1
|
Singh S, Khan S, Shahid M, Sardar M, Hassan MI, Islam A. Targeting tau in Alzheimer's and beyond: Insights into pathology and therapeutic strategies. Ageing Res Rev 2024; 104:102639. [PMID: 39674375 DOI: 10.1016/j.arr.2024.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Tauopathies encompass a group of approximately 20 neurodegenerative diseases characterized by the accumulation of the microtubule-associated protein tau in brain neurons. The pathogenesis of intracellular neurofibrillary tangles, a hallmark of tauopathies, is initiated by hyperphosphorylated tau protein isoforms that cause neuronal death and lead to diseases like Alzheimer's, Parkinson's disease, frontotemporal dementia, and other complex neurodegenerative diseases. Current applications of tau biomarkers, including imaging, cerebrospinal fluid, and blood-based assays, assist in the evaluation and diagnosis of tauopathies. Emerging research is providing various potential strategies to prevent cellular toxicity caused by tau aggregation such as: 1) suppressing toxic tau aggregation, 2) preventing post-translational modifications of tau, 3) stabilizing microtubules and 4) designing tau-directed immunogens. This review aims to discuss the role of tau in tauopathies along with neuropathological features of the different tauopathies and the new developments in treating tau aggregation with the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Sunidhi Singh
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sumaiya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Harisinghani A, Cottrell C, Donelan K, Lam AD, Pulsifer M, Santoro SL. Practicalities (and real-life experiences) of dementia in adults with Down syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2024; 196:e32098. [PMID: 38967370 DOI: 10.1002/ajmg.c.32098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
Adults with down syndrome (DS) have a lifetime dementia risk in excess of 95%, with a median age of onset of 55 years, due to trisomy 21. Co-occurring Alzheimer's disease (AD) has increased morbidity and mortality, and it is now recommended to screen for AD in all adults with DS beginning at 40 years of age. In this manuscript, we present two clinical cases of adults with DS who developed AD summarizing their medical histories, presenting symptoms, path to diagnosis and psychosocial aspects of care collected from retrospective chart review with caregiver consent. These two cases were chosen due to their complexity and interwoven nature of the medical and psychosocial aspects, and highlight the complexity and nuance of caring for patients with DS and AD.
Collapse
Affiliation(s)
- Ayesha Harisinghani
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Clorinda Cottrell
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Karen Donelan
- The Mongan Institute, Survey Research Unit, MGH, Boston, Massachusetts, USA
- Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Margaret Pulsifer
- Psychology Assessment Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie L Santoro
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Dong Y, Song X, Wang X, Wang S, He Z. The early diagnosis of Alzheimer's disease: Blood-based panel biomarker discovery by proteomics and metabolomics. CNS Neurosci Ther 2024; 30:e70060. [PMID: 39572036 PMCID: PMC11581788 DOI: 10.1111/cns.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 11/25/2024] Open
Abstract
Diagnosis and prediction of Alzheimer's disease (AD) are increasingly pressing in the early stage of the disease because the biomarker-targeted therapies may be most effective. Diagnosis of AD largely depends on the clinical symptoms of AD. Currently, cerebrospinal fluid biomarkers and neuroimaging techniques are considered for clinical detection and diagnosis. However, these clinical diagnosis results could provide indications of the middle and/or late stages of AD rather than the early stage, and another limitation is the complexity attached to limited access, cost, and perceived invasiveness. Therefore, the prediction of AD still poses immense challenges, and the development of novel biomarkers is needed for early diagnosis and urgent intervention before the onset of obvious phenotypes of AD. Blood-based biomarkers may enable earlier diagnose and aid detection and prognosis for AD because various substances in the blood are vulnerable to AD pathophysiology. The application of a systematic biological paradigm based on high-throughput techniques has demonstrated accurate alterations of molecular levels during AD onset processes, such as protein levels and metabolite levels, which may facilitate the identification of AD at an early stage. Notably, proteomics and metabolomics have been used to identify candidate biomarkers in blood for AD diagnosis. This review summarizes data on potential blood-based biomarkers identified by proteomics and metabolomics that are closest to clinical implementation and discusses the current challenges and the future work of blood-based candidates to achieve the aim of early screening for AD. We also provide an overview of early diagnosis, drug target discovery and even promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Dong
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xun Song
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xiao Wang
- Department of PharmacyShenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology)ShenzhenChina
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Health Science CenterShenzhen UniversityShenzhenChina
| | - Zhendan He
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| |
Collapse
|
4
|
Pradhan SR, Pathinti RS, Kandimalla R, Chithari K, Veeramalla N MR, Vallamkondu J. Label-free detection of Aβ-42: a liquid crystal droplet approach for Alzheimer's disease diagnosis. RSC Adv 2024; 14:12107-12118. [PMID: 38628477 PMCID: PMC11019351 DOI: 10.1039/d4ra00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
This study introduces a biosensor based on liquid crystals (LC) designed to detect the Aβ-42 biomarker, commonly associated with Alzheimer's disease. The sensor utilizes LC droplets created using a PEI/Tween-20 surfactant mixture, arranged radially in an aqueous solution. These droplets are coated with the Aβ1-16 antibody, enabling the detection of the Aβ1-42 biomarker. The key advantage of this biosensor lies in its ability to directly translate the antigen-antibody interaction into a change in the molecular orientation of the LC droplets, simplifying the detection process by removing additional procedural steps. Specifically, this immunoassay induces a transformation in the nematic droplets orientation from radial to bipolar upon successful antigen binding. When only the Aβ1-16 antibody coated the LC droplets, no change in orientation was detected, confirming the reaction's specificity. The orientation shift in the LC droplets indicates the formation of an immunocomplex between the Aβ1-16 antibody and the Aβ1-42 antigen. The LC droplet immunoassay effectively detected Aβ1-42 antigen concentrations ranging from 45 to 112.5 μM, with the Aβ1-16 antibody immobilized on the droplets at a concentration of 1 μg mL-1. These findings suggest that the LC microdroplets' orientational behavior can be harnessed to develop a biosensor for the in vivo detection of various proteins or pathogens in a PBS aqueous medium. Owing to its label-free nature and distinct optical signaling, this LC droplet-based immunoassay holds promise for further development into a cost-effective, portable diagnostic tool.
Collapse
Affiliation(s)
| | | | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College Warangal 506007 India
| | | | | | | |
Collapse
|
5
|
Colvin KL, Wolter-Warmerdam K, Hickey F, Yeager ME. Altered peripheral blood leukocyte subpopulations, function, and gene expression in children with Down syndrome: implications for respiratory tract infection. Eur J Med Genet 2024; 68:104922. [PMID: 38325643 DOI: 10.1016/j.ejmg.2024.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/12/2023] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES We tested the hypothesis that aberrant expression of Hsa21-encoded interferon genes in peripheral blood immune cells would correlate to immune cell dysfunction in children with Down syndrome (DS). STUDY DESIGN We performed flow cytometry to quantify peripheral blood leukocyte subtypes and measured their ability to migrate and phagocytose. In matched samples, we measured gene expression levels for constituents of interferon signaling pathways. We screened 49 children, of which 29 were individuals with DS. RESULTS We show that the percentages of two peripheral blood myeloid cell subtypes (alternatively-activated macrophages and low-density granulocytes) in children with DS differed significantly from typical children, children with DS circulate a very different pattern of cytokines vs. typical individuals, and higher expression levels of type III interferon receptor Interleukin-10Rb in individuals with DS correlated with reduced migratory and phagocytic capacity of macrophages. CONCLUSIONS Increased susceptibility to severe and chronic infection in children with DS may result from inappropriate numbers and subtypes of immune cells that are phenotypically and functionally altered due to trisomy 21 associated interferonopathy.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Bioengineering, University of Colorado Denver, Aurora, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, USA
| | | | - Francis Hickey
- Anna and John J. Sie Center for Down Syndrome, Children's Hospital Colorado, Aurora, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, USA
| | - Michael E Yeager
- Department of Bioengineering, University of Colorado Denver, Aurora, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, USA.
| |
Collapse
|
6
|
Sukreet S, Rafii MS, Rissman RA. From understanding to action: Exploring molecular connections of Down syndrome to Alzheimer's disease for targeted therapeutic approach. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12580. [PMID: 38623383 PMCID: PMC11016820 DOI: 10.1002/dad2.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Down syndrome (DS) is caused by a third copy of chromosome 21. Alzheimer's disease (AD) is a neurodegenerative condition characterized by the deposition of amyloid-beta (Aβ) plaques and neurofibrillary tangles in the brain. Both disorders have elevated Aβ, tau, dysregulated immune response, and inflammation. In people with DS, Hsa21 genes like APP and DYRK1A are overexpressed, causing an accumulation of amyloid and neurofibrillary tangles, and potentially contributing to an increased risk of AD. As a result, people with DS are a key demographic for research into AD therapeutics and prevention. The molecular links between DS and AD shed insights into the underlying causes of both diseases and highlight potential therapeutic targets. Also, using biomarkers for early diagnosis and treatment monitoring is an active area of research, and genetic screening for high-risk individuals may enable earlier intervention. Finally, the fundamental mechanistic parallels between DS and AD emphasize the necessity for continued research into effective treatments and prevention measures for DS patients at risk for AD. Genetic screening with customized therapy approaches may help the DS population in current clinical studies and future biomarkers.
Collapse
Affiliation(s)
- Sonal Sukreet
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
| | - Michael S. Rafii
- Department of Neurology, Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Robert A. Rissman
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
- Department Physiology and Neuroscience, Alzheimer’s Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
7
|
Abbatecola AM, Giuliani A, Biscetti L, Scisciola L, Battista P, Barbieri M, Sabbatinelli J, Olivieri F. Circulating biomarkers of inflammaging and Alzheimer's disease to track age-related trajectories of dementia: Can we develop a clinically relevant composite combination? Ageing Res Rev 2024; 96:102257. [PMID: 38437884 DOI: 10.1016/j.arr.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Alzheimer's disease (AD) is a rapidly growing global concern due to a consistent rise of the prevalence of dementia which is mainly caused by the aging population worldwide. An early diagnosis of AD remains important as interventions are plausibly more effective when started at the earliest stages. Recent developments in clinical research have focused on the use of blood-based biomarkers for improve diagnosis/prognosis of neurodegenerative diseases, particularly AD. Unlike invasive cerebrospinal fluid tests, circulating biomarkers are less invasive and will become increasingly cheaper and simple to use in larger number of patients with mild symptoms or at risk of dementia. In addition to AD-specific markers, there is growing interest in biomarkers of inflammaging/neuro-inflammaging, an age-related chronic low-grade inflammatory condition increasingly recognized as one of the main risk factor for almost all age-related diseases, including AD. Several inflammatory markers have been associated with cognitive performance and AD development and progression. The presence of senescent cells, a key driver of inflammaging, has also been linked to AD pathogenesis, and senolytic therapy is emerging as a potential treatment strategy. Here, we describe blood-based biomarkers clinically relevant for AD diagnosis/prognosis and biomarkers of inflammaging associated with AD. Through a systematic review approach, we propose that a combination of circulating neurodegeneration and inflammatory biomarkers may contribute to improving early diagnosis and prognosis, as well as providing valuable insights into the trajectory of cognitive decline and dementia in the aging population.
Collapse
Affiliation(s)
- Angela Marie Abbatecola
- Alzheimer's Disease Day Clinic, Azienda Sanitaria Locale, Frosinone, Italy; Univesità degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Scienze Umane, Sociali e della Salute, Cassino, Italy
| | - Angelica Giuliani
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Bari Institute, Italy.
| | | | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Petronilla Battista
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Bari Institute, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
8
|
Stern AM, Van Pelt KL, Liu L, Anderson AK, Ostaszewski B, Mapstone M, O’Bryant S, Petersen ME, Christian BT, Handen BL, Selkoe DJ, Schmitt F, Head E. Plasma NT1-tau and Aβ 42 correlate with age and cognitive function in two large Down syndrome cohorts. Alzheimers Dement 2023; 19:5755-5764. [PMID: 37438872 PMCID: PMC10784408 DOI: 10.1002/alz.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION People with Down syndrome (DS) often develop Alzheimer's disease (AD). Here, we asked whether ultrasensitive plasma immunoassays for a tau N-terminal fragment (NT1-tau) and Aβ isoforms predict cognitive impairment. METHODS Plasma NT1-tau, Aβ37 , Aβ40 , and Aβ42 levels were measured in a longitudinal discovery cohort (N = 85 participants, 220 samples) and a cross-sectional validation cohort (N = 239). We developed linear models and predicted values in the validation cohort. RESULTS Discovery cohort linear mixed models for NT1-tau, Aβ42 , and Aβ37:42 were significant for age; there was no main effect of time. In cross-sectional models, NT1-tau increased and Aβ42 decreased with age. NT1-tau predicted cognitive and functional scores. The discovery cohort linear model for NT1-tau predicted levels in the validation cohort. DISCUSSION NT1-tau correlates with age and worse cognition in DS. Further validation of NT1-tau and other plasma biomarkers of AD neuropathology in DS cohorts is important for clinical utility.
Collapse
Affiliation(s)
- Andrew M. Stern
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Kathryn L. Van Pelt
- Sanders-Brown Center for Aging, Department of Neurology, University of Kentucky, Lexington, KY 40508
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Amirah K. Anderson
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Beth Ostaszewski
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA 92868
| | - Sid O’Bryant
- University of North Texas Health Science Center, Fort Worth, TX 76107
| | | | | | - Benjamin L. Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - Dennis J. Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Frederick Schmitt
- Sanders-Brown Center for Aging, Department of Neurology, University of Kentucky, Lexington, KY 40508
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697
| | | |
Collapse
|
9
|
Colvin KL, Elliott RJ, Goodman DM, Harral J, Barrett EG, Yeager ME. Increased lethality of respiratory infection by Streptococcus pneumoniae in the Dp16 mouse model of Down syndrome. FASEB Bioadv 2023; 5:528-540. [PMID: 38094158 PMCID: PMC10714064 DOI: 10.1096/fba.2023-00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2024] Open
Abstract
Objectives We sought to investigate whether the Dp16 mouse model of Down syndrome (DS) is more susceptible to severe and lethal respiratory tract infection by Streptococcus pneumoniae. Study Design We infected controls and Dp16 mice with Streptococcus pneumoniae and measured survival rates. We compared cytokine production by primary lung cell cultures exposed to Streptococcus pneumoniae. We examined lung protein expression for interferon signaling related pathways. We characterized the histopathology and quantified the extent of bronchus-associated lymphoid tissue. Finally, we examined mouse tissues for the presence of oligomeric tau protein. Results We found that the Dp16 mouse model of DS displayed significantly higher susceptibility to lethal respiratory infection with Streptococcus pneumoniae compared to control mice. Lung cells cultured from Dp16 mice displayed unique secreted cytokine profiles compared to control mice. The Dp16 mouse lungs were characterized by profound lobar pneumonia with massive diffuse consolidation involving nearly the entire lobe. Marked red hepatization was noted, and Dp16 mice lungs contained numerous bronchus-associated lymphoid tissues that were highly follicularized. Compared to uninfected mice, both control mice and Dp16 mice infected with Streptococcus pneumoniae showed evidence of oligomeric tau aggregates. Conclusions Increased susceptibility to severe respiratory tract infection with Streptococcus pneumoniae in Dp16 mice closely phenocopies infection in individuals with DS. The increase does not appear to be linked to overexpression of mouse interferon genes syntenic to human chromosome 21.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Bioengineering University of Colorado Aurora Colorado USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Aurora Colorado USA
- University of Colorado Denver Health Sciences Aurora Colorado USA
| | - Robert J Elliott
- Department of Bioengineering University of Colorado Aurora Colorado USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Aurora Colorado USA
- University of Colorado Denver Health Sciences Aurora Colorado USA
| | - Desiree M Goodman
- Linda Crnic Institute for Down Syndrome, University of Colorado Aurora Colorado USA
- University of Colorado Denver Health Sciences Aurora Colorado USA
| | - Julie Harral
- University of Colorado Denver Health Sciences Aurora Colorado USA
- Department of Medicine University of Colorado Aurora Colorado USA
| | - Edward G Barrett
- Lovelace Biomedical Research Institute Albuquerque New Mexico USA
| | - Michael E Yeager
- Department of Bioengineering University of Colorado Aurora Colorado USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Aurora Colorado USA
- University of Colorado Denver Health Sciences Aurora Colorado USA
| |
Collapse
|
10
|
Stern AM, Van Pelt KL, Liu L, Anderson AK, Ostaszewski B, Mapstone M, O'Bryant S, Petersen ME, Christian BT, Handen BL, Selkoe DJ, Schmitt F, Head E. Plasma NT1-tau and Aβ 42 correlate with age and cognitive function in two large Down syndrome cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.10.23287109. [PMID: 36945447 PMCID: PMC10029060 DOI: 10.1101/2023.03.10.23287109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Introduction People with Down syndrome (DS) often develop Alzheimer disease (AD). Here we asked whether ultrasensitive plasma immunoassays for a tau N-terminal fragment (NT1-tau) and Aβ isoforms predict cognitive impairment. Methods Plasma NT1-tau, Aβ 37 , Aβ 40 , and Aβ 42 levels were measured in a longitudinal discovery cohort (N = 85 participants, 220 samples) and a cross-sectional validation cohort (N = 239). We developed linear models and predicted values in the validation cohort. Results Linear mixed models for NT1-tau, Aβ 42, and Aβ 37:42 were significant for age, there was no main effect of time in the discovery cohort. In cross-sectional models, NT1-tau and Aβ 42 increased with age. NT1-tau predicted DLD scores. The discovery cohort linear model for NT1-tau predicted NT1-tau levels in the validation cohort. Discussion NT1-tau correlates with age and worse cognition in DS. Further validation of NT1-tau and other plasma biomarkers of AD neuropathology in DS cohorts is important for clinical utility.
Collapse
|
11
|
Gu L, Shu H, Wang Y, Wang P. Blood Neurofilament Light Chain in Different Types of Dementia. Curr Alzheimer Res 2023; 20:149-160. [PMID: 37264656 DOI: 10.2174/1567205020666230601123123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 06/03/2023]
Abstract
AIMS The study aimed to evaluate diagnostic values of circulating neurofilament light chain (NFL) levels in different types of dementia. BACKGROUND Previous studies reported inconsistent change of blood NFL for different types of dementia, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Parkinson's disease dementia (PDD) and Creutzfeldt-Jakob disease (CJD) and Lewy body dementia (LBD). OBJECTIVE Meta-analysis was conducted to summarize the results of studies evaluating diagnostic values of circulating NFL levels in different types of dementia to enhance the strength of evidence. METHODS Articles evaluating change in blood NFL levels in dementia and published before July 2022 were searched on the following databases (PubMed, Web of Science, EMBASE, Medline and Google Scholar). The computed results were obtained by using STATA 12.0 software. RESULTS AD patients showed increased NFL concentrations in serum and plasma, compared to healthy controls (HC) (standard mean difference (SMD) = 1.09, 95% confidence interval (CI): 0.48, 1.70, I2 = 97.4%, p < 0.001). In AD patients, higher NFL concentrations in serum and plasma were associated with reduced cerebrospinal fluid (CSF) Aβ1-42, increased CSF t-tau, increased CSF p-tau, reduced Mini-Mental State Examination (MMSE) and decreased memory. Additionally, mild cognitive impairment (MCI) showed elevated NFL concentrations in serum and plasma, compared to HC (SMD = 0.53, 95% CI: 0.18, 0.87, I2 = 93.8%, p < 0.001). However, in MCI, no significant association was found between NFL concentrations in serum, plasma and memory or visuospatial function. No significant difference was found between preclinical AD and HC (SMD = 0.18, 95% CI: -0.10, 0.47, I2 = 0.0%, p = 0.438). FTD patients showed increased NFL concentrations in serum and plasma, compared to HC (SMD = 1.08, 95% CI: 0.72, 1.43, I2 = 83.3%, p < 0.001). Higher NFL concentrations in serum and plasma were associated with increased CSF NFL in FTD. Additionally, the pooled parameters calculated were as follows: sensitivity, 0.82 (95% CI: 0.72, 0.90); specificity, 0.91 (95% CI: 0.83, 0.96). CJD patients showed increased NFL concentrations in serum and plasma, compared to HC. No significant difference in NFL level in serum and plasma was shown between AD and FTD (SMD = -0.03, 95% CI: -0.77, 0.72, I2 = 83.3%, p = 0.003). CONCLUSION In conclusion, the study suggested abnormal blood NFL level in AD and MCI, but not in preclinical AD. FTD and CJD showed abnormal blood NFL levels.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, 300222, Tianjin, China
| | - Hao Shu
- Department of Neurology, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, Jiangsu, China
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, 300222, Tianjin, China
| |
Collapse
|
12
|
Huang Z, Li M, Zhang L, Liu Y. Electrochemical immunosensor based on superwettable microdroplet array for detecting multiple Alzheimer's disease biomarkers. Front Bioeng Biotechnol 2022; 10:1029428. [PMID: 36329700 PMCID: PMC9622762 DOI: 10.3389/fbioe.2022.1029428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease caused by neurons damage in the brain, and it poses a serious threat to human life and health. No efficient treatment is available, but early diagnosis, discovery, and intervention are still crucial, effective strategies. In this study, an electrochemical sensing platform based on a superwettable microdroplet array was developed to detect multiple AD biomarkers containing Aβ40, Aβ42, T-tau, and P-tau181 of blood. The platform integrated a superwettable substrate based on nanoAu-modified vertical graphene (VG@Au) into a working electrode, which was mainly used for droplet sample anchoring and electrochemical signal generation. In addition, an electrochemical micro-workstation was used for signals conditioning. This superwettable electrochemical sensing platform showed high sensitivity and a low detection limit due to its excellent characteristics such as large specific surface, remarkable electrical conductivity, and good biocompatibility. The detection limit for Aβ40, Aβ42, T-tau, and P-tau181 were 0.064, 0.012, 0.039, and 0.041 pg/ml, respectively. This study provides a promising method for the early diagnosis of AD.
Collapse
Affiliation(s)
- Zhen Huang
- Longgang District Central Hospital of Shenzhen, Shenzhen, China
- Office of Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Longggang District Central Hospital, Shenzhen, China
| | - Mifang Li
- Longgang District Central Hospital of Shenzhen, Shenzhen, China
| | - Lingyan Zhang
- Longgang District Central Hospital of Shenzhen, Shenzhen, China
| | - Yibiao Liu
- Longgang District Central Hospital of Shenzhen, Shenzhen, China
- Office of Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Longggang District Central Hospital, Shenzhen, China
| |
Collapse
|
13
|
Zhang Y, Liu D, Yao X, Wen J, Wang Y, Zhang Y. DMTHB ameliorates memory impairment in Alzheimer's disease mice through regulation of neuroinflammation. Neurosci Lett 2022; 785:136770. [PMID: 35810961 DOI: 10.1016/j.neulet.2022.136770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases. Growing evidence suggested that AD is associated with neuroinflammation, characterized with the chronic activation of microglial cells and astrocytes along with the subsequent excessive generation of the proinflammatory molecules. This study aimed to investigate the effect and molecular mechanism of Demethylenetetrahydroberberine (DMTHB) on Alzheimer's disease (AD). METHODS AD mice model were made by intracranial injection of Aβ25-35. DMTHB (50 mg/kg or 150 mg/kg) was intragastrically administered every day for three weeks. Morris water maze (MWM) was applied to evaluate the capacity of learning and memory of mice. Pathological change and neuronal death were detected by HE staining Moreover, the expressions of NLRP3, ASC, Caspase 1, IL-6, IL-1β, TNF-α and Tau in the brain tissue were measured by qRT-PCR and western blot. RESULTS Our results showed that the cognition of AD mice was significantly improved by DMTHB administration. DMTHB inhibited the activation of the microglia and significantly reduced the expression of Iba-1 in the brains of AD mice. In addition, DMTHB effectively suppressed the activation of NLRP3 inflammasome induced by Aβ25-35. The results showed that the content of inflammatory cytokine (TNF-α, IL-1β and IL-6) in the brains of AD mice were down-regulated by DMTHB treatment. More importantly, DMTHB treatment significantly alleviated hippocampus neuron deformation and apoptosis. CONCLUSION These results indicated that DMTHB could be a potential medicine against AD through regulation of neuroinflammation.
Collapse
Affiliation(s)
- Yuanqiang Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Dongqing Liu
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Xutao Yao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Jing Wen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China; Affitiated Hospital of Nantong University, Nantong, China
| | - Yuhang Wang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
14
|
Morsiani C, Bacalini MG, Collura S, Moreno-Villanueva M, Breusing N, Bürkle A, Grune T, Franceschi C, De Eguileor M, Capri M. Blood circulating miR-28-5p and let-7d-5p associate with premature ageing in Down Syndrome. Mech Ageing Dev 2022; 206:111691. [PMID: 35780970 DOI: 10.1016/j.mad.2022.111691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 12/27/2022]
Abstract
Persons with Down Syndrome (DS) undergo a premature ageing with early onset of age-related diseases. The main endpoint of this study was the identification of blood circulating microRNAs (c-miRs) signatures characterizing DS ageing process. A discovery phase based on array was performed in plasma samples obtained from 3 young (31±2 years-old) and 3 elderly DS persons (66±2 years-old). Then, a validation phase was carried out for relevant miRs by RT-qPCR in an enlarged cohort of 43 DS individuals (from 19 up to 68 years-old). A group of 30 non-trisomic subjects, as representative of physiological ageing, was compared. In particular miR-628-5p, miR-152-3p, miR-28-5p, and let-7d-5p showed a lower level in younger DS persons (age ≤ 50 years) respect to the age-matched controls. Among those, miR-28-5p and let-7d-5p were found significantly decreased in physiological ageing (control group with age threshold of 50 years), thus they emerged as possible biomarkers of premature ageing in DS. Moreover, measuring blood levels of beta amyloid peptides, Aβ-42 was assessed at the lowest levels in physiological ageing and correlated with miR-28-5p and let-7d-5p in DS, while Aβ-40 correlated with miR-628-5p in the same cohort. New perspectives in terms of biomarkers are discussed.
Collapse
Affiliation(s)
- Cristina Morsiani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy.
| | | | - Salvatore Collura
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Magda De Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Miriam Capri
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Italy
| |
Collapse
|
15
|
Farrell C, Mumford P, Wiseman FK. Rodent Modeling of Alzheimer's Disease in Down Syndrome: In vivo and ex vivo Approaches. Front Neurosci 2022; 16:909669. [PMID: 35747206 PMCID: PMC9209729 DOI: 10.3389/fnins.2022.909669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
There are an estimated 6 million people with Down syndrome (DS) worldwide. In developed countries, the vast majority of these individuals will develop Alzheimer's disease neuropathology characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles within the brain, which leads to the early onset of dementia (AD-DS) and reduced life-expectancy. The mean age of onset of clinical dementia is ~55 years and by the age of 80, approaching 100% of individuals with DS will have a dementia diagnosis. DS is caused by trisomy of chromosome 21 (Hsa21) thus an additional copy of a gene(s) on the chromosome must cause the development of AD neuropathology and dementia. Indeed, triplication of the gene APP which encodes the amyloid precursor protein is sufficient and necessary for early onset AD (EOAD), both in people who have and do not have DS. However, triplication of other genes on Hsa21 leads to profound differences in neurodevelopment resulting in intellectual disability, elevated incidence of epilepsy and perturbations to the immune system. This different biology may impact on how AD neuropathology and dementia develops in people who have DS. Indeed, genes on Hsa21 other than APP when in three-copies can modulate AD-pathogenesis in mouse preclinical models. Understanding this biology better is critical to inform drug selection for AD prevention and therapy trials for people who have DS. Here we will review rodent preclinical models of AD-DS and how these can be used for both in vivo and ex vivo (cultured cells and organotypic slice cultures) studies to understand the mechanisms that contribute to the early development of AD in people who have DS and test the utility of treatments to prevent or delay the development of disease.
Collapse
|
16
|
Sawa M, Overk C, Becker A, Derse D, Albay R, Weldy K, Salehi A, Beach TG, Doran E, Head E, Yu YE, Mobley WC. Impact of increased APP gene dose in Down syndrome and the Dp16 mouse model. Alzheimers Dement 2022; 18:1203-1234. [PMID: 34757693 PMCID: PMC9085977 DOI: 10.1002/alz.12463] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION People with Down syndrome (DS) are predisposed to Alzheimer's disease (AD). The amyloid hypothesis informs studies of AD. In AD-DS, but not sporadic AD, increased APP copy number is necessary, defining the APP gene dose hypothesis. Which amyloid precursor protein (APP) products contribute needs to be determined. METHODS Brain levels of full-length protein (fl-hAPP), C-terminal fragments (hCTFs), and amyloid beta (Aβ) peptides were measured in DS, AD-DS, non-demented controls (ND), and sporadic AD cases. The APP gene-dose hypothesis was evaluated in the Dp16 model. RESULTS DS and AD-DS differed from ND and AD for all APP products. In AD-DS, Aβ42 and Aβ40 levels exceeded AD. APP products were increased in the Dp16 model; increased APP gene dose was necessary for loss of vulnerable neurons, tau pathology, and activation of astrocytes and microglia. DISCUSSION Increases in APP products other than Aβ distinguished AD-DS from AD. Deciphering AD-DS pathogenesis necessitates deciphering which APP products contribute and how.
Collapse
Affiliation(s)
- Mariko Sawa
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Cassia Overk
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Dominique Derse
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Ricardo Albay
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Kim Weldy
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Ahmad Salehi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Thomas G. Beach
- Brain and Body Donation Program, Banner Sun Health Research Institute, Sun City, AZ 85351
| | - Eric Doran
- Department of Pediatrics, University of California, Irvine, CA, 92697
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624,Correspondence to: William Mobley M.D., Department of Neurosciences, UCSD School of Medicine, 9500 Gilman Drive, GPL 355, La Jolla, CA 92093-0624;
| |
Collapse
|
17
|
Hartley SL, Handen BL, Tudorascu D, Lee L, Cohen A, Piro‐Gambetti B, Zammit M, Klunk W, Laymon C, Zaman S, Ances BM, Sabbagh M, Christian BT. Role of tau deposition in early cognitive decline in Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12256. [PMID: 35386473 PMCID: PMC8976157 DOI: 10.1002/dad2.12256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022]
Abstract
Introduction Drawing on the amyloid/tau/neurodegeneration (AT[N]) model, the study examined whether the tau positron emission tomography (PET) biomarker [18F]AV-1451 was associated with episodic memory problems beyond what was predicted by the amyloid beta (Aβ) PET in Down syndrome (DS). Methods Data from 123 non-demented adults with DS (M = 47 years, standard deviation = 6.34) were analyzed. The Cued Recall Test assessed episodic memory. Tau PET standardized update value ratio (SUVR) was assessed across Braak regions as continuous and binary (high tau [TH] vs. low tau [TL]) variable. Global PET Aβ SUVR was assessed as binary variable (Aβ- vs. Aβ+). Results In models adjusting for controls, tau SUVR was negatively associated with episodic memory performance in the Aβ+ but not Aβ- group. The Aβ+/TH group evidenced significantly worse episodic memory than the Aβ+/TL group. Discussion Similar to late-onset and autosomal dominant Alzheimer's disease (AD), high tau was an indicator of early prodromal AD in DS.
Collapse
Affiliation(s)
- Sigan L. Hartley
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- School of Human EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Benjamin L. Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dana Tudorascu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Laise Lee
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Annie Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brianna Piro‐Gambetti
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- School of Human EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Matthew Zammit
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Charles Laymon
- Department of Radiology and BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shahid Zaman
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Beau M. Ances
- Department of NeurologyWashington University at St. LouisSt. LouisMissouriUSA
| | - Marwan Sabbagh
- Cleveland ClinicLou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Bradley T. Christian
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
18
|
Álvarez-Sánchez L, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Novel Ultrasensitive Detection Technologies for the Identification of Early and Minimally Invasive Alzheimer's Disease Blood Biomarkers. J Alzheimers Dis 2022; 86:1337-1369. [PMID: 35213367 DOI: 10.3233/jad-215093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Single molecule array (SIMOA) and other ultrasensitive detection technologies have allowed the determination of blood-based biomarkers of Alzheimer's disease (AD) for diagnosis and monitoring, thereby opening up a promising field of research. OBJECTIVE To review the published bibliography on plasma biomarkers in AD using new ultrasensitive techniques. METHODS A systematic review of the PubMed database was carried out to identify reports on the use of blood-based ultrasensitive technology to identify biomarkers for AD. RESULTS Based on this search, 86 works were included and classified according to the biomarker determined. First, plasma amyloid-β showed satisfactory accuracy as an AD biomarker in patients with a high risk of developing dementia. Second, plasma t-Tau displayed good sensitivity in detecting different neurodegenerative diseases. Third, plasma p-Tau was highly specific for AD. Fourth, plasma NfL was highly sensitive for distinguishing between patients with neurodegenerative diseases and healthy controls. In general, the simultaneous determination of several biomarkers facilitated greater accuracy in diagnosing AD (Aβ42/Aβ40, p-Tau181/217). CONCLUSION The recent development of ultrasensitive technology allows the determination of blood-based biomarkers with high sensitivity, thus facilitating the early detection of AD through the analysis of easily obtained biological samples. In short, as a result of this knowledge, pre-symptomatic and early AD diagnosis may be possible, and the recruitment process for future clinical trials could be more precise. However, further studies are necessary to standardize levels of blood-based biomarkers in the general population and thus achieve reproducible results among different laboratories.
Collapse
Affiliation(s)
| | - Carmen Peña-Bautista
- Alzheimer Disease Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
19
|
Ren B, Wu Y, Huang L, Zhang Z, Huang B, Zhang H, Ma J, Li B, Liu X, Wu G, Zhang J, Shen L, Liu Q, Ni J. Deep transfer learning of structural magnetic resonance imaging fused with blood parameters improves brain age prediction. Hum Brain Mapp 2021; 43:1640-1656. [PMID: 34913545 PMCID: PMC8886664 DOI: 10.1002/hbm.25748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Machine learning has been applied to neuroimaging data for estimating brain age and capturing early cognitive impairment in neurodegenerative diseases. Blood parameters like neurofilament light chain are associated with aging. In order to improve brain age predictive accuracy, we constructed a model based on both brain structural magnetic resonance imaging (sMRI) and blood parameters. Healthy subjects (n = 93; 37 males; aged 50–85 years) were recruited. A deep learning network was firstly pretrained on a large set of MRI scans (n = 1,481; 659 males; aged 50–85 years) downloaded from multiple open‐source datasets, to provide weights on our recruited dataset. Evaluating the network on the recruited dataset resulted in mean absolute error (MAE) of 4.91 years and a high correlation (r = .67, p <.001) against chronological age. The sMRI data were then combined with five blood biochemical indicators including GLU, TG, TC, ApoA1 and ApoB, and 9 dementia‐associated biomarkers including ApoE genotype, HCY, NFL, TREM2, Aβ40, Aβ42, T‐tau, TIMP1, and VLDLR to construct a bilinear fusion model, which achieved a more accurate prediction of brain age (MAE, 3.96 years; r = .76, p <.001). Notably, the fusion model achieved better improvement in the group of older subjects (70–85 years). Extracted attention maps of the network showed that amygdala, pallidum, and olfactory were effective for age estimation. Mediation analysis further showed that brain structural features and blood parameters provided independent and significant impact. The constructed age prediction model may have promising potential in evaluation of brain health based on MRI and blood parameters.
Collapse
Affiliation(s)
- Bingyu Ren
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yingtong Wu
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Liumei Huang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhiguo Zhang
- MIND Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinting Ma
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bing Li
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xukun Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guangyao Wu
- Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Jian Zhang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Health Science Center, Shenzhen University, Shenzhen, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M. Blood-based biomarkers for Alzheimer's disease: towards clinical implementation. Lancet Neurol 2021; 21:66-77. [PMID: 34838239 DOI: 10.1016/s1474-4422(21)00361-6] [Citation(s) in RCA: 430] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
For many years, blood-based biomarkers for Alzheimer's disease seemed unattainable, but recent results have shown that they could become a reality. Convincing data generated with new high-sensitivity assays have emerged with remarkable consistency across different cohorts, but also independent of the precise analytical method used. Concentrations in blood of amyloid and phosphorylated tau proteins associate with the corresponding concentrations in CSF and with amyloid-PET or tau-PET scans. Moreover, other blood-based biomarkers of neurodegeneration, such as neurofilament light chain and glial fibrillary acidic protein, appear to provide information on disease progression and potential for monitoring treatment effects. Now the question emerges of when and how we can bring these biomarkers to clinical practice. This step would pave the way for blood-based biomarkers to support the diagnosis of, and development of treatments for, Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands.
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Elisabeth H Thijssen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sölvegatan, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Special Administrative Region, China
| | - Wiesje M van der Flier
- Alzheimer Center, Department of Neurology, and Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, and Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
21
|
Rujeedawa T, Carrillo Félez E, Clare ICH, Fortea J, Strydom A, Rebillat AS, Coppus A, Levin J, Zaman SH. The Clinical and Neuropathological Features of Sporadic (Late-Onset) and Genetic Forms of Alzheimer's Disease. J Clin Med 2021; 10:4582. [PMID: 34640600 PMCID: PMC8509365 DOI: 10.3390/jcm10194582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to compare and highlight the clinical and pathological aspects of genetic versus acquired Alzheimer's disease: Down syndrome-associated Alzheimer's disease in (DSAD) and Autosomal Dominant Alzheimer's disease (ADAD) are compared with the late-onset form of the disease (LOAD). DSAD and ADAD present in a younger population and are more likely to manifest with non-amnestic (such as dysexecutive function features) in the prodromal phase or neurological features (such as seizures and paralysis) especially in ADAD. The very large variety of mutations associated with ADAD explains the wider range of phenotypes. In the LOAD, age-associated comorbidities explain many of the phenotypic differences.
Collapse
Affiliation(s)
- Tanzil Rujeedawa
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Eva Carrillo Félez
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Isabel C. H. Clare
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, 08029 Barcelona, Spain
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- South London and the Maudsley NHS Foundation Trust, The LonDowns Consortium, London SE5 8AZ, UK
| | | | - Antonia Coppus
- Department for Primary and Community Care, Department of Primary and Community Care (149 ELG), Radboud University Nijmegen Medical Center, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands;
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Shahid H. Zaman
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| |
Collapse
|
22
|
Koychev I, Jansen K, Dette A, Shi L, Holling H. Blood-Based ATN Biomarkers of Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis 2021; 79:177-195. [PMID: 33252080 DOI: 10.3233/jad-200900] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Amyloid Tau Neurodegeneration (ATN) framework was proposed to define the biological state underpinning Alzheimer's disease (AD). Blood-based biomarkers offer a scalable alternative to the costly and invasive currently available biomarkers. OBJECTIVE In this meta-analysis we sought to assess the diagnostic performance of plasma amyloid (Aβ40, Aβ42, Aβ42/40 ratio), tangle (p-tau181), and neurodegeneration (total tau [t-tau], neurofilament light [NfL]) biomarkers. METHODS Electronic databases were screened for studies reporting biomarker concentrations for AD and control cohorts. Biomarker performance was examined by random-effect meta-analyses based on the ratio between biomarker concentrations in patients and controls. RESULTS 83 studies published between 1996 and 2020 were included in the analyses. Aβ42/40 ratio as well as Aβ42 discriminated AD patients from controls when using novel platforms such as immunomagnetic reduction (IMR). We found significant differences in ptau-181 concentration for studies based on single molecule array (Simoa), but not for studies based on IMR or ELISA. T-tau was significantly different between AD patients and control in IMR and Simoa but not in ELISA-based studies. In contrast, NfL differentiated between groups across platforms. Exosome studies showed strong separation between patients and controls for Aβ42, t-tau, and p-tau181. CONCLUSION Currently available assays for sampling plasma ATN biomarkers appear to differentiate between AD patients and controls. Novel assay methodologies have given the field a significant boost for testing these biomarkers, such as IMR for Aβ, Simoa for p-tau181. Enriching samples through extracellular vesicles shows promise but requires further validation.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Katrin Jansen
- Department of Psychology, University of Münster, Münster, Germany
| | - Alina Dette
- Department of Psychology, University of Münster, Münster, Germany
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Heinz Holling
- Department of Psychology, University of Münster, Münster, Germany
| |
Collapse
|
23
|
Montoliu-Gaya L, Strydom A, Blennow K, Zetterberg H, Ashton NJ. Blood Biomarkers for Alzheimer's Disease in Down Syndrome. J Clin Med 2021; 10:3639. [PMID: 34441934 PMCID: PMC8397053 DOI: 10.3390/jcm10163639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological evidence suggests that by the age of 40 years, all individuals with Down syndrome (DS) have Alzheimer's disease (AD) neuropathology. Clinical diagnosis of dementia by cognitive assessment is complex in these patients due to the pre-existing and varying intellectual disability, which may mask subtle declines in cognitive functioning. Cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers, although accurate, are expensive, invasive, and particularly challenging in such a vulnerable population. The advances in ultra-sensitive detection methods have highlighted blood biomarkers as a valuable and realistic tool for AD diagnosis. Studies with DS patients have proven the potential blood-based biomarkers for sporadic AD (amyloid-β, tau, phosphorylated tau, and neurofilament light chain) to be useful in this population. In addition, biomarkers related to other pathologies that could aggravate dementia progression-such as inflammatory dysregulation, energetic imbalance, or oxidative stress-have been explored. This review serves to provide a brief overview of the main findings from the limited neuroimaging and CSF studies, outline the current state of blood biomarkers to diagnose AD in patients with DS, discuss possible past limitations of the research, and suggest considerations for developing and validating blood-based biomarkers in the future.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, UK;
- South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- London Down Syndrome Consortium (LonDowns), London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Nicholas James Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RT, UK
- NIHR Biomedical Research Centre for Mental Health, Biomedical Research Unit for Dementia at South London, Maudsley NHS Foundation, London SE5 8AF, UK
| |
Collapse
|
24
|
Do Carmo S, Kannel B, Cuello AC. Nerve Growth Factor Compromise in Down Syndrome. Front Aging Neurosci 2021; 13:719507. [PMID: 34434101 PMCID: PMC8381049 DOI: 10.3389/fnagi.2021.719507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
The basal forebrain cholinergic system relies on trophic support by nerve growth factor (NGF) to maintain its phenotype and function. In Alzheimer's disease (AD), basal forebrain cholinergic neurons (BFCNs) undergo progressive atrophy, suggesting a deficit in NGF trophic support. Within the central nervous system, NGF maturation and degradation are tightly regulated by an activity-dependent metabolic cascade. Here, we present a brief overview of the characteristics of Alzheimer's pathology in Down syndrome (DS) with an emphasis on this NGF metabolic pathway's disruption during the evolving Alzheimer's pathology. Such NGF dysmetabolism is well-established in Alzheimer's brains with advanced pathology and has been observed in mild cognitive impairment (MCI) and non-demented individuals with elevated brain amyloid levels. As individuals with DS inexorably develop AD, we then review findings that support the existence of a similar NGF dysmetabolism in DS coinciding with atrophy of the basal forebrain cholinergic system. Lastly, we discuss the potential of NGF-related biomarkers as indicators of an evolving Alzheimer's pathology in DS.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Benjamin Kannel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Department of Pharmacology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
25
|
Fagan AM, Henson RL, Li Y, Boerwinkle AH, Xiong C, Bateman RJ, Goate A, Ances BM, Doran E, Christian BT, Lai F, Rosas HD, Schupf N, Krinsky-McHale S, Silverman W, Lee JH, Klunk WE, Handen BL, Allegri RF, Chhatwal JP, Day GS, Graff-Radford NR, Jucker M, Levin J, Martins RN, Masters CL, Mori H, Mummery CJ, Niimi Y, Ringman JM, Salloway S, Schofield PR, Shoji M, Lott IT. Comparison of CSF biomarkers in Down syndrome and autosomal dominant Alzheimer's disease: a cross-sectional study. Lancet Neurol 2021; 20:615-626. [PMID: 34302786 PMCID: PMC8496347 DOI: 10.1016/s1474-4422(21)00139-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Due to trisomy of chromosome 21 and the resultant extra copy of the amyloid precursor protein gene, nearly all adults with Down syndrome develop Alzheimer's disease pathology by the age of 40 years and are at high risk for dementia given their increased life expectancy compared with adults with Down syndrome in the past. We aimed to compare CSF biomarker patterns in Down syndrome with those of carriers of autosomal dominant Alzheimer's disease mutations to enhance our understanding of disease mechanisms in these two genetic groups at high risk for Alzheimer's disease. METHODS We did a cross-sectional study using data from adults enrolled in the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study, a multisite longitudinal study of Alzheimer's disease in Down syndrome, as well as a cohort of carriers of autosomal dominant Alzheimer's disease mutations and non-carrier sibling controls enrolled in the Dominantly Inherited Alzheimer Network (DIAN) study. For ABC-DS, participants with baseline CSF, available clinical diagnosis, and apolipoprotein E genotype as of Jan 31, 2019, were included in the analysis. DIAN participants with baseline CSF, available clinical diagnosis, and apolipoprotein E genotype as of June 30, 2018, were evaluated as comparator groups. CSF samples obtained from adults with Down syndrome, similarly aged carriers of autosomal dominant Alzheimer's disease mutations, and non-carrier siblings (aged 30-61 years) were analysed for markers of amyloid β (Aβ1-40, Aβ1-42); tau phosphorylated at threonine 181-related processes; neuronal, axonal, or synaptic injury (total tau, visinin-like protein 1, neurofilament light chain [NfL], synaptosomal-associated protein 25); and astrogliosis and neuroinflammation (chitinase-3-like protein 1 [YKL-40]) via immunoassay. Biomarker concentrations were compared as a function of dementia status (asymptomatic or symptomatic), and linear regression was used to evaluate and compare the relationship between biomarker concentrations and age among groups. FINDINGS We assessed CSF samples from 341 individuals (178 [52%] women, 163 [48%] men, aged 30-61 years). Participants were adults with Down syndrome (n=41), similarly aged carriers of autosomal dominant Alzheimer's disease mutations (n=192), and non-carrier siblings (n=108). Individuals with Down syndrome had patterns of Alzheimer's disease-related CSF biomarkers remarkably similar to carriers of autosomal dominant Alzheimer's disease mutations, including reductions (all p<0·0080) in Aβ1-42 to Aβ1-40 ratio and increases in markers of phosphorylated tau-related processes; neuronal, axonal, and synaptic injury (p<0·080); and astrogliosis and neuroinflammation, with greater degrees of abnormality in individuals with dementia. Differences included overall higher concentrations of Aβ and YKL-40 (both p<0·0008) in Down syndrome and potential elevations in CSF tau (p<0·010) and NfL (p<0·0001) in the asymptomatic stage (ie, no dementia symptoms). FUNDING National Institute on Aging, Eunice Kennedy Shriver National Institute of Child Health and Human Development, German Center for Neurodegenerative Diseases, and Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
| | - Rachel L Henson
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Anna H Boerwinkle
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Eric Doran
- Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, USA
| | - Bradley T Christian
- Department of Medical Physics, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole Schupf
- Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wayne Silverman
- Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, USA
| | - Joseph H Lee
- Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Instituto Neurologico Fleni, Buenos Aires, Argentina
| | - Jasmeer P Chhatwal
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, German Center for Neurodegenerative Diseases, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ralph N Martins
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Colin L Masters
- Florey Institute, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, Abenoku, Osaka, Japan
| | - Catherine J Mummery
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Yoshiki Niimi
- Unit for Early and Exploratory Clinical Development, University of Tokyo, Tokyo, Japan
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Salloway
- Memory and Aging Program, Brown University, Butler Hospital, Providence, RI, USA
| | - Peter R Schofield
- Neuroscience Research Australia, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mikio Shoji
- Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| | - Ira T Lott
- Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
26
|
Carmona-Iragui M, Alcolea D, Barroeta I, Videla L, Muñoz L, Van Pelt KL, Schmitt FA, Lightner DD, Koehl LM, Jicha G, Sacco S, Mircher C, Pape SE, Hithersay R, Clare ICH, Holland AJ, Nübling G, Levin J, Zaman SH, Strydom A, Rebillat AS, Head E, Blesa R, Lleó A, Fortea J. Diagnostic and prognostic performance and longitudinal changes in plasma neurofilament light chain concentrations in adults with Down syndrome: a cohort study. Lancet Neurol 2021; 20:605-614. [PMID: 34302785 PMCID: PMC8852333 DOI: 10.1016/s1474-4422(21)00129-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Adults with Down syndrome are at an ultra-high risk of Alzheimer's disease, but diagnosis of Alzheimer's disease in this population is challenging. We aimed to validate the clinical utility of plasma neurofilament light chain (NfL) for the diagnosis of symptomatic Alzheimer's disease in Down syndrome, assess its prognostic value, and establish longitudinal changes in adults with Down syndrome. METHODS We did a multicentre cohort study, including adults with Down syndrome (≥18 years), recruited from six hospitals and university medical centres in France, Germany, Spain, the UK, and the USA, who had been assessed, followed up, and provided at least two plasma samples. Participants were classified by local clinicians, who were masked to biomarker data, as asymptomatic (ie, no clinical suspicion of Alzheimer's disease), prodromal Alzheimer's disease, or Alzheimer's disease dementia. We classified individuals who progressed along the Alzheimer's disease continuum during follow-up as progressors. Plasma samples were analysed retrospectively; NfL concentrations were measured centrally using commercial kits for biomarker detection. We used ANOVA to evaluate differences in baseline NfL concentrations, Cox regression to study their prognostic value, and linear mixed models to estimate longitudinal changes. To account for potential confounders, we included age, sex, and intellectual disability as covariates in the analyses. FINDINGS Between Aug 2, 2010, and July 16, 2019, we analysed 608 samples from 236 people with Down syndrome: 165 (70%) were asymptomatic, 32 (14%) had prodromal Alzheimer's disease, and 29 (12%) had Alzheimer's disease dementia; ten [4%] participants were excluded because their classification was uncertain. Mean follow-up was 3·6 years (SD 1·6, range 0·6-9·2). Baseline plasma NfL concentrations showed an area under the receiver operating characteristic curve of 0·83 (95% CI 0·76-0·91) in the prodromal group and 0·94 (0·90-0·97) in the dementia group for differentiating from participants who were asymptomatic. An increase of 1 pg/mL in baseline NfL concentrations was associated with a 1·04-fold risk of clinical progression (95% CI 1·01-1·07; p=0·0034). Plasma NfL concentrations showed an annual increase of 3·0% (95% CI 0·4-5·8) per year in the asymptomatic non-progressors group, 11·5% (4·9-18·5) per year in the asymptomatic progressors group, and 16·0% (8·4-24·0) per year in the prodromal Alzheimer's disease progressors group. In participants with Alzheimer's disease dementia, NfL concentrations increased by a mean of 24·3% (15·3-34·1). INTERPRETATION Plasma NfL concentrations have excellent diagnostic and prognostic performance for symptomatic Alzheimer's disease in Down syndrome. The longitudinal trajectory of plasma NfL supports its use as a theragnostic marker in clinical trials. FUNDING AC Immune, La Caixa Foundation, Instituto de Salud Carlos III, National Institute on Aging, Wellcome Trust, Jérôme Lejeune Foundation, Medical Research Council, National Institute for Health Research, EU Joint Programme-Neurodegenerative Disease Research, Alzheimer's society, Deutsche Forschungsgemeinschaft, Stiftung für die Erforschung von Verhaltens und Umwelteinflüssen auf die menschliche Gesundheit, and NHS National Institute of Health Research Applied Research Collaborations East of England, UK.
Collapse
Affiliation(s)
- Maria Carmona-Iragui
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain; Horizon 21 Consortium, Paris, France.
| | - Daniel Alcolea
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Horizon 21 Consortium, Paris, France
| | - Laura Videla
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain; Horizon 21 Consortium, Paris, France
| | - Laia Muñoz
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Kathyrn L Van Pelt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Frederick A Schmitt
- Department of Neurology, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - Lisa M Koehl
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Gregory Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Silvia Sacco
- Horizon 21 Consortium, Paris, France; Institut Jérôme Lejeune, Paris, France
| | | | - Sarah E Pape
- Horizon 21 Consortium, Paris, France; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and the Maudsley Foundation NHS Trust, London, UK; The LonDownS consortium, London, UK
| | - Rosalyn Hithersay
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; The LonDownS consortium, London, UK
| | - Isabel C H Clare
- Department of Psychiatry, University of Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; National Institute of Health Research, Applied Research Collaboration, East of England, Cambridge, UK
| | | | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Horizon 21 Consortium, Paris, France; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany
| | - Shahid H Zaman
- Horizon 21 Consortium, Paris, France; Department of Psychiatry, University of Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Andre Strydom
- Horizon 21 Consortium, Paris, France; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and the Maudsley Foundation NHS Trust, London, UK; The LonDownS consortium, London, UK
| | | | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Rafael Blesa
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain; Horizon 21 Consortium, Paris, France.
| |
Collapse
|
27
|
Phosphorylated tau181 in plasma as a potential biomarker for Alzheimer's disease in adults with Down syndrome. Nat Commun 2021; 12:4304. [PMID: 34262030 PMCID: PMC8280160 DOI: 10.1038/s41467-021-24319-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Plasma tau phosphorylated at threonine 181 (p-tau181) predicts Alzheimer’s disease (AD) pathology with high accuracy in the general population. In this study, we investigated plasma p-tau181 as a biomarker of AD in individuals with Down syndrome (DS). We included 366 adults with DS (240 asymptomatic, 43 prodromal AD, 83 AD dementia) and 44 euploid cognitively normal controls. We measured plasma p-tau181 with a Single molecule array (Simoa) assay. We examined the diagnostic performance of p-tau181 for the detection of AD and the relationship with other fluid and imaging biomarkers. Plasma p-tau181 concentration showed an area under the curve of 0.80 [95% CI 0.73–0.87] and 0.92 [95% CI 0.89–0.95] for the discrimination between asymptomatic individuals versus those in the prodromal and dementia groups, respectively. Plasma p-tau181 correlated with atrophy and hypometabolism in temporoparietal regions. Our findings indicate that plasma p-tau181 concentration can be useful to detect AD in DS. Plasma tau phosphorylated at threonine 181 (p-tau181) predicts Alzheimer’s disease (AD) pathology. Here, the authors investigated whether plasma ptau181 could be a potential biomarker of AD in individuals with Down syndrome (DS) and find plasma p-tau181 can detect AD in DS adults.
Collapse
|
28
|
Martinez JL, Zammit MD, West NR, Christian BT, Bhattacharyya A. Basal Forebrain Cholinergic Neurons: Linking Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:703876. [PMID: 34322015 PMCID: PMC8311593 DOI: 10.3389/fnagi.2021.703876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer's disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.
Collapse
Affiliation(s)
- Jose L. Martinez
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Zammit
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Nicole R. West
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Bradley T. Christian
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
29
|
Ashton NJ, Leuzy A, Karikari TK, Mattsson-Carlgren N, Dodich A, Boccardi M, Corre J, Drzezga A, Nordberg A, Ossenkoppele R, Zetterberg H, Blennow K, Frisoni GB, Garibotto V, Hansson O. The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers. Eur J Nucl Med Mol Imaging 2021; 48:2140-2156. [PMID: 33677733 PMCID: PMC8175325 DOI: 10.1007/s00259-021-05253-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The development of blood biomarkers that reflect Alzheimer's disease (AD) pathophysiology (phosphorylated tau and amyloid-β) has offered potential as scalable tests for dementia differential diagnosis and early detection. In 2019, the Geneva AD Biomarker Roadmap Initiative included blood biomarkers in the systematic validation of AD biomarkers. METHODS A panel of experts convened in November 2019 at a two-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of blood biomarkers was assessed based on the Biomarker Roadmap methodology and discussed fully during the workshop which also evaluated cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers. RESULTS Plasma p-tau has shown analytical validity (phase 2 primary aim 1) and first evidence of clinical validity (phase 3 primary aim 1), whereas the maturity level for Aβ remains to be partially achieved. Full and partial achievement has been assigned to p-tau and Aβ, respectively, in their associations to ante-mortem measures (phase 2 secondary aim 2). However, only preliminary evidence exists for the influence of covariates, assay comparison and cut-off criteria. CONCLUSIONS Despite the relative infancy of blood biomarkers, in comparison to CSF biomarkers, much has already been achieved for phases 1 through 3 - with p-tau having greater success in detecting AD and predicting disease progression. However, sufficient data about the effect of covariates on the biomarker measurement is lacking. No phase 4 (real-world performance) or phase 5 (assessment of impact/cost) aim has been tested, thus not achieved.
Collapse
Affiliation(s)
- N J Ashton
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden.
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - A Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - T K Karikari
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
| | - N Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Center for Neurocognitive Rehabilitation (CeRiN), CIMeC, University of Trento, Trento, Italy
| | - M Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
| | - J Corre
- Centre National de la Recherche Scientifique, Montpellier, France
| | - A Drzezga
- Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - R Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - H Zetterberg
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - K Blennow
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - G B Frisoni
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - O Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
- UK Dementia Research Institute at UCL, London, UK.
- Memory Clinic, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| |
Collapse
|
30
|
Illouz T, Biragyn A, Iulita MF, Flores-Aguilar L, Dierssen M, De Toma I, Antonarakis SE, Yu E, Herault Y, Potier MC, Botté A, Roper R, Sredni B, London J, Mobley W, Strydom A, Okun E. Immune Dysregulation and the Increased Risk of Complications and Mortality Following Respiratory Tract Infections in Adults With Down Syndrome. Front Immunol 2021; 12:621440. [PMID: 34248930 PMCID: PMC8267813 DOI: 10.3389/fimmu.2021.621440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The risk of severe outcomes following respiratory tract infections is significantly increased in individuals over 60 years, especially in those with chronic medical conditions, i.e., hypertension, diabetes, cardiovascular disease, dementia, chronic respiratory disease, and cancer. Down Syndrome (DS), the most prevalent intellectual disability, is caused by trisomy-21 in ~1:750 live births worldwide. Over the past few decades, a substantial body of evidence has accumulated, pointing at the occurrence of alterations, impairments, and subsequently dysfunction of the various components of the immune system in individuals with DS. This associates with increased vulnerability to respiratory tract infections in this population, such as the influenza virus, respiratory syncytial virus, SARS-CoV-2 (COVID-19), and bacterial pneumonias. To emphasize this link, here we comprehensively review the immunobiology of DS and its contribution to higher susceptibility to severe illness and mortality from respiratory tract infections.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer’s Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institute of Health, Baltimore, MD, United States
| | - Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Lisi Flores-Aguilar
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona, Spain
| | - Ilario De Toma
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona, Spain
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC - UMR 7104 - Inserm U1258, Illkirch, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Alexandra Botté
- Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Randall Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Benjamin Sredni
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | - William Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer’s Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
31
|
Castillo-Mendieta T, Arana-Lechuga Y, Campos-Peña V, Sosa AL, Orozco-Suarez S, Pinto-Almazán R, Segura-Uribe J, Javier Rodríguez-Sánchez de Tagle A, Ruiz-Sánchez E, Guerra-Araiza C. Plasma Levels of Amyloid-β Peptides and Tau Protein in Mexican Patients with Alzheimer's Disease. J Alzheimers Dis 2021; 82:S271-S281. [PMID: 34151786 DOI: 10.3233/jad-200912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) causes memory deficit and alterations in other cognitive functions, mainly in adults over 60 years of age. As the diagnosis confirmation is performed by a postmortem neuropathological examination of the brain, this disease can be confused with other types of dementia at early stages. About 860,000 Mexicans are affected by dementia, most of them with insufficient access to adequate comprehensive health care services. Plasma biomarkers could be a rapid option for early diagnosis of the disease. OBJECTIVE This study aimed to analyze some plasma biomarkers (amyloid-β, tau, and lipids) in Mexican AD patients and control subjects with no associated neurodegenerative diseases. METHODS Plasma amyloid-β peptides (Aβ40 and Aβ42), total and phosphorylated tau protein (T-tau and P-tau), and cholesterol and triglyceride levels were quantified by enzyme-linked immunosorbent assay in AD patients and control subjects. RESULTS In Mexican AD patients, we found significantly lower levels of Aβ42 (p < 0.05) compared to the control group. In contrast, significantly higher levels of P-tau (p < 0.05) and triglycerides (p < 0.05) were observed in AD patients compared to controls. Furthermore, a significant correlation was found between the severity of dementia and plasma P-tau levels, Aβ42/Aβ40 and P-tau/T-tau ratios, and triglycerides concentrations. This correlation increased gradually with cognitive decline. CONCLUSION The detection of these plasma biomarkers is an initial step in searching for a timely, less invasive, and cost-efficient diagnosis in Mexicans.
Collapse
Affiliation(s)
- Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Yoaly Arana-Lechuga
- Sleep Disorders Clinic, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Ana Luisa Sosa
- Clínica de Demencia, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Laboratorio de Biología Molecular en Enfermedades Metabólicas y Neurodegenerativas, Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, State of Mexico, Mexico
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| | - Aldo Javier Rodríguez-Sánchez de Tagle
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Coordinación de QFBT, Universidad del Valle de México-Chapultepec, México City, México
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neurotoxicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
32
|
Solje E, Benussi A, Buratti E, Remes AM, Haapasalo A, Borroni B. State-of-the-Art Methods and Emerging Fluid Biomarkers in the Diagnostics of Dementia-A Short Review and Diagnostic Algorithm. Diagnostics (Basel) 2021; 11:diagnostics11050788. [PMID: 33925655 PMCID: PMC8145467 DOI: 10.3390/diagnostics11050788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The most common neurodegenerative dementias include Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). The correct etiology-based diagnosis is pivotal for clinical management of these diseases as well as for the suitable timing and choosing the accurate disease-modifying therapies when these become available. Enzyme-linked immunosorbent assay (ELISA)-based methods, detecting altered levels of cerebrospinal fluid (CSF) Tau, phosphorylated Tau, and Aβ-42 in AD, allowed the wide use of this set of biomarkers in clinical practice. These analyses demonstrate a high diagnostic accuracy in AD but suffer from a relatively restricted usefulness due to invasiveness and lack of prognostic value. In recent years, the development of novel advanced techniques has offered new state-of-the-art opportunities in biomarker discovery. These include single molecule array technology (SIMOA), a tool for non-invasive analysis of ultra-low levels of central nervous system-derived molecules from biofluids, such as CSF or blood, and real-time quaking (RT-QuIC), developed to analyze misfolded proteins. In the present review, we describe the history of methods used in the fluid biomarker analyses of dementia, discuss specific emerging biomarkers with translational potential for clinical use, and suggest an algorithm for the use of new non-invasive blood biomarkers in clinical practice.
Collapse
Affiliation(s)
- Eino Solje
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, 70211 Kuopio, Finland;
- Neuro Center, Neurology, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy;
| | - Anne M. Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, 90230 Oulu, Finland;
- Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
- Correspondence:
| |
Collapse
|
33
|
Hithersay R, Baksh RA, Startin CM, Wijeratne P, Hamburg S, Carter B, Strydom A. Optimal age and outcome measures for Alzheimer's disease prevention trials in people with Down syndrome. Alzheimers Dement 2021; 17:595-604. [PMID: 33226718 DOI: 10.1002/alz.12222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 01/24/2023]
Abstract
INTRODUCTION People with Down syndrome (DS) typically develop Alzheimer's disease (AD) neuropathology before age 40, but a lack of outcome measures and longitudinal data have impeded their inclusion in randomized controlled trials (RCTs). METHODS Cohort study. Event-based and dose-response Emax models were fitted to longitudinal cognitive data, to stage AD and determine the earliest ages of decline. Results informed sample size estimations for hypothetical RCTs of disease-modifying treatments that reduced decline by 35% or 75%. RESULTS Seventy-five percent of participants progressed or remained stable in the AD staging model; effect sizes varied by age group and tests. Varied treatment effects could be detected with 50-200 people per arm when using sensitive cognitive outcome measures and targeting recruitment to ages 36 to 45 years. DISCUSSION Efficient RCTs of AD preventative treatments can be conducted in the DS population using sensitive outcome measures to monitor early decline. Dose-response models could help tailor future RCTs.
Collapse
Affiliation(s)
- Rosalyn Hithersay
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, UK
| | - R Asaad Baksh
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The LonDownS Consortium, London, UK
| | - Carla M Startin
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, UK
- Department of Psychology, University of York, UK
| | - Peter Wijeratne
- Department of Computer Science, University College London, London, UK
| | - Sarah Hamburg
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, UK
| | - Ben Carter
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
34
|
Ding X, Zhang S, Jiang L, Wang L, Li T, Lei P. Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer's disease: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:10. [PMID: 33712071 PMCID: PMC7953695 DOI: 10.1186/s40035-021-00234-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
A lack of convenient and reliable biomarkers for diagnosis and prognosis is a common challenge for neurodegenerative diseases such as Alzheimer's disease (AD). Recent advancement in ultrasensitive protein assays has allowed the quantification of tau and phosphorylated tau proteins in peripheral plasma. Here we identified 66 eligible studies reporting quantification of plasma tau and phosphorylated tau 181 (ptau181) using four ultrasensitive methods. Meta-analysis of these studies confirmed that the AD patients had significantly higher plasma tau and ptau181 levels compared with controls, and that the plasma tau and ptau181 could predict AD with high-accuracy area under curve of the Receiver Operating Characteristic. Therefore, plasma tau and plasma ptau181 can be considered as biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Xulong Ding
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Jiang
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Gilboa T, Maley AM, Ogata AF, Wu C, Walt DR. Sequential Protein Capture in Multiplex Single Molecule Arrays: A Strategy for Eliminating Assay Cross-Reactivity. Adv Healthc Mater 2021; 10:e2001111. [PMID: 32893488 PMCID: PMC8238389 DOI: 10.1002/adhm.202001111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Indexed: 12/31/2022]
Abstract
Measurements of multiple biomolecules within the same biological sample are important for many clinical applications to enable accurate disease diagnosis or classification. These disease-related biomarkers often exist at very low levels in biological fluids, necessitating ultrasensitive measurement methods. Single-molecule arrays (Simoa), a bead-based digital enzyme-linked immunosorbent assay, is the current state of the art for ultrasensitive protein detection and can detect sub-femtomolar protein concentrations, but its ability to achieve high-order multiplexing without cross-reactivity remains a challenge. Here, a sequential protein capture approach for multiplex Simoa assays is implemented to eliminate cross-reactivity between binding reagents by sequentially capturing each protein analyte and then incubating each capture bead with only its corresponding detection antibody. This strategy not only reduces cross-reactivity to background levels and significantly improves measurement accuracies, but also enables higher-order multiplexing. As a proof of concept, the sequential multiplex Simoa assay is used to measure five different cytokines in plasma samples from Coronavirus Disease 2019 (COVID-19) patients. The ultrasensitive sequential multiplex Simoa assays will enable the simultaneous measurements of multiple low-abundance analytes in a time- and cost-effective manner and will prove especially critical in many cases where sample volumes are limited.
Collapse
Affiliation(s)
- Tal Gilboa
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Adam M Maley
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Alana F Ogata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Connie Wu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
36
|
Villemagne VL, Barkhof F, Garibotto V, Landau SM, Nordberg A, van Berckel BNM. Molecular Imaging Approaches in Dementia. Radiology 2021; 298:517-530. [PMID: 33464184 DOI: 10.1148/radiol.2020200028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of dementia worldwide places a high demand on healthcare providers to perform a diagnostic work-up in relatively early stages of the disease, given that the pathologic process usually begins decades before symptoms are evident. Structural imaging is recommended to rule out other disorders and can only provide diagnosis in a late stage with limited specificity. Where PET imaging previously focused on the spatial pattern of hypometabolism, the past decade has seen the development of novel tracers to demonstrate characteristic protein abnormalities. Molecular imaging using PET/SPECT is able to show amyloid and tau deposition in Alzheimer disease and dopamine depletion in parkinsonian disorders starting decades before symptom onset. Novel tracers for neuroinflammation and synaptic density are being developed to further unravel the molecular pathologic characteristics of dementia disorders. In this article, the authors review the current status of established and emerging PET tracers in a diagnostic setting and also their value as prognostic markers in research studies and outcome measures for clinical trials in Alzheimer disease.
Collapse
Affiliation(s)
- Victor L Villemagne
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Frederik Barkhof
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Valentina Garibotto
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Susan M Landau
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Agneta Nordberg
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Bart N M van Berckel
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| |
Collapse
|
37
|
Petersen ME, Rafii MS, Zhang F, Hall J, Julovich D, Ances BM, Schupf N, Krinsky-McHale SJ, Mapstone M, Silverman W, Lott I, Klunk W, Head E, Christian B, Foroud T, Lai F, Rosas HD, Zaman S, Wang MC, Tycko B, Lee JH, Handen B, Hartley S, Fortea J, O’Bryant S. Plasma Total-Tau and Neurofilament Light Chain as Diagnostic Biomarkers of Alzheimer's Disease Dementia and Mild Cognitive Impairment in Adults with Down Syndrome. J Alzheimers Dis 2021; 79:671-681. [PMID: 33337378 PMCID: PMC8273927 DOI: 10.3233/jad-201167] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The need for diagnostic biomarkers of cognitive decline is particularly important among aging adults with Down syndrome (DS). Growing empirical support has identified the utility of plasma derived biomarkers among neurotypical adults with mild cognitive impairment (MCI) and Alzheimer's disease (AD); however, the application of such biomarkers has been limited among the DS population. OBJECTIVE This study aimed to investigate the cross-sectional diagnostic performance of plasma neurofilament light chain (Nf-L) and total-tau, individually and in combination among a cohort of DS adults. METHODS Plasma samples were analyzed from n = 305 (n = 225 cognitively stable (CS); n = 44 MCI-DS; n = 36 DS-AD) participants enrolled in the Alzheimer's Biomarker Consortium -Down Syndrome. RESULTS In distinguishing DS-AD participants from CS, Nf-L alone produced an AUC of 90%, total-tau alone reached 74%, and combined reached an AUC of 86%. When age and gender were included, AUC increased to 93%. Higher values of Nf-L, total-tau, and age were all shown to be associated with increased risk for DS-AD. When distinguishing MCI-DS participants from CS, Nf-L alone produced an AUC of 65%, while total-tau alone reached 56%. A combined model with Nf-L, total-tau, age, and gender produced an AUC of 87%. Both higher values in age and total-tau were found to increase risk for MCI-DS; Nf-L levels were not associated with increased risk for MCI-DS. CONCLUSION Advanced assay techniques make total-tau and particularly Nf-L useful biomarkers of both AD pathology and clinical status in DS and have the potential to serve as outcome measures in clinical trials for future disease-modifying drugs.
Collapse
Affiliation(s)
- Melissa E. Petersen
- University of North Texas Health Science Center, Department of Family Medicine and Institute for Translational Research, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - Michael S. Rafii
- Alzheimer’s Therapeutic Research Institute (ATRI), Keck School of Medicine, University of Southern California, 9860 Mesa Rim Road, San Diego, California, 92121, USA
| | - Fan Zhang
- University of North Texas Health Science Center, Department of Family Medicine and Institute for Translational Research, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - James Hall
- University of North Texas Health Science Center, Institute for Translational Research and Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - David Julovich
- University of North Texas Health Science Center, Institute for Translational Research and Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - Beau M. Ances
- Washington University School of Medicine in St. Louis, Center for Advanced Medicine Neuroscience, 4921 Parkview Place, St. Louis, Missouri, 63110, USA
| | - Nicole Schupf
- Columbia University Irving Medical Center, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain/G.H. Sergievsky Center, 630 W 168th St, New York, New York, 10032, USA
- Columbia University, Mailman School of Public Health, Department of Epidemiology, 722 West 168th Street, New York, New York, 10032, USA
- Columbia University Irving Medical Center, Department of Neurology, Neurological Institute 710 West 168 Street, New York, New York, 10032, USA
- Columbia University Medical Center, Department of Psychiatry, 1051 Riverside Drive, New York, New York, 10032, USA
| | - Sharon J. Krinsky-McHale
- NYS Institute for Basic Research in Developmental Disabilities, Department of Psychology, 1050 Forest Hill Road, Staten Island, New York, 10314, USA
| | - Mark Mapstone
- University of California, Irvine, Department of Neurology, 839 Health Sciences Road, Irvine, California, 92697, USA
| | - Wayne Silverman
- University of California, Irvine, School of Medicine, Department of Pediatrics, 101 The City Drive, Mail Code:4482, Orange, California, 92668, USA
| | - Ira Lott
- University of California, Irvine, School of Medicine, Department of Pediatrics, 101 The City Drive, Mail Code:4482, Orange, California, 92668, USA
| | - William Klunk
- University of Pittsburgh, Department of Psychiatry, 3811 O’Hara St., Pittsburgh, Pennsylvania, 15213, USA
| | - Elizabeth Head
- University of California, Irvine, Department of Pathology, 1261 Gillespie Neuroscience Facility, Irvine, California, 92697, USA
| | - Brad Christian
- University of Wisconsin Madison, Department of Medical Physics and Psychiatry, 1500 Highland Ave, Madison, Wisconsin, 53705, USA
| | - Tatiana Foroud
- Indiana University School of Medicine, Department of Medical & Molecular Genetics, 410 W. 10 Street, Indianapolis, IN. 46202. USA
| | - Florence Lai
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, 149 13 Street, Room 10128, Charlestown, Massachusetts, 02129, USA
| | - H. Diana Rosas
- Massachusetts General Hospital, Departments of Neurology and Radiology, Harvard Medical School, 149 13 Street Room 10126, Charlestown, Massachusetts, 02129, USA
| | - Shahid Zaman
- University of Cambridge, School of Clinical Medicine, Department of Psychiatry, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge, CB21 5EF, UK
| | - Mei-Cheng Wang
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205
| | - Benjamin Tycko
- Columbia University Irving Medical Center, Department of Pathology and Cell Biology, 630 West 168 Street, New York, NY 10032
| | - Joseph H. Lee
- Columbia University Irving Medical Center, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain/G.H. Sergievsky Center, 630 W 168th St, New York, New York, 10032, USA
| | - Benjamin Handen
- University of Pittsburgh, Department of Psychiatry, 3811 O’Hara St., Pittsburgh, Pennsylvania, 15213, USA
| | - Sigan Hartley
- University of Wisconsin, School of Human Ecology and Waisman Center, 1500 Highland Ave, Madison, WI 53705
| | - Juan Fortea
- Barcelona Down Medical Center. Fundació Catalana de Síndrome de Down. Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sid O’Bryant
- University of North Texas Health Science Center, Institute for Translational Research and Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| |
Collapse
|
38
|
Shao Y, Ouyang Y, Li T, Liu X, Xu X, Li S, Xu G, Le W. Alteration of Metabolic Profile and Potential Biomarkers in the Plasma of Alzheimer's Disease. Aging Dis 2020; 11:1459-1470. [PMID: 33269100 PMCID: PMC7673846 DOI: 10.14336/ad.2020.0217] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
The expending of elderly population worldwide has resulted in a dramatic rise in the incidence of chronic diseases such as Alzheimer's disease (AD). Inadequate understanding of the mechanisms underlying AD has hampered the development of efficient tools for definitive diagnosis and curative interventions. Previous studies have attempted to discover reliable biomarkers of AD, but these biomarkers can only be measured through invasive (neuropathological markers in cerebrospinal fluid) or expensive (positron emission tomography scanning or magnetic resonance imaging) techniques. Metabolomics is a high-throughput technology that can detect and catalog large numbers of small metabolites and may be a useful tool for characterization of AD and identification of biomarkers. In this study, we used ultra-performance liquid chromatography-mass spectrometry based untargeted metabolomics to measure the concentrations of plasma metabolites in a cohort of subjects with AD (n=44) and cognitively normal controls (Ctrl, n=94). The AD group showed marked reductions in levels of polyunsaturated fatty acids, acyl-carnitines, degradation products of tryptophan, and elevated levels of bile acids compared to the Ctrl group. We then validated the results using an independent cohort that included subjects with AD (n=30), mild cognitive impairment (MCI, n=13), healthy controls (n=43), and non-AD neurological disease controls (NDC, n=31). We identified five metabolites comprising cholic acid, chenodeoxycholic acid, allocholic acid, indolelactic acid, and tryptophan that were able to distinguish patients with AD from both Ctrl and NDC with satisfactory sensitivity and specificity. The concentrations of these metabolites were significantly correlated with disease severity. Our results also suggested that altered bile acid profiles in AD and MCI might indicate early risk for the development of AD. These findings may allow for development of new approaches for diagnosis of AD and may provide novel insights into AD pathogenesis.
Collapse
Affiliation(s)
- Yaping Shao
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Yang Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianbai Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Xinyao Liu
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Xiaojiao Xu
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
39
|
Wilson EN, Do Carmo S, Welikovitch LA, Hall H, Aguilar LF, Foret MK, Iulita MF, Jia DT, Marks AR, Allard S, Emmerson JT, Ducatenzeiler A, Cuello AC. NP03, a Microdose Lithium Formulation, Blunts Early Amyloid Post-Plaque Neuropathology in McGill-R-Thy1-APP Alzheimer-Like Transgenic Rats. J Alzheimers Dis 2020; 73:723-739. [PMID: 31868669 DOI: 10.3233/jad-190862] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidemiological, preclinical, and clinical studies have suggested a role for microdose lithium in reducing Alzheimer's disease (AD) risk by modulating key mechanisms associated with AD pathology. The novel microdose lithium formulation, NP03, has disease-modifying effects in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis at pre-plaque stages, before frank amyloid-β (Aβ) plaque deposition, during which Aβ is primarily intraneuronal. Here, we are interested in determining whether the positive effects of microdose lithium extend into early Aβ post-plaque stages. We administered NP03 (40μg Li/kg; 1 ml/kg body weight) to McGill-R-Thy1-APP transgenic rats for 12 weeks spanning the transition phase from plaque-free to plaque-bearing. The effect of NP03 on remote working memory was assessed using the novel object recognition task. Levels of human Aβ38, Aβ40, and Aβ42 as well as levels of pro-inflammatory mediators were measured in brain-extracts and plasma using electrochemiluminescent assays. Mature Aβ plaques were visualized with a thioflavin-S staining. Vesicular acetylcholine transporter (VAChT) bouton density and levels of chemokine (C-X-C motif) ligand 1 (CXCL1), interleukin-6 (IL-6), and 4-hydroxynonenal (4-HNE) were probed using quantitative immunohistochemistry. During the early Aβ post-plaque stage, we find that NP03 rescues functional deficits in object recognition, reduces loss of cholinergic boutons in the hippocampus, reduces levels of soluble and insoluble cortical Aβ42 and reduces hippocampal Aβ plaque number. In addition, NP03 reduces markers of neuroinflammation and cellular oxidative stress. Together these results indicate that microdose lithium NP03 is effective at later stages of amyloid pathology, after appearance of Aβ plaques.
Collapse
Affiliation(s)
- Edward N Wilson
- Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Sonia Do Carmo
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Hélène Hall
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Morgan K Foret
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Dan Tong Jia
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Adam R Marks
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Simon Allard
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Joshua T Emmerson
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - A Claudio Cuello
- Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, QC, Canada.,Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom (Visiting Professorship)
| |
Collapse
|
40
|
Rafii MS, Ances BM, Schupf N, Krinsky‐McHale SJ, Mapstone M, Silverman W, Lott I, Klunk W, Head E, Christian B, Lai F, Rosas HD, Zaman S, Petersen ME, Strydom A, Fortea J, Handen B, O'Bryant S. The AT(N) framework for Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12062. [PMID: 33134477 PMCID: PMC7588820 DOI: 10.1002/dad2.12062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
The National Institute on Aging in conjunction with the Alzheimer's Association (NIA-AA) recently proposed a biological framework for defining the Alzheimer's disease (AD) continuum. This new framework is based upon the key AD biomarkers (amyloid, tau, neurodegeneration, AT[N]) instead of clinical symptoms and represents the latest understanding that the pathological processes underlying AD begin decades before the manifestation of symptoms. By using these same biomarkers, individuals with Down syndrome (DS), who are genetically predisposed to developing AD, can also be placed more precisely along the AD continuum. The A/T(N) framework is therefore thought to provide an objective manner by which to select and enrich samples for clinical trials. This new framework is highly flexible and allows the addition of newly confirmed AD biomarkers into the existing AT(N) groups. As biomarkers for other pathological processes are validated, they can also be added to the AT(N) classification scheme, which will allow for better characterization and staging of AD in DS. These biological classifications can then be merged with clinical staging for an examination of factors that impact the biological and clinical progression of the disease. Here, we leverage previously published guidelines for the AT(N) framework to generate such a plan for AD among adults with DS.
Collapse
Affiliation(s)
- Michael S. Rafii
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of MedicineUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Beau M. Ances
- Center for Advanced Medicine NeuroscienceWashington University School of Medicine in St. LouisSt. LouisMissouriUSA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain/G.H. Sergievsky CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyNeurological Institute of New York, Columbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Sharon J. Krinsky‐McHale
- Department of PsychologyNYS Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Mark Mapstone
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Wayne Silverman
- Department of PediatricsSchool of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Ira Lott
- Department of PediatricsSchool of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Elizabeth Head
- Department of PathologyGillespie Neuroscience Research Facility, University of CaliforniaIrvineCaliforniaUSA
| | - Brad Christian
- Department of Medical Physics and PsychiatryUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - H. Diana Rosas
- Departments of Neurology and RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Shahid Zaman
- Department of PsychiatrySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustFulbourn HospitalCambridgeUK
| | - Melissa E. Petersen
- Department of Family Medicine and Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Juan Fortea
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Benjamin Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sid O'Bryant
- Institute for Translational Research and Department of Pharmacology and NeuroscienceUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
41
|
Wilczyńska K, Waszkiewicz N. Diagnostic Utility of Selected Serum Dementia Biomarkers: Amyloid β-40, Amyloid β-42, Tau Protein, and YKL-40: A Review. J Clin Med 2020; 9:jcm9113452. [PMID: 33121040 PMCID: PMC7692800 DOI: 10.3390/jcm9113452] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Dementia is a group of disorders that causes dysfunctions in human cognitive and operating functions. Currently, it is not possible to conduct a fast, low-invasive dementia diagnostic process with the use of peripheral blood biomarkers, however, there is a great deal of research in progress covering this subject. Research on dementia biomarkers in serum validates anticipated health and economic benefits from early screening tests. Biomarkers are also essential for improving the process of developing new drugs. Methods: The result analysis, of current studies on selected biomarker concentrations (Aβ40, Aβ42, t-tau, and YKL-40) and their combination in the serum of patients with dementia and mild cognitive disorders, involved a search for papers available in Medline, PubMed, and Web of Science databases published from 2000 to 2020. Results: The results of conducted cross-sectional studies comparing Aβ40, Aβ42, and Aβ42/Aβ40 among people with cognitive disorders and a control group are incoherent. Most of the analyzed papers showed an increase in t-tau concentration in diagnosed Alzheimer’s disease (AD) patients’ serum, whereas results of mild cognitive impairment (MCI) groups did not differ from the control groups. In several papers on the concentration of YKL-40 and t-tau/Aβ42 ratio, the results were promising. To date, several studies have only covered the field of biomarker concentrations in dementia disorders other than AD. Conclusions: Insufficient amyloid marker test repeatability may result either from imperfection of the used laboratorial techniques or inadequate selection of control groups with their comorbidities. On the basis of current knowledge, t-tau, t-tau/Aβ42, and YKL-40 seem to be promising candidates as biomarkers of cognitive disorders in serum. YKL-40 seems to be a more useful biomarker in early MCI diagnostics, whereas t-tau can be used as a marker of progress of prodromal states in mild AD. Due to the insignificant number of studies conducted to date among patients with dementia disorders other than AD, it is not possible to make a sound assessment of their usefulness in dementia differential diagnostics.
Collapse
|
42
|
Martini AC, Helman AM, McCarty KL, Lott IT, Doran E, Schmitt FA, Head E. Distribution of microglial phenotypes as a function of age and Alzheimer's disease neuropathology in the brains of people with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12113. [PMID: 33088896 PMCID: PMC7560512 DOI: 10.1002/dad2.12113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Microglial cells play an important role in the development of Alzheimer's disease (AD). People with Down syndrome (DS) inevitably develop AD neuropathology (DSAD) by 40 years of age. We characterized the distribution of different microglial phenotypes in the brains of people with DS and DSAD. METHODS Autopsy tissue from the posterior cingulate cortex (PCC) from people with DS, DSAD, and neurotypical controls was immunostained with the microglial marker Iba1 to assess five microglia morphological types. RESULTS Individuals with DS have more hypertrophic microglial cells in their white matter. In the gray matter, individuals with DSAD had significantly fewer ramified microglia and more dystrophic microglia than controls and the younger individuals with DS. The DSAD group also exhibited more rod-shaped and amoeboid cells than the AD group. DISCUSSION Individuals with DS and DSAD show a microglial phenotype that distinguishes them from non-DS controls.
Collapse
Affiliation(s)
- Alessandra C. Martini
- Department of Pathology and Laboratory MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Alex M. Helman
- Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Katie L. McCarty
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Ira T. Lott
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- Department of NeurologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Eric Doran
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
| | - Frederick A. Schmitt
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of California, IrvineIrvineCaliforniaUSA
- Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
43
|
Valentini D, Mosca A, Di Camillo C, Crudele A, Sartorelli MR, Scoppola V, Tarani L, Villani A, Raponi M, Novelli A, Alisi A. PNPLA3 gene polymorphism is associated with liver steatosis in children with Down syndrome. Nutr Metab Cardiovasc Dis 2020; 30:1564-1572. [PMID: 32636123 DOI: 10.1016/j.numecd.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS We previously demonstrated that children with Down syndrome (DS) exhibited a greater risk of steatosis than the general pediatric population. This trend was independent of obese phenotype, thus suggesting a role of genetic predisposition. Therefore, we investigated the prevalence of non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS) in function of genetic susceptibility and adipocytokine levels in children with DS. METHODS AND RESULTS A total of 84 Caucasian children with DS (age range 5-17 years), were included in this study. For all children, we collected data on anthropometric and biochemical parameters, and liver ultrasound (US). We also measured adipocytokines circulating levels and specific polymorphisms closed to NAFLD. We found a prevalence of 64.3% of liver steatosis at US, with a severe steatosis of about 4% in children with DS. The presence of steatosis in children with DS was associated with the presence of patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 variant, which also correlated with interleukin (IL)-6 levels. Moreover, we found that the 52.4% had a waist circumference > 90th percentile, 21.4% were hypertensive, 7.14% had hyperglycemia, 9.5% had hypertriglyceridemia, and 17.9% showed high-density lipoprotein cholesterol ≤ 40 mg/dl. Finally, the IL-6 and adiponectin levels correlated with steatosis, and several adipocytokines correlated with single MetS traits in children with DS. CONCLUSION The present study explores for the first time potential pathomechanisms connecting pediatric NAFLD and MetS in DS. We found that the PNPLA3 variant is associated with steatosis, but not with MetS, in children with DS.
Collapse
Affiliation(s)
- Diletta Valentini
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.
| | - Antonella Mosca
- Hepato-Metabolic Disease Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Chiara Di Camillo
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Annalisa Crudele
- Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | | | - Vittorio Scoppola
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Alberto Villani
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | | | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Anna Alisi
- Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.
| |
Collapse
|
44
|
González A, Guzmán-Martínez L, Maccioni RB. Plasma Tau Variants Detected by a Novel Anti-Tau Monoclonal Antibody: A Potential Biomarker for Alzheimer's Disease. J Alzheimers Dis 2020; 77:877-883. [PMID: 32741827 DOI: 10.3233/jad-200386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND A major drawback in Alzheimer's disease (AD) is the lack of validated biomarkers for routine clinical diagnostic. We have reported earlier a novel blood biomarker, named Alz-tau®, based on variants of platelet tau. This marker evaluates the ratio of high molecular weight tau (HMWtau) and the low molecular weight (LMWtau) tau. OBJECTIVE To analyze a potential novel source of antigen for Alz-tau®, plasma tau, detected by immunoreactivity with the novel monoclonal antibody, tau51. METHODS We evaluated tau variants in plasma precipitated with ammonium sulfate from 36 AD patients and 15 control subjects by western blot with this novel monoclonal antibody. RESULTS The HMW/LMWtau ratio was statistically different between AD patients and controls. CONCLUSIONS Plasma tau variants are suitable to be considered as a novel antigen source for the Alz-tau® biomarker for AD.
Collapse
Affiliation(s)
- Andrea González
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Leonardo Guzmán-Martínez
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile.,Department of Neurology, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
45
|
Liang CS, Su KP, Tsai CL, Lee JT, Chu CS, Yeh TC, Su MW, Lin GY, Lin YK, Chu HT, Tsai CK, Yang FC. The role of interleukin-33 in patients with mild cognitive impairment and Alzheimer's disease. Alzheimers Res Ther 2020; 12:86. [PMID: 32678011 PMCID: PMC7367330 DOI: 10.1186/s13195-020-00652-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The neuroprotective role of interleukin (IL)-33 is supported by numerous preclinical studies, but it remains uninvestigated in clinical studies of Alzheimer's disease (AD). We aimed to examine the association between human blood levels of IL-33 and cognitive preservation in amnestic mild cognitive impairment (aMCI) and AD. METHODS A total of 100 participants (26 controls, 35 aMCI patients, and 39 AD patients) completed two Mini-Mental State Examinations (MMSEs) over a 1-year interval. In all 100 participants at the second MMSE, we examined the plasma levels of IL-33, IL-β, IL-1 receptor agonist (IL-1RA), beta amyloid (Aβ), and tau and apolipoprotein E (ApoE) genotyping; we also performed Hopkins Verbal Learning Test, Trail Making Test, forward and backward digit span, and Clinical Dementia Rating. RESULTS IL-33 expression showed a positive trend among controls (1/26 = 3.8%), aMCI (9/35 = 25.7%), and AD (17/39 = 43.6%) (trend analysis: P < 0.001). Patients expressing IL-33 preserved their cognitive function compared with IL-33 non-expressing patients (1-year ΔMMSE, 0.16 ± 1.6 vs - 1.5 ± 2.6; P = 0.006). The cognitive preservation was not associated with the lower levels of Aβ, tau, and ApoE ε4, while higher levels of ApoE ε4 and phosphorylated tau were indeed associated with cognitive decline. The aMCI patients with AD conversion during study period had higher proportion of IL-33(-) than non-AD converters (90.9% vs 53.3%, P = 0.04). CONCLUSIONS IL-33 or its associated signaling pathways may represent a new treatment paradigm for aMCI and AD.
Collapse
Affiliation(s)
- Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Cheng-Kung Road, Neihu District, Taipei City 114, Taiwan
| | - Jiunn-Tay Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Cheng-Kung Road, Neihu District, Taipei City 114, Taiwan
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Wei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Cheng-Kung Road, Neihu District, Taipei City 114, Taiwan
| | - Yu-Kai Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Cheng-Kung Road, Neihu District, Taipei City 114, Taiwan
| | - Hsuan-Te Chu
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Cheng-Kung Road, Neihu District, Taipei City 114, Taiwan
| | - Fu-Chi Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Cheng-Kung Road, Neihu District, Taipei City 114, Taiwan.
| |
Collapse
|
46
|
Snyder HM, Bain LJ, Brickman AM, Carrillo MC, Esbensen AJ, Espinosa JM, Fernandez F, Fortea J, Hartley SL, Head E, Hendrix J, Kishnani PS, Lai F, Lao P, Lemere C, Mobley W, Mufson EJ, Potter H, Zaman SH, Granholm AC, Rosas HD, Strydom A, Whitten MS, Rafii MS. Further understanding the connection between Alzheimer's disease and Down syndrome. Alzheimers Dement 2020; 16:1065-1077. [PMID: 32544310 PMCID: PMC8865308 DOI: 10.1002/alz.12112] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Improved medical care of individuals with Down syndrome (DS) has led to an increase in life expectancy to over the age of 60 years. In conjunction, there has been an increase in age-related co-occurring conditions including Alzheimer's disease (AD). Understanding the factors that underlie symptom and age of clinical presentation of dementia in people with DS may provide insights into the mechanisms of sporadic and DS-associated AD (DS-AD). In March 2019, the Alzheimer's Association, Global Down Syndrome Foundation and the LuMind IDSC Foundation partnered to convene a workshop to explore the state of the research on the intersection of AD and DS research; to identify research gaps and unmet needs; and to consider how best to advance the field. This article provides a summary of discussions, including noting areas of emerging science and discovery, considerations for future studies, and identifying open gaps in our understanding for future focus.
Collapse
Affiliation(s)
- Heather M. Snyder
- Alzheimer’s Association, Medical & Scientific Relations, Chicago, Illinois, USA
| | - Lisa J. Bain
- Independent Science Writer, Elverson, Pennsylvania, USA
| | - Adam M. Brickman
- Department of Neurology, College of Physicians and Surgeons, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Maria C. Carrillo
- Alzheimer’s Association, Medical & Scientific Relations, Chicago, Illinois, USA
| | - Anna J. Esbensen
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center & University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Fabian Fernandez
- Departments of Psychology and Neurology, BIO5 Institute, and The Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Juan Fortea
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona, CIBERNED, Barcelona, Spain
- Down Medical Center, Catalan Down Syndrome Foundation, Barcelona, Spain
| | - Sigan L. Hartley
- Department of Human Development and Family Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, California, USA
| | - James Hendrix
- LuMind IDSC Foundation, Burlington, Massachusetts, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Florence Lai
- Department of Neurology, Harvard University/Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick Lao
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Cynthia Lemere
- Department of Neurology, Brigham & Women’s Hospital and Harvard University, Boston, Massachusetts, USA
| | - William Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, California, USA
| | | | - Huntington Potter
- Rocky Mountain Alzheimer’s Disease Center and Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Shahid H. Zaman
- Cambridge Intellectual & Developmental Disability Research Group, Department of Psychiatry University of Cambridge, Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, USA
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - H. Diana Rosas
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Psychology and Neuroscience, King’s College London, South London and the Maudsley NHS Foundation Trust, LonDowns Consortium, Institute of Psychiatry, London, UK
| | | | - Michael S. Rafii
- Alzheimer’s Therapeutics Research Institute and Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
47
|
O'Brien WT, Pham L, Symons GF, Monif M, Shultz SR, McDonald SJ. The NLRP3 inflammasome in traumatic brain injury: potential as a biomarker and therapeutic target. J Neuroinflammation 2020; 17:104. [PMID: 32252777 PMCID: PMC7137518 DOI: 10.1186/s12974-020-01778-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/17/2020] [Indexed: 01/14/2023] Open
Abstract
There is a great clinical need to identify the underlying mechanisms, as well as related biomarkers, and treatment targets, for traumatic brain injury (TBI). Neuroinflammation is a central pathophysiological feature of TBI. NLRP3 inflammasome activity is a necessary component of the innate immune response to tissue damage, and dysregulated inflammasome activity has been implicated in a number of neurological conditions. This paper introduces the NLRP3 inflammasome and its implication in the pathogenesis of neuroinflammatory-related conditions, with a particular focus on TBI. Although its role in TBI has only recently been identified, findings suggest that priming and activation of the NLRP3 inflammasome are upregulated following TBI. Moreover, recent studies utilizing specific NLRP3 inhibitors have provided further evidence that this inflammasome is a major driver of neuroinflammation and neurobehavioral disturbances following TBI. In addition, there is emerging evidence that circulating inflammasome-associated proteins may have utility as diagnostic biomarkers of neuroinflammatory conditions, including TBI. Finally, novel and promising areas of research will be highlighted, including the potential involvement of the NLRP3 inflammasome in mild TBI, how factors such as biological sex may affect NLRP3 activity in TBI, and the use of emerging biomarker platforms. Taken together, this review highlights the exciting potential of the NLRP3 inflammasome as a target for treatments and biomarkers that may ultimately be used to improve TBI management.
Collapse
Affiliation(s)
- William T O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Louise Pham
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, 3004, Australia.,Department of Neurology, Melbourne Health, Melbourne, VIC, 3004, Australia.,Department of Physiology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
48
|
Mengel D, Liu W, Glynn RJ, Selkoe DJ, Strydom A, Lai F, Rosas HD, Torres A, Patsiogiannis V, Skotko B, Walsh DM. Dynamics of plasma biomarkers in Down syndrome: the relative levels of Aβ42 decrease with age, whereas NT1 tau and NfL increase. ALZHEIMERS RESEARCH & THERAPY 2020; 12:27. [PMID: 32192521 PMCID: PMC7081580 DOI: 10.1186/s13195-020-00593-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/06/2020] [Indexed: 11/12/2022]
Abstract
Background Down syndrome (DS) is the most common genetic cause of Alzheimer’s disease (AD), but diagnosis of AD in DS is challenging due to the intellectual disability which accompanies DS. When disease-modifying agents for AD are approved, reliable biomarkers will be required to identify when and how long people with DS should undergo treatment. Three cardinal neuropathological features characterize AD, and AD in DS—Aβ amyloid plaques, tau neurofibrillary tangles, and neuronal loss. Here, we quantified plasma biomarkers of all 3 neuropathological features in a large cohort of people with DS aged from 3 months to 68 years. Our primary aims were (1) to assess changes in the selected plasma biomarkers in DS across age, and (2) to compare biomarkers measured in DS plasma versus age- and sex-matched controls. Methods Using ultra-sensitive single molecule array (Simoa) assays, we measured 3 analytes (Aβ42, NfL, and tau) in plasmas of 100 individuals with DS and 100 age- and sex-matched controls. Tau was measured using an assay (NT1) which detects forms of tau containing at least residues 6–198. The stability of the 3 analytes was established using plasma from ten healthy volunteers collected at 6 intervals over a 5-day period. Results High Aβ42 and NT1 tau and low NfL were observed in infants. Across all ages, Aβ42 levels were higher in DS than controls. Levels of Aβ42 decreased with age in both DS and controls, but this decrease was greater in DS than controls and became prominent in the third decade of life. NT1 tau fell in adolescents and young adults, but increased in older individuals with DS. NfL levels were low in infants, children, adolescents, and young adults, but thereafter increased in DS compared to controls. Conclusions High levels of Aβ42 and tau in both young controls and DS suggest these proteins are produced by normal physiological processes, whereas the changes seen in later life are consistent with emergence of pathological alterations. These plasma biomarker results are in good agreement with prior neuropathology studies and indicate that the third and fourth decades (i.e., 20 to 40 years of age) of life are pivotal periods during which AD processes manifest in DS. Application of the assays used here to longitudinal studies of individuals with DS aged 20 to 50 years of age should further validate the use of these biomarkers, and in time may allow identification and monitoring of people with DS best suited for treatment with AD therapies.
Collapse
Affiliation(s)
- David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA. .,Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Robert J Glynn
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dennis J Selkoe
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Division of Psychiatry, University College London, London, UK
| | - Florence Lai
- Department of Neurology, Massachusetts General Hospital and McLean Hospital, and Harvard Medical School, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Massachusetts General Hospital and McLean Hospital, and Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Amy Torres
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Vasiliki Patsiogiannis
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Brian Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
Weber GE, Koenig KA, Khrestian M, Shao Y, Tuason ED, Gramm M, Lal D, Leverenz JB, Bekris LM. An Altered Relationship between Soluble TREM2 and Inflammatory Markers in Young Adults with Down Syndrome: A Preliminary Report. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1111-1118. [PMID: 31959733 PMCID: PMC7033027 DOI: 10.4049/jimmunol.1901166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023]
Abstract
Individuals with Down syndrome (DS) develop Alzheimer's disease (AD)-related neuropathology, characterized by amyloid plaques with amyloid β (Aβ) and neurofibrillary tangles with tau accumulation. Peripheral inflammation and the innate immune response are elevated in DS. Triggering receptor expressed in myeloid cells 2 (TREM2) genetic variants are risk factors for AD and other neurodegenerative diseases. Soluble TREM2 (sTREM2), a soluble cleavage product of TREM2, is elevated in AD cerebrospinal fluid and positively correlates with cognitive decline. There is relatively little information about TREM2 in DS. Our objective was to examine the relationship between sTREM2 and inflammatory markers in young adults with DS, prior to the development of dementia symptoms. Because TREM2 plays a role in the innate immune response and has been associated with dementia, the hypothesis of this exploratory study was that young adults with DS predementia (n = 15, mean age = 29.5 y) would exhibit a different relationship between sTREM2 and inflammatory markers in plasma, compared with neurotypical, age-matched controls (n = 16, mean age = 29.6 y). Indeed, young adults with DS had significantly elevated plasma sTREM2 and inflammatory markers. Additionally, in young adults with DS, sTREM2 correlated positively with 24 of the measured cytokines, whereas there were no significant correlations in the control group. Hierarchical clustering of sTREM2 and cytokine concentrations also differed between the groups, supporting the hypothesis that its function is altered in people with DS predementia. This preliminary report of human plasma provides a basis for future studies investigating the relationship between TREM2 and the broader immune response predementia.
Collapse
Affiliation(s)
- Grace E Weber
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | - Maria Khrestian
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Yvonne Shao
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | - Marie Gramm
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany; and
| | - Dennis Lal
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
| | - James B Leverenz
- Cleveland Clinic Lou Ruvo Center for Brain Health, Neurological Institute, Clevland Clinic, Cleveland, OH 44195
| | - Lynn M Bekris
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
50
|
Kohlenberg TM, Trelles MP, McLarney B, Betancur C, Thurm A, Kolevzon A. Psychiatric illness and regression in individuals with Phelan-McDermid syndrome. J Neurodev Disord 2020; 12:7. [PMID: 32050889 PMCID: PMC7014655 DOI: 10.1186/s11689-020-9309-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a genetic condition characterized by intellectual disability, speech and language deficits, hypotonia, autism spectrum disorder, and epilepsy. PMS is caused by 22q13.33 deletions or mutations affecting SHANK3, which codes for a critical scaffolding protein in excitatory synapses. SHANK3 variants are also known to be associated with an increased risk for regression, as well as for psychiatric disorders, including bipolar disorder and catatonia. This study aimed to further describe these phenomena in PMS and to explore any relationship between psychiatric illness and regression after early childhood. METHODS Thirty-eight people with PMS were recruited to this study through the Phelan-McDermid Syndrome Foundation based on caregiver report of distinct development of psychiatric symptoms. Caregivers completed a clinician-administered semi-structured interview focused on eliciting psychiatric symptomatology. Data from the PMS International Registry were used to confirm genetic diagnoses of participants and to provide a larger sample for comparison. RESULTS The mean age of the 38 participants was 24.7 years (range = 13 to 50; SD = 10.06). Females (31 of 38 cases; 82%) and sequence variants (15 of 38 cases; 39%) were over-represented in this sample, compared to base rates in the PMS International Registry. Onset of psychiatric symptoms occurred at a mean age of 15.4 years (range = 7 to 32), with presentations marked by prominent disturbances of mood. Enduring substantial loss of functional skills after onset of psychiatric changes was seen in 25 cases (66%). Symptomst indicative of catatonia occurred in 20 cases (53%). Triggers included infections, changes in hormonal status, and stressful life events. CONCLUSIONS This study confirms that individuals with PMS are at risk of developing severe neuropsychiatric illness in adolescence or early adulthood, including bipolar disorder, catatonia, and lasting regression of skills. These findings should increase the awareness of these phenotypes and lead to earlier diagnosis and the implementation of appropriate interventions. Our findings also highlight the importance of genetic testing in the work-up of individuals with intellectual disability and acute psychiatric illness or regression. Future research is needed to clarify the prevalence and nature of psychiatric disorders and regression among larger unbiased samples of individuals with PMS.
Collapse
Affiliation(s)
- Teresa M Kohlenberg
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA.
| | - M Pilar Trelles
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|