1
|
Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, Cheng NC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng 2024; 8:041501. [PMID: 39364211 PMCID: PMC11446583 DOI: 10.1063/5.0225807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Recent advances in scaffold-free three-dimensional (3D) culture methods have significantly enhanced the potential of stem cell-based therapies in regenerative medicine. This cutting-edge technology circumvents the use of exogenous biomaterial and prevents its associated complications. The 3D culture system preserves crucial intercellular interactions and extracellular matrix support, closely mimicking natural biological niches. Therefore, stem cells cultured in 3D formats exhibit distinct characteristics, showcasing their capabilities in promoting angiogenesis and immunomodulation. This review aims to elucidate foundational technologies and recent breakthroughs in 3D scaffold-free stem cell engineering, offering comprehensive guidance for researchers to advance this technology across various clinical applications. We first introduce the various sources of stem cells and provide a comparative analysis of two-dimensional (2D) and 3D culture systems. Given the advantages of 3D culture systems, we delve into the specific fabrication and harvesting techniques for cell sheets and spheroids. Furthermore, we explore their applications in pre-clinical studies, particularly in large animal models and clinical trials. We also discuss multidisciplinary strategies to overcome existing limitations such as insufficient efficacy, hostile microenvironments, and the need for scalability and standardization of stem cell-based products.
Collapse
Affiliation(s)
- Ke-Chun Liu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Chi-Fen Hsieh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Meng-Xun Zhong
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Author to whom correspondence should be addressed:. Tel.: 886 2 23123456 ext 265919. Fax: 886 2 23934358
| |
Collapse
|
2
|
Lombardo MT, Gabrielli M, Julien-Marsollier F, Faivre V, Le Charpentier T, Bokobza C, D’Aliberti D, Pelizzi N, Halimi C, Spinelli S, Van Steenwinckel J, Verderio EAM, Gressens P, Piazza R, Verderio C. Human Umbilical Cord-Mesenchymal Stem Cells Promote Extracellular Matrix Remodeling in Microglia. Cells 2024; 13:1665. [PMID: 39404427 PMCID: PMC11475221 DOI: 10.3390/cells13191665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Human mesenchymal stem cells modulate the immune response and are good candidates for cell therapy in neuroinflammatory brain disorders affecting both adult and premature infants. Recent evidence indicates that through their secretome, mesenchymal stem cells direct microglia, brain-resident immune cells, toward pro-regenerative functions, but the mechanisms underlying microglial phenotypic transition are still under investigation. Using an in vitro coculture approach combined with transcriptomic analysis, we identified the extracellular matrix as the most relevant pathway altered by the human mesenchymal stem cell secretome in the response of microglia to inflammatory cytokines. We confirmed extracellular matrix remodeling in microglia exposed to the mesenchymal stem cell secretome via immunofluorescence analysis of the matrix component fibronectin and the extracellular crosslinking enzyme transglutaminase-2. Furthermore, an analysis of hallmark microglial functions revealed that changes in the extracellular matrix enhance ruffle formation by microglia and cell motility. These findings point to extracellular matrix changes, associated plasma membrane remodeling, and enhanced microglial migration as novel mechanisms by which mesenchymal stem cells contribute to the pro-regenerative microglial transition.
Collapse
Affiliation(s)
- Marta Tiffany Lombardo
- Institute of Neuroscience, National Research Council of Italy, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (M.T.L.); (M.G.); (C.H.)
- School of Medicine and Surgery, University of Milano-Bicocca, Piazza dell’ Ateneo Nuovo 1, 20126 Milan, Italy
| | - Martina Gabrielli
- Institute of Neuroscience, National Research Council of Italy, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (M.T.L.); (M.G.); (C.H.)
| | - Florence Julien-Marsollier
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (J.V.S.); (P.G.)
| | - Valérie Faivre
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (J.V.S.); (P.G.)
| | - Tifenn Le Charpentier
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (J.V.S.); (P.G.)
| | - Cindy Bokobza
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (J.V.S.); (P.G.)
| | - Deborah D’Aliberti
- Department of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (D.D.); (S.S.); (R.P.)
| | - Nicola Pelizzi
- CARE Franchise, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| | - Camilla Halimi
- Institute of Neuroscience, National Research Council of Italy, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (M.T.L.); (M.G.); (C.H.)
| | - Silvia Spinelli
- Department of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (D.D.); (S.S.); (R.P.)
| | - Juliette Van Steenwinckel
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (J.V.S.); (P.G.)
| | - Elisabetta A. M. Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
- Department of Biological Sciences (BIGEA), University of Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Pierre Gressens
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (J.V.S.); (P.G.)
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (D.D.); (S.S.); (R.P.)
| | - Claudia Verderio
- Institute of Neuroscience, National Research Council of Italy, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (M.T.L.); (M.G.); (C.H.)
| |
Collapse
|
3
|
Wang Q, Guo W, Niu L, Zhou Y, Wang Z, Chen J, Chen J, Ma J, Zhang J, Jiang Z, Wang B, Zhang Z, Li C, Jian Z. 3D-hUMSCs Exosomes Ameliorate Vitiligo by Simultaneously Potentiating Treg Cells-Mediated Immunosuppression and Suppressing Oxidative Stress-Induced Melanocyte Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404064. [PMID: 38887870 PMCID: PMC11336971 DOI: 10.1002/advs.202404064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Vitiligo is an autoimmune disease characterized by epidermal melanocyte destruction, with abnormal autoimmune responses and excessive oxidative stress as two cardinal mechanisms. Human umbilical mesenchymal stem cells-derived exosomes (hUMSCs-Exos) are regarded as promising therapeutic choice for autoimmune diseases due to potent immunosuppressive and anti-oxidative properties, which can be potentiated under 3D cell culture condition. Nevertheless, whether exosomes derived from 3D spheroids of hUMSCs (3D-Exos) exhibit considerable therapeutic effect on vitiligo and the underlying mechanism remain elusive. In this study, systemic administration of 3D-Exos showed a remarkable effect in treating mice with vitiligo, as revealed by ameliorated skin depigmentation, less CD8+T cells infiltration, and expanded Treg cells in skin, and 3D-Exos exerted a better effect than 2D-Exos. Mechanistically, 3D-Exos can prominently facilitate the expansion of Treg cells in vitiligo lesion and suppress H2O2-induced melanocytes apoptosis. Forward miRNA profile analysis and molecular experiments have demonstrated that miR-132-3p and miR-125b-5p enriched in 3D-Exos greatly contributed to these biological effects by targeting Sirt1 and Bak1 respectively. In aggregate, 3D-Exos can efficiently ameliorate vitiligo by simultaneously potentiating Treg cells-mediated immunosuppression and suppressing oxidative stress-induced melanocyte damage via the delivery of miR-132-3p and miR-125b-5p. The employment of 3D-Exos will be a promising treament for vitiligo.
Collapse
Affiliation(s)
- Qi Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Weinan Guo
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Liaoran Niu
- Department of Digestive SurgeryXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Yuqi Zhou
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zeqian Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jianru Chen
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jiaxi Chen
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jingjing Ma
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jia Zhang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhaoting Jiang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Bo Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhe Zhang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Chunying Li
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhe Jian
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
4
|
Ramu V, Wijaya LS, Beztsinna N, Van de Griend C, van de Water B, Bonnet S, Le Dévédec SE. Cell viability imaging in tumor spheroids via DNA binding of a ruthenium(II) light-switch complex. Chem Commun (Camb) 2024; 60:6308-6311. [PMID: 38818705 PMCID: PMC11181008 DOI: 10.1039/d4cc01425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
The famous ''light-switch'' ruthenium complex [Ru(bpy)2(dppz)](PF6)2 (1) has been long known for its DNA binding properties in vitro. However, the biological utility of this compound has been hampered by its poor cellular uptake in living cells. Here we report a bioimaging application of 1 as cell viability probe in both 2D cells monolayer and 3D multi-cellular tumor spheroids of various human cancer cell lines (U87, HepG2, A549). When compared to propidium iodide, a routinely used cell viability probe, 1 was found to enhance the staining of dead cells in particular in tumor spheroids. 1 has high photostability, longer Stokes shift, and displays lower cytotoxicity compared to propidium iodide, which is a known carcinogenic. Finally, 1 was also found to displace the classical DNA binding dye Hoechst in dead cells, which makes it a promising dye for time-dependent imaging of dead cells in cell cultures, including multi-cellular tumor spheroids.
Collapse
Affiliation(s)
- Vadde Ramu
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Lukas S Wijaya
- Leiden Academic Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Nataliia Beztsinna
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Corjan Van de Griend
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Bob van de Water
- Leiden Academic Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Sylvia E Le Dévédec
- Leiden Academic Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
5
|
Trigo CM, Rodrigues JS, Camões SP, Solá S, Miranda JP. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J Adv Res 2024:S2090-1232(24)00181-4. [PMID: 38729561 DOI: 10.1016/j.jare.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapies have yielded beneficial effects in a broad range of preclinical models and clinical trials for human diseases. In the context of MSC transplantation, it is widely recognized that the main mechanism for the regenerative potential of MSCs is not their differentiation, with in vivo data revealing transient and low engraftment rates. Instead, MSCs therapeutic effects are mainly attributed to its secretome, i.e., paracrine factors secreted by these cells, further offering a more attractive and innovative approach due to the effectiveness and safety of a cell-free product. AIM OF REVIEW In this review, we will discuss the potential benefits of MSC-derived secretome in regenerative medicine with particular focus on respiratory, hepatic, and neurological diseases. Both free and vesicular factors of MSC secretome will be detailed. We will also address novel potential strategies capable of improving their healing potential, namely by delivering important regenerative molecules according to specific diseases and tissue needs, as well as non-clinical and clinical studies that allow us to dissect their mechanisms of action. KEY SCIENTIFIC CONCEPTS OF REVIEW MSC-derived secretome includes both soluble and non-soluble factors, organized in extracellular vesicles (EVs). Importantly, besides depending on the cell origin, the characteristics and therapeutic potential of MSC secretome is deeply influenced by external stimuli, highlighting the possibility of optimizing their characteristics through preconditioning approaches. Nevertheless, the clarity around their mechanisms of action remains ambiguous, whereas the need for standardized procedures for the successful translation of those products to the clinics urges.
Collapse
Affiliation(s)
- Catarina M Trigo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S Rodrigues
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio P Camões
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P Miranda
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
6
|
Zhu S, Xuan J, Shentu Y, Kida K, Kobayashi M, Wang W, Ono M, Chang D. Effect of chitin-architected spatiotemporal three-dimensional culture microenvironments on human umbilical cord-derived mesenchymal stem cells. Bioact Mater 2024; 35:291-305. [PMID: 38370866 PMCID: PMC10869358 DOI: 10.1016/j.bioactmat.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been explored for the clinical treatment of various diseases. However, the current two-dimensional (2D) culture method lacks a natural spatial microenvironment in vitro. This limitation restricts the stable establishment and adaptive maintenance of MSC stemness. Using natural polymers with biocompatibility for constructing stereoscopic MSC microenvironments may have significant application potential. This study used chitin-based nanoscaffolds to establish a novel MSC three-dimensional (3D) culture. We compared 2D and 3D cultured human umbilical cord-derived MSCs (UCMSCs), including differentiation assays, cell markers, proliferation, and angiogenesis. When UCMSCs are in 3D culture, they can differentiate into bone, cartilage, and fat. In 3D culture condition, cell proliferation is enhanced, accompanied by an elevation in the secretion of paracrine factors, including vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) by UCMSCs. Additionally, a 3D culture environment promotes angiogenesis and duct formation with HUVECs (Human Umbilical Vein Endothelial Cells), showing greater luminal area, total length, and branching points of tubule formation than a 2D culture. MSCs cultured in a 3D environment exhibit enhanced undifferentiated, as well as higher cell activity, making them a promising candidate for regenerative medicine and therapeutic applications.
Collapse
Affiliation(s)
- Shuoji Zhu
- Department of Cardiac Surgery, University of Tokyo, Tokyo, 113-8655, Japan
| | - Junfeng Xuan
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Yunchao Shentu
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | | | | | - Wei Wang
- Winhealth Pharma, 999077, Hong Kong
| | - Minoru Ono
- Department of Cardiac Surgery, University of Tokyo, Tokyo, 113-8655, Japan
| | - Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| |
Collapse
|
7
|
Li X, Zhang D, Yu Y, Wang L, Zhao M. Umbilical cord-derived mesenchymal stem cell secretome promotes skin regeneration and rejuvenation: From mechanism to therapeutics. Cell Prolif 2024; 57:e13586. [PMID: 38148579 PMCID: PMC10984109 DOI: 10.1111/cpr.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
How to effectively repair cutaneous wounds and promote skin rejuvenation has always been a challenging issue for clinical medicine and medical aesthetics. Current conventional medicines exhibit several drawbacks, including limited therapeutic effects, prolonged treatment periods, and high costs. As a novel cell-free therapy, the umbilical cord-derived mesenchymal stem cell (UCMSC) secretome may offer a promising approach for skin regeneration and rejuvenation. The UCMSC secretome is a collection of all proteins secreted by mesenchymal stem cells, including conditioned media, exosomes, and other substances. The UCMSC secretome has numerous abilities to accelerate acute wound healing, including high fibroblast and keratinocyte proliferative activity, pro-angiogenesis, anti-inflammation, anti-fibrosis, and anti-oxidative stress. Its impact on the four stages of wound healing is manifested by inducing the haemostasis phase, inhibiting the inflammation phase, promoting the proliferation phase, and regulating the remodelling phase. Furthermore, it is highly effective in the treatment of chronic wounds, alopecia, aging, and skin homeostasis disturbance. This review focuses on the clinical therapies and application prospects of the UCMSC secretome, encompassing its source, culture, separation, identification, storage, and pretreatment. Additionally, a discussion on the dosage, administration route, efficacy, and biosafety in the clinical situation is presented. This review aims to provide scientific support for the mechanistic investigation and clinical utilisation of the UCMSC secretome in wound healing and skin rejuvenation.
Collapse
Affiliation(s)
- Xixian Li
- Department of Plastic SurgeryThe Second Hospital of Dalian Medical UniversityDalianLiaoningChina
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianLiaoningChina
| | - Dan Zhang
- Department of Plastic SurgeryThe Second Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Yang Yu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianLiaoningChina
| | - Liang Wang
- Research and Teaching Department of Comparative MedicineDalian Medical UniversityDalianLiaoningChina
| | - Muxin Zhao
- Department of Plastic SurgeryThe Second Hospital of Dalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
8
|
Yun C, Kim SH, Kim KM, Yang MH, Byun MR, Kim JH, Kwon D, Pham HTM, Kim HS, Kim JH, Jung YS. Advantages of Using 3D Spheroid Culture Systems in Toxicological and Pharmacological Assessment for Osteogenesis Research. Int J Mol Sci 2024; 25:2512. [PMID: 38473760 DOI: 10.3390/ijms25052512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone differentiation is crucial for skeletal development and maintenance. Its dysfunction can cause various pathological conditions such as rickets, osteoporosis, osteogenesis imperfecta, or Paget's disease. Although traditional two-dimensional cell culture systems have contributed significantly to our understanding of bone biology, they fail to replicate the intricate biotic environment of bone tissue. Three-dimensional (3D) spheroid cell cultures have gained widespread popularity for addressing bone defects. This review highlights the advantages of employing 3D culture systems to investigate bone differentiation. It highlights their capacity to mimic the complex in vivo environment and crucial cellular interactions pivotal to bone homeostasis. The exploration of 3D culture models in bone research offers enhanced physiological relevance, improved predictive capabilities, and reduced reliance on animal models, which have contributed to the advancement of safer and more effective strategies for drug development. Studies have highlighted the transformative potential of 3D culture systems for expanding our understanding of bone biology and developing targeted therapeutic interventions for bone-related disorders. This review explores how 3D culture systems have demonstrated promise in unraveling the intricate mechanisms governing bone homeostasis and responses to pharmacological agents.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Mok Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Joung-Hee Kim
- Department of Medical Beauty Care, Dongguk University Wise, Gyeongju 38066, Republic of Korea
| | - Doyoung Kwon
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Huyen T M Pham
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyo-Sop Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Smolinska V, Harsanyi S, Bohac M, Danisovic L. Exploring the Three-Dimensional Frontier: Advancements in MSC Spheroids and Their Implications for Breast Cancer and Personalized Regenerative Therapies. Biomedicines 2023; 12:52. [PMID: 38255159 PMCID: PMC10813175 DOI: 10.3390/biomedicines12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
To more accurately replicate the in vivo three-dimensional (3D) mesenchymal stem cell (MSC) niche and enhance cellular phenotypes for superior in vivo treatments, MSC functionalization through in vitro 3D culture approaches has gained attention. The organization of MSCs in 3D spheroids results in altered cell shape, cytoskeleton rearrangement, and polarization. Investigations have revealed that the survival and secretory capability of MSCs are positively impacted by moderate hypoxia within the inner zones of MSC spheroids. The spheroid hypoxic microenvironment enhances the production of angiogenic and anti-apoptotic molecules, including HGF, VEGF, and FGF-2. Furthermore, it upregulates the expression of hypoxia-adaptive molecules such as CXCL12 and HIF-1, inhibiting MSC death. The current review focuses on the latest developments in fundamental and translational research concerning three-dimensional MSC systems. This emphasis extends to the primary benefits and potential applications of MSC spheroids, particularly in the context of breast cancer and customized regenerative therapies.
Collapse
Affiliation(s)
- Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (M.B.); (L.D.)
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (M.B.); (L.D.)
| | - Martin Bohac
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (M.B.); (L.D.)
- Regenmed Ltd., Medena 29, 811 02 Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (M.B.); (L.D.)
- Regenmed Ltd., Medena 29, 811 02 Bratislava, Slovakia
| |
Collapse
|
10
|
Lima K, Malmir M, Camões SP, Hasan K, Gomes S, Moreira da Silva I, Figueira ME, Miranda JP, Serrano R, Duarte MP, Silva O. Quality, Safety and Biological Studies on Campylanthus glaber Aerial Parts. Pharmaceuticals (Basel) 2023; 16:1373. [PMID: 37895844 PMCID: PMC10610246 DOI: 10.3390/ph16101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
In Cabo Verde, several endemic species are used in traditional medicine. However, no scientific studies have been conducted on the quality, efficacy, and safety of most of these plants. This study focused on establishing the botanical and chemical identification parameters required for a quality monograph of Campylanthus glaber Benth. aerial parts, a medicinal plant of Cabo Verde traditionally used to treat fever and muscular pain. In addition, in vitro antioxidant and antihyperglycemic activity, cytotoxicity, and genotoxicity were assessed for this medicinal plant. Optical microscopy, LC/UV-DAD-ESI/MS, and colorimetric assays were used for botanical, chemical, and biological studies, respectively. Cytotoxicity was assessed by the MTT assay with HepG2 cells, and genotoxicity by the Ames test. Microscopically, the xeromorphic leaf of C. glaber presents a thick cuticle (13.6-25.5 µm), thick-walled epidermal cells, anomocytic-type stomata, glandular trichomes (stalk length = 49.4-120.8 µm), and idioblasts containing calcium oxalate microcrystals. The chemical screening of aqueous and hydroethanolic extracts of this medicinal plant revealed the presence of organic acids, iridoids, phenylethanoids, and flavonoids as the main classes of marker compounds, with malic acid, citric acid, and verbascoside being the main marker compounds identified. Both extracts showed similar LC/UV-DAD/ESI-MS qualitative profiles and DPPH radical scavenger activity (IC50 = 130.9 ± 1.4; 134.3 ± 3.1 µg/mL). The hydroethanolic extract inhibited both α-amylase and α-glucosidase enzymes in a dose-dependent manner. Both extracts showed no cytotoxicity (up to 1000 µg/mL) by the MTT assay and no genotoxic potential with or without metabolic activation up to 5 mg /plate. The results obtained are an important contribution to the monographic quality assessment of C. glaber aerial parts and suggest that this medicinal plant may be safe and potentially used as an herbal drug raw material for pharmaceutical purposes.
Collapse
Affiliation(s)
- Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Maryam Malmir
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Sérgio P. Camões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Kamrul Hasan
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Samuel Gomes
- Instituto Nacional de Investigação e Desenvolvimento Agrário (INIDA), São Jorge dos Orgãos, Santiago CP 84, Cabo Verde;
| | - Isabel Moreira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Maria Eduardo Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Rita Serrano
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Maria Paula Duarte
- The Mechanical Engineering and Resource Sustainability Center (MEtRICs), Nova School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| |
Collapse
|
11
|
Kim OH, Jeon TJ, So YI, Shin YK, Lee HJ. Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells. Int J Stem Cells 2023; 16:251-259. [PMID: 37385634 PMCID: PMC10465339 DOI: 10.15283/ijsc22211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 07/01/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Tae Jin Jeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Young In So
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| |
Collapse
|
12
|
Chouaib B, Haack-Sørensen M, Chaubron F, Cuisinier F, Collart-Dutilleul PY. Towards the Standardization of Mesenchymal Stem Cell Secretome-Derived Product Manufacturing for Tissue Regeneration. Int J Mol Sci 2023; 24:12594. [PMID: 37628774 PMCID: PMC10454619 DOI: 10.3390/ijms241612594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stem cell secretome or conditioned medium (MSC-CM) is a combination of biomolecules and growth factors in cell culture growth medium, secreted by mesenchymal stem cells (MSCs), and the starting point of several derived products. MSC-CM and its derivatives could be applied after injuries and could mediate most of the beneficial regenerative effects of MSCs without the possible side effects of using MSCs themselves. However, before the clinical application of these promising biopharmaceuticals, several issues such as manufacturing protocols and quality control must be addressed. This review aims to underline the influence of the procedure for conditioned medium production on the quality of the secretome and its derivatives and highlights the questions considering cell sources and donors, cell expansion, cell passage number and confluency, conditioning period, cell culture medium, microenvironment cues, and secretome-derived product purification. A high degree of variability in MSC secretomes is revealed based on these parameters, confirming the need to standardize and optimize protocols. Understanding how bioprocessing and manufacturing conditions interact to determine the quantity, quality, and profile of MSC-CM is essential to the development of good manufacturing practice (GMP)-compliant procedures suitable for replacing mesenchymal stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Batoul Chouaib
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, 92262 Fontenay-aux-Roses, France
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100 Copenhagen, Denmark
| | - Franck Chaubron
- Institut Clinident BioPharma, Biopôle Clermont-Limagne, 63360 Saint Beauzire, France;
| | - Frederic Cuisinier
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Faculty of Dentistry, University of Montpellier, 34000 Montpellier, France
- Service Odontologie, CHU Montpellier, 34000 Montpellier, France
| | - Pierre-Yves Collart-Dutilleul
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Faculty of Dentistry, University of Montpellier, 34000 Montpellier, France
- Service Odontologie, CHU Montpellier, 34000 Montpellier, France
| |
Collapse
|
13
|
Lee DH, Bhang SH. Development of Hetero-Cell Type Spheroids Via Core-Shell Strategy for Enhanced Wound Healing Effect of Human Adipose-Derived Stem Cells. Tissue Eng Regen Med 2023; 20:581-591. [PMID: 36708468 PMCID: PMC10313618 DOI: 10.1007/s13770-022-00512-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Stem cell-based therapies have been developed to treat various types of wounds. Human adipose-derived stem cells (hADSCs) are used to treat skin wounds owing to their outstanding angiogenic potential. Although recent studies have suggested that stem cell spheroids may help wound healing, their cell viability and retention rate in the wound area require improvement to enhance their therapeutic efficacy. METHODS We developed a core-shell structured spheroid with hADSCs in the core and human dermal fibroblasts (hDFs) in the outer part of the spheroid. The core-shell structure was formed by continuous centrifugation and spheroid incubation. After optimizing the method for inducing uniform-sized core-shell spheroids, cell viability, cell proliferation, migration, and therapeutic efficacy were evaluated and compared to those of conventional spheroids. RESULTS Cell proliferation, migration, and involucrin expression were evaluated in keratinocytes. Tubular assays in human umbilical vein endothelial cells were used to confirm the improved skin regeneration and angiogenic efficacy of core-shell spheroids. Core-shell spheroids exhibited exceptional cell viability under hypoxic cell culture conditions that mimicked the microenvironment of the wound area. CONCLUSION The improvement in retention rate, survival rate, and angiogenic growth factors secretion from core-shell spheroids may contribute to the increased therapeutic efficacy of stem cell treatment for skin wounds.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea.
| |
Collapse
|
14
|
Malmir M, Lima K, Camões SP, Manageiro V, Duarte MP, Miranda JP, Serrano R, da Silva IM, Lima BS, Caniça M, Silva O. Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers. Pharmaceuticals (Basel) 2023; 16:830. [PMID: 37375777 DOI: 10.3390/ph16060830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Root tubers of Asphodelus bento-rainhae subsp. bento-rainhae (AbR), a vulnerable endemic species, and Asphodelus macrocarpus subsp. macrocarpus (AmR) have traditionally been used in Portugal to treat inflammatory and infectious skin disorders. The present study aims to evaluate the in vitro antimicrobial activity of crude 70% and 96% hydroethanolic extracts of both medicinal plants, specifically against multidrug-resistant skin-related pathogens, to identify the involved marker secondary metabolites and also to assess the pre-clinical toxicity of these medicinal plant extracts. Bioguided fractionation of the 70% hydroethanolic extracts of both species using solvents of increasing polarity, namely diethyl ether (DEE: AbR-1, AmR-1), ethyl acetate (AbR-2, AmR-2) and aqueous (AbR-3, AmR-3) fractions, enabled the identification of the DEE fractions as the most active against all the tested Gram-positive microorganisms (MIC: 16 to 1000 µg/mL). Furthermore, phytochemical analyses using TLC and LC-UV/DAD-ESI/MS techniques revealed the presence of anthracene derivatives as the main constituents of DEE fractions, and five known compounds, namely 7'-(chrysophanol-4-yl)-chrysophanol-10'-C-beta-D-xylopyranosyl-anthrone (p), 10,7'-bichrysophanol (q), chrysophanol (r), 10-(chrysophanol-7'-yl)-10-hydroxychrysophanol-9-anthrone (s) and asphodelin (t), were identified as the main marker compounds. All these compounds showed high antimicrobial activity, particularly against Staphylococcus epidermidis (MIC: 3.2 to 100 µg/mL). Importantly, no cytotoxicity against HepG2 and HaCaT cells (up to 125 µg/mL) for crude extracts of both species and genotoxicity (up to 5000 µg/mL, with and without metabolic activation) for AbR 96% hydroethanolic extract was detected using the MTT and Ames tests, respectively. Overall, the obtained results contribute to the concrete validation of the use of these medicinal plants as potential sources of antimicrobial agents in the treatment of skin diseases.
Collapse
Affiliation(s)
- Maryam Malmir
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Sérgio Póvoas Camões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare-Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for Animal Science Studies (CECA), Institute of Agricultural and Agro-Food Sciences and Technologies (ICETA), University of Porto, 4050-453 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Maria Paula Duarte
- The Mechanical Engineering and Resource Sustainability Center (MEtRICs), Nova School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Joana Paiva Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita Serrano
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Isabel Moreira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Beatriz Silva Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare-Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for Animal Science Studies (CECA), Institute of Agricultural and Agro-Food Sciences and Technologies (ICETA), University of Porto, 4050-453 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
15
|
Kim YS, Aum J, Kim BH, Jang MJ, Suh J, Suh N, You D. Therapeutic Effect of Three-Dimensional Cultured Adipose-Derived Stem Cell-Conditioned Medium in Renal Ischemia-Reperfusion Injury. Int J Stem Cells 2023; 16:168-179. [PMID: 36310026 PMCID: PMC10226861 DOI: 10.15283/ijsc22137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES We evaluated the effect of adipose-derived stem cell-derived conditioned medium (ADSC-CM) on the renal function of rats with renal ischemia-reperfusion injury (IRI)-induced acute kidney injury. METHODS AND RESULTS Forty male Sprague-Dawley rats were randomly divided into four groups: sham, nephrectomy control, IRI control, ADSC-CM. The ADSC-CM was prepared using the three-dimensional spheroid culture system and injected into renal parenchyme. The renal function of the rats was evaluated 28 days before and 1, 2, 3, 4, 7, and 14 days after surgical procedures. The rats were sacrificed 14 days after surgical procedures, and kidney tissues were collected for histological examination. The renal parenchymal injection of ADSC-CM significantly reduced the serum blood urea nitrogen and creatinine levels compared with the IRI control group on days 1, 2, 3, and 4 after IRI. The renal parenchymal injection of ADSC-CM significantly increased the level of creatinine clearance compared with the IRI control group 1 day after IRI. Collagen content was significantly lower in the ADSC-CM group than in the IRI control group in the cortex and medulla. Apoptosis was significantly decreased, and proliferation was significantly increased in the ADSC-CM group compared to the IRI control group in the cortex and medulla. The expressions of anti-oxidative makers were higher in the ADSC-CM group than in the IRI control group in the cortex and medulla. CONCLUSIONS The renal function was effectively rescued through the renal parenchymal injection of ADSC-CM prepared using a three-dimensional spheroid culture system.
Collapse
Affiliation(s)
- Yu Seon Kim
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joomin Aum
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo Hyun Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Myoung Jin Jang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Jungyo Suh
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nayoung Suh
- Department of Pharmaceutical Engineering, College of Medical Sciences and Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, Korea
| | - Dalsan You
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Park JH, Lee JR, Park S, Kim YJ, Yoon JK, Park HS, Hyun J, Joung YK, Lee TI, Bhang SH. Subaqueous 3D stem cell spheroid levitation culture using anti-gravity bioreactor based on sound wave superposition. Biomater Res 2023; 27:51. [PMID: 37208764 DOI: 10.1186/s40824-023-00383-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Recently, various studies have revealed that 3D cell spheroids have several advantages over 2D cells in stem cell culture. However, conventional 3D spheroid culture methods have some disadvantages and limitations such as time required for spheroid formation and complexity of the experimental process. Here, we used acoustic levitation as cell culture platform to overcome the limitation of conventional 3D culture methods. METHODS In our anti-gravity bioreactor, continuous standing sonic waves created pressure field for 3D culture of human mesenchymal stem cells (hMSCs). hMSCs were trapped and aggerated in pressure field and consequently formed spheroids. The structure, viability, gene and protein expression of spheroids formed in the anti-gravity bioreactor were analyzed by electron microscope, immunostaining, polymerase chain reaction, and western blot. We injected hMSC spheroids fabricated by anti-gravity bioreactor into the mouse hindlimb ischemia model. Limb salvage was quantified to evaluate therapeutic efficacy of hMSC spheroids. RESULTS The acoustic levitation in anti-gravity bioreactor made spheroids faster and more compact compared to the conventional hanging drop method, which resulted in the upregulation of angiogenic paracrine factors of hMSCs, such as vascular endothelial growth factor and angiopoietin 2. Injected hMSCs spheroids cultured in the anti-gravity bioreactor exhibited improved therapeutic efficacy, including the degree of limb salvage, capillary formation, and attenuation of fibrosis and inflammation, for mouse hindlimb ischemia model compared to spheroids formed by the conventional hanging drop method. CONCLUSION Our stem cell culture system using acoustic levitation will be proposed as a new platform for the future 3D cell culture system.
Collapse
Affiliation(s)
- Jung Hwan Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju-Ro Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Gyeonggi-Do, Anseong-Si, 17540, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Republic of Korea, Seoul, 02792, Republic of Korea
| | - Tae Il Lee
- Department of Materials Science and Engineering, Gachon University, Gyeonggi-Do, Seongnam-Si, 13120, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
17
|
Tofani LB, Luiz MT, Paes Dutra JA, Abriata JP, Chorilli M. Three-dimensional culture models: emerging platforms for screening the antitumoral efficacy of nanomedicines. Nanomedicine (Lond) 2023; 18:633-647. [PMID: 37183804 DOI: 10.2217/nnm-2022-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Nanomedicines have been investigated for delivering drugs to tumors due to their ability to accumulate in the tumor tissues. 2D in vitro cell culture has been used to investigate the antitumoral potential of nanomedicines. However, a 2D model cannot adequately mimic the in vivo tissue conditions because of the lack of cell-cell interaction, a gradient of nutrients and the expression of genes. To overcome this limitation, 3D cell culture models have emerged as promising platforms that better replicate the complexity of native tumors. For this purpose, different techniques can be used to produce 3D models, including scaffold-free, scaffold-based and microfluidic-based models. This review addresses the principles, advantages and limitations of these culture methods for evaluating the antitumoral efficacy of nanomedicines.
Collapse
Affiliation(s)
- Larissa Bueno Tofani
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Jessyca Aparecida Paes Dutra
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| |
Collapse
|
18
|
Yen BL, Hsieh CC, Hsu PJ, Chang CC, Wang LT, Yen ML. Three-Dimensional Spheroid Culture of Human Mesenchymal Stem Cells: Offering Therapeutic Advantages and In Vitro Glimpses of the In Vivo State. Stem Cells Transl Med 2023; 12:235-244. [PMID: 37184894 PMCID: PMC10184701 DOI: 10.1093/stcltm/szad011] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/06/2023] [Indexed: 05/16/2023] Open
Abstract
As invaluable as the standard 2-dimensional (2D) monolayer in vitro cell culture system has been, there is increasing evidence that 3-dimensional (3D) non-adherent conditions are more relevant to the in vivo condition. While one of the criteria for human mesenchymal stem cells (MSCs) has been in vitro plastic adherence, such 2D culture conditions are not representative of in vivo cell-cell and cell-extracellular matrix (ECM) interactions, which may be especially important for this progenitor/stem cell of skeletal and connective tissues. The 3D spheroid, a multicellular aggregate formed under non-adherent 3D in vitro conditions, may be particularly suited as an in vitro method to better understand MSC physiological processes, since expression of ECM and other adhesion proteins are upregulated in such a cell culture system. First used in embryonic stem cell in vitro culture to recapitulate in vivo developmental processes, 3D spheroid culture has grown in popularity as an in vitro method to mimic the 3-dimensionality of the native niche for MSCs within tissues/organs. In this review, we discuss the relevance of the 3D spheroid culture for understanding MSC biology, summarize the biological outcomes reported in the literature based on such this culture condition, as well as contemplate limitations and future considerations in this rapidly evolving and exciting area.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Chen-Chan Hsieh
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| |
Collapse
|
19
|
Goel R, Gulwani D, Upadhyay P, Sarangthem V, Singh TD. Unsung versatility of elastin-like polypeptide inspired spheroid fabrication: A review. Int J Biol Macromol 2023; 234:123664. [PMID: 36791934 DOI: 10.1016/j.ijbiomac.2023.123664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Lately, 3D cell culture technique has gained a lot of appreciation as a research model. Augmented with technological advancements, the area of 3D cell culture is growing rapidly with a diverse array of scaffolds being tested. This is especially the case for spheroid cultures. The culture of cells as spheroids provides opportunities for unanticipated vision into biological phenomena with its application to drug discovery, metabolic profiling, stem cell research as well as tumor, and disease biology. Spheroid fabrication techniques are broadly categorised into matrix-dependent and matrix-independent techniques. While there is a profusion of spheroid fabrication substrates with substantial biological relevance, an economical, modular, and bio-compatible substrate for high throughput production of spheroids is lacking. In this review, we posit the prospects of elastin-like polypeptides (ELPs) as a broad-spectrum spheroid fabrication platform. Elastin-like polypeptides are nature inspired, size-tunable genetically engineered polymers with wide applicability in various arena of biological considerations, has been employed for spheroid culture with profound utility. The technology offers a cheap, high-throughput, reproducible alternative for spheroid culture with exquisite adaptability. Here, we will brief the applicability of 3D cultures as compared to 2D cultures with spheroids being the focal point of the review. Common approaches to spheroid fabrication are discussed with existential limitations. Finally, the versatility of elastin-like polypeptide inspired substrates for spheroid culture has been discussed.
Collapse
Affiliation(s)
- Ridhima Goel
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepak Gulwani
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Priyanka Upadhyay
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijaya Sarangthem
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
20
|
Yu Q, Wang Q, Zhang L, Deng W, Cao X, Wang Z, Sun X, Yu J, Xu X. The applications of 3D printing in wound healing: the external delivery of stem cells and antibiosis. Adv Drug Deliv Rev 2023; 197:114823. [PMID: 37068658 DOI: 10.1016/j.addr.2023.114823] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
As the global number of chronic wound patients rises, the financial burden and social pressure on patients increase daily. Stem cells have emerged as promising tissue engineering seed cells due to their enriched sources, multidirectional differentiation ability, and high proliferation rate. However, delivering them in vitro for the treatment of skin injury is still challenging. In addition, bacteria from the wound site and the environment can significantly impact wound healing. In the last decade, 3D bioprinting has dramatically enriched cell delivery systems. The produced scaffolds by this technique can be precisely localized within cells and perform antibacterial actions. In this review, we summarized the 3D bioprinting-based external delivery of stem cells and their antibiosis to improve wound healing.
Collapse
Affiliation(s)
- Qingtong Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Qilong Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Linzhi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenwen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xia Cao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhe Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xuan Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
21
|
Li N, Dai X, Yang F, Sun Y, Wu X, Zhou Q, Chen K, Sun J, Bi W, Shi L, Yu Y. Spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells maintain pluripotency of stem cells by regulating hypoxia-inducible factors. Biol Res 2023; 56:17. [PMID: 37016436 PMCID: PMC10074860 DOI: 10.1186/s40659-023-00421-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/27/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Spontaneous spheroid culture is a novel three-dimensional (3D) culture strategy for the rapid and efficient selection of progenitor cells. The objectives of this study are to investigate the pluripotency and differentiation capability of spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells (AB-MSCs); compare the advantages of spontaneous spheroids to those of mechanical spheroids; and explore the mechanisms of stemness enhancement during spheroid formation from two-dimensional (2D) cultured cells. METHODS AB-MSCs were isolated from the alveolar bones of C57BL/6 J mice. Spontaneous spheroids formed in low-adherence specific culture plates. The stemness, proliferation, and multi-differentiation capacities of spheroids and monolayer cultures were investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, alkaline phosphatase (ALP) activity, and oil-red O staining. The pluripotency difference between the spontaneous and mechanical spheroids was analyzed using RT-qPCR. Hypoxia-inducible factor (HIFs) inhibition experiments were performed to explore the mechanisms of stemness maintenance in AB-MSC spheroids. RESULTS AB-MSCs successfully formed spontaneous spheroids after 24 h. AB-MSC spheroids were positive for MSC markers and pluripotency markers (Oct4, KLF4, Sox2, and cMyc). Spheroids showed higher Ki67 expression and lower Caspase3 expression at 24 h. Under the corresponding conditions, the spheroids were successfully differentiated into osteogenic and adipogenic lineages. AB-MSC spheroids can induce neural-like cells after neurogenic differentiation. Higher expression of osteogenic markers, adipogenic markers, and neurogenic markers (NF-M, NeuN, and GFAP) was found in spheroids than in the monolayer. Spontaneous spheroids exhibited higher stemness than mechanical spheroids did. HIF-1α and HIF-2α were remarkably upregulated in spheroids. After HIF-1/2α-specific inhibition, spheroid formation was significantly reduced. Moreover, the expression of the pluripotency genes was suppressed. CONCLUSIONS Spontaneous spheroids from AB-MSCs enhance stemness and pluripotency. HIF-1/2α plays an important role in the stemness regulation of spheroids. AB-MSC spheroids exhibit excellent multi-differentiation capability, which may be a potent therapy for craniomaxillofacial tissue regeneration.
Collapse
Affiliation(s)
- Ni Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China, 201318
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China, 201318
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Xiaofeng Dai
- Department of Stomatology, Shanghai Jing'an District Dental Clinic, Shanghai, China, 15 Pingxingguan Road, 200040
| | - Fei Yang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Yang Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Xingwen Wu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Qianrong Zhou
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Kai Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China, 200072
| | - Jian Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Wei Bi
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Le Shi
- Department of Stomatology, Shanghai Jing'an District Dental Clinic, Shanghai, China, 15 Pingxingguan Road, 200040.
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032.
| |
Collapse
|
22
|
Malmir M, Lima K, Póvoas Camões S, Manageiro V, Duarte MP, Paiva Miranda J, Serrano R, Moreira da Silva I, Silva Lima B, Caniça M, Silva O. Identification of Marker Compounds and In Vitro Toxicity Evaluation of Two Portuguese Asphodelus Leaf Extracts. Molecules 2023; 28:molecules28052372. [PMID: 36903618 PMCID: PMC10005749 DOI: 10.3390/molecules28052372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The leaves of Asphodelus bento-rainhae subsp. bento-rainhae, an endemic Portuguese species, and Asphodelus macrocarpus subsp. macrocarpus have been used as food, and traditionally as medicine, for treating ulcers, urinary tract, and inflammatory disorders. The present study aims to establish the phytochemical profile of the main secondary metabolites, together with the antimicrobial, antioxidant and toxicity assessments of both Asphodelus leaf 70% ethanol extracts. Phytochemical screenings were conducted by the TLC and LC-UV/DAD-ESI/MS chromatographic technique, and quantification of the leading chemical classes was performed by spectrophotometric methods. Liquid-liquid partitions of crude extracts were obtained using ethyl ether, ethyl acetate, and water. For in vitro evaluations of antimicrobial activity, the broth microdilution method, and for the antioxidant activity, the FRAP and DPPH methods were used. Genotoxicity and cytotoxicity were assessed by Ames and MTT tests, respectively. Twelve known compounds including neochlorogenic acid, chlorogenic acid, caffeic acid, isoorientin, p-coumaric acid, isovitexin, ferulic acid, luteolin, aloe-emodin, diosmetin, chrysophanol, and β-sitosterol were identified as the main marker compounds, and terpenoids and condensed tannins were found to be the major class of secondary metabolites of both medicinal plants. The ethyl ether fractions demonstrated the highest antibacterial activity against all the Gram-positive microorganisms, (MIC value of 62 to 1000 µg/mL), with aloe-emodin as one of the main marker compounds highly active against Staphylococcus epidermidis (MIC value of 0.8 to 1.6 µg/mL). Ethyl acetate fractions exhibited the highest antioxidant activity (IC50 of 800 to 1200 µg/mL, respectively). No cytotoxicity (up to 1000 µg/mL) or genotoxicity/mutagenicity (up to 5 mg/plate, with/without metabolic activation) were detected. The obtained results contribute to the knowledge of the value and safety of the studied species as herbal medicines.
Collapse
Affiliation(s)
- Maryam Malmir
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Sérgio Póvoas Camões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare-Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Maria Paula Duarte
- MEtRICs/Chemistry Department, Nova School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Joana Paiva Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita Serrano
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Isabel Moreira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Beatriz Silva Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare-Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: ; Tel.: +35-12-1794-6400
| |
Collapse
|
23
|
Jiang Z, Xu Y, Fu M, Zhu D, Li N, Yang G. Genetically modified cell spheroids for tissue engineering and regenerative medicine. J Control Release 2023; 354:588-605. [PMID: 36657601 DOI: 10.1016/j.jconrel.2023.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Cell spheroids offer cell-to-cell interactions and show advantages in survival rate and paracrine effect to solve clinical and biomedical inquiries ranging from tissue engineering and regenerative medicine to disease pathophysiology. Therefore, cell spheroids are ideal vehicles for gene delivery. Genetically modified spheroids can enhance specific gene expression to promote tissue regeneration. Gene deliveries to cell spheroids are via viral vectors or non-viral vectors. Some new technologies like CRISPR/Cas9 also have been used in genetically modified methods to deliver exogenous gene to the host chromosome. It has been shown that genetically modified cell spheroids had the potential to differentiate into bone, cartilage, vascular, nerve, cardiomyocytes, skin, and skeletal muscle as well as organs like the liver to replace the diseased organ in the animal and pre-clinical trials. This article reviews the recent articles about genetically modified spheroid cells and explains the fabrication, applications, development timeline, limitations, and future directions of genetically modified cell spheroid.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
24
|
Microfabrication methods for 3D spheroids formation and their application in biomedical engineering. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int J Mol Sci 2023; 24:ijms24021277. [PMID: 36674790 PMCID: PMC9864323 DOI: 10.3390/ijms24021277] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and immunomodulatory properties, have been extensively studied in the field of regenerative medicine and proved to have significant therapeutic potential in many different pathological conditions. The role of MSCs mainly depends on their paracrine components, namely secretome. However, the components of MSC-derived secretome are not constant and are affected by the stimulation MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their secretome, focusing on their immunomodulatory properties, in order to provide new insights for the therapeutic application of MSCs and their secretome in inflammatory immune diseases.
Collapse
|
26
|
Mohebichamkhorami F, Niknam Z, Khoramjouy M, Heidarli E, Ghasemi R, Hosseinzadeh S, Mohseni SS, Hajikarim-Hamedani A, Heidari A, Ghane Y, Mahmoudifard M, Zali H, Faizi M. Brain Homogenate of a Rat Model of Alzheimer's Disease Modifies the Secretome of 3D Cultured Periodontal Ligament Stem Cells: A Potential Neuroregenerative Therapy. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e133668. [PMID: 36896321 PMCID: PMC9990517 DOI: 10.5812/ijpr-133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease leading to neuronal cell death and manifested by cognitive disorders and behavioral impairment. Mesenchymal stem cells (MSCs) are one of the most promising candidates to stimulate neuroregeneration and prevent disease progression. Optimization of MSC culturing protocols is a key strategy to increase the therapeutic potential of the secretome. Objectives Here, we investigated the effect of brain homogenate of a rat model of AD (BH-AD) on the enhancement of protein secretion in the secretome of periodontal ligament stem cells (PDLSCs) when cultured in a 3D environment. Moreover, the effect of this modified secretome was examined on neural cells to study the impact of the conditioned medium (CM) on stimulation of regeneration or immunomodulation in AD. Methods PDLSCs were isolated and characterized. Then, the spheroids of PDLSCs were generated in a modified 3D culture plate. PDLSCs-derived CM was prepared in the presence of BH-AD (PDLSCs-HCM) and the absence of it (PDLSCs-CM). The viability of C6 glioma cells was assessed after exposure to different concentrations of both CMs. Then, a proteomic analysis was performed on the CMs. Results Differentiation into adipocytes and high expression of MSCs markers verified the precise isolation of PDLSCs. The PDLSC spheroids were formed after 7 days of 3D culturing, and their viability was confirmed. The effect of CMs on C6 glioma cell viability showed that both CMs at low concentrations (> 20 mg/mL) had no cytotoxic effect on C6 neural cells. The results showed that PDLSCs-HCM contains higher concentrations of proteins compared to PDLSCs-CM, including Src-homology 2 domain (SH2)-containing PTPs (SHP-1) and muscle glycogen phosphorylase (PYGM) proteins. SHP-1 has a role in nerve regeneration, and PYGM is involved in glycogen metabolism. Conclusions The modified secretome derived from 3D cultured spheroids of PDLSCs treated by BH-AD as a reservoir of regenerating neural factors can serve as a potential source for AD treatment.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elmira Heidarli
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sarvenaz Mohseni
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Krysko DV, Demuynck R, Efimova I, Naessens F, Krysko O, Catanzaro E. In Vitro Veritas: From 2D Cultures to Organ-on-a-Chip Models to Study Immunogenic Cell Death in the Tumor Microenvironment. Cells 2022; 11:3705. [PMID: 36429133 PMCID: PMC9688238 DOI: 10.3390/cells11223705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Immunogenic cell death (ICD) is a functionally unique form of cell death that promotes a T-cell-dependent anti-tumor immune response specific to antigens originating from dying cancer cells. Many anticancer agents and strategies induce ICD, but despite their robust effects in vitro and in vivo on mice, translation into the clinic remains challenging. A major hindrance in antitumor research is the poor predictive ability of classic 2D in vitro models, which do not consider tumor biological complexity, such as the contribution of the tumor microenvironment (TME), which plays a crucial role in immunosuppression and cancer evasion. In this review, we describe different tumor models, from 2D cultures to organ-on-a-chip technology, as well as spheroids and perfusion bioreactors, all of which mimic the different degrees of the TME complexity. Next, we discuss how 3D cell cultures can be applied to study ICD and how to increase the translational potential of the ICD inducers. Finally, novel research directions are provided regarding ICD in the 3D cellular context which may lead to novel immunotherapies for cancer.
Collapse
Affiliation(s)
- Dmitri V. Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Robin Demuynck
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Faye Naessens
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Elena Catanzaro
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
28
|
Huang L, Wei Z, Wang X, Lan C, Zhu Y, Ye Q. AZD6738 Decreases Intraocular Pressure and Inhibits Fibrotic Response in Trabecular Meshwork through CHK1/P53 Pathway. Biochem Pharmacol 2022; 206:115340. [DOI: 10.1016/j.bcp.2022.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
29
|
Koivunotko E, Snirvi J, Merivaara A, Harjumäki R, Rautiainen S, Kelloniemi M, Kuismanen K, Miettinen S, Yliperttula M, Koivuniemi R. Angiogenic Potential of Human Adipose-Derived Mesenchymal Stromal Cells in Nanofibrillated Cellulose Hydrogel. Biomedicines 2022; 10:2584. [PMID: 36289846 PMCID: PMC9599553 DOI: 10.3390/biomedicines10102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived mesenchymal stromal cells (ASCs) hold great potential for cellular therapies by having immunomodulatory behavior and tissue regenerative properties. Due to the capability of ASCs to differentiate into endothelial cells (ECs) and other angiogenic cell types, such as pericytes, ASCs are a highly valuable source for stimulating angiogenesis. However, cellular therapies in tissue engineering have faced challenges in poor survival of the cells after transplantation, which is why a protective biomaterial scaffold is required. In this work, we studied the potential of nanofibrillated cellulose (NFC) hydrogel to be utilized as a suitable matrix for three-dimensional (3D) cell culturing of human-derived ASCs (hASCs) and studied their angiogenic properties and differentiation potential in ECs and pericytes. In addition, we tested the effect of hASC-conditioned medium and stimulation with angiopoietin-1 (Ang-1) on human umbilical vein endothelial cells (HUVECs) to induce blood vessel-type tube formation in NFC hydrogel. The hASCs were successfully 3D cell cultured in NFC hydrogel as they formed spheroids and had high cell viability with angiogenic features. Most importantly, they showed angiogenic potential by having pericyte-like characteristics when differentiated in EC medium, and their conditioned medium improved HUVEC viability and tube formation, which recalls the active paracrine properties. This study recommends NFC hydrogel for future use as an animal-free biomaterial scaffold for hASCs in therapeutic angiogenesis and other cell therapy purposes.
Collapse
Affiliation(s)
- Elle Koivunotko
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Jasmi Snirvi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Arto Merivaara
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Riina Harjumäki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Swarna Rautiainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, 33520 Tampere, Finland
| | - Kirsi Kuismanen
- Department of Obstetrics and Gynecology, Tampere University Hospital, 33520 Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technologies, University of Tampere, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Raili Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
30
|
Banerjee D, Singh YP, Datta P, Ozbolat V, O'Donnell A, Yeo M, Ozbolat IT. Strategies for 3D bioprinting of spheroids: A comprehensive review. Biomaterials 2022; 291:121881. [DOI: 10.1016/j.biomaterials.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
|
31
|
Huang L, Ye Q, Lan C, Wang X, Zhu Y. AZD6738 Inhibits fibrotic response of conjunctival fibroblasts by regulating checkpoint kinase 1/P53 and PI3K/AKT pathways. Front Pharmacol 2022; 13:990401. [PMID: 36204234 PMCID: PMC9530343 DOI: 10.3389/fphar.2022.990401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Trabeculectomy can effectively reduce intraocular pressure (IOP) in glaucoma patients, the long-term surgical failure is due to the excessive proliferation and fibrotic response of conjunctival fibroblasts which causes the subconjunctival scar and non-functional filtering bleb. In this study, we demonstrated that AZD6738 (Ceralasertib), a novel potent ataxia telangiectasia and Rad3-related (ATR) kinase inhibitor, can inhibit the fibrotic response of conjunctival fibroblasts for the first time. Our in vitro study demonstrated that AZD6738 inhibited the level and the phosphorylation of checkpoint kinase 1 (CHK1), reduced TGF-β1-induced cell proliferation and migration, and induced apoptosis of human conjunctival fibroblasts (HConFs) in the high-dose group (5 μM). Low-dose AZD6738 (0.1 μM) inhibited the phosphorylation of CHK1 and reduce fibrotic response but did not promote apoptosis of HConFs. Further molecular research indicated that AZD6738 regulates survival and apoptosis of HConFs by balancing the CHK1/P53 and PI3K/AKT pathways, and inhibiting TGF-β1-induced fibrotic response including myofibroblast activation and relative extracellular matrix (ECM) protein synthesis such as fibronectin (FN), collagen Ⅰ (COL1) and collagen Ⅳ (COL4) through a dual pharmacological mechanism. Hence, our results show that AZD6738 inhibits fibrotic responses in cultured HConFs in vitro and may become a potential therapeutic option for anti-subconjunctival scarring after trabeculectomy.
Collapse
Affiliation(s)
- Longxiang Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qin Ye
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chunlin Lan
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaohui Wang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Yihua Zhu, ; Xiaohui Wang,
| | - Yihua Zhu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Yihua Zhu, ; Xiaohui Wang,
| |
Collapse
|
32
|
Serras A, Camões S, Rodrigues J, Miranda J. P11-26 Exosomes derived from primed mesenchymal stem cells improve cell viability on an APAP-induced hepatic injury in vitro model. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Branco S, Camões S, Miranda J. P05-07 IFN-γ and TNF-α enhances immunosuppressive and skin regenerative effects of MSC-derived secretome. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Fuentes P, Torres MJ, Arancibia R, Aulestia F, Vergara M, Carrión F, Osses N, Altamirano C. Dynamic Culture of Mesenchymal Stromal/Stem Cell Spheroids and Secretion of Paracrine Factors. Front Bioeng Biotechnol 2022; 10:916229. [PMID: 36046670 PMCID: PMC9421039 DOI: 10.3389/fbioe.2022.916229] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.
Collapse
Affiliation(s)
- Paloma Fuentes
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Torres
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rodrigo Arancibia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Francisco Aulestia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Flavio Carrión
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS, Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
- *Correspondence: Claudia Altamirano,
| |
Collapse
|
35
|
Peng A, Lu F, Xing J, Dou Y, Yao Y, Li J, Li J, Hou R, Zhang K, Yin G. Psoriatic Dermal-Derived Mesenchymal Stem Cells Induced C3 Expression in Keratinocytes. Clin Cosmet Investig Dermatol 2022; 15:1489-1497. [PMID: 35941858 PMCID: PMC9356611 DOI: 10.2147/ccid.s363737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Aihong Peng
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Funa Lu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yu Dou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuanjun Yao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Guohua Yin, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5, Dong San Dao Xiang, Jiefang Road, Taiyuan, People’s Republic of China, Tel +86-0351-5656080, Email
| |
Collapse
|
36
|
Marques da Silva M, Olsson DC, Teixeira BL, Jeremias TDS, Trentin AG. Mesenchymal Stromal Cell Secretome for Therapeutic Application in Skin Wound Healing: A Systematic Review of Preclinical Studies. Cells Tissues Organs 2022; 212:567-582. [PMID: 35871510 DOI: 10.1159/000526093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/14/2022] [Indexed: 12/18/2023] Open
Abstract
Non-healing skin wounds remain a challenge in the healthcare system. In this sense, it is suggested that the secretome of mesenchymal stromal cells (MSCs) can be effective as a therapeutic strategy for regenerative medicine. Therefore, this systematic review aimed to determine the effects of treatment with a secretome derived from MSCs on the healing of skin wounds in a preclinical model of rodents (mice and rats). Studies were systematically retrieved from 6 databases and gray literature that provided 1,172 records, of which 25 met the inclusion criteria for qualitative analysis. Results revealed substantial heterogeneity among studies concerning experimental designs and methodologies, resulting in a high risk of bias. Together, the selected studies reported that treatment improved wound healing by (1) accelerating wound closure and improving skin repair quality; (2) reducing inflammation by decreasing the number of cells and inflammatory cytokines, accompanied by polarization of the M2 macrophage; (3) complete re-epithelialization and epidermal reorganization; (4) neovascularization promoted by proliferation of endothelial cells (CD34+) and increased levels of pro-angiogenic mediators; (5) better scar quality promoted by increased expression of collagen types I and III, as well as improved deposition and remodeling of collagen fibers. In conclusion, despite the need for alignment of methodological protocols and transparent reports in future studies, results show that the secretome of MSCs from different tissue sources corresponds to a promising tool of regenerative medicine for the treatment of skin wounds.
Collapse
Affiliation(s)
- Maiara Marques da Silva
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Débora Cristina Olsson
- Department of Veterinary Medicine, Federal Institute of Santa Catarina, Florianópolis, Brazil
| | - Bianca Luise Teixeira
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Talita da Silva Jeremias
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Islam S, Parker J, Dash BC, Hsia HC. Human iPSC-Vascular smooth muscle cell spheroids demonstrate size-dependent alterations in cellular viability and secretory function. J Biomed Mater Res A 2022; 110:1813-1823. [PMID: 35815599 DOI: 10.1002/jbm.a.37423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
Human-induced pluripotent stem cells (hiPSC) and their differentiated vascular cells have been revolutionizing the field of regenerative wound healing. These cells are shown to be rejuvenated with immense potentials in secreting paracrine factors. Recently, hiPSC-derived vascular smooth muscle cells (hiPSC-VSMC) have shown regenerative wound healing ability via their paracrine secretion. The quest to modulate the secretory function of these hiPSC-VSMC is an ongoing effort and involves the use of both biochemical and biophysical stimuli. This study explores the development and optimization of a reproducible, inexpensive protocol to form hiPSC-VSMC derived spheroids to investigate the implications of spheroid size on viability and paracrine secretion. Our data show the successful formation of different sizes of spheroids using various amount of hiPSC-VSMC. The hiPSC-VSMC spheroids formed with 10,000 cells strike an ideal balance between overall cell health and maximal paracrine secretion. The conditioned medium from these spheroids was found to be bioactive in enhancing human dermal fibroblast cell proliferation and migration. This research will inform future studies on the optimal spheroid size for regenerative wound healing applications.
Collapse
Affiliation(s)
- Sara Islam
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Jackson Parker
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Biraja C Dash
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Henry C Hsia
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Tran NT, Park IS, Truong MD, Park DY, Park SH, Min BH. Conditioned media derived from human fetal progenitor cells improves skin regeneration in burn wound healing. Cell Tissue Res 2022; 389:289-308. [PMID: 35624315 DOI: 10.1007/s00441-022-03638-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/11/2022] [Indexed: 01/06/2023]
Abstract
Stem cells are known to have excellent regenerative ability, which is primarily facilitated by indirect paracrine factors, rather than via direct cell replacement. The regenerative process is mediated by the release of extracellular matrix molecules, cytokines, and growth factors, which are also present in the media during cultivation. Herein, we aimed to demonstrate the functionality of key factors and mechanisms in skin regeneration through the analysis of conditioned media derived from fetal stem cells. A series of processes, including 3D pellet cultures, filtration and lyophilization is developed to fabricate human fetal cartilage-derived progenitor cells-conditioned media (hFCPCs-CM) and its useful properties are compared with those of human bone marrow-derived MSCs-conditioned media (hBMSCs-CM) in terms of biochemical characterization, and in vitro studies of fibroblast behavior, macrophage polarization, and burn wound healing. The hFCPCs-CM show to be devoid of cellular components but to contain large amounts of total protein, collagen, glycosaminoglycans, and growth factors, including IGFBP-2, IGFBP-6, HGF, VEGF, TGF β3, and M-CSF, and contain a specific protein, collagen alpha-1(XIV) compare with hBMSCs-CM. The therapeutic potential of hFCPCs-CM observes to be better than that of hBMSCs-CM in the viability, proliferation, and migration of fibroblasts, and M2 macrophage polarization in vitro, and efficient acceleration of wound healing and minimization of scar formation in third-degree burn wounds in a rat model. The current study shows the potential therapeutic effect of hFCPCs and provides a rationale for using the secretome released from fetal progenitor cells to promote the regeneration of skin tissues, both quantitatively and qualitatively. The ready-to-use product of human fetal cartilage-derived progenitor cells-conditioned media (hFCPCs-CM) are fabricated via a series of techniques, including a 3D culture of hFCPCs, filtration using a 3.5 kDa cutoff dialysis membrane, and lyophilization of the CM. hFCPCs-CM contains many ECM molecules and biomolecules that improves wound healing through efficient acceleration of M2 macrophage polarization and reduction of scar formation.
Collapse
Affiliation(s)
- Ngoc-Trinh Tran
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Korea
| | - In-Su Park
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Korea
| | | | - Do-Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Sang-Hyug Park
- Advanced Translational Engineering and Medical Science, Seoul, Korea.
- Department of Biomecial Engineering, Pukyong National University, Busan, 48513, Korea.
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea.
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Korea.
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.
- Advanced Translational Engineering and Medical Science, Seoul, Korea.
| |
Collapse
|
39
|
Lan C, Liu G, Huang L, Wang X, Tan J, Wang Y, Fan N, Zhu Y, Yu M, Liu X. Forkhead Domain Inhibitor-6 Suppresses Corneal Neovascularization and Subsequent Fibrosis After Alkali Burn in Rats. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 35446346 PMCID: PMC9034725 DOI: 10.1167/iovs.63.4.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effects of Forkhead Domain Inhibitor-6 (FDI-6) on regulating inflammatory corneal angiogenesis and subsequent fibrosis induced by alkali burn. Methods A corneal alkali burn model was established in Sprague Dawley rats using NaOH and the rat eyes were topically treated with FDI-6 (40 µM) or a control vehicle four times daily for 7 days. Corneal neovascularization, inflammation and epithelial defects were observed on days 1, 4, and 7 under a slit lamp microscope after corneal alkali burn. Analysis of angiogenesis-, inflammation-, and fibrosis-related indicators was conducted on day 7. Murine macrophages (RAW264.7 cells) and mouse retinal microvascular endothelial cells (MRMECs) were used to examine the effects of FDI-6 on inflammatory angiogenesis in vitro. Results Topical delivery of FDI-6 significantly attenuated alkali burn-induced corneal inflammation, neovascularization, and fibrosis. FDI-6 suppressed the expression of angiogenic factors (vascular epidermal growth factor, CD31, matrix metalloproteinase-9, and endothelial NO synthase), fibrotic factors (α-smooth muscle actin and fibronectin), and pro-inflammatory factor interleukin-6 in alkali-injured corneas. FDI-6 downregulated the expression of monocyte chemotactic protein-1, pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-alpha), nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3, and vascular endothelial growth factor in RAW264.7 cells and inhibited the proliferation, migration, and tube formation of MRMECs in vitro. Conclusions FDI-6 can attenuate corneal neovascularization, inflammation, and fibrosis in alkali-injured corneas.
Collapse
Affiliation(s)
- Chunlin Lan
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Longxiang Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Yihua Zhu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Shenzhen People's Hospital, the 2nd Clinical Medical College, Jinan University, Shenzhen, China
| |
Collapse
|
40
|
Enantioselectivity of Pentedrone and Methylone on Metabolic Profiling in 2D and 3D Human Hepatocyte-like Cells. Pharmaceuticals (Basel) 2022; 15:ph15030368. [PMID: 35337165 PMCID: PMC8953427 DOI: 10.3390/ph15030368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Pentedrone and methylone can express stereoselectivity in toxicokinetic and toxicodynamic processes. Similarly, their chiral discrimination in metabolism, which was not yet evaluated, can result in different metabolic profiles and subsequent hepatotoxic effects. Therefore, the aim of this work was to assess, for the first time, both the hepatic cytotoxic and metabolic profile of pentedrone and methylone enantiomers using physiologically relevant in vitro models. The hepatotoxicity of these compounds was observed in a concentration-dependent manner in human stem-cell-derived hepatocyte-like cells (HLCs) cultured under 3D (3D-HLCs) and 2D (2D-HLCs) conditions. Enantioselectivity, on the other hand, was only shown for pentedrone (1 mM) in 3D-HLCs, being R-(−)-pentedrone the most cytotoxic. Furthermore, the metabolic profile was initially evaluated in human liver microsomes (HLM) and further demonstrated in 3D-HLCs and 2D-HLCs applying a gas chromatography coupled to a mass spectrometer (GC–MS) technique. Methylone and pentedrone showed distinct and preferential metabolic routes for their enantiomers, resulting in the production of differentiated metabolites; R-(+)-methylone and R-(−)-pentedrone are the most metabolized enantiomers. In conclusion, the results demonstrated enantioselectivity for pentedrone and methylone in the metabolic processes, with enantioselectivity in cytotoxicity for pentedrone.
Collapse
|
41
|
|
42
|
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, Krupkova O, Mehrkens A. Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. Int J Mol Sci 2022; 23:2530. [PMID: 35269672 PMCID: PMC8910276 DOI: 10.3390/ijms23052530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies. Spheroids are three-dimensional multicellular aggregates with architecture that enables the cells to differentiate and synthesize endogenous ECM, promotes cell-ECM interactions, enhances adhesion, and protects cells from harsh conditions. Spheroids could be applied in the IVD both in scaffold-free and scaffold-based configurations, possibly providing advantages over cell suspensions. This review highlights areas of future research in spheroid-based regeneration of nucleus pulposus (NP) and annulus fibrosus (AF). We also discuss cell sources and methods for spheroid fabrication and characterization, mechanisms related to spheroid fusion, as well as enhancement of spheroid performance in the context of the IVD microenvironment.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- Lepage Research Institute, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| |
Collapse
|
43
|
Bian D, Wu Y, Song G, Azizi R, Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther 2022; 13:24. [PMID: 35073970 PMCID: PMC8785459 DOI: 10.1186/s13287-021-02697-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, mesenchymal stromal cells (MSCs) and also their exosome has become a game-changing tool in the context of tissue engineering and regenerative medicine. MSCs due to their competencies to establish skin cells, such as fibroblast and keratinocyte, and also their unique attribute to suppress inflammation in wound site has attracted increasing attention among scholars. In addition, MSC's other capabilities to induce angiogenesis as a result of secretion of pro-angiogenic factors accompanied with marked anti-fibrotic activities, which mainly mediated by the releases matrix metalloproteinase (MMPs), make them a rational and effective strategy to accelerate wound healing with a small scar. Since the chief healing properties of the MSCs depend on their paracrine effects, it appears that MSCs-derived exosomes also can be an alternative option to support wound healing and skin regeneration as an innovative cell-free approach. Such exosomes convey functional cargos (e.g., growth factor, cytokine, miRNA, etc.) from MSCs to target cells, thereby affecting the recipient skin cells' biological events, such as migration, proliferation, and also secretion of ECM components (e.g., collagen). The main superiorities of exosome therapy over parental MSCs are the diminished risk of tumor formation and also lower immunogenicity. Herein, we deliver an overview of recent in vivo reports rendering the therapeutic benefits of the MSCs-based therapies to ease skin wound healing, and so improving quality of life among patients suffering from such conditions.
Collapse
Affiliation(s)
- Donghui Bian
- Department of Burns and Plastic Surgery, 960 Hospital of the People’s Liberation Army, Jinan, 250031 China
| | - Yan Wu
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013 China
| | - Guodong Song
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013 China
| | - Ramyar Azizi
- Department of Immunology, Medicine Faculty, Tabriz University of Medical Science, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Gallo A, Cuscino N, Contino F, Bulati M, Pampalone M, Amico G, Zito G, Carcione C, Centi C, Bertani A, Conaldi PG, Miceli V. Changes in the Transcriptome Profiles of Human Amnion-Derived Mesenchymal Stromal/Stem Cells Induced by Three-Dimensional Culture: A Potential Priming Strategy to Improve Their Properties. Int J Mol Sci 2022; 23:ijms23020863. [PMID: 35055049 PMCID: PMC8778321 DOI: 10.3390/ijms23020863] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are believed to function in vivo as a homeostatic tool that shows therapeutic properties for tissue repair/regeneration. Conventionally, these cells are expanded in two-dimensional (2D) cultures, and, in that case, MSCs undergo genotypic/phenotypic changes resulting in a loss of their therapeutic capabilities. Moreover, several clinical trials using MSCs have shown controversial results with moderate/insufficient therapeutic responses. Different priming methods were tested to improve MSC effects, and three-dimensional (3D) culturing techniques were also examined. MSC spheroids display increased therapeutic properties, and, in this context, it is crucial to understand molecular changes underlying spheroid generation. To address these limitations, we performed RNA-seq on human amnion-derived MSCs (hAMSCs) cultured in both 2D and 3D conditions and examined the transcriptome changes associated with hAMSC spheroid formation. We found a large number of 3D culture-sensitive genes and identified selected genes related to 3D hAMSC therapeutic effects. In particular, we observed that these genes can regulate proliferation/differentiation, as well as immunomodulatory and angiogenic processes. We validated RNA-seq results by qRT-PCR and methylome analysis and investigation of secreted factors. Overall, our results showed that hAMSC spheroid culture represents a promising approach to cell-based therapy that could significantly impact hAMSC application in the field of regenerative medicine.
Collapse
Affiliation(s)
- Alessia Gallo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Nicola Cuscino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Flavia Contino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Mariangela Pampalone
- Fondazione Ri.MED, 90127 Palermo, Italy; (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Fondazione Ri.MED, 90127 Palermo, Italy; (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giovanni Zito
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | | | - Claudio Centi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
- Correspondence: ; Tel.: +39-09-1219-2430
| |
Collapse
|
45
|
Rodrigues JS, Faria-Pereira A, Camões SP, Serras AS, Morais VA, Ruas JL, Miranda JP. Improving human mesenchymal stem cell-derived hepatic cell energy metabolism by manipulating glucose homeostasis and glucocorticoid signaling. Front Endocrinol (Lausanne) 2022; 13:1043543. [PMID: 36714559 PMCID: PMC9880320 DOI: 10.3389/fendo.2022.1043543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/24/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION The development of reliable hepatic in vitro models may provide insights into disease mechanisms, linking hepatocyte dysmetabolism and related pathologies. However, several of the existing models depend on using high concentrations of hepatocyte differentiation-promoting compounds, namely glucose, insulin, and dexamethasone, which is among the reasons that have hampered their use for modeling metabolism-related diseases. This work focused on modulating glucose homeostasis and glucocorticoid concentration to improve the suitability of a mesenchymal stem-cell (MSC)-derived hepatocyte-like cell (HLC) human model for studying hepatic insulin action and disease modeling. METHODS We have investigated the role of insulin, glucose and dexamethasone on mitochondrial function, insulin signaling and carbohydrate metabolism, namely AKT phosphorylation, glycogen storage ability, glycolysis and gluconeogenesis, as well as fatty acid oxidation and bile acid metabolism gene expression in HLCs. In addition, we evaluated cell morphological features, albumin and urea production, the presence of hepatic-specific markers, biotransformation ability and mitochondrial function. RESULTS Using glucose, insulin and dexamethasone levels close to physiological concentrations improved insulin responsiveness in HLCs, as demonstrated by AKT phosphorylation, upregulation of glycolysis and downregulation of Irs2 and gluconeogenesis and fatty acid oxidation pathways. Ammonia detoxification, EROD and UGT activities and sensitivity to paracetamol cytotoxicity were also enhanced under more physiologically relevant conditions. CONCLUSION HLCs kept under reduced concentrations of glucose, insulin and dexamethasone presented an improved hepatic phenotype and insulin sensitivity demonstrating superior potential as an in vitro platform for modeling energy metabolism-related disorders, namely for the investigation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Joana Saraiva Rodrigues
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Faria-Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio Póvoas Camões
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Sofia Serras
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa Alexandra Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Lira Ruas
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Joana Paiva Miranda
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Joana Paiva Miranda,
| |
Collapse
|
46
|
Camões SP, Bulut O, Yazar V, Gaspar M, Simões S, Ferreira R, Vitorino R, Santos JM, Gursel I, Miranda JP. 3D-MSCs A151 ODN-Loaded Exosomes Are Immunomodulatory And Reveal A Proteomic Cargo That Sustains Wound Resolution. J Adv Res 2022; 41:113-128. [PMID: 36328741 PMCID: PMC9637564 DOI: 10.1016/j.jare.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
The MSC-derived secretome from 3D cultures enhances fibroblast and keratinocyte mitogenic and motogenic capacity in vitro, respectively. The cargo of the 3D MSC-derived exosomes (Exo3D) reveals wound healing-related proteins and promotes wound resolution in a wound healing in vivo model. Loading MSC-derived exosomes with A151 ODN further reduces the systemic levels of IL-6 and TNF-α pro-inflammatory cytokines at the late stage of wound healing in vivo, crucial for a full regenerated tissue. A151-loaded Exo3D have a great potential as a noncellular off-the-shelf therapy for non-healing wound treatment.
Introduction Non-healing wounds remain a major burden due to the lack of effective treatments. Mesenchymal stem cell-derived exosomes (MSC-Exo) have emerged as therapeutic options given their pro-regenerative and immunomodulatory features. Still, little is known on the exact mechanisms mediated by MSC-Exo. Importantly, modulation of their efficacy through 3D-physiologic cultures together with loading strategies continues underexplored. Objectives To uncover the MSC-Exo-mediated mechanism via proteomic analyses, and to use 3D-culture and loading technologies to expand MSC-Exo efficacy for cutaneous wound healing. Methods MSC-Exo were produced in either 3D or 2D cultures (Exo3D/Exo2D) and loaded with an exogenous immunosuppressive oligodeoxynucleotide (A151 ODN). Both, loaded and naïve exosomes were characterised regarding size, morphology and the presence of specific protein markers; while IPA analyses enabled to correlate their protein content with the effects observed in vitro and in vivo. The Exo3D/Exo2D regenerative potential was evaluated in vitro by assessing keratinocyte and fibroblast mitogenicity, motogenicity, and cytokine secretion as well as using an in vivo wound splinting model. Accordingly, the modulation of inflammatory and immune responses by A151-loaded Exo3D/Exo2D was also assessed. Results Exo3D stimulated mitogenically and motogenically keratinocytes and fibroblasts in vitro, with upregulation of IL-1α and VEGF-α or increased secretion of TGF-β, TNF-α and IL-10. In vivo, Exo3D reduced the granulation tissue area and promoted complete re-epithelization of the wound. These observations were sustained by the proteomic profiling of the Exo3D cargo that identified wound healing-related proteins, such as TGF-β, ITGA1-3/5, IL-6, CDC151, S100A10 and Wnt5α. Moreover, when loaded with A151 ODN, Exo3D differentially mediated wound healing-related trophic factors reducing the systemic levels of IL-6 and TNF-α at the late stage of wound healing in vivo. Conclusion Our results support the potential of A151-loaded Exo3D for the treatment of chronic wounds by promoting skin regeneration, while modulating the systemic levels of the pro-inflammatory cytokines.
Collapse
|
47
|
Kim SG, You D, Kim K, Aum J, Kim YS, Jang MJ, Moon KH, Kang HW. Therapeutic Effect of Human Mesenchymal Stem Cell-Conditioned Medium on Erectile Dysfunction. World J Mens Health 2021; 40:653-662. [PMID: 35021313 PMCID: PMC9482857 DOI: 10.5534/wjmh.210121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose Owing to the safety and cost effectiveness of conditioned medium (CM), its therapeutic effects have attracted significant attention from many researchers. To date, numerous studies have been conducted on CM; however, little has been done with regard to erectile dysfunction (ED). In this research, the potential of human mesenchymal stem cell-derived CM (MSC-CM) for the treatment of ED was investigated. Materials and Methods A high concentration of MSC-CM was prepared through 3D spheroid culturing with bone marrow-derived MSCs and cut-off filtering. The composition of CM was analyzed using biochemical assays, and the effect of the preparation process on the quality of CM was investigated. The therapeutic effects of MSC-CM were evaluated through animal studies using a cavernous nerve (CN) injury rat model. Results 3D spheroid culturing afforded a 278-fold increase in the total protein content of CM, as compared to that from 2D cultures; the protein concentration increased by 19 times on increasing the centrifugation time for cut-off filtering. Biochemical assays indicated that the CM contains various xlink:types of angiogenic, neurotrophic, and anti-inflammatory factors. Histological assay results showed that MSC-CM has angio- and neuro-trophic effect in a CN injury rat model in vivo, and these therapeutic effects appear in a dose-dependent manner. Conclusions The experimental results confirmed the therapeutic effect of MSC-CM in healing damaged cavernosal tissue and restoring erectile function. These results successfully demonstrated that MSC-CM has significant potential for the treatment of ED.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Dalsan You
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - Kyung Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - Joomin Aum
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - Yu Seon Kim
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - Myoung Jin Jang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Kyung Hyun Moon
- Department of Urology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| |
Collapse
|
48
|
Serras AS, Camões SP, Antunes B, Costa VM, Dionísio F, Yazar V, Vitorino R, Remião F, Castro M, Oliveira NG, Miranda JP. The Secretome of Human Neonatal Mesenchymal Stem Cells Modulates Doxorubicin-Induced Cytotoxicity: Impact in Non-Tumor Cells. Int J Mol Sci 2021; 22:ijms222313072. [PMID: 34884877 PMCID: PMC8657836 DOI: 10.3390/ijms222313072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (Dox) is one of the most widely used treatments for breast cancer, although limited by the well-documented cardiotoxicity and other off-target effects. Mesenchymal stem cell (MSC) secretome has shown immunomodulatory and regenerative properties, further potentiated under 3D conditions. This work aimed to uncover the effect of the MSC-derived secretome from 3D (CM3D) or 2D (CM2D) cultures, in human malignant breast cells (MDA-MB-231), non-tumor breast epithelial cells (MCF10A) and differentiated AC16 cardiomyocytes, co-treated with Dox. A comprehensive proteomic analysis of CM3D/CM2D was also performed to unravel the underlying mechanism. CM3D/CM2D co-incubation with Dox revealed no significant differences in MDA-MB-231 viability when compared to Dox alone, whereas MCF10A and AC16 viability was consistently improved in Dox+CM3D-treated cells. Moreover, neither CM2D nor CM3D affected Dox anti-migratory and anti-invasive effects in MDA-MB-231. Notably, Ge-LC-MS/MS proteomic analysis revealed that CM3D displayed protective features that might be linked to the regulation of cell proliferation (CAPN1, CST1, LAMC2, RANBP3), migration (CCN3, MMP8, PDCD5), invasion (TIMP1/2), oxidative stress (COX6B1, AIFM1, CD9, GSR) and inflammation (CCN3, ANXA5, CDH13, GDF15). Overall, CM3D decreased Dox-induced cytotoxicity in non-tumor cells, without compromising Dox chemotherapeutic profile in malignant cells, suggesting its potential use as a chemotherapy adjuvant to reduce off-target side effects.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Sérgio P. Camões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Bernardo Antunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Vera M. Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.M.C.); (F.D.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Flávio Dionísio
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.M.C.); (F.D.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Volkan Yazar
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Rui Vitorino
- LAQV-REQUIMTE, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Cardiovascular R&D Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Oporto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.M.C.); (F.D.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
- Correspondence:
| |
Collapse
|
49
|
Mesenchymal Stromal Cells Adapt to Chronic Tendon Disease Environment with an Initial Reduction in Matrix Remodeling. Int J Mol Sci 2021; 22:ijms222312798. [PMID: 34884602 PMCID: PMC8657831 DOI: 10.3390/ijms222312798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023] Open
Abstract
Tendon lesions are common sporting injuries in humans and horses alike. The healing process of acute tendon lesions frequently results in fibrosis and chronic disease. In horses, local mesenchymal stromal cell (MSC) injection is an accepted therapeutic strategy with positive influence on acute lesions. Concerning the use of MSCs in chronic tendon disease, data are scarce but suggest less therapeutic benefit. However, it has been shown that MSCs can have a positive effect on fibrotic tissue. Therefore, we aimed to elucidate the interplay of MSCs and healthy or chronically diseased tendon matrix. Equine MSCs were cultured either as cell aggregates or on scaffolds from healthy or diseased equine tendons. Higher expression of tendon-related matrix genes and tissue inhibitors of metalloproteinases (TIMPs) was found in aggregate cultures. However, the tenogenic transcription factor scleraxis was upregulated on healthy and diseased tendon scaffolds. Matrix metalloproteinase (MMPs) expression and activity were highest in healthy scaffold cultures but showed a strong transient decrease in diseased scaffold cultures. The release of glycosaminoglycan and collagen was also higher in scaffold cultures, even more so in those with tendon disease. This study points to an early suppression of MSC matrix remodeling activity by diseased tendon matrix, while tenogenic differentiation remained unaffected.
Collapse
|
50
|
Damayanti RH, Rusdiana T, Wathoni N. Mesenchymal Stem Cell Secretome for Dermatology Application: A Review. Clin Cosmet Investig Dermatol 2021; 14:1401-1412. [PMID: 34675575 PMCID: PMC8502696 DOI: 10.2147/ccid.s331044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022]
Abstract
Secretome, also known as conditioned medium, is a secreted molecule from mesenchymal stem cells (MSCs) that has a variety of biological activities that can be used in various therapies, especially on the skin applications. A lack of conventional therapies makes secretome as a promising alternative therapy. The presence of growth factors, cytokines, and extracellular vesicles including microvesicles and exosomes in secretome has been widely reported, which serves in improving the proliferation and migration of cells to help in skin regeneration. Therefore, we were able to optimize the use of this secretome in a well-needed special review related to its work in addressing various skin problems. So, in this article, we discussed the benefits and biological activity of secretome on the skin application. This review was compiled based on the approval of several sites, such as Scopus, PubMed, Science Direct, and Google Scholar with the terms "MSC secretome for skin," "secretome for skin," "secretome dermatology," "secretome conditioned medium for skin," "secretome conditioned medium for skin wound," "secretome conditioned medium for aging," "secretome conditioned medium for hair growth," and "secretome conditioned medium for psoriasis." A total of 215 articles were collected for selection, of which 90 articles were used. Based on the results, it was concluded that secretome has a variety of useful activities to regenerate and repair tissue damage that have not been used on the skin, such as for wound healing, photoprotection, promotion of hair growth, psoriasis treatment, and other application as antimicrobial.
Collapse
Affiliation(s)
- Restu Harisma Damayanti
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45353, Indonesia
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45353, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45353, Indonesia
| |
Collapse
|