrospinal fluid and positron emission tomography are widely accepted methods for detecting AD's pathology, their clinical applications are limited by their high costs and invasiveness, particularly in low-income areas in China. Therefore, to improve the early detection of Alzheimer's disease (AD) pathology through cost-effective screening methods, a panel of 45 neurologists, psychiatrists and gerontologists was invited to establish a formal consensus on the screening of pAD in China. The supportive evidence and grades of recommendations are based on a systematic literature review and focus group discussion. National meetings were held to allow participants to review, vote and provide their expert opinions to reach a consensus. A majority (two-thirds) decision was used for questions for which consensus could not be reached. Recommended screening methods are presented in this publication, including neuropsychological assessment, peripheral biomarkers and brain imaging. In addition, a general workflow for screening pAD in China is established, which will help clinicians identify individuals at high risk and determine therapeutic targets.
Collapse
Affiliation(s)
- Lin Huang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Li
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yatian Li
- Shanghai BestCovered, Shanghai, China
| | | | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianping Jia
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Murray-Smith H, Barker S, Barkhof F, Barnes J, Brown TM, Captur G, R E Cartlidge M, Cash DM, Coath W, Davis D, Dickson JC, Groves J, Hughes AD, James SN, Keshavan A, Keuss SE, King-Robson J, Lu K, Malone IB, Nicholas JM, Rapala A, Scott CJ, Street R, Sudre CH, Thomas DL, Wong A, Wray S, Zetterberg H, Chaturvedi N, Fox NC, Crutch SJ, Richards M, Schott JM. Updating the study protocol: Insight 46 - a longitudinal neuroscience sub-study of the MRC National Survey of Health and Development - phases 2 and 3. BMC Neurol 2024; 24:40. [PMID: 38263061 PMCID: PMC10804658 DOI: 10.1186/s12883-023-03465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Although age is the biggest known risk factor for dementia, there remains uncertainty about other factors over the life course that contribute to a person's risk for cognitive decline later in life. Furthermore, the pathological processes leading to dementia are not fully understood. The main goals of Insight 46-a multi-phase longitudinal observational study-are to collect detailed cognitive, neurological, physical, cardiovascular, and sensory data; to combine those data with genetic and life-course information collected from the MRC National Survey of Health and Development (NSHD; 1946 British birth cohort); and thereby contribute to a better understanding of healthy ageing and dementia. METHODS/DESIGN Phase 1 of Insight 46 (2015-2018) involved the recruitment of 502 members of the NSHD (median age = 70.7 years; 49% female) and has been described in detail by Lane and Parker et al. 2017. The present paper describes phase 2 (2018-2021) and phase 3 (2021-ongoing). Of the 502 phase 1 study members who were invited to a phase 2 research visit, 413 were willing to return for a clinic visit in London and 29 participated in a remote research assessment due to COVID-19 restrictions. Phase 3 aims to recruit 250 study members who previously participated in both phases 1 and 2 of Insight 46 (providing a third data time point) and 500 additional members of the NSHD who have not previously participated in Insight 46. DISCUSSION The NSHD is the oldest and longest continuously running British birth cohort. Members of the NSHD are now at a critical point in their lives for us to investigate successful ageing and key age-related brain morbidities. Data collected from Insight 46 have the potential to greatly contribute to and impact the field of healthy ageing and dementia by combining unique life course data with longitudinal multiparametric clinical, imaging, and biomarker measurements. Further protocol enhancements are planned, including in-home sleep measurements and the engagement of participants through remote online cognitive testing. Data collected are and will continue to be made available to the scientific community.
Collapse
Affiliation(s)
- Heidi Murray-Smith
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK.
| | - Suzie Barker
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Centre for Medical Image Computing, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Josephine Barnes
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Thomas M Brown
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Gabriella Captur
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science & Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Molly R E Cartlidge
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - David M Cash
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - William Coath
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Daniel Davis
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science & Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - John C Dickson
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - James Groves
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Alun D Hughes
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science & Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science & Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Ashvini Keshavan
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Sarah E Keuss
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Josh King-Robson
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Kirsty Lu
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Ian B Malone
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Alicja Rapala
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science & Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Catherine J Scott
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Rebecca Street
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Carole H Sudre
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
- Centre for Medical Image Computing, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science & Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - David L Thomas
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science & Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong, Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science & Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science & Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, 1St Floor, 8-11 Queen Square, London, UK
| |
Collapse
|
19
|
Khaled M, Al-Jamal H, Tajer L, El-Mir R. Alzheimer's Disease in Lebanon: Exploring Genetic and Environmental Risk Factors-A Comprehensive Review. J Alzheimers Dis 2024; 99:21-40. [PMID: 38640157 DOI: 10.3233/jad-231432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that displays a high prevalence in Lebanon causing a local burden in healthcare and socio-economic sectors. Unfortunately, the lack of prevalence studies and clinical trials in Lebanon minimizes the improvement of AD patient health status. In this review, we include over 155 articles to cover the different aspects of AD ranging from mechanisms to possible treatment and management tools. We highlight some important modifiable and non-modifiable risk factors of the disease including genetics, age, cardiovascular diseases, smoking, etc. Finally, we propose a hypothetical genetic synergy model between APOE4 and TREM2 genes which constitutes a potential early diagnostic tool that helps in reducing the risk of AD based on preventative measures decades before cognitive decline. The studies on AD in Lebanon and the Middle East are scarce. This review points out the importance of genetic mapping in the understanding of disease pathology which is crucial for the emergence of novel diagnostic tools. Hence, we establish a rigid basis for further research to identify the most influential genetic and environmental risk factors for the purpose of using more specific diagnostic tools and possibly adopting a local management protocol.
Collapse
Affiliation(s)
| | - Hadi Al-Jamal
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Layla Tajer
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Reem El-Mir
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
20
|
Roca-Ventura A, Solana-Sánchez J, Heras E, Anglada M, Missé J, Ulloa E, García-Molina A, Opisso E, Bartrés-Faz D, Pascual-Leone A, Tormos-Muñoz JM, Cattaneo G. "Guttmann Cognitest ®," a digital solution for assessing cognitive performance in adult population: A feasibility and usability pilot study. Digit Health 2024; 10:20552076231224246. [PMID: 38188861 PMCID: PMC10768632 DOI: 10.1177/20552076231224246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Background As the world population continues to age, the prevalence of neurological diseases, such as dementia, poses a significant challenge to society. Detecting cognitive impairment at an early stage is vital in preserving and enhancing cognitive function. Digital tools, particularly mHealth, offer a practical solution for large-scale population screening and prompt follow-up assessments of cognitive function, thus overcoming economic and time limitations. Objective In this work, two versions of a digital solution called Guttmann Cognitest® were tested. Methods Two hundred and one middle-aged adults used the first version (Group A), while 132 used the second one, which included improved tutorials and practice screens (Group B). This second version was also validated in an older age group (Group C). Results This digital solution was found to be highly satisfactory in terms of usability and feasibility, with good acceptability among all three groups. Specifically for Group B, the system usability scale score obtained classifies the solution as the best imaginable in terms of usability. Conclusions Guttmann Cognitest® has been shown to be effective and well-perceived, with a high potential for sustained engagement in tracking changes in cognitive function.
Collapse
Affiliation(s)
- Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eva Heras
- Servei Envelliment i Salut Servei Andorrà d’Atenció Sanitària, Escaldes-Engordany, Andorra
| | - Maria Anglada
- Servei Envelliment i Salut Servei Andorrà d’Atenció Sanitària, Escaldes-Engordany, Andorra
| | - Jan Missé
- Servei Envelliment i Salut Servei Andorrà d’Atenció Sanitària, Escaldes-Engordany, Andorra
| | - Encarnació Ulloa
- Servei Envelliment i Salut Servei Andorrà d’Atenció Sanitària, Escaldes-Engordany, Andorra
| | - Alberto García-Molina
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eloy Opisso
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Josep M. Tormos-Muñoz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
21
|
Jo KJ, Ho S, Hong YJ, Jeong JH, Kim S, Wang MJ, Choi SH, Han S, Yang DW, Park KH. Relationship Between Amyloid Positivity and Sleep Characteristics in the Elderly With Subjective Cognitive Decline. Dement Neurocogn Disord 2024; 23:22-29. [PMID: 38362054 PMCID: PMC10864700 DOI: 10.12779/dnd.2024.23.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/17/2024] Open
Abstract
Background and Purpose Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognition and performance of daily activities. Recent studies have attempted to establish the relationship between AD and sleep. It is believed that patients with AD pathology show altered sleep characteristics years before clinical symptoms appear. This study evaluated the differences in sleep characteristics between cognitively asymptomatic patients with and without some amyloid burden. Methods Sleep characteristics of 76 subjects aged 60 years or older who were diagnosed with subjective cognitive decline (SCD) but not mild cognitive impairment (MCI) or AD were measured using Fitbit® Alta HR, a wristwatch-shaped wearable device. Amyloid deposition was evaluated using brain amyloid plaque load (BAPL) and global standardized uptake value ratio (SUVR) from fluorine-18 florbetaben positron emission tomography. Each component of measured sleep characteristics was analyzed for statistically significant differences between the amyloid-positive group and the amyloid-negative group. Results Of the 76 subjects included in this study, 49 (64.5%) were female. The average age of the subjects was 70.72±6.09 years when the study started. 15 subjects were classified as amyloid-positive based on BAPL. The average global SUVR was 1.598±0.263 in the amyloid-positive group and 1.187±0.100 in the amyloid-negative group. Time spent in slow-wave sleep (SWS) was significantly lower in the amyloid-positive group (39.4±13.1 minutes) than in the amyloid-negative group (49.5±13.1 minutes) (p=0.009). Conclusions This study showed that SWS is different between the elderly SCD population with and without amyloid positivity. How SWS affects AD pathology requires further research.
Collapse
Affiliation(s)
- Kyung Joon Jo
- Department of Neurology, College of Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - SeongHee Ho
- Department of Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yun Jeong Hong
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | - Seong Hye Choi
- Department of Neurology, Inha University, School of Medicine, Incheon, Korea
| | | | - Dong Won Yang
- Department of Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee Hyung Park
- Department of Neurology, College of Medicine, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
22
|
Sheremeta CL, Yarlagadda S, Smythe ML, Noakes PG. Prostaglandins in the Inflamed Central Nervous System: Potential Therapeutic Targets. Curr Drug Targets 2024; 25:885-908. [PMID: 39177131 DOI: 10.2174/0113894501323980240815113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid via multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.
Collapse
Affiliation(s)
- Chynna-Loren Sheremeta
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sai Yarlagadda
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark L Smythe
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
23
|
Adelson RP, Garikipati A, Maharjan J, Ciobanu M, Barnes G, Singh NP, Dinenno FA, Mao Q, Das R. Machine Learning Approach for Improved Longitudinal Prediction of Progression from Mild Cognitive Impairment to Alzheimer's Disease. Diagnostics (Basel) 2023; 14:13. [PMID: 38201322 PMCID: PMC10795823 DOI: 10.3390/diagnostics14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Mild cognitive impairment (MCI) is cognitive decline that can indicate future risk of Alzheimer's disease (AD). We developed and validated a machine learning algorithm (MLA), based on a gradient-boosted tree ensemble method, to analyze phenotypic data for individuals 55-88 years old (n = 493) diagnosed with MCI. Data were analyzed within multiple prediction windows and averaged to predict progression to AD within 24-48 months. The MLA outperformed the mini-mental state examination (MMSE) and three comparison models at all prediction windows on most metrics. Exceptions include sensitivity at 18 months (MLA and MMSE each achieved 0.600); and sensitivity at 30 and 42 months (MMSE marginally better). For all prediction windows, the MLA achieved AUROC ≥ 0.857 and NPV ≥ 0.800. With averaged data for the 24-48-month lookahead timeframe, the MLA outperformed MMSE on all metrics. This study demonstrates that machine learning may provide a more accurate risk assessment than the standard of care. This may facilitate care coordination, decrease healthcare expenditures, and maintain quality of life for patients at risk of progressing from MCI to AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqing Mao
- Montera, Inc. dba Forta, 548 Market St, PMB 89605, San Francisco, CA 94104-5401, USA; (R.P.A.); (A.G.); (J.M.); (M.C.); (G.B.); (N.P.S.); (F.A.D.); (R.D.)
| | | |
Collapse
|
24
|
Brundage K, Holtzer R. Presence and Persistence of Perceived Subjective Cognitive Complaints and Incident Mild Cognitive Impairments Among Community-Residing Older Adults. Am J Geriatr Psychiatry 2023; 31:1140-1148. [PMID: 37516657 DOI: 10.1016/j.jagp.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVES To examine whether Subjective Cognitive Complaints (SCCs) predicted incident mild cognitive impairment (MCI). DESIGN Prospective Study. SETTING Central Control of Mobility and Aging (CCMA), a cohort study of community-residing older adults. PARTICIPANTS Participants were dementia-free community-residing older adults. MEASUREMENTS SCCs were assessed at the baseline and via bi-monthly structured phone interviews during the first year using the Ascertain Dementia 8 (AD8). Nonpersistent status required one or two SCCs endorsements and Persistent status required three or more SCCs endorsements. Outcome, presence of mild cognitive impairments (MCI) was determined by established case conference diagnostic procedures. Participants were followed annually. Generalized estimating equations (GEE), logistic model type, were used to determine the odds of developing MCI during follow-up. SCCs served as the three-level predictor (no/nonpersistent/persistent) and cognitive status (MCI versus normal) as the binary outcome. Analyses were adjusted for age, sex, education, race, health status, depressive symptoms, and global cognition. RESULTS The sample (n=454; mean age=75.67 ± 6.43; %female=55.3) included 245 participants who reported no SCCs, 156 who reported 1-2 SCCs, and 53 who reported 3 or more SCCs. Sixty-eight participants developed MCI during follow-up. Results showed that compared to no SCCs, persistent SCCs, and nonpersistent SCCs were significantly associated with increased odds of developing MCI during follow-up. CONCLUSIONS The presence of SCCs regardless of their persistence was associated with increased odds of developing MCI even when adjusting for objectively-assessed cognitive performance.
Collapse
Affiliation(s)
- Katie Brundage
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
25
|
Guo HF, Wu Y, Li J, Pan FF. Analysis of the relationship between blood pressure variability and subtle cognitive decline in older adults. World J Psychiatry 2023; 13:872-883. [DOI: 10.5498/wjp.v13.i11.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Blood pressure variability (BPV) has been shown to be related to mild cognitive impairment and Alzheimer's disease in a number of studies. However, the relationship between BPV and subtle cognitive decline (SCD) has received minimal attention in this field of research to date and has rarely been reported.
AIM To examine whether SCD is independently associated with changes in BPV in older adults.
METHODS Participants were selected based on having participated in cognitive function evaluation and ambulatory blood pressure measurement at the Shanghai Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine between June 2020 and August 2022. The participants included 182 individuals with SCD as the experimental group and 237 with normal cognitive function as the control group. The basic data, laboratory examinations, scale tests, and ambulatory blood pressure test results of the two groups were analyzed retrospectively, and the relationship between SCD and BPV was subsequently evaluated.
RESULTS Significant differences were observed between the two groups of participants (P < 0.05) in terms of age, education level, prevalence rate of diabetes, fasting blood glucose level, 24-h systolic blood pressure standard deviation and coefficient of variation, 24-h diastolic blood pressure standard deviation and coefficient of variation. The scale monitoring results showed significant differences in the scores for memory, attention, and visual space between the experimental and control groups. Logistic regression analysis indicated that age, education level, blood sugar level, and BPV were factors influencing cognitive decline. Linear regression analysis showed that there was an independent correlation between blood pressure variation and SCD, even after adjusting for related factors. Each of the above differences was still significant.
CONCLUSION This study suggests that increased BPV is associated with SCD.
Collapse
Affiliation(s)
- Hui-Feng Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yi Wu
- Prenatal Diagnosis Center, International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Li
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Feng-Feng Pan
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
26
|
Aumont E, Bussy A, Bedard MA, Bezgin G, Therriault J, Savard M, Fernandez Arias J, Sziklas V, Vitali P, Poltronetti NM, Pallen V, Thomas E, Gauthier S, Kobayashi E, Rahmouni N, Stevenson J, Tissot C, Chakravarty MM, Rosa-Neto P. Hippocampal subfield associations with memory depend on stimulus modality and retrieval mode. Brain Commun 2023; 5:fcad309. [PMID: 38035364 PMCID: PMC10681971 DOI: 10.1093/braincomms/fcad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Hippocampal atrophy is a well-known feature of age-related memory decline, and hippocampal subfields may contribute differently to this decline. In this cross-sectional study, we investigated the associations between hippocampal subfield volumes and performance in free recall and recognition memory tasks in both verbal and visual modalities in older adults without dementia. We collected MRIs from 97 (41 males) right-handed participants aged over 60. We segmented the right and left hippocampi into (i) dentate gyrus and cornu ammonis 4 (DG/CA4); (ii) CA2 and CA3 (CA2/CA3); (iii) CA1; (iv) strata radiatum, lacunosum and moleculare; and (v) subiculum. Memory was assessed with verbal free recall and recognition tasks, as well as visual free recall and recognition tasks. Amyloid-β and hippocampal tau positivity were assessed using [18F]AZD4694 and [18F]MK6240 PET tracers, respectively. The verbal free recall and verbal recognition performances were positively associated with CA1 and strata radiatum, lacunosum and moleculare volumes. The verbal free recall and visual free recall were positively correlated with the right DG/CA4. The visual free recall, but not verbal free recall, was also associated with the right CA2/CA3. The visual recognition was not significantly associated with any subfield volume. Hippocampal tau positivity, but not amyloid-β positivity, was associated with reduced DG/CA4, CA2/CA3 and strata radiatum, lacunosum and moleculare volumes. Our results suggest that memory performances are linked to specific subfields. CA1 appears to contribute to the verbal modality, irrespective of the free recall or recognition mode of retrieval. In contrast, DG/CA4 seems to be involved in the free recall mode, irrespective of verbal or visual modalities. These results are concordant with the view that DG/CA4 plays a primary role in encoding a stimulus' distinctive attributes, and that CA2/CA3 could be instrumental in recollecting a visual memory from one of its fragments. Overall, we show that hippocampal subfield segmentation can be useful for detecting early volume changes and improve our understanding of the hippocampal subfields' roles in memory.
Collapse
Affiliation(s)
- Etienne Aumont
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Aurélie Bussy
- Cerebral Imaging Center, Douglas Research Center, Montreal, QC H4H 1R3, Canada
- Computational Brain Anatomy (CoBrALab) Laboratory, Montreal, QC H4H 1R2, Canada
| | - Marc-André Bedard
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gleb Bezgin
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Joseph Therriault
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Melissa Savard
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jaime Fernandez Arias
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Viviane Sziklas
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Paolo Vitali
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | | | - Vanessa Pallen
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
| | - Emilie Thomas
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
| | - Serge Gauthier
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Nesrine Rahmouni
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jenna Stevenson
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Cecile Tissot
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mallar M Chakravarty
- Cerebral Imaging Center, Douglas Research Center, Montreal, QC H4H 1R3, Canada
- Computational Brain Anatomy (CoBrALab) Laboratory, Montreal, QC H4H 1R2, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Pedro Rosa-Neto
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
27
|
Gouilly D, Rafiq M, Nogueira L, Salabert AS, Payoux P, Péran P, Pariente J. Beyond the amyloid cascade: An update of Alzheimer's disease pathophysiology. Rev Neurol (Paris) 2023; 179:812-830. [PMID: 36906457 DOI: 10.1016/j.neurol.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 03/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-etiology disease. The biological system of AD is associated with multidomain genetic, molecular, cellular, and network brain dysfunctions, interacting with central and peripheral immunity. These dysfunctions have been primarily conceptualized according to the assumption that amyloid deposition in the brain, whether from a stochastic or a genetic accident, is the upstream pathological change. However, the arborescence of AD pathological changes suggests that a single amyloid pathway might be too restrictive or inconsistent with a cascading effect. In this review, we discuss the recent human studies of late-onset AD pathophysiology in an attempt to establish a general updated view focusing on the early stages. Several factors highlight heterogenous multi-cellular pathological changes in AD, which seem to work in a self-amplifying manner with amyloid and tau pathologies. Neuroinflammation has an increasing importance as a major pathological driver, and perhaps as a convergent biological basis of aging, genetic, lifestyle and environmental risk factors.
Collapse
Affiliation(s)
- D Gouilly
- Toulouse Neuroimaging Center, Toulouse, France.
| | - M Rafiq
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - L Nogueira
- Department of Cell Biology and Cytology, CHU Toulouse Purpan, France
| | - A-S Salabert
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France
| | - P Payoux
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - P Péran
- Toulouse Neuroimaging Center, Toulouse, France
| | - J Pariente
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| |
Collapse
|
28
|
Inayat S, McAllister BB, Chang H, Lacoursiere SG, Whishaw IQ, Sutherland RJ, Mohajerani MH. Weak-hyperactive hippocampal CA1 neurons in the prodromal stage of Alzheimer's disease in hybrid App NL-G-F/NL-G-F × Thy1-GCaMP6s +/- mice suggest disrupted plasticity. Neurobiol Aging 2023; 130:154-171. [PMID: 37531809 DOI: 10.1016/j.neurobiolaging.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/13/2023] [Accepted: 06/03/2023] [Indexed: 08/04/2023]
Abstract
This study investigated the impact of familial Alzheimer's disease (AD)-linked amyloid precursor protein (App) mutations on hippocampal CA1 neuronal activity and function at an early disease stage in AppNL-G-F/NL-G-F × Thy1-GCaMP6s+/- (A-TG) mice using calcium imaging. Longitudinal assessment of spatial behavior at 12 and 18 months of age identified an early disease stage at 12 months when there was significant amyloid beta pathology with mild behavioral deficits. Hippocampal CA1 neuronal activity and event-related encoding of distance and time were therefore assessed at 12 months of age in several configurations of an air-induced running task to assess the dynamics of cellular activity. Neurons in A-TG mice displayed diminished (weaker) and more frequent (hyperactive) neuronal firing that was more pronounced during movement compared to immobility. Responsive neurons showed configuration-specific deficits in distance and time encoding with impairment in adapting their responses to changing configurations. These results suggest that at an early stage of AD in the absence of full-blown behavioral deficits, weak-hyperactive neuronal activity may induce impairments in sensory perception of changing environments.
Collapse
Affiliation(s)
- Samsoon Inayat
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Brendan B McAllister
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - HaoRan Chang
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sean G Lacoursiere
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ian Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
29
|
Tureson KN, Beam CR, Medina LD, Segal-Gidan F, D'Orazio LM, Chui H, Torres M, Varma R, Ringman JM. Use of the Spanish English Neuropsychological Assessment Scale in older adult Latines and those at risk for autosomal dominant Alzheimer's disease. J Clin Exp Neuropsychol 2023; 45:553-569. [PMID: 37990912 PMCID: PMC10926998 DOI: 10.1080/13803395.2023.2284971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE The Spanish English Neuropsychological Assessment Scale (SENAS) is a cognitive battery with English and Spanish versions for use with persons for whom either language is predominant. Few studies have examined its utility outside the normative sample. The current study examined SENAS performance in samples of older adult Latines and Latines with or at risk for autosomal dominant Alzheimer's disease (ADAD) mutations. METHOD The SENAS was administered to 202 older adults from the Los Angeles Latino Eye Study (LALES) and 29 adults with (carriers) or without (non-carriers) mutations causing ADAD. We examined associations between SENAS, age, education, and language (LALES) and between SENAS, estimated years from familial age of dementia diagnosis, education, language, and acculturation (ADAD). Partial correlations were used to examine differences in correlational strength between estimated years from familial age of dementia diagnosis and SENAS scores among ADAD carriers compared to chronological age and SENAS in the LALES sample. Exploratory t-tests were performed to examine SENAS performance differences between ADAD carriers and non-carriers. RESULTS In an older adult sample (LALES), increased age correlated with worse verbal delayed recall; English fluency and higher education correlated with better naming and visuospatial subtest performance. Among ADAD carriers, verbal and nonverbal delayed recall and object naming subtest performance worsened as they approached their familial age of dementia diagnosis. English fluency and higher U.S.-acculturation were related to better SENAS performance among carriers and non-carriers. Tests of verbal delayed recall and object naming best distinguished ADAD carriers from their familial non-carrier counterparts. CONCLUSIONS Verbal delayed recall and object naming measures appear to be most sensitive to age-related changes in older adult samples and mutation-related changes in distinguishing ADAD carriers from non-carriers. Future research should examine the sensitivity of SENAS in other samples, such as larger samples of symptomatic ADAD carriers and other AD subtypes.
Collapse
Affiliation(s)
- Kayla N Tureson
- Alzheimer's Disease Research Center, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Christopher R Beam
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Luis D Medina
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Freddi Segal-Gidan
- Alzheimer's Disease Research Center, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Lina M D'Orazio
- Alzheimer's Disease Research Center, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Helena Chui
- Alzheimer's Disease Research Center, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Mina Torres
- CHA Hollywood Presbyterian Medical Center, Southern California Eye Institute, Los Angeles, CA, USA
| | - Rohit Varma
- CHA Hollywood Presbyterian Medical Center, Southern California Eye Institute, Los Angeles, CA, USA
| | - John M Ringman
- Alzheimer's Disease Research Center, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Wolf A, Tripanpitak K, Umeda S, Otake-Matsuura M. Eye-tracking paradigms for the assessment of mild cognitive impairment: a systematic review. Front Psychol 2023; 14:1197567. [PMID: 37546488 PMCID: PMC10399700 DOI: 10.3389/fpsyg.2023.1197567] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Mild cognitive impairment (MCI), representing the 'transitional zone' between normal cognition and dementia, has become a novel topic in clinical research. Although early detection is crucial, it remains logistically challenging at the same time. While traditional pen-and-paper tests require in-depth training to ensure standardized administration and accurate interpretation of findings, significant technological advancements are leading to the development of procedures for the early detection of Alzheimer's disease (AD) and facilitating the diagnostic process. Some of the diagnostic protocols, however, show significant limitations that hamper their widespread adoption. Concerns about the social and economic implications of the increasing incidence of AD underline the need for reliable, non-invasive, cost-effective, and timely cognitive scoring methodologies. For instance, modern clinical studies report significant oculomotor impairments among patients with MCI, who perform poorly in visual paired-comparison tasks by ascribing less attentional resources to novel stimuli. To accelerate the Global Action Plan on the Public Health Response to Dementia 2017-2025, this work provides an overview of research on saccadic and exploratory eye-movement deficits among older adults with MCI. The review protocol was drafted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Electronic databases were systematically searched to identify peer-reviewed articles published between 2017 and 2022 that examined visual processing in older adults with MCI and reported gaze parameters as potential biomarkers. Moreover, following the contemporary trend for remote healthcare technologies, we reviewed studies that implemented non-commercial eye-tracking instrumentation in order to detect information processing impairments among the MCI population. Based on the gathered literature, eye-tracking-based paradigms may ameliorate the screening limitations of traditional cognitive assessments and contribute to early AD detection. However, in order to translate the findings pertaining to abnormal gaze behavior into clinical applications, it is imperative to conduct longitudinal investigations in both laboratory-based and ecologically valid settings.
Collapse
Affiliation(s)
- Alexandra Wolf
- Cognitive Behavioral Assistive Technology (CBAT), Goal-Oriented Technology Group, RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kornkanok Tripanpitak
- Cognitive Behavioral Assistive Technology (CBAT), Goal-Oriented Technology Group, RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
| | - Satoshi Umeda
- Department of Psychology, Keio University, Tokyo, Japan
| | - Mihoko Otake-Matsuura
- Cognitive Behavioral Assistive Technology (CBAT), Goal-Oriented Technology Group, RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
| |
Collapse
|
31
|
Keleman AA, Nicosia J, Bollinger RM, Wisch JK, Hassenstab J, Morris JC, Ances BM, Balota DA, Stark SL. Precipitating Mechanisms of Falls in Preclinical Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:739-750. [PMID: 37483329 PMCID: PMC10357117 DOI: 10.3233/adr-230002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background Individuals with Alzheimer's disease (AD) are more than twice as likely to incur a serious fall as the general population of older adults. Although AD is commonly associated with cognitive changes, impairments in other clinical measures such as strength or functional mobility (i.e., gait and balance) may precede symptomatic cognitive impairment in preclinical AD and lead to increased fall risk. Objective To examine mechanisms (i.e., functional mobility, cognition, AD biomarkers) associated with increased falls in cognitively normal older adults. Methods This 1-year study was part of an ongoing longitudinal cohort study. We examined the relationships among falls, clinical measures of functional mobility and cognition, and neuroimaging AD biomarkers in cognitively normal older adults. We also investigated which domain(s) best predicted fall propensity and severity through multiple regression models. Results A total of 182 older adults were included (mean age 75 years, 53% female). A total of 227 falls were reported over the year; falls per person ranged from 0-16 with a median of 1. Measures of functional mobility were the best predictors of fall propensity and severity. Cognition and AD biomarkers were associated with each other but not with the fall outcome measures. Conclusion These results suggest that, although subtle changes in cognition may be more closely associated with AD neuropathology, functional mobility indicators better predict falls in cognitively normal older adults. This study adds to our understanding of the mechanisms underlying falls in older adults and could lead to the development of targeted fall prevention strategies.
Collapse
Affiliation(s)
- Audrey A. Keleman
- Program in Occupational Therapy, Washington University in St. Louis, St. Louis, MO, USA
| | - Jessica Nicosia
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca M. Bollinger
- Program in Occupational Therapy, Washington University in St. Louis, St. Louis, MO, USA
| | - Julie K. Wisch
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - John C. Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Beau M. Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - David A. Balota
- Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - Susan L. Stark
- Program in Occupational Therapy, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
32
|
Nilaweera D, Gurvich C, Freak-Poli R, Woods R, Owen A, Murray A, Orchard SG, Britt C, Wu Z, McNeil J, Ryan J. Adverse events in older adults and the risk of dementia and cognitive decline. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023; 13:100592. [PMID: 37475782 PMCID: PMC10357969 DOI: 10.1016/j.jadr.2023.100592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Background Increasing evidence suggests that stress could be a risk factor for dementia but this might vary by gender. This study investigated whether adverse life events were associated with cognitive decline and dementia in later-life, separately in men and women. Methods Participants were 12,789 community-dwelling Australians aged ≥ 70 years. Ten common adverse events in later-life were self-reported. Cognitive decline was defined as a 1.5 SD decline from participants' baseline score in tests of global cognition, psychomotor speed, episodic memory, and executive functioning, which were assessed regularly over a maximum of 10.3 years. Dementia was diagnosed according to DSM-IV criteria. Results An increased risk of dementia was observed in participants who experienced the death of a spouse/partner (HR: 1.72, 95% CI: 1.17 - 2.52) and for individuals who experienced major financial problems (HR: 1.53, 95% CI: 1.05 - 2.23). The latter also increased the risk of cognitive decline in men specifically (HR: 1.43, 95% CI: 1.10 - 1.86). In contrast, some events for women were associated with a reduced risk of dementia (e.g. close family or friends lost their job/retired (HR: 0.62, 95% CI: 0.40-0.95)). Limitations Events including major money problems may result from prodromal dementia symptoms, thus reverse causation needs to be considered. Conclusions Adverse life events may influence dementia risk in older adults, but associations vary depending on the nature of the event, and across genders. These findings support the need for early interventions in older people who have experienced adversities, particularly for the death of a loved one.
Collapse
Affiliation(s)
- Dinuli Nilaweera
- School of Public Health and Preventive Medicine, Monash University, Level 4, 553St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Caroline Gurvich
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Rosanne Freak-Poli
- School of Public Health and Preventive Medicine, Monash University, Level 4, 553St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Robyn Woods
- School of Public Health and Preventive Medicine, Monash University, Level 4, 553St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Alice Owen
- School of Public Health and Preventive Medicine, Monash University, Level 4, 553St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Anne Murray
- Berman Centre for Outcomes and Clinical Research, Hennepin Healthcare Research Institute, Minneapolis, USA
| | - Suzanne G. Orchard
- School of Public Health and Preventive Medicine, Monash University, Level 4, 553St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Carlene Britt
- School of Public Health and Preventive Medicine, Monash University, Level 4, 553St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Zimu Wu
- School of Public Health and Preventive Medicine, Monash University, Level 4, 553St Kilda Road, Melbourne, Victoria 3004, Australia
| | - John McNeil
- School of Public Health and Preventive Medicine, Monash University, Level 4, 553St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Level 4, 553St Kilda Road, Melbourne, Victoria 3004, Australia
| |
Collapse
|
33
|
Byun MS, Chang M, Yi D, Ahn H, Han D, Jeon S, Jang H, Lee DY, Oh SH. Association of Central Auditory Processing Dysfunction With Preclinical Alzheimer's Disease. Otolaryngol Head Neck Surg 2023; 169:112-119. [PMID: 36939433 PMCID: PMC10846842 DOI: 10.1002/ohn.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To investigate whether central auditory processing dysfunction measured by the dichotic digit test-1 digit (DDT1) is present in preclinical Alzheimer's disease (AD) individuals who are cognitively normal (CN) older adults with the cerebral beta-amyloid (Aβ) deposition and to explore the potential of the DDT1 as a screening test for preclinical AD. STUDY DESIGN Cross-sectional design. SETTING A prospective observational cohort study. METHODS CN older adults with a global clinical dementia rating score of 0 were included. The hearing test battery including pure-tone audiometry, speech audiometry, distortion product otoacoustic emission, and DDT1 was administered to participants. RESULTS Fifty CN older adults were included. Among them, 38 individuals were included in the Aβ deposition negative (AN) group and 12 were included in the Aβ deposition positive (AP) group. The DDT1 scores of both the better and worse ears were significantly lower in the AP group than in the AN group (p = .008 and p = .015, respectively). No significant differences were observed between the groups in tests of the peripheral auditory pathways. In multivariable logistic regression analysis adjusted for apolipoprotein E4 positivity, the DDT1 better ear score predicted the AP group (p = .036, odds ratio = 0.892, 95% confidence interval: 0.780-0.985) with relatively high diagnostic accuracy. CONCLUSION Our findings suggest that Aβ deposition may affect the central auditory pathway even before cognitive decline appears. DDT1, which can easily be applied to the old-age population, may have the potential as a screening tool for preclinical AD.
Collapse
Affiliation(s)
- Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Munyoung Chang
- Department of Otolaryngology–Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, South Korea
- Department of Otolaryngology–Head and Neck Surgery, Chung-Ang University Hospital, Seoul, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Centre, Seoul National University, Seoul, South Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, South Korea
| | - Dongkyun Han
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Seulki Jeon
- Department of Otolaryngology–Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hyunsook Jang
- Division of Speech Pathology and Audiology, Research Institute of Audiology & Speech Pathology, Hallym University, Chuncheon-si, Gangwon-do, South Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Institute of Human Behavioral Medicine, Medical Research Centre, Seoul National University, Seoul, South Korea
| | - Seung Ha Oh
- Department of Otolaryngology–Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Otolaryngology–Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
34
|
Shanok NA, Muzac S, Derbin B, Cabeza E, Rodriguez R. The effects of deep transcranial magnetic stimulation on Alzheimer's disease: a case report examining cognitive functioning, memory, and QEEG. Neurocase 2023; 29:81-86. [PMID: 38678309 DOI: 10.1080/13554794.2024.2346987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Numerous treatment options are being studied for Alzheimer's disease (AD) given the rising prevalence of this condition worldwide. Transcranial Magnetic Stimulation (TMS) is a promising option for regulating specific neurological abnormalities pertaining to this condition. This case presents a patient with AD and co-occurring major depressive disorder that received 36 sessions of Deep TMS to the frontal and temporal lobes. This patient experienced improved general cognitive functioning and memory, remission from depression, and reduced slow-frequency theta activity in frontal and temporal sites. Following 7 months of weekly maintenance, additional improvements occurred. This report suggests that Deep TMS may be effective in mitigating AD symptoms, and maintenance sessions are advisable.
Collapse
Affiliation(s)
| | - Sabrina Muzac
- Delray Center for Brain Science, Delray Beach, FL, USA
| | | | - Enis Cabeza
- Delray Center for Brain Science, Delray Beach, FL, USA
| | | |
Collapse
|
35
|
Hill NL, Bratlee-Whitaker E, Jang H, Bhargava S, Sillner AY, Do J, Mogle J. Patient-provider communication about cognition and the role of memory concerns: a descriptive study. BMC Geriatr 2023; 23:342. [PMID: 37259029 PMCID: PMC10233998 DOI: 10.1186/s12877-023-04053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Early identification of cognitive impairment is an important part of health promotion in aging. However, many older adults do not seek help for cognitive problems until their ability to function independently is substantially impacted. The purpose of this descriptive study was to explore older adults' experiences with patient-provider communication specific to cognition as well as compare barriers and facilitators between those with and without memory concerns. METHODS We conducted an online survey with individuals aged 65 + years (n = 409; mean age = 71.4(4.73); 54% female; 79% non-Hispanic White), purposively sampled to include those with and without memory concerns. Questionnaires included measures of subjective memory decline (SMD), memory concerns, past healthcare experiences, as well as open-ended questions regarding patient-provider communication about cognition. Content analysis was used to code open-ended responses. Logistic regression was used to examine differences in facilitators and barriers to communication among three groups: no SMD (n = 130), SMD without memory concerns (n = 143), and SMD with memory concerns (n = 136). RESULTS Only 16.6% of participants reported discussing cognition with a healthcare provider. Of the remaining 83.4%, approximately two-thirds would be open to such discussions in certain circumstances, most frequently if they had worsening memory problems. Over half of participants reported that their provider had never offered cognitive testing. Compared to the no SMD and SMD without memory concerns groups, participants reporting SMD with memory concerns were more likely to: (1) discuss cognition if their healthcare provider initiated the conversation, and (2) avoid discussions of cognitive problems due to fears of losing independence. CONCLUSIONS We found that most participants, including those reporting SMD with memory concerns, had never discussed cognition with their healthcare providers. Patient-reported barriers and facilitators to communication about cognition differed in several areas based on SMD status and the presence or absence of memory concerns. Consideration of these differences can guide future efforts to improve early identification of subtle cognitive changes that would benefit from further monitoring or intervention.
Collapse
Affiliation(s)
- Nikki L Hill
- Ross and Carol Nese College of Nursing, Penn State University, 201 Nursing Sciences Building, University Park, PA, 16802, USA.
| | - Emily Bratlee-Whitaker
- RTI Health Solutions, 3040 East Cornwallis Road, PO Box 12194, Research Triangle Park, NC, 27709, USA
| | - Heejung Jang
- Department of Psychology, Clemson University, 418 Brackett Hall, Clemson, SC, 29634, USA
| | - Sakshi Bhargava
- RTI Health Solutions, 3040 East Cornwallis Road, PO Box 12194, Research Triangle Park, NC, 27709, USA
| | - Andrea Yevchak Sillner
- Ross and Carol Nese College of Nursing, Penn State University, 201 Nursing Sciences Building, University Park, PA, 16802, USA
| | - Justin Do
- Sidney Kimmel Medical College, 1025 Walnut St, Philadelphia, PA, 19107, USA
| | - Jacqueline Mogle
- Department of Psychology, Clemson University, 418 Brackett Hall, Clemson, SC, 29634, USA
| |
Collapse
|
36
|
Lapo Pais M, Jorge L, Martins R, Canário N, Xavier AC, Bernardes R, Abrunhosa A, Santana I, Castelo-Branco M. Textural properties of microglial activation in Alzheimer's disease as measured by (R)-[ 11C]PK11195 PET. Brain Commun 2023; 5:fcad148. [PMID: 37229217 PMCID: PMC10205176 DOI: 10.1093/braincomms/fcad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/10/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia worldwide, accounting for 60-70% of diagnosed cases. According to the current understanding of molecular pathogenesis, the main hallmarks of this disease are the abnormal accumulation of amyloid plaques and neurofibrillary tangles. Therefore, biomarkers reflecting these underlying biological mechanisms are recognized as valid tools for an early diagnosis of Alzheimer's disease. Inflammatory mechanisms, such as microglial activation, are known to be involved in Alzheimer's disease onset and progression. This activated state of the microglia is associated with increased expression of the translocator protein 18 kDa. On that account, PET tracers capable of measuring this signature, such as (R)-[11C]PK11195, might be instrumental in assessing the state and evolution of Alzheimer's disease. This study aims to investigate the potential of Gray Level Co-occurrence Matrix-based textural parameters as an alternative to conventional quantification using kinetic models in (R)-[11C]PK11195 PET images. To achieve this goal, kinetic and textural parameters were computed on (R)-[11C]PK11195 PET images of 19 patients with an early diagnosis of Alzheimer's disease and 21 healthy controls and submitted separately to classification using a linear support vector machine. The classifier built using the textural parameters showed no inferior performance compared to the classical kinetic approach, yielding a slightly larger classification accuracy (accuracy of 0.7000, sensitivity of 0.6957, specificity of 0.7059 and balanced accuracy of 0.6967). In conclusion, our results support the notion that textural parameters may be an alternative to conventional quantification using kinetic models in (R)-[11C]PK11195 PET images. The proposed quantification method makes it possible to use simpler scanning procedures, which increase patient comfort and convenience. We further speculate that textural parameters may also provide an alternative to kinetic analysis in (R)-[11C]PK11195 PET neuroimaging studies involving other neurodegenerative disorders. Finally, we recognize that the potential role of this tracer is not in diagnosis but rather in the assessment and progression of the diffuse and dynamic distribution of inflammatory cell density in this disorder as a promising therapeutic target.
Collapse
Affiliation(s)
- Marta Lapo Pais
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Carolina Xavier
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Bernardes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Antero Abrunhosa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Santana
- Clinical Academic Centre of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Neurology, Coimbra University Hospital, 3000-076 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Correspondence to: Dr Miguel Castelo-Branco ICNAS/CIBIT, Pólo das Ciências da Saúde da Universidade de Coimbra Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal E-mail:
| |
Collapse
|
37
|
Fitzgerald GS, Chuchta TG, McNay EC. Insulin‐like growth factor‐2 is a promising candidate for the treatment and prevention of Alzheimer's disease. CNS Neurosci Ther 2023; 29:1449-1469. [PMID: 36971212 PMCID: PMC10173726 DOI: 10.1111/cns.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Current AD treatments slow the rate of cognitive decline, but do not restore lost function. One reason for the low efficacy of current treatments is that they fail to target neurotrophic processes, which are thought to be essential for functional recovery. Bolstering neurotrophic processes may also be a viable strategy for preventative treatment, since structural losses are thought to underlie cognitive decline in AD. The challenge of identifying presymptomatic patients who might benefit from preventative treatment means that any such treatment must meet a high standard of safety and tolerability. The neurotrophic peptide insulin-like growth factor-2 (IGF2) is a promising candidate for both treating and preventing AD-induced cognitive decline. Brain IGF2 expression declines in AD patients. In rodent models of AD, exogenous IGF2 modulates multiple aspects of AD pathology, resulting in (1) improved cognitive function; (2) stimulation of neurogenesis and synaptogenesis; and, (3) neuroprotection against cholinergic dysfunction and beta amyloid-induced neurotoxicity. Preclinical evidence suggests that IGF2 is likely to be safe and tolerable at therapeutic doses. In the preventative treatment context, the intranasal route of administration is likely to be the preferred method for achieving the therapeutic effect without risking adverse side effects. For patients already experiencing AD dementia, routes of administration that deliver IGF2 directly access the CNS may be necessary. Finally, we discuss several strategies for improving the translational validity of animal models used to study the therapeutic potential of IGF2.
Collapse
Affiliation(s)
| | | | - E C McNay
- University at Albany, Albany, New York, USA
| |
Collapse
|
38
|
Murawski A, Ramirez-Zohfeld V, Schierer A, Olvera C, Mell J, Gratch J, Brett J, Lindquist LA. Transforming a Negotiation Framework to Resolve Conflicts among Older Adults and Family Caregivers. Geriatrics (Basel) 2023; 8:36. [PMID: 36960991 PMCID: PMC10037562 DOI: 10.3390/geriatrics8020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Family caregivers of older people with Alzheimer's dementia (PWD) often need to advocate and resolve health-related conflicts (e.g., determining treatment necessity, billing errors, and home health extensions). As they deal with these health system conflicts, family caregivers experience unnecessary frustration, anxiety, and stress. The goal of this research was to apply a negotiation framework to resolve real-world family caregiver-older adult conflicts. METHODS We convened an interdisciplinary team of national community-based family caregivers, social workers, geriatricians, and negotiation experts (n = 9; Illinois, Florida, New York, and California) to examine the applicability of negotiation and conflict management frameworks to three older adult-caregiver conflicts (i.e., caregiver-older adult, caregiver-provider, and caregiver-caregiver). The panel of caregivers provided scenarios and dialogue describing conflicts they experienced in these three settings. A qualitative analysis was then performed grouping the responses into a framework matrix. RESULTS Upon presenting the three conflicts to the caregivers, 96 responses (caregiver-senior), 75 responses (caregiver-caregiver), and 80 responses (caregiver-provider) were generated. A thematic analysis showed that the statements and responses fit the interest-rights-power (IRP) negotiation framework. DISCUSSION The interests-rights-power (IRP) framework, used in business negotiations, provided insight into how caregivers experienced conflict with older adults, providers, and other caregivers. Future research is needed to examine applying the IRP framework in the training of caregivers of older people with Alzheimer's dementia.
Collapse
Affiliation(s)
- Alaine Murawski
- Division of Geriatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Vanessa Ramirez-Zohfeld
- Division of Geriatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Allison Schierer
- Division of Geriatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Charles Olvera
- Division of Geriatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Johnathan Mell
- School of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jonathan Gratch
- Institute of Creative Technologies, University of Southern California, Los Angeles, CA 90007, USA
| | - Jeanne Brett
- Kellogg School of Business, Northwestern University, Evanston, IL 60208, USA
| | - Lee A. Lindquist
- Division of Geriatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
39
|
Bernhardt AM, Tiedt S, Teupser D, Dichgans M, Meyer B, Gempt J, Kuhn PH, Simons M, Palleis C, Weidinger E, Nübling G, Holdt L, Hönikl L, Gasperi C, Giesbertz P, Müller SA, Breimann S, Lichtenthaler SF, Kuster B, Mann M, Imhof A, Barth T, Hauck SM, Zetterberg H, Otto M, Weichert W, Hemmer B, Levin J. A unified classification approach rating clinical utility of protein biomarkers across neurologic diseases. EBioMedicine 2023; 89:104456. [PMID: 36745974 PMCID: PMC9931915 DOI: 10.1016/j.ebiom.2023.104456] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
A major evolution from purely clinical diagnoses to biomarker supported clinical diagnosing has been occurring over the past years in neurology. High-throughput methods, such as next-generation sequencing and mass spectrometry-based proteomics along with improved neuroimaging methods, are accelerating this development. This calls for a consensus framework that is broadly applicable and provides a spot-on overview of the clinical validity of novel biomarkers. We propose a harmonized terminology and a uniform concept that stratifies biomarkers according to clinical context of use and evidence levels, adapted from existing frameworks in oncology with a strong focus on (epi)genetic markers and treatment context. We demonstrate that this framework allows for a consistent assessment of clinical validity across disease entities and that sufficient evidence for many clinical applications of protein biomarkers is lacking. Our framework may help to identify promising biomarker candidates and classify their applications by clinical context, aiming for routine clinical use of (protein) biomarkers in neurology.
Collapse
Affiliation(s)
- Alexander M Bernhardt
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Germany
| | - Steffen Tiedt
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Martin Dichgans
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases, Site Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany; Institute of Neuronal Cell Biology, Technical University Munich, 80802, Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Endy Weidinger
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lisa Hönikl
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christiane Gasperi
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Pieter Giesbertz
- German Center for Neurodegenerative Diseases, Site Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases, Site Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Breimann
- German Center for Neurodegenerative Diseases, Site Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases, Site Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; German Cancer Consortium (DKTK), Munich Partner Site, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Großhaderner Straße 9, 82152, Martinsried, Germany
| | - Teresa Barth
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Großhaderner Straße 9, 82152, Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Centre Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Markus Otto
- Department of Neurology, Halle University Hospital, Martin Luther University Halle/Wittenberg, Saale, Germany
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Bernhard Hemmer
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
40
|
Mavragani A, Michels L, Schmidt A, Barinka F, de Bruin ED. Effectiveness of an Individualized Exergame-Based Motor-Cognitive Training Concept Targeted to Improve Cognitive Functioning in Older Adults With Mild Neurocognitive Disorder: Study Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2023; 12:e41173. [PMID: 36745483 PMCID: PMC9941909 DOI: 10.2196/41173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Simultaneous motor-cognitive training is considered promising for preventing the decline in cognitive functioning in older adults with mild neurocognitive disorder (mNCD) and can be highly motivating when applied in the form of exergaming. The literature points to opportunities for improvement in the application of exergames in individuals with mNCD by developing novel exergames and exergame-based training concepts that are specifically tailored to patients with mNCD and ensuring the implementation of effective training components. OBJECTIVE This study systematically explores the effectiveness of a newly developed exergame-based motor-cognitive training concept (called "Brain-IT") targeted to improve cognitive functioning in older adults with mNCD. METHODS A 2-arm, parallel-group, single-blinded randomized controlled trial with a 1:1 allocation ratio (ie, intervention: control), including 34 to 40 older adults with mNCD will be conducted between May 2022 and December 2023. The control group will proceed with the usual care provided by the (memory) clinics where the patients are recruited. The intervention group will perform a 12-week training intervention according to the "Brain-IT" training concept, in addition to usual care. Global cognitive functioning will be assessed as the primary outcome. As secondary outcomes, domain-specific cognitive functioning, brain structure and function, spatiotemporal parameters of gait, instrumental activities of daily living, psychosocial factors, and resting cardiac vagal modulation will be assessed. Pre- and postintervention measurements will take place within 2 weeks before starting and after completing the intervention. A 2-way analysis of covariance or the Quade nonparametric analysis of covariance will be computed for all primary and secondary outcomes, with the premeasurement value as a covariate for the predicting group factor and the postmeasurement value as the outcome variable. To determine whether the effects are substantive, partial eta-squared (η2p) effect sizes will be calculated for all primary and secondary outcomes. RESULTS Upon the initial submission of this study protocol, 13 patients were contacted by the study team. Four patients were included in the study, 2 were excluded because they were not eligible, and 7 were being informed about the study in detail. Of the 4 included patients, 2 already completed all premeasurements and were in week 2 of the intervention period. Data collection is expected to be completed by December 2023. A manuscript of the results will be submitted for publication in a peer-reviewed open-access journal in 2024. CONCLUSIONS This study contributes to the evidence base in the highly relevant area of preventing disability because of cognitive impairment, which has been declared a public health priority by the World Health Organization. TRIAL REGISTRATION ClinicalTrials.gov NCT05387057; https://clinicaltrials.gov/ct2/show/NCT05387057. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/41173.
Collapse
Affiliation(s)
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - André Schmidt
- Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Filip Barinka
- Clinic for Neurology, Hirslanden Hospital Zurich, Zurich, Switzerland
| | - Eling D de Bruin
- Motor Control and Learning Group - Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.,Department of Health, OST - Eastern Swiss University of Applied Sciences, St. Gallen, Switzerland
| |
Collapse
|
41
|
Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P, Rossini PM, Ferretti MT, Lanman L, Chadha AS, van der Flier WM. Global estimates on the number of persons across the Alzheimer's disease continuum. Alzheimers Dement 2023; 19:658-670. [PMID: 35652476 DOI: 10.1002/alz.12694] [Citation(s) in RCA: 215] [Impact Index Per Article: 215.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Global estimates on numbers of persons in early stages of Alzheimer's disease (AD), including prodromal and preclinical, are lacking, yet are needed to inform policy decisions on preventive measures and planning for future therapies targeting AD pathology. METHODS We synthesized the literature on prevalence across the AD continuum and derived a model estimating the number of persons, stratified by 5-year age groups, sex, and disease stage (AD dementia, prodromal AD, and preclinical AD). RESULTS The global number of persons with AD dementia, prodromal AD, and preclinical AD were estimated at 32, 69, and 315 million, respectively. Together they constituted 416 million across the AD continuum, or 22% of all persons aged 50 and above. DISCUSSION Considering predementia stages, the number of persons with AD is much larger than conveyed in available literature. Our estimates are uncertain, especially for predementia stages in low- and middle-income regions where biomarker studies are missing.
Collapse
Affiliation(s)
- Anders Gustavsson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | | | | | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | - Drew Holzapfel
- CEO Initiative on Alzheimer's Disease, Philadelphia, USA
| | | | - Pierre Krolak-Salmon
- Lyon Institute for Aging, Clinical & Research Memory Center of Lyon, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Paolo M Rossini
- Faculty of Medicine of the Catholic University of the Sacred Heart, Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Rome, Italy
| | | | | | | | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Department of Epidemiology and Data Science, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Zary N, Adcock-Omlin M, de Bruin ED. Design Considerations for an Exergame-Based Training Intervention for Older Adults With Mild Neurocognitive Disorder: Qualitative Study Including Focus Groups With Experts and Health Care Professionals and Individual Semistructured In-depth Patient Interviews. JMIR Serious Games 2023; 11:e37616. [PMID: 36602851 PMCID: PMC9853342 DOI: 10.2196/37616] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/28/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Exergames have attracted growing interest in the prevention and treatment of neurocognitive disorders. The most effective exergame and training components (ie, exercise and training variables such as frequency, intensity, duration, or volume of training and type and content of specific exergame scenarios) however remain to be established for older adults with mild neurocognitive disorders (mNCDs). Regarding the design and development of novel exergame-based training concepts, it seems of crucial importance to explicitly include the intended users' perspective by adopting an interactive and participatory design that includes end users throughout different iterative cycles of development. OBJECTIVE This study aimed to determine the capabilities, treatment preferences, and motivators for the training of older adults with mNCD and the perspectives of individuals on training goals and settings and requirements for exergame and training components. METHODS A qualitative study including expert focus groups and individual semistructured in-depth patient interviews was conducted. Data were transcribed to a written format to perform qualitative content analysis using QCAmap software. RESULTS In total, 10 experts and health care professionals (80% females) and 8 older adults with mNCD (38% females; mean age 82.4, SD 6.2 years) were recruited until data saturation was observed. CONCLUSIONS The psychosocial consequences of patients' self-perceived cognitive deterioration might be more burdensome than the cognitive changes themselves. Older adults with mNCD prefer integrative forms of training (such as exergaming) and are primarily motivated by enjoyment or fun in exercising and the effectiveness of the training. Putting the synthesized perspectives of training goals, settings, and requirements for exergames and training components into context, our considerations point to opportunities for improvement in research and rehabilitation, either by adapting existing exergames to patients with mNCDs or by developing novel exergames and exergame-based training concepts specifically tailored to meet patient requirements and needs.
Collapse
Affiliation(s)
| | - Manuela Adcock-Omlin
- Motor Control and Learning Group - Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Eling D de Bruin
- Motor Control and Learning Group - Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Health, OST - Eastern Swiss University of Applied Sciences, St.Gallen, Switzerland
| |
Collapse
|
43
|
Lee J, Kim J, Park A, Hong RK, Ko M, Heo M, Kim H, Chung JY. Efficacy of a Mobile-Based Multidomain Intervention to Improve Cognitive Function and Health-Related Outcomes Among Older Korean Adults with Subjective Cognitive Decline. J Alzheimers Dis 2023; 93:1551-1562. [PMID: 37212108 PMCID: PMC10357136 DOI: 10.3233/jad-221299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Subjective cognitive decline (SCD) is a self-reported experience of declining cognitive function showing normal performance in cognitive assessments, which is a known risk factor for dementia. Recent studies highlight the importance of nonpharmacological multidomain interventions that can target multiple risk factors of dementia in older adults. OBJECTIVE This study investigated the efficacy of the Silvia program, a mobile-based multidomain intervention, to improve cognitive function and health-related outcomes of older adults with SCD. We compare its effects to a conventional paper-based multidomain program on various health indicators related to risk factors of dementia. METHODS This prospective randomized controlled trial involved 77 older adults with SCD recruited from the Dementia Prevention and Management Center in Gwangju, South Korea during May to October 2022. Participants were randomly assigned to either the mobile- or paper-based group. Interventions were administered for 12 weeks, where pre- and post-assessments were conducted. RESULTS The K-RBANS total score did not show significant differences between groups. The mobile group showed better improvement in K-PRMQ scores and PSS scores than the paper group. Differences within groups showed that mobile-based interventions significantly improved K-PRMQ, STAI-X-1, PSS, and EQ-5D-5 L scores, while paper-based interventions significantly improved PSS, and EQ-5D-5 L scores. Patient adherence rate was 76.6%. CONCLUSION Overall, the Silvia program was effective for improving self-reported memory failures, stress, anxiety, and health-related quality of life in older adults with SCD. However, longer periods of administration for more than 12 weeks may be needed to achieve significant improvements in cognitive function by objective measures.
Collapse
Affiliation(s)
| | | | | | | | | | - Mina Heo
- Gwangju Alzheimer’s Disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, South Korea
| | - Hoowon Kim
- Department of Neurology, School of Medicine, Chosun University, Chosun University Hospital, Gwangju, South Korea
| | - Ji Yeon Chung
- Department of Neurology, School of Medicine, Chosun University, Chosun University Hospital, Gwangju, South Korea
| |
Collapse
|
44
|
Rasheed A, Zaheer AB, Munawwar A, Sarfraz Z, Sarfraz A, Robles-Velasco K, Cherrez-Ojeda I. The Allosteric Antagonist of the Sigma-2 Receptors-Elayta (CT1812) as a Therapeutic Candidate for Mild to Moderate Alzheimer's Disease: A Scoping Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010001. [PMID: 36675950 PMCID: PMC9866790 DOI: 10.3390/life13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Nearly 35 million people worldwide live with Alzheimer's disease (AD). The prevalence of the disease is expected to rise two-fold by 2050. With only symptomatic treatment options available, it is essential to understand the developments and existing evidence that aims to target brain pathology and dementia outcomes. This scoping systematic review aimed to collate existing evidence of CT1812 for use in patients with AD and summarize the methodologies of ongoing trials. Adhering to PRISMA Statement 2020 guidelines, PubMed/MEDLINE, Embase, Cochrane, and ClinicalTrials.gov were systematically searched through up to 15 November 2022 by applying the following keywords: CT1812, Alzheimer's disease, dementia, and/or sigma-2 receptor. Three completed clinical trials were included along with three ongoing records of clinical trials. The three completed trials were in Phases I and II of testing. The sample size across all three trials was 135. CT1812 reached endpoints across the trials and obtained a maximum concentration in the cerebrospinal fluid with 97-98% receptor occupancy. The findings of this systematic review must be used with caution as the results, while mostly favorable so far, must be replicated in higher-powered, placebo-controlled Phase II-III trials.
Collapse
Affiliation(s)
- Anum Rasheed
- Department of Research, Services Institute of Medical Sciences, Lahore 54000, Pakistan
| | - Ahmad Bin Zaheer
- Department of Research, Al Nafees Medical College and Hospital, Isra University, Islamabad 44000, Pakistan
| | - Aqsa Munawwar
- Department of Research, Services Institute of Medical Sciences, Lahore 54000, Pakistan
| | - Zouina Sarfraz
- Department of Research and Publications, Fatima Jinnah Medical University, Lahore 54000, Pakistan
- Correspondence: (Z.S.); (I.C.-O.)
| | - Azza Sarfraz
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi 74000, Pakistan
| | - Karla Robles-Velasco
- Department of Allergy, Immunology & Pulmonary Medicine, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Ivan Cherrez-Ojeda
- Department of Allergy, Immunology & Pulmonary Medicine, Universidad Espíritu Santo, Samborondón 092301, Ecuador
- Correspondence: (Z.S.); (I.C.-O.)
| |
Collapse
|
45
|
Emery DC, Davies M, Cerajewska TL, Taylor J, Hazell M, Paterson A, Allen-Birt SJ, West NX. High resolution 16S rRNA gene Next Generation Sequencing study of brain areas associated with Alzheimer's and Parkinson's disease. Front Aging Neurosci 2022; 14:1026260. [PMID: 36570533 PMCID: PMC9780557 DOI: 10.3389/fnagi.2022.1026260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Alzheimer's (AD) and Parkinson's disease (PD) are neurodegenerative conditions characterized by incremental deposition of β-amyloid (Aβ) and α-synuclein in AD and PD brain, respectively, in relatively conserved patterns. Both are associated with neuroinflammation, with a proposed microbial component for disease initiation and/or progression. Notably, Aβ and α-synuclein have been shown to possess antimicrobial properties. There is evidence for bacterial presence within the brain, including the oral pathobiont Porphyromonas gingivalis, with cognitive impairment and brain pathology being linked to periodontal (gum) disease and gut dysbiosis. Methods Here, we use high resolution 16S rRNA PCR-based Next Generation Sequencing (16SNGS) to characterize bacterial composition in brain areas associated with the early, intermediate and late-stage of the diseases. Results and discussion This study reveals the widespread presence of bacteria in areas of the brain associated with AD and PD pathology, with distinctly different bacterial profiles in blood and brain. Brain area profiles were overall somewhat similar, predominantly oral, with some bacteria subgingival and oronasal in origin, and relatively comparable profiles in AD and PD brain. However, brain areas associated with early disease development, such as the locus coeruleus, were substantially different in bacterial DNA content compared to areas affected later in disease etiology.
Collapse
Affiliation(s)
| | | | | | | | - Mae Hazell
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Alex Paterson
- School of Biological Sciences, University of Bristol Genomics Facility, Bristol, United Kingdom
| | - Shelley J. Allen-Birt
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Nicola X. West
- Bristol Dental School, Bristol, United Kingdom,*Correspondence: Nicola X. West,
| |
Collapse
|
46
|
Ma Y, Li W, Fan C, Wang Y, Jiang H, Yang W. Comprehensive Analysis of Long Non-Coding RNAs N4-Acetylcytidine in Alzheimer's Disease Mice Model Using High-Throughput Sequencing. J Alzheimers Dis 2022; 90:1659-1675. [PMID: 36314201 DOI: 10.3233/jad-220564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND N4-acetylcytidine (ac4C), an important posttranscriptional modification, is involved in various disease processes. Long noncoding RNAs (lncRNAs) regulate gene expression mainly through epigenetic modification, transcription, and posttranscriptional modification. Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloidosis of the brain. However, the role of lncRNA ac4C modification in AD remains unclear. OBJECTIVE In this study, we investigated the association between ac4C modification and AD, and the underlying mechanisms of ac4C modification in AD. METHODS The male 9-month-old APP/PS1 double transgenic mice, age- and sex-matched wild type (WT) mice were used in this study. Then, ac4C-RIP-seq and RNA-seq were used to comprehensively analyze lncRNA ac4C modification in AD mice. The lncRNA-miRNA-mRNA regulatory networks using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed the regulatory relationships among these three lncRNAs and AD. RESULTS The results showed that there were 120 significantly different ac4C peaks located on 102 lncRNAs in AD, of which 55 were hyperacetylated and 47 were hypoacetylated. Simultaneously, 231 differentially expressed lncRNAs were identified, including 138 upregulated lncRNAs and 93 downregulated lncRNAs. Moreover, 3 lncRNAs, lncRNA Gm26508, lncRNA A430046D13Rik, and lncRNA 9530059O14Rik, showed significant changes in both the ac4C and RNA levels using conjoint analysis. CONCLUSION The abundance of lncRNA ac4C modification is significantly different in AD and indicates that lncRNA ac4C is associated with the occurrence and development of AD, which could provide a basis for further exploration of the related regulatory mechanisms.
Collapse
Affiliation(s)
- Yanzhen Ma
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yongzhong Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.,Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenming Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
47
|
Jung JH, Kim G, Byun MS, Lee JH, Yi D, Park H, Lee DY. Gut microbiome alterations in preclinical Alzheimer's disease. PLoS One 2022; 17:e0278276. [PMID: 36445883 PMCID: PMC9707757 DOI: 10.1371/journal.pone.0278276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Although some human studies have reported gut microbiome changes in individuals with Alzheimer's disease (AD) dementia or mild cognitive impairment (MCI), gut microbiome alterations in preclinical AD, i.e., cerebral amyloidosis without cognitive impairment, is largely unknown. OBJECTIVE We aimed to identify gut microbial alterations associated with preclinical AD by comparing cognitively normal (CN) older adults with cerebral Aβ deposition (Aβ+ CN) and those without cerebral Aβ deposition (Aβ- CN). METHODS Seventy-eight CN older participants (18 Aβ+ CN and 60 Aβ- CN) were included, and all participants underwent clinical assessment and Pittsburg compound B-positron emission tomography. The V3-V4 region of the 16S rRNA gene of genomic DNA extracted from feces was amplified and sequenced to establish the microbial community. RESULTS Generalized linear model analysis revealed that the genera Megamonas (B = 3.399, q<0.001), Serratia (B = 3.044, q = 0.005), Leptotrichia (B = 5.862, q = 0.024) and Clostridium (family Clostridiaceae) (B = 0.788, q = 0.034) were more abundant in the Aβ+ CN group than the Aβ- CN group. In contrast, genera CF231 (B = -3.237, q< 0.001), Victivallis (B = -3.447, q = 0.004) Enterococcus (B = -2.044, q = 0.042), Mitsuokella (B = -2.119, q = 0.042) and Clostridium (family Erysipelotrichaceae) (B = -2.222, q = 0.043) were decreased in Aβ+ CN compared to Aβ- CN. Notably, the classification model including the differently abundant genera could effectively distinguish Aβ+ CN from Aβ- CN (AUC = 0.823). CONCLUSION Our findings suggest that specific alterations of gut bacterial taxa are related to preclinical AD, which means these changes may precede cognitive decline. Therefore, examining changes in the microbiome may be helpful in preclinical AD screening.
Collapse
Affiliation(s)
- Joon Hyung Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Genome and Company, Seongnam, Republic of Korea
- * E-mail: (DYL); (HP)
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
- * E-mail: (DYL); (HP)
| | | |
Collapse
|
48
|
Delbono O, Wang Z, Messi ML. Brainstem noradrenergic neurons: Identifying a hub at the intersection of cognition, motility, and skeletal muscle regulation. Acta Physiol (Oxf) 2022; 236:e13887. [PMID: 36073023 PMCID: PMC9588743 DOI: 10.1111/apha.13887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Brainstem noradrenergic neuron clusters form a node integrating efferents projecting to distinct areas such as those regulating cognition and skeletal muscle structure and function, and receive dissimilar afferents through established circuits to coordinate organismal responses to internal and environmental challenges. Genetic lineage tracing shows the remarkable heterogeneity of brainstem noradrenergic neurons, which may explain their varied functions. They project to the locus coeruleus, the primary source of noradrenaline in the brain, which supports learning and cognition. They also project to pre-ganglionic neurons, which lie within the spinal cord and form synapses onto post-ganglionic neurons. The synapse between descending brainstem noradrenergic neurons and pre-ganglionic spinal neurons, and these in turn with post-ganglionic noradrenergic neurons located at the paravertebral sympathetic ganglia, support an anatomical hierarchy that regulates skeletal muscle innervation, neuromuscular transmission, and muscle trophism. Whether any noradrenergic neuron subpopulation is more susceptible to damaged protein deposit and death with ageing and neurodegeneration is a relevant question that answer will help us to detect neurodegeneration at an early stage, establish prognosis, and anticipate disease progression. Loss of muscle mass and strength with ageing, termed sarcopenia, may predict impaired cognition with ageing and neurodegeneration and establish an early time to start interventions aimed at reducing central noradrenergic neurons hyperactivity. Complex multidisciplinary approaches, including genetic tracing, specific circuit labelling, optogenetics and chemogenetics, electrophysiology, and single-cell transcriptomics and proteomics, are required to test this hypothesis pre-clinical.
Collapse
Affiliation(s)
- Osvaldo Delbono
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Zhong‐Min Wang
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - María Laura Messi
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
49
|
Preclinical Alzheimer's dementia: a useful concept or another dead end? Eur J Ageing 2022; 19:997-1004. [PMID: 36692779 PMCID: PMC9729660 DOI: 10.1007/s10433-022-00735-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 02/01/2023] Open
Abstract
The term, preclinical dementia, was introduced in 2011 when new guidelines for the diagnosis of Alzheimer's dementia (AD) were published. In the intervening 11 years, many studies have appeared in the literature focusing on this early stage. A search conducted in English on Google Scholar on 06.23.2022 using the term "preclinical (Alzheimer's) dementia" produced 121, 000 results. However, the label is arguably more relevant for research purposes, and it is possible that the knowledge gained may lead to a cure for AD. The term has not been widely adopted by clinical practitioners. Furthermore, it is still not possible to predict who, after a diagnosis of preclinical dementia, will go on to develop AD, and if so, what the risk factors (modifiable and non-modifiable) might be. This Review/Theoretical article will focus on preclinical Alzheimer's dementia (hereafter called preclinical AD). We outline how preclinical AD is currently defined, explain how it is diagnosed and explore why this is problematic at a number of different levels. We also ask the question: Is the concept 'preclinical AD' useful in clinical practice or is it just another dead end in the Holy Grail to find a treatment for AD? Specific recommendations for research and clinical practice are provided.
Collapse
|
50
|
Zhu Z, Ma X, Wu J, Xiao Z, Wu W, Ding S, Zheng L, Liang X, Luo J, Ding D, Zhao Q. Altered Gut Microbiota and Its Clinical Relevance in Mild Cognitive Impairment and Alzheimer's Disease: Shanghai Aging Study and Shanghai Memory Study. Nutrients 2022; 14:nu14193959. [PMID: 36235612 PMCID: PMC9570603 DOI: 10.3390/nu14193959] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022] Open
Abstract
Altered gut microbiota has been reported in individuals with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Previous research has suggested that specific bacterial species might be associated with the decline of cognitive function. However, the evidence was insufficient, and the results were inconsistent. To determine whether there is an alteration of gut microbiota in patients with MCI and AD and to investigate its correlation with clinical characteristics, the fecal samples from 94 cognitively normal controls (NC), 125 participants with MCI, and 83 patients with AD were collected and analyzed by 16S ribosomal RNA sequencing. The overall microbial compositions and specific taxa were compared. The clinical relevance was analyzed. There was no significant overall difference in the alpha and beta diversity among the three groups. Patients with AD or MCI had increased bacterial taxa including Erysipelatoclostridiaceae, Erysipelotrichales, Patescibacteria, Saccharimonadales, and Saccharimonadia, compared with NC group (p < 0.05), which were positively correlated with APOE 4 carrier status and Clinical Dementia Rating (correlation coefficient: 0.11~0.31, p < 0.05), and negatively associated with memory (correlation coefficient: −0.19~−0.16, p < 0.01). Our results supported the hypothesis that intestinal microorganisms change in MCI and AD. The alteration in specific taxa correlated closely with clinical manifestations, indicating the potential role in AD pathogenesis.
Collapse
Affiliation(s)
- Zheng Zhu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoxi Ma
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhenxu Xiao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanqing Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Saineng Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Li Zheng
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianfeng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Fudan University, Shanghai 200040, China
- Correspondence:
| |
Collapse
|