1
|
Rodacki M, Silva KR, Araujo DB, Dantas JR, Ramos MEN, Zajdenverg L, Baptista LS. Immunomodulatory agents and cell therapy for patients with type 1 diabetes. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 68:e240233. [PMID: 40215356 PMCID: PMC11967186 DOI: 10.20945/2359-4292-2024-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/17/2024] [Indexed: 04/15/2025]
Abstract
Type 1 diabetes (TID) is a chronic disease caused by autoimmune destruction of pancreatic β-cells, that progresses in three stages: 1) stage 1: β-cell autoimmunity + normoglycemia; 2) stage 2: β-cell autoimmunity + mild dysglycemia; 3) stage 3: symptomatic disease + hyperglycemia. Interventions to prevent or cure T1D in the various stages of the disease have been pursued and may target the prevention of the destruction of β cells, regression of insulitis, preservation or recovery of β cells residual mass. Some therapies show promising results that might change the natural history and the approach to patients with T1D in the next few years. Teplizumab, a humanized monoclonal antibody that binds to CD3, was recently approved in the USA to delay Stage 3 T1D in individuals ≥ 8 years of age. Other non-cellular immunomodulatory therapies, both antigen-specific and non-specific, have shown interesting results either in patients with stage 2 or recent onset stage 3 T1D. Cell therapies such as non-myeloablative transplantation of autologous hematopoietic stem cells, mesenchymal stem cells, and tolerogenic dendritic cells have been also studied in these individuals, aiming immunomodulation. Stem cell-derived islet replacement therapy is promising for patients with long- standing T1D, especially with asymptomatic hypoglycemia not resolved by technology. This review aimed to provide updated information on the main immunomodulatory agents and cell therapy options for type 1 diabetes.
Collapse
Affiliation(s)
- Melanie Rodacki
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | - Karina Ribeiro Silva
- Laboratório de Pesquisa com Células-Tronco, Departamento de
Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | | | - Joana R. Dantas
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | | | - Lenita Zajdenverg
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | - Leandra Santos Baptista
- NUMPEX-BIO, Campus Duque de Caxias Professor Geraldo Cidade, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Zeinhom A, Fadallah SA, Mahmoud M. Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives. Stem Cell Res Ther 2024; 15:384. [PMID: 39468609 PMCID: PMC11520428 DOI: 10.1186/s13287-024-03974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.
Collapse
Affiliation(s)
- Alaa Zeinhom
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Sahar A Fadallah
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Marwa Mahmoud
- Human Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre (NRC), Cairo, 12622, Egypt.
- Stem Cell Research Unit, Medical Research Centre of Excellence, NRC, Cairo, Egypt.
| |
Collapse
|
3
|
Przywara D, Petniak A, Gil-Kulik P. Optimizing Mesenchymal Stem Cells for Regenerative Medicine: Influence of Diabetes, Obesity, Autoimmune, and Inflammatory Conditions on Therapeutic Efficacy: A Review. Med Sci Monit 2024; 30:e945331. [PMID: 39154207 PMCID: PMC11340262 DOI: 10.12659/msm.945331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/19/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising tool that may be used in regenerative medicine. Thanks to their ability to differentiate and paracrine signaling, they can be used in the treatment of many diseases. Undifferentiated MSCs can support the regeneration of surrounding tissues through secreted substances and exosomes. This is possible thanks to the production of growth factors. These factors stimulate the growth of neighboring cells, have an anti-apoptotic effect, and support angiogenesis, and MSCs also have an immunomodulatory effect. The level of secreted factors may vary depending on many factors. Apart from the donor's health condition, it is also influenced by the source of MSCs, methods of harvesting, and even the banking of cells. This work is a review of research on how the patient's health condition affects the properties of obtained MSCs. The review discusses the impact of the patient's diabetes, obesity, autoimmune diseases, and inflammation, as well as the impact of the source of MSCs and methods of harvesting and banking cells on the phenotype, differentiation capacity, anti-inflammatory, angiogenic effects, and proliferation potential of MSCs. Knowledge about specific clinical factors allows for better use of the potential of stem cells and more appropriate targeting of procedures for collecting, multiplying, and banking these cells, as well as for their subsequent use. This article aims to review the characteristics, harvesting, banking, and paracrine signaling of MSCs and their role in diabetes, obesity, autoimmune and inflammatory diseases, and potential role in regenerative medicine.
Collapse
|
4
|
Petropavlovskaia M, Assouline-Thomas B, Cuerquis J, Zhao J, Violette-Deslauriers S, Nano E, Eliopoulos N, Rosenberg L. Characterization of MSCs expressing islet neogenesis associated protein (INGAP): INGAP secretion and cell survival in vitro and in vivo. Heliyon 2024; 10:e35372. [PMID: 39170459 PMCID: PMC11336584 DOI: 10.1016/j.heliyon.2024.e35372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are emerging as a new therapy for diabetes. Here we investigate the properties of MSCs engineered to express Islet Neogenesis Associated Protein (INGAP) previously shown to reverse diabetes in animal models and evaluate their potential for anti-diabetic applications in mice. Mouse bone marrow-derived MSCs retrovirally transduced to co-express INGAP, Firefly Luciferase and EGFP (INGAP-MSCs), were characterized in vitro and implanted intraperitoneally (IP) into non-diabetic and diabetic C57BL/6 mice (Streptozotocin model) and tracked by live bioluminescence imaging (BLI). Distribution and survival of IP injected INGAP-MSCs differed between diabetic and non-diabetic mice, with a rapid clearance of cells in the latter, and a stronger retention (up to 4 weeks) in diabetic mice concurring with homing towards the pancreas. Interestingly, INGAP-MSCs inhibited the progression of hyperglycemia starting at day 3 and lasting for the entire 6 weeks of the study. Pursuing greater retention, we investigated the survival of INGAP-MSCs in hydrogel matrices. When mixed with Matrigel™ and injected subcutaneously into non-diabetic mice, INGAP-MSCs remained in the implant up to 16 weeks. In vitro tests in three matrices (Matrigel™, Type I Collagen and VitroGel®-MSC) demonstrated that INGAP-MSCs survive and secrete INGAP, with best results at the density of 1-2 x 106 cells/mL. However, all matrices induced spontaneous adipogenic differentiation of INGAP-MSCs in vitro and in vivo, which requires further investigation of its potential impact on MSC therapeutic properties. In summary, based on their ability to stop the rise in hyperglycemia in STZ-treated mice, INGAP-MSCs are a promising therapeutic tool against diabetes but require further research to improve cell delivery and survival.
Collapse
Affiliation(s)
- Maria Petropavlovskaia
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Jessica Cuerquis
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
| | - Jing Zhao
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
| | - Shaun Violette-Deslauriers
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Eni Nano
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Lawrence Rosenberg
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Liu P, Cao B, Zhou Y, Zhang H, Wang C. Human umbilical cord-derived mesenchymal stem cells alleviate oxidative stress-induced islet impairment via the Nrf2/HO-1 axis. J Mol Cell Biol 2023; 15:mjad035. [PMID: 37245063 PMCID: PMC10681279 DOI: 10.1093/jmcb/mjad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 05/29/2023] Open
Abstract
Hyperglycaemia-induced oxidative stress may disrupt insulin secretion and β-cell survival in diabetes mellitus by overproducing reactive oxygen species. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) exhibit antioxidant properties. However, the mechanisms by which hUC-MSCs protect β-cells from high glucose-induced oxidative stress remain underexplored. In this study, we showed that intravenously injected hUC-MSCs engrafted into the injured pancreas and promoted pancreatic β-cell function in a mouse model of type 1 diabetes mellitus. The in vitro study revealed that hUC-MSCs attenuated high glucose-induced oxidative stress and prevented β-cell impairment via the Nrf2/HO-1 signalling pathway. Nrf2 knockdown partially blocked the anti-oxidative effect of hUC-MSCs, resulting in β-cell decompensation in a high-glucose environment. Overall, these findings provide novel insights into how hUC-MSCs protect β-cells from high glucose-induced oxidative stress.
Collapse
Affiliation(s)
- Peng Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Baige Cao
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yang Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Huina Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
6
|
Zhu L, Wang S, Qu J, Hui Z, Kan C, Hou N, Sun X. The Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus. Cell Reprogram 2022; 24:329-342. [PMID: 35877064 DOI: 10.1089/cell.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exist in many tissues and can differentiate into cells of multiple lineages, such as adipocytes, osteoblasts, or chondrocytes. MSC administration has demonstrated therapeutic potential in various degenerative and inflammatory diseases (e.g., graft-vs.-host disease, multiple sclerosis, Crohn's disease, organ fibrosis, and diabetes mellitus [DM]). The mechanisms involved in the therapeutic effects of MSCs are multifaceted. Generally, implanted MSCs can migrate to sites of injury, where they establish an anti-inflammatory and regenerative microenvironment in damaged tissues. In addition, MSCs can modulate innate and adaptive immune responses through immunosuppressive mechanisms that involve immune cells, inflammatory cytokines, chemokines, and immunomodulatory factors. DM has a high prevalence worldwide; it also contributes to a high rate of mortality worldwide. MSCs offer a promising therapeutic agent to prevent or repair damage from DM and diabetic complications through properties such as multilineage differentiation, homing, promotion of angiogenesis, and immunomodulation (e.g., prevention of oxidative stress, fibrosis, and cell death). In this study, we review current findings regarding the immunomodulatory and regenerative mechanisms of MSCs, as well as their therapeutic applications in DM and DM-related complications.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Sheng Wang
- Department of Spinal Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - JunSheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zongguang Hui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
7
|
Akasaka Y. The Role of Mesenchymal Stromal Cells in Tissue Repair and Fibrosis. Adv Wound Care (New Rochelle) 2022; 11:561-574. [PMID: 34841889 DOI: 10.1089/wound.2021.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: The present review covers an overview of the current understanding of biology of mesenchymal stromal cells (MSCs) and suggests an important role of their differential potential for clinical approaches associated with tissue repair and fibrosis. Recent Advances: Genetic lineage tracing technology has enabled the delineation of cellular hierarchies and examination of MSC cellular origins and myofibroblast sources. This technique has led to the characterization of perivascular MSC populations and suggests that pericytes might provide a local source of tissue-specific MSCs, which can differentiate into tissue-specific cells for tissue repair and fibrosis. Autologous adipose tissue MSCs led to the advance in tissue engineering for regeneration of damaged tissues. Critical Issues: Recent investigation has revealed that perivascular MSCs might be the origin of myofibroblasts during fibrosis development, and perivascular MSCs might be the major source of myofibroblasts in fibrogenic disease. Adipose tissue MSCs combined with cytokines and biomaterials are available in the treatment of soft tissue defect and skin wound healing. Future Directions: Further investigation of the roles of perivascular MSCs may enable new approaches in the treatment of fibrogenic disease; moreover, perivascular MSCs might have potential as an antifibrotic target for fibrogenic disease. Autologous adipose tissue MSCs combined with cytokines and biomaterials will be an alternative method for the treatment of soft tissue defect and skin wound healing.
Collapse
Affiliation(s)
- Yoshikiyo Akasaka
- Division of Research Promotion and Development, Advanced Research Center, Toho University Graduate School of Medicine, Ota-ku, Japan.,Department of Pathology, Toho University School of Medicine, Ota-ku, Japan
| |
Collapse
|
8
|
Park YM, Yang CM, Cho HY. Therapeutic Effects of Insulin-Producing Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Type 1 Diabetes Mouse Model. Int J Mol Sci 2022; 23:6877. [PMID: 35805883 PMCID: PMC9266974 DOI: 10.3390/ijms23136877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
In patients with type 1 diabetes (T1D), compromised pancreatic β-cell functions are compensated through daily insulin injections or the transplantation of pancreatic tissue or islet cells. However, both approaches are associated with specific challenges. The transplantation of mesenchymal stem cells (MSCs) represents a potential alternative, as MSCs have tissue-forming capacity and can be isolated from various tissues. The human umbilical cord (hUC) is a good source of freely available MSCs, which can be collected through pain-free, non-invasive methods subject to minimal ethical concerns. We sought to develop a method for the in vitro generation of insulin-producing cells (IPCs) using MSCs. We examined the potential therapeutic uses and efficacy of IPCs generated from hUC-derived MSCs (hUC-IPCs) and human adipose tissue (hAD)-derived MSCs (hAD-IPCs) through in vitro experiments and streptozotocin (STZ)-induced C57BL/6 T1D mouse models. We discovered that compared to hAD-IPCs, hUC-IPCs exhibited a superior insulin secretion capacity. Therefore, hUC-IPCs were selected as candidates for T1D cell therapy in mice. Fasting glucose and intraperitoneal glucose tolerance test levels were lower in hUC-IPC-transplanted mice than in T1D control mice and hAD-IPC-transplanted mice. Our findings support the potential use of MSCs for the treatment of T1D.
Collapse
Affiliation(s)
- Yu Mi Park
- CHA Advanced Research Institute, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea
- Department of Biomedical Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea
- Cell Therapy R&D Center, HansBiomed Corp, 7, Jeongui-ro 8-gil, Songpa-gu, Seoul 05836, Gyeonggi-do, Korea; (C.M.Y.); (H.Y.C.)
| | - Chang Mo Yang
- Cell Therapy R&D Center, HansBiomed Corp, 7, Jeongui-ro 8-gil, Songpa-gu, Seoul 05836, Gyeonggi-do, Korea; (C.M.Y.); (H.Y.C.)
| | - Hee Yeon Cho
- Cell Therapy R&D Center, HansBiomed Corp, 7, Jeongui-ro 8-gil, Songpa-gu, Seoul 05836, Gyeonggi-do, Korea; (C.M.Y.); (H.Y.C.)
| |
Collapse
|
9
|
Izadi M, Sadr Hashemi Nejad A, Moazenchi M, Masoumi S, Rabbani A, Kompani F, Hedayati Asl AA, Abbasi Kakroodi F, Jaroughi N, Mohseni Meybodi MA, Setoodeh A, Abbasi F, Hosseini SE, Moeini Nia F, Salman Yazdi R, Navabi R, Hajizadeh-Saffar E, Baharvand H. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther 2022; 13:264. [PMID: 35725652 PMCID: PMC9208234 DOI: 10.1186/s13287-022-02941-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/04/2022] [Indexed: 01/01/2023] Open
Abstract
Background Type-1 diabetes (T1D) occurs following autoimmune-induced pancreatic beta cells death. Among several treatment modalities, mesenchymal stem cells (MSCs) transplantation is promising for autoimmune disorders due to immunomodulation, regeneration, and migration to damaged tissue upon systemic injection. This study assessed the safety and efficacy of intravenous injection of autologous bone marrow-derived MSCs in newly diagnosed T1D patients. Methods After receiving informed consent, 21 patients who met the study criteria were enrolled and randomly assigned to receive either MSCs or placebo. Each patient in the experimental group received two doses of MSCs and was followed for at least one-year post-transplantation. Results The results have shown that this transplantation is safe and significantly reduces the number of hypoglycemic episodes. MSCs transplantation improved glycated hemoglobin (HbA1c), shifted serum cytokine patterns from pro-inflammatory to anti-inflammatory, increased the number of regulatory T-cells in the peripheral blood, and improved quality of life. Early transplantation of MSCs significantly improved HbA1c and C-peptide levels and shifted pro-inflammatory cytokines to anti-inflammatory cytokines. Also, exercise combined with MSCs transplantation improved glycemic and immunologic indices. Conclusions Taken together, autologous MSC transplantation is safe and effective, and its early transplantation is a promising treatment in newly diagnosed T1D children suffering from hypoglycemic episodes. Trial registration: This clinical trial was registered at the Iranian Registry of Clinical Trials (IRCT) with the identifier IRCT ID: IRCT2016070428786N1 registered on August 20, 2016 (Retrospectively registered) (https://en.irct.ir/trial/23256) and at the U.S. National Institutes of Health (ClinicalTrials.gov) with the related identifier NCT04078308 registered on September 6, 2019 (Retrospectively registered). (https://clinicaltrials.gov/ct2/show/NCT04078308). Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02941-w.
Collapse
Affiliation(s)
- Mahmoud Izadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anavasadat Sadr Hashemi Nejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Safdar Masoumi
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rabbani
- Growth and Development Research Center, Children's Medical Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Kompani
- Division of Hematology and Oncology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Hedayati Asl
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Hematology-Oncology and Stem Cell Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbasi Kakroodi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Jaroughi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Ali Mohseni Meybodi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Aria Setoodeh
- Division of Pediatrics Endocrinology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Abbasi
- Growth and Development Research Center, Children's Medical Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moeini Nia
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Salman Yazdi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Roghayeh Navabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Diabetes, Obesity, and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
10
|
Wu X, Mu Y, Yao J, Lin F, Wu D, Ma Z. Adipose-Derived Stem Cells From Patients With Ulcerative Colitis Exhibit Impaired Immunosuppressive Function. Front Cell Dev Biol 2022; 10:822772. [PMID: 35252190 PMCID: PMC8894714 DOI: 10.3389/fcell.2022.822772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are able to modulate the immune response and are used for treating ulcerative colitis (UC). However, it is possible that ADSCs from patients with inflammatory or autoimmune disorders may show defective immunosuppression. We investigated the use of ADSCs from UC patients for autologous cell treatment, specifically, ADSCs from healthy donors (H-ADSCs) and UC patients (P-ADSCs) in terms of various functions, including differentiation, proliferation, secretion, and immunosuppression. The efficacy of P-ADSCs for treating UC was examined in mouse models of acute or chronic colitis. Both H-ADSCs and P-ADSCs were similar in cell morphology, size, adipogenic differentiation capabilities, and cell surface markers. We found that P-ADSCs had lower proliferative capacity, cloning ability, and osteogenic and chondrogenic differentiation potential than H-ADSCs. P-ADSCs exhibited a diminished capacity to inhibit peripheral blood mononuclear cell proliferation, suppress CD25 and CD69 marker expression, decrease the production of inflammation-associated cytokines interferon-γ and tumor necrosis factor-α, and reduce their cytotoxic effect on A549 cells. When primed with inflammatory cytokines, P-ADSCs secreted lower levels of prostaglandin E2, indoleamine 2, 3-dioxygenase, and tumor necrosis factor-α–induced protein 6, which mediated their reduced immunopotency. Moreover, P-ADSCs exhibited weaker therapeutic effects than H-ADSCs, determined by disease activity, histology, myeloperoxidase activity, and body weight. These findings indicate that the immunosuppressive properties of ASCs are affected by donor metabolic characteristics. This study shows, for the first time, the presence of defective ADSC immunosuppression in UC, indicating that autologous transplantation of ADSCs may be inappropriate for patients with UC.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, China
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yongxu Mu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jingyi Yao
- Experimental Center, Beijing Clinical Research Institute, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Fuhong Lin
- Department of Neurology, Affiliated Hospital of Chifeng College, Chifeng, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Daocheng Wu, ; Zhijie Ma,
| | - Zhijie Ma
- Department of Pharmacy, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
- *Correspondence: Daocheng Wu, ; Zhijie Ma,
| |
Collapse
|
11
|
Shamsuddin SA, Chan AML, Ng MH, Yazid MD, Law JX, Hj Idrus RB, Fauzi MB, Mohd Yunus MH, Lokanathan Y. Stem cells as a potential therapy in managing various disorders of metabolic syndrome: a systematic review. Am J Transl Res 2021; 13:12217-12227. [PMID: 34956448 PMCID: PMC8661211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Recent explorations on mesenchymal stem/stromal cells (MSC) have reported a promising future for cell-based therapies. MSCs are widely sourced from various tissues and express unique properties of regenerative potential and immunomodulation. Currently, there is a growing interest in utilizing MSC for treatment of chronic diseases to overcome the drawbacks of chemical drugs. Metabolic Syndrome (MetS) is described as a cluster of metabolic abnormalities categorized as abdominal obesity, dyslipidaemia, hypertension, hypertriglyceridemia, and hyperglycaemia. Patients diagnosed with MetS have a high predisposition for developing cardiovascular complications, diabetes, non-alcoholic fatty liver diseases, bone loss, cancer, and mortality. Hence, research on MSC as therapy for MetS and related diseases, is greatly valued and are advantaged by the low immunogenicity with high regenerative capacity. However, there are many obstacles to be addressed such as the safety, efficacy, and consistency of different MSC sources. Additionally, factors such as effective dose level and delivery method are equally important to achieve uniform therapeutic outcomes. This systematic review discusses the potential roles of MSC in managing the multiple clusters of MetS. Research articles during the past 20 years were systematically searched and filtered to update the progress in the field of MSC therapy in managing various components of MetS. The different sources of MSC, dosage, method of delivery and outcome measures for the stem cell therapies were compiled from the systematically selected research articles. It can be concluded from the review of the selected articles that MSCs can improve the various disorders of MetS such as abdominal obesity, hyperglycaemia, hypertriglyceridemia and hypertension, and represent a promising alternative to conventional therapy of the MetS cluster.
Collapse
Affiliation(s)
- Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan MalaysiaCheras 56000, Kuala Lumpur, Malaysia
| | - Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan MalaysiaCheras 56000, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan MalaysiaCheras 56000, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan MalaysiaCheras 56000, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan MalaysiaCheras 56000, Kuala Lumpur, Malaysia
| | - Ruszymah Binti Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan MalaysiaCheras 56000, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan MalaysiaCheras 56000, Kuala Lumpur, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan MalaysiaCheras 56000, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan MalaysiaCheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Montanari E, Szabó L, Balaphas A, Meyer J, Perriraz-Mayer N, Pimenta J, Giraud MN, Egger B, Gerber-Lemaire S, Bühler L, Gonelle-Gispert C. Multipotent mesenchymal stromal cells derived from porcine exocrine pancreas improve insulin secretion from juvenile porcine islet cell clusters. Xenotransplantation 2021; 28:e12666. [PMID: 33538027 DOI: 10.1111/xen.12666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 01/03/2023]
Abstract
Neonatal and juvenile porcine islet cell clusters (ICC) present an unlimited source for islet xenotransplantation to treat type 1 diabetes patients. We isolated ICC from pancreata of 14 days old juvenile piglets and characterized their maturation by immunofluorescence and insulin secretion assays. Multipotent mesenchymal stromal cells derived from exocrine tissue of same pancreata (pMSC) were characterized for their differentiation potential and ability to sustain ICC insulin secretion in vitro and in vivo. Isolation of ICC resulted in 142 ± 50 × 103 IEQ per pancreas. Immunofluorescence staining revealed increasing presence of insulin-positive beta cells between day 9 and 21 in culture and insulin content per 500IEC of ICC increased progressively over time from 1178.4 ± 450 µg/L to 4479.7 ± 1954.2 µg/L from day 7 to 14, P < .001. Highest glucose-induced insulin secretion by ICC was obtained at day 7 of culture and reached a fold increase of 2.9 ± 0.4 compared to basal. Expansion of adherent cells from the pig exocrine tissue resulted in a homogenous CD90+ , CD34- , and CD45- fibroblast-like cell population and differentiation into adipocytes and chondrocytes demonstrated their multipotency. Insulin release from ICC was increased in the presence of pMSC and dependent on cell-cell contact (glucose-induced fold increase: ICC alone: 1.6 ± 0.2; ICC + pMSC + contact: 3.2 ± 0.5, P = .0057; ICC + pMSC no-contact: 1.9 ± 0.3; theophylline stimulation: alone: 5.4 ± 0.7; pMSC + contact: 8.4 ± 0.9, P = .013; pMSC no-contact: 5.2 ± 0.7). After transplantation of encapsulated ICC using Ca2+ -alginate (alg) microcapsules into streptozotocin-induced diabetic and immunocompetent mice, transient normalization of glycemia was obtained up to day 7 post-transplant, whereas ICC co-encapsulated with pMSC did not improve glycemia and showed increased pericapsular fibrosis. We conclude that pMSC derived from juvenile porcine exocrine pancreas improves insulin secretion of ICC by direct cell-cell contact. For transplantation purposes, the use of pMSC to support beta-cell function will depend on the development of new anti-fibrotic polymers and/or on genetically modified pigs with lower immunogenicity.
Collapse
Affiliation(s)
- Elisa Montanari
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Luca Szabó
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
| | - Alexandre Balaphas
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Jeremy Meyer
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Nadja Perriraz-Mayer
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Joel Pimenta
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Marie-Noelle Giraud
- Cardiology, Dpt EMC, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bernhard Egger
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
| | - Leo Bühler
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
13
|
Sávio-Silva C, Beyerstedt S, Soinski-Sousa PE, Casaro EB, Balby-Rocha MTA, Simplício-Filho A, Alves-Silva J, Rangel ÉB. Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease: A Review of the Studies Using Syngeneic, Autologous, Allogeneic, and Xenogeneic Cells. Stem Cells Int 2020; 2020:8833725. [PMID: 33505469 PMCID: PMC7812547 DOI: 10.1155/2020/8833725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes mellitus (DM) and comprises multifactorial pathophysiologic mechanisms. Despite current treatment, around 30-40% of individuals with type 1 and type 2 DM (DM1 and DM2) have progressive DKD, which is the most common cause of end-stage chronic kidney disease worldwide. Mesenchymal stem cell- (MSC-) based therapy has important biological and therapeutic implications for curtailing DKD progression. As a chronic disease, DM may impair MSC microenvironment, but there is compelling evidence that MSC derived from DM1 individuals maintain their cardinal properties, such as potency, secretion of trophic factors, and modulation of immune cells, so that both autologous and allogeneic MSCs are safe and effective. Conversely, MSCs derived from DM2 individuals are usually dysfunctional, exhibiting higher rates of senescence and apoptosis and a decrease in clonogenicity, proliferation, and angiogenesis potential. Therefore, more studies in humans are needed to reach a conclusion if autologous MSCs from DM2 individuals are effective for treatment of DM-related complications. Importantly, the bench to bedside pathway has been constructed in the last decade for assessing the therapeutic potential of MSCs in the DM setting. Laboratory research set the basis for establishing further translation research including preclinical development and proof of concept in model systems. Phase I clinical trials have evaluated the safety profile of MSC-based therapy in humans, and phase II clinical trials (proof of concept in trial participants) still need to answer important questions for treating DKD, yet metabolic control has already been documented. Therefore, randomized and controlled trials considering the source, optimal cell number, and route of delivery in DM patients are further required to advance MSC-based therapy. Future directions include strategies to reduce MSC heterogeneity, standardized protocols for isolation and expansion of those cells, and the development of well-designed large-scale trials to show significant efficacy during a long follow-up, mainly in individuals with DKD.
Collapse
Affiliation(s)
- Christian Sávio-Silva
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Stephany Beyerstedt
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Poliana E. Soinski-Sousa
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Expedito B. Casaro
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Antônio Simplício-Filho
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Jamille Alves-Silva
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Érika B. Rangel
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Nephrology Division, Federal University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Haque N, Fareez IM, Fong LF, Mandal C, Kasim NHA, Kacharaju KR, Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells 2020. [DOI: 10.4252/wjsc.v12.i9.0000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
15
|
Haque N, Fareez IM, Fong LF, Mandal C, Abu Kasim NH, Kacharaju KR, Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells 2020; 12:938-951. [PMID: 33033556 PMCID: PMC7524697 DOI: 10.4252/wjsc.v12.i9.938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/18/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, several studies have reported positive outcomes of cell-based therapies despite insufficient engraftment of transplanted cells. These findings have created a huge interest in the regenerative potential of paracrine factors released from transplanted stem or progenitor cells. Interestingly, this notion has also led scientists to question the role of proteins in the secretome produced by cells, tissues or organisms under certain conditions or at a particular time of regenerative therapy. Further studies have revealed that the secretomes derived from different cell types contain paracrine factors that could help to prevent apoptosis and induce proliferation of cells residing within the tissues of affected organs. This could also facilitate the migration of immune, progenitor and stem cells within the body to the site of inflammation. Of these different paracrine factors present within the secretome, researchers have given proper consideration to stromal cell-derived factor-1 (SDF1) that plays a vital role in tissue-specific migration of the cells needed for regeneration. Recently researchers recognized that SDF1 could facilitate site-specific migration of cells by regulating SDF1-CXCR4 and/or HMGB1-SDF1-CXCR4 pathways which is vital for tissue regeneration. Hence in this study, we have attempted to describe the role of different types of cells within the body in facilitating regeneration while emphasizing the HMGB1-SDF1-CXCR4 pathway that orchestrates the migration of cells to the site where regeneration is needed.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Ismail M Fareez
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Liew Fong Fong
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Life Science, Khulna University, Khulna 9208, Bangladesh
| | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, University Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya 411007, Indonesia
| | - Kranthi Raja Kacharaju
- Department of Conservative Dentistry, Faculty of Dentistry MAHSA University, Selangor 42610, Malaysia
| | - Pratiwi Soesilawati
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
16
|
Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol 2020; 334:113456. [PMID: 32889008 DOI: 10.1016/j.expneurol.2020.113456] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 08/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Diabetes elevates the risk of stroke, promotes inflammation, and exacerbates vascular and white matter damage post stroke, thereby hindering long term functional recovery. Here, we investigated the neurorestorative effects and the underlying therapeutic mechanisms of treatment of stroke in type 2 diabetic rats (T2DM) using exosomes harvested from bone marrow stromal cells obtained from T2DM rats (T2DM-MSC-Exo). METHODS T2DM was induced in adult male Wistar rats using a combination of high fat diet and Streptozotocin. Rats were subjected to transient 2 h middle cerebral artery occlusion (MCAo) and 3 days later randomized to one of the following treatment groups: 1) phosphate-buffered-saline (PBS, i.v), 2) T2DM-MSC-Exo, (3 × 1011, i.v), 3) T2DM-MSC-Exo with miR-9 over expression (miR9+/+-T2DM-MSC-Exo, 3 × 1011, i.v) or 4) MSC-Exo derived from normoglycemic rats (Nor-MSC-Exo) (3 × 1011, i.v). T2DM sham control group is included as reference. Rats were sacrificed 28 days after MCAo. RESULTS T2DM-MSC-Exo treatment does not alter blood glucose, lipid levels, or lesion volume, but significantly improves neurological function and attenuates post-stroke weight loss compared to PBS treated as well as Nor-MSC-Exo treated T2DM-stroke rats. Compared to PBS treatment, T2DM-MSC-Exo treatment of T2DM-stroke rats significantly 1) increases tight junction protein ZO-1 and improves blood brain barrier (BBB) integrity; 2) promotes white matter remodeling indicated by increased axon and myelin density, and increases oligodendrocytes and oligodendrocyte progenitor cell numbers in the ischemic border zone as well as increases primary cortical neuronal axonal outgrowth; 3) decreases activated microglia, M1 macrophages, and inflammatory factors MMP-9 (matrix mettaloproteinase-9) and MCP-1 (monocyte chemoattractant protein-1) expression in the ischemic brain; and 4) decreases miR-9 expression in serum, and increases miR-9 target ABCA1 (ATP-binding cassette transporter 1) and IGFR1 (Insulin-like growth factor 1 receptor) expression in the brain. MiR9+/+-T2DM-MSC-Exo treatment significantly increases serum miR-9 expression compared to PBS treated and T2DM-MSC-Exo treated T2DM stroke rats. Treatment of T2DM stroke with miR9+/+-T2DM-MSC-Exo fails to improve functional outcome and attenuates T2DM-MSC-Exo treatment induced white matter remodeling and anti-inflammatory effects in T2DM stroke rats. CONCLUSIONS T2DM-MSC-Exo treatment for stroke in T2DM rats promotes neurorestorative effects and improves functional outcome. Down regulation of miR-9 expression and increasing its target ABCA1 pathway may contribute partially to T2DM-MSC-Exo treatment induced white matter remodeling and anti-inflammatory responses.
Collapse
|
17
|
Zare F, Bayat M, Aliaghaei A, Piryaei A. Photobiomodulation therapy compensate the impairments of diabetic bone marrow mesenchymal stem cells. Lasers Med Sci 2020; 35:547-556. [DOI: 10.1007/s10103-019-02844-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
|
18
|
Andrzejewska A, Catar R, Schoon J, Qazi TH, Sass FA, Jacobi D, Blankenstein A, Reinke S, Krüger D, Streitz M, Schlickeiser S, Richter S, Souidi N, Beez C, Kamhieh-Milz J, Krüger U, Zemojtel T, Jürchott K, Strunk D, Reinke P, Duda G, Moll G, Geissler S. Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties. Front Immunol 2019; 10:2474. [PMID: 31781089 PMCID: PMC6857652 DOI: 10.3389/fimmu.2019.02474] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Heterogeneous populations of human bone marrow-derived stromal cells (BMSC) are among the most frequently tested cellular therapeutics for treating degenerative and immune disorders, which occur predominantly in the aging population. Currently, it is unclear whether advanced donor age and commonly associated comorbidities affect the properties of ex vivo-expanded BMSCs. Thus, we stratified cells from adult and elderly donors from our biobank (n = 10 and n = 13, mean age 38 and 72 years, respectively) and compared their phenotypic and functional performance, using multiple assays typically employed as minimal criteria for defining multipotent mesenchymal stromal cells (MSCs). We found that BMSCs from both cohorts meet the standard criteria for MSC, exhibiting similar morphology, growth kinetics, gene expression profiles, and pro-angiogenic and immunosuppressive potential and the capacity to differentiate toward adipogenic, chondrogenic, and osteogenic lineages. We found no substantial differences between cells from the adult and elderly cohorts. As positive controls, we studied the impact of in vitro aging and inflammatory cytokine stimulation. Both conditions clearly affected the cellular properties, independent of donor age. We conclude that in vitro aging rather than in vivo donor aging influences BMSC characteristics.
Collapse
Affiliation(s)
- Anastazja Andrzejewska
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Rusan Catar
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Janosch Schoon
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Taimoor Hasan Qazi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Frauke Andrea Sass
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Dorit Jacobi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Antje Blankenstein
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Simon Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - David Krüger
- Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Mathias Streitz
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Sarina Richter
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Naima Souidi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Christien Beez
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Ulrike Krüger
- BIH Core Unit Genomics Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tomasz Zemojtel
- BIH Core Unit Genomics Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Dirk Strunk
- Berlin Center for Advanced Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Spinal Cord Injury and Tissue Regeneration Center, Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Georg Duda
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Sven Geissler
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| |
Collapse
|
19
|
Chen L, Zhang Q, Chen QH, Ran FY, Yu LM, Liu X, Fu Q, Song GY, Tang JM, Zhang T. Combination of G-CSF and AMD3100 Improves the Anti-inflammatory Effect of Mesenchymal Stem Cells on Inducing M2 Polarization of Macrophages Through NF-κB-IL1RA Signaling Pathway. Front Pharmacol 2019; 10:579. [PMID: 31191315 PMCID: PMC6546872 DOI: 10.3389/fphar.2019.00579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/06/2019] [Indexed: 01/18/2023] Open
Abstract
Mobilized peripheral blood-derived mesenchymal stem cells (PB-MSCs) mainly derived from bone marrow-derived MSCs (BM-MSCs) exert a similar anti-inflammatory effect. However, the mechanism of anti-inflammatory effect of mobilized PB-MSCs by a combination of G-CSF and AMD3100 remains unclear. Cultured rat PB-MSCs mobilized by G-CSF/AMD3100 have shown typical surface markers and potential for multiple differentiations, similar to non-mobilized BM-MSCs. In a co-culture system, rat M0-type macrophages co-cultured with PB-MSCs have shown higher expression of M2 markers including CD206, Arg-1, IL-10, and CCL-22 than BM-MSCs, indicating that PB-MSCs induced greater M0 polarization to M2. Furthermore, compared with BM-MSCs, PB-MSCs in a co-culture system with lipopolysaccharide-induced M1-type macrophages more efficiently promoted M1 polarization to M2, accompanied by increasing expression of CD206, Arg-1, IL-10, and CCL-22 while decreasing expression of M1 markers including iNOS, TNF-α, IL-1β and IL-6, indicating that PB-MSCs triggered greater M1 polarization to M2. Subsequently, polymerase chain reaction arrays showed higher expressions of both IL1rn and Tnfrsf11b in PB-MSCs versus BM-MSCs. In response to an inflammatory niche, such as TNF-α, PB-MSCs have shown higher expression and release of IL1RA, causing greater M2 polarization of macrophages, and the special effects may be almost entirely abolished through the neutralization antibody of IL1RA. Mechanistic studies determined that PB-MSCs showed higher levels NF-κBp65 and NF-κBp-p65 than BM-MSCs, which could be obviously enhanced by TNF-α. And the increased IL1RA expression by TNF-α in PB-MSCs could be markedly canceled by an NF-κB inhibitor PDTC. Interestingly, mimicking the mobilized PB-MSCs by a combination of G-CSF and AMD3100 in vivo, BM-MSCs were treated with G-CSF and/or AMD3100 in vitro, showing the increased expressions of NF-κBp65 and IL1RA, which could be prominently abolished by PDTC. Therefore, targeting IL1rn, gene modification or drug intervention for MSCs may provide a novel therapeutic strategy for human diseases, especially inflammatory diseases.
Collapse
Affiliation(s)
- Long Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Experimental Medical Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, China
| | - Qin-Hua Chen
- Experimental Medical Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Feng-Yin Ran
- Experimental Medical Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiu Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiang Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Gong-Yu Song
- Department of Human Anatomy, Zunyi Medical University, Zunyi, China
| | - Jun-Ming Tang
- Institute of Clinical Medicine, Renming Hospital, Hubei University of Medicine, Shiyan, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
20
|
Williams EK, García JR, Mannino RG, Schneider RS, Lam WA, García AJ. Enabling mesenchymal stromal cell immunomodulatory analysis using scalable platforms. Integr Biol (Camb) 2019; 11:154-162. [PMID: 31135880 DOI: 10.1093/intbio/zyz014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/21/2019] [Accepted: 05/04/2019] [Indexed: 11/14/2022]
Abstract
Human mesenchymal stromal cells (hMSCs) are a promising cell source for numerous regenerative medicine and cell therapy-based applications. However, MSC-based therapies have faced challenges in translation to the clinic, in part due to the lack of sufficient technologies that accurately predict MSC potency and are viable in the context of cell manufacturing. Microfluidic platforms may provide an innovative opportunity to address these challenges by enabling multiparameter analyses of small sample sizes in a high throughput and cost-effective manner, and may provide a more predictive environment in which to analyze hMSC potency. To this end, we demonstrate the feasibility of incorporating 3D culture environments into microfluidic platforms for analysis of hMSC secretory response to inflammatory stimuli and multi-parameter testing using cost-effective and scalable approaches. We first find that the cytokine secretion profile for hMSCs cultured within synthetic poly(ethylene glycol)-based hydrogels is significantly different compared to those cultured on glass substrates, both in growth media and following stimulation with IFN-γ and TNF-α, for cells derived from two donors. For both donors, perfusion with IFN-γ and TNF-α leads to differences in secretion of interleukin 6 (IL-6), interleukin 8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), macrophage colony-stimulating factor (M-CSF), and interleukin-1 receptor antagonist (IL-1ra) between hMSCs cultured in hydrogels and those cultured on glass substrates. We then demonstrate the feasibility of analyzing the response of hMSCs to a stable concentration gradient of soluble factors such as inflammatory stimuli for potential future use in potency analyses, minimizing the amount of sample required for dose-response testing.
Collapse
Affiliation(s)
- Evelyn Kendall Williams
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.,Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - José R García
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA, USA
| | - Robert G Mannino
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.,Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rebecca S Schneider
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.,Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA, USA
| |
Collapse
|
21
|
Takahashi H, Sakata N, Yoshimatsu G, Hasegawa S, Kodama S. Regenerative and Transplantation Medicine: Cellular Therapy Using Adipose Tissue-Derived Mesenchymal Stromal Cells for Type 1 Diabetes Mellitus. J Clin Med 2019; 8:249. [PMID: 30781427 PMCID: PMC6406504 DOI: 10.3390/jcm8020249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the autoimmune targeting of pancreatic β-cells, and, in the advanced stage, severe hypoinsulinemia due to islet destruction. In patients with T1DM, continuous exogenous insulin therapy cannot be avoided. However, an insufficient dose of insulin easily induces extreme hyperglycemia or diabetic ketoacidosis, and intensive insulin therapy may cause hypoglycemic symptoms including hypoglycemic shock. While these insulin therapies are efficacious in most patients, some additional therapies are warranted to support the control of blood glucose levels and reduce the risk of hypoglycemia in patients who respond poorly despite receiving appropriate treatment. There has been a recent gain in the popularity of cellular therapies using mesenchymal stromal cells (MSCs) in various clinical fields, owing to their multipotentiality, capacity for self-renewal, and regenerative and immunomodulatory potential. In particular, adipose tissue-derived MSCs (ADMSCs) have become a focus in the clinical setting due to the abundance and easy isolation of these cells. In this review, we outline the possible therapeutic benefits of ADMSC for the treatment of T1DM.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Naoaki Sakata
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Suguru Hasegawa
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
22
|
Mahmoud M, Abu-Shahba N, Azmy O, El-Badri N. Impact of Diabetes Mellitus on Human Mesenchymal Stromal Cell Biology and Functionality: Implications for Autologous Transplantation. Stem Cell Rev Rep 2019; 15:194-217. [DOI: 10.1007/s12015-018-9869-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Solis MA, Moreno Velásquez I, Correa R, Huang LLH. Stem cells as a potential therapy for diabetes mellitus: a call-to-action in Latin America. Diabetol Metab Syndr 2019; 11:20. [PMID: 30820250 PMCID: PMC6380040 DOI: 10.1186/s13098-019-0415-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Latin America is a fast-growing region that currently faces unique challenges in the treatment of all forms of diabetes mellitus. The burden of this disease will be even greater in the coming years due, in part, to the large proportion of young adults living in urban areas and engaging in unhealthy lifestyles. Unfortunately, the national health systems in Latin-American countries are unprepared and urgently need to reorganize their health care services to achieve diabetic therapeutic goals. Stem cell research is attracting increasing attention as a promising and fast-growing field in Latin America. As future healthcare systems will include the development of regenerative medicine through stem cell research, Latin America is urged to issue a call-to-action on stem cell research. Increased efforts are required in studies focused on stem cells for the treatment of diabetes. In this review, we aim to inform physicians, researchers, patients and funding sources about the advances in stem cell research for possible future applications in diabetes mellitus. Emerging studies are demonstrating the potential of stem cells for β cell differentiation and pancreatic regeneration. The major economic burden implicated in patients with diabetes complications suggests that stem cell research may relieve diabetic complications. Closer attention should be paid to stem cell research in the future as an alternative treatment for diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Ricardo Correa
- Department of Medicine, Warren Alpert School of Medicine, Brown University, Rhode Island, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ USA
| | - Lynn L. H. Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
24
|
Deola S, Guerrouahen BS, Sidahmed H, Al-Mohannadi A, Elnaggar M, Elsadig R, Abdelalim EM, Petrovski G, Gadina M, Thrasher A, Wels WS, Hunger SP, Wang E, Marincola FM, Maccalli C, Cugno C. Tailoring cells for clinical needs: Meeting report from the Advanced Therapy in Healthcare symposium (October 28-29 2017, Doha, Qatar). J Transl Med 2018; 16:276. [PMID: 30305089 PMCID: PMC6180452 DOI: 10.1186/s12967-018-1652-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
New technologies and therapies designed to facilitate development of personalized treatments are rapidly emerging in the field of biomedicine. Strikingly, the goal of personalized medicine refined the concept of therapy by developing cell-based therapies, the so-called “living drugs”. Breakthrough advancements were achieved in this regard in the fields of gene therapy, cell therapy, tissue-engineered products and advanced therapeutic techniques. The Advanced Therapies in Healthcare symposium, organized by the Clinical Research Center Department of Sidra Medicine, in Doha, Qatar (October 2017), brought together world-renowned experts from the fields of oncology, hematology, immunology, inflammation, autoimmune disorders, and stem cells to offer a comprehensive picture of the status of worldwide advanced therapies in both pre-clinical and clinical development, providing insights to the research phase, clinical data and regulatory aspects of these therapies. Highlights of the meeting are provided in this meeting report.
Collapse
Affiliation(s)
- Sara Deola
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | | | - Heba Sidahmed
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Anjud Al-Mohannadi
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Muhammad Elnaggar
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Ramaz Elsadig
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | | | | | - Adrian Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Winfried S Wels
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | | | - Ena Wang
- Immune Oncology Discovery and System Biology, AbbVie, Redwood City, CA, USA
| | | | | | - Cristina Maccalli
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Chiara Cugno
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
25
|
Scuteri A, Monfrini M. Mesenchymal Stem Cells as New Therapeutic Approach for Diabetes and Pancreatic Disorders. Int J Mol Sci 2018; 19:2783. [PMID: 30223606 PMCID: PMC6163453 DOI: 10.3390/ijms19092783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a worldwide disease which actually includes different disorders related to glucose metabolism. According to different epidemiological studies, patients affected by diabetes present a higher risk to develop both acute and chronic pancreatitis, clinical situations which, in turn, increase the risk to develop pancreatic cancer. Current therapies are able to adjust insulin levels according to blood glucose peak, but they only partly reach the goal to abrogate the consequent inflammatory milieu responsible for diabetes-related diseases. In recent years, many studies have investigated the possible use of adult mesenchymal stem cells (MSCs) as alternative therapeutic treatment for diabetes, with promising results due to the manifold properties of these cells. In this review we will critically analyze the many different uses of MSCs for both diabetes treatment and for the reduction of diabetes-related disease development, focusing on their putative molecular mechanisms.
Collapse
Affiliation(s)
- Arianna Scuteri
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy.
| | - Marianna Monfrini
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy.
| |
Collapse
|
26
|
Leyendecker A, Pinheiro CCG, Amano MT, Bueno DF. The Use of Human Mesenchymal Stem Cells as Therapeutic Agents for the in vivo Treatment of Immune-Related Diseases: A Systematic Review. Front Immunol 2018; 9:2056. [PMID: 30254638 PMCID: PMC6141714 DOI: 10.3389/fimmu.2018.02056] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background: One of the greatest challenges for medicine is to find a safe and effective treatment for immune-related diseases. However, due to the low efficacy of the treatment available and the occurrence of serious adverse effects, many groups are currently searching for alternatives to the traditional therapy. In this regard, the use of human mesenchymal stem cells (hMSCs) represents a great promise for the treatment of a variety of immune-related diseases due to their potent immunomodulatory properties. The main objective of this study is, therefore, to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of the administration of hMSCs for the treatment of immune-related diseases was evaluated. Methods: The article search was conducted in PubMed/MEDLINE, Scopus and Web of Science databases. Original research articles assessing the therapeutic potential of hMSCs administration for the in vivo treatment immune-related diseases, published from 1984 to December 2017, were selected and evaluated. Results: A total of 132 manuscripts formed the basis of this systematic review. Most of the studies analyzed reported positive results after hMSCs administration. Clinical effects commonly observed include an increase in the survival rates and a reduction in the severity and incidence of the immune-related diseases studied. In addition, hMSCs administration resulted in an inhibition in the proliferation and activation of CD19+ B cells, CD4+ Th1 and Th17 cells, CD8+ T cells, NK cells, macrophages, monocytes, and neutrophils. The clonal expansion of both Bregs and Tregs cells, however, was stimulated. Administration of hMSCs also resulted in a reduction in the levels of pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-1, IL-2, IL-12, and IL-17 and in an increase in the levels of immunoregulatory cytokines such as IL-4, IL-10, and IL-13. Conclusions: The results obtained in this study open new avenues for the treatment of immune-related diseases through the administration of hMSCs and emphasize the importance of the conduction of further studies in this area.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The immunosuppressive agent cyclosporine was first reported to lower daily insulin dose and improve glycemic control in patients with new-onset type 1 diabetes (T1D) in 1984. While renal toxicity limited cyclosporine's extended use, this observation ignited collaborative efforts to identify immunotherapeutic agents capable of safely preserving β cells in patients with or at risk for T1D. RECENT FINDINGS Advances in T1D prediction and early diagnosis, together with expanded knowledge of the disease mechanisms, have facilitated trials targeting specific immune cell subsets, autoantigens, and pathways. In addition, clinical responder and non-responder subsets have been defined through the use of metabolic and immunological readouts. Herein, we review emerging T1D biomarkers within the context of recent and ongoing T1D immunotherapy trials. We also discuss responder/non-responder analyses in an effort to identify therapeutic mechanisms, define actionable pathways, and guide subject selection, drug dosing, and tailored combination drug therapy for future T1D trials.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|
28
|
Liew A, Baustian C, Thomas D, Vaughan E, Sanz-Nogués C, Creane M, Chen X, Alagesan S, Owens P, Horan J, Dockery P, Griffin MD, Duffy A, O'Brien T. Allogeneic Mesenchymal Stromal Cells (MSCs) are of Comparable Efficacy to Syngeneic MSCs for Therapeutic Revascularization in C57BKSdb/db Mice Despite the Induction of Alloantibody. Cell Transplant 2018; 27:1210-1221. [PMID: 30016879 PMCID: PMC6434464 DOI: 10.1177/0963689718784862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Intramuscular administration of mesenchymal stromal cells (MSCs) represents a therapeutic option for diabetic critical limb ischemia. Autologous or allogeneic approaches may be used but disease-induced cell dysfunction may limit therapeutic efficacy in the former. Our aim was to compare the efficacy of allogeneic and autologous MSC transplantation in a model of hindlimb ischemia in diabetes mellitus and to determine whether allogeneic transplantation would result in the activation of an immune response. MSCs were isolated from C57BL/6 (B6) and diabetic obese C57BKSdb/db mice. Phosphate-buffered saline (control group), and MSCs (1 × 106) from B6 (allogeneic group) or C57BKSdb/db (syngeneic group) were administered intramuscularly into the ischemic thigh of C57BKSdb/db mice following the induction of hindlimb ischemia. MSCs derived from both mouse strains secrete several angiogenic factors, suggesting that the potential therapeutic effect is due to paracrine signaling. Administration of allogeneic MSCs significantly improved blood perfusion as compared with the control group on week 2 and 3, post-operatively. In comparison with the control group, syngeneic MSCs significantly improved blood perfusion at week 2 only. There was no statistical difference in blood perfusion between allogeneic and syngeneic MSC groups at any stages. There was no statistical difference in ambulatory and necrosis score among the three groups. Amputation of toes was only observed in the control group (one out of seven animals). Alloantibody was detected in three out of the eight mice that received allogeneic MSCs but was not observed in the other groups. In summary, we demonstrated comparable efficacy after transplantation of autologous and allogeneic MSCs in a diabetic animal model despite generation of an immune response.
Collapse
Affiliation(s)
- A Liew
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - C Baustian
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - D Thomas
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland.,2 Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Centre for Research in Medical Devices (CÚRAM), Galway, Ireland
| | - E Vaughan
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - C Sanz-Nogués
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - M Creane
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - X Chen
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - S Alagesan
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - P Owens
- 3 National Centre for Biomedical Engineering Science (NCBES), and Centre for Microscopy & Imaging and National Biophotonic & Imaging Platform Ireland, Galway, Ireland
| | - J Horan
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - P Dockery
- 4 College of Engineering, National University of Ireland, Galway (NUIG) and Medtronic, Galway, Ireland
| | - M D Griffin
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| | - A Duffy
- 4 College of Engineering, National University of Ireland, Galway (NUIG) and Medtronic, Galway, Ireland
| | - T O'Brien
- 1 Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, Galway, Ireland
| |
Collapse
|
29
|
van Rhijn-Brouwer FCC, Gremmels H, Fledderus JO, Verhaar MC. Mesenchymal Stromal Cell Characteristics and Regenerative Potential in Cardiovascular Disease: Implications for Cellular Therapy. Cell Transplant 2018; 27:765-785. [PMID: 29895169 PMCID: PMC6047272 DOI: 10.1177/0963689717738257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Administration of mesenchymal stromal cells (MSCs) is a promising strategy to treat cardiovascular disease (CVD). As progenitor cells may be negatively affected by both age and comorbidity, characterization of MSC function is important to guide decisions regarding use of allogeneic or autologous cells. Definitive answers on which factors affect MSC function can also aid in selecting which MSC donors would yield the most therapeutically efficacious MSCs. Here we provide a narrative review of MSC function in CVD based on a systematic search. A total of 41 studies examining CVD-related MSC (dys)function were identified. These data show that MSC characteristics and regenerative potential are often affected by CVD. However, studies presented conflicting results, and directed assessment of MSC parameters relevant to regenerative medicine applications was lacking in many studies. The predictive ability of in vitro assays for in vivo efficacy was rarely assessed. There was no correlation between quality of study reporting and study findings. Age mismatch was also not associated with study findings or effect size. Future research should focus on assays that assess regenerative potential in MSCs and parameters that relate to clinical success.
Collapse
Affiliation(s)
- F C C van Rhijn-Brouwer
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Gremmels
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J O Fledderus
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C Verhaar
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Couri CEB, Malmegrim KCR, Oliveira MC. New Horizons in the Treatment of Type 1 Diabetes: More Intense Immunosuppression and Beta Cell Replacement. Front Immunol 2018; 9:1086. [PMID: 29868031 PMCID: PMC5968392 DOI: 10.3389/fimmu.2018.01086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of autoimmunity as the main pathophysiologic process involved in type 1 diabetes, many attempts have tried to delay or stop beta cell destruction. Most research protocols in humans have investigated the effects of therapeutic agents targeting specific steps of the autoimmune response. In spite of safety and some degree of beta cell preservation, the clinical impact of such approaches was similar to placebo. Recently, research groups have analyzed the effects of a more intense and wider immunologic approach in newly diagnosed type 1 diabetic individuals with the “immunologic reset,” i.e., high-dose immunosuppression followed by autologous hematopoietic stem cell transplantation. This more aggressive approach has enabled the majority of patients to experience periods of insulin independence in parallel with relevant increments in C-peptide levels during mixed meal tolerance test. However, on long-term follow-up, almost all patients resumed exogenous insulin use, with subsequent decrease in C-peptide levels. This has been at least in part explained by persistence of islet-specific T-cell auto-reactivity. Here, we discuss future steps to induce immune tolerance in individuals with type 1 diabetes, with emphasis on risks and possible benefits of a more intense transplant immunosuppressive regimen, as well as strategies of beta cell replacement not requiring immunomodulation.
Collapse
Affiliation(s)
- Carlos E B Couri
- Center of Cell-Based Therapy, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Kelen C R Malmegrim
- Center of Cell-Based Therapy, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical, Toxicological and Bromotological Analysis, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Maria C Oliveira
- Center of Cell-Based Therapy, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
31
|
Fiori A, Terlizzi V, Kremer H, Gebauer J, Hammes HP, Harmsen MC, Bieback K. Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology 2018; 223:729-743. [PMID: 29402461 DOI: 10.1016/j.imbio.2018.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a multifactorial microvascular disease induced by hyperglycemia and subsequent metabolic abnormalities. The resulting cell stress causes a sequela of events that ultimately can lead to severe vision impairment and blindness. The early stages are characterized by activation of glia and loss of pericytes, endothelial cells (EC) and neuronal cells. The integrity of the retinal microvasculature becomes affected, and, as a possible late response, macular edema may develop as a common reason for vision loss in patients with non-proliferative DR. Moreover, the local ischemia can trigger vasoproliferation leading to vision-threating proliferative DR (PDR) in humans. Available treatment options include control of metabolic and hemodynamic factors. Timely intervention of advanced DR stages with laser photocoagulation, intraocular anti-vascular endothelial growth factor (VEGF) or glucocorticoid drugs can reduce vision loss. As the pathology involves cell loss of both the vascular and neuroglial compartments, cell replacement strategies by stem and progenitor cells have gained considerable interest in the past years. Compared to other disease entities, so far little is known about the efficacy and potential mode of action of cell therapy in treatment of DR. In preclinical models of DR different cell types have been applied ranging from embryonic or induced pluripotent stem cells, hematopoietic stem cells, and endothelial progenitor cells to mesenchymal stromal cells (MSC). The latter cell population can combine various modes of action (MoA), thus they are among the most intensely tested cell types in cell therapy. The aim of this review is to discuss the rationale for using MSC as potential cell therapy to treat DR. Accordingly, we will revise identified MoA of MSCs and speculate how these may support the repair of the damaged retina.
Collapse
Affiliation(s)
- Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Vincenzo Terlizzi
- Dept. Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Germany; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Lab for Cardiovascular Regenerative Medicine (CAVAREM), Groningen, The Netherlands
| | - Heiner Kremer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Julian Gebauer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Hans-Peter Hammes
- Dept. Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Lab for Cardiovascular Regenerative Medicine (CAVAREM), Groningen, The Netherlands
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany.
| |
Collapse
|
32
|
José VSDS, Monnerat G, Guerra B, Paredes BD, Kasai-Brunswick TH, de Carvalho ACC, Medei E. Bone-Marrow-Derived Mesenchymal Stromal Cells (MSC) from Diabetic and Nondiabetic Rats Have Similar Therapeutic Potentials. Arq Bras Cardiol 2017; 109:579-589. [PMID: 29364350 PMCID: PMC5783439 DOI: 10.5935/abc.20170176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/19/2017] [Accepted: 04/28/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. However, the ability of MSC derived from diabetic rats to improve functional cardiac parameters is still unknown. OBJECTIVES To investigate whether bone-marrow-derived MSC from diabetic rats (MSCd) would contribute to recover metabolic and cardiac electrical properties in other diabetic rats. METHODS Diabetes was induced in Wistar rats with streptozotocin. MSCs were characterized by flow cytometry, morphological analysis, and immunohistochemistry. Cardiac electrical function was analyzed using recordings of ventricular action potential. Differences between variables were considered significant when p < 0.05. RESULTS In vitro properties of MSCc and MSCd were evaluated. Both cell types presented similar morphology, growth kinetics, and mesenchymal profile, and could differentiate into adipogenic and osteogenic lineages. However, in an assay for fibroblast colony-forming units (CFU-F), MSCd formed more colonies than MSCc when cultured in expansion medium with or without hydrocortisone (1 µM). In order to compare the therapeutic potential of the cells, the animals were divided into four experimental groups: nondiabetic (CTRL), diabetic (DM), diabetic treated with MSCc (DM + MSCc), and diabetic treated with MSCd (DM + MSCd). The treated groups received a single injection of MSC 4 weeks after the development of diabetes. MSCc and MSCd controlled hyperglycemia and body weight loss and improved cardiac electrical remodeling in diabetic rats. CONCLUSIONS MSCd and MSCc have similar in vitro properties and therapeutic potential in a rat model of diabetes induced with streptozotocin.
Collapse
Affiliation(s)
| | - Gustavo Monnerat
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ -
Brazil
| | - Barbara Guerra
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ -
Brazil
| | - Bruno Dias Paredes
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ -
Brazil
| | | | | | - Emiliano Medei
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ -
Brazil
| |
Collapse
|
33
|
Zazzeroni L, Lanzoni G, Pasquinelli G, Ricordi C. Considerations on the harvesting site and donor derivation for mesenchymal stem cells-based strategies for diabetes. CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2017; 5:e2435. [PMID: 30505879 PMCID: PMC6267851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mesenchymal Stem Cells (MSCs) possess important characteristics that could be exploited in therapeutic strategies for Type 1 Diabetes (T1D) and for certain complications of Type 2 Diabetes (T2D). MSCs can inhibit autoimmune, alloimmune and inflammatory processes. Moreover, they can promote the function of endogenous and transplanted pancreatic islets. Furthermore, they can stimulate angiogenesis. MSC functions are largely mediated by their secretome, which includes growth factors, exosomes, and other extracellular vesicles. MSCs have shown a good safety profile in clinical trials. MSC-derived exosomes are emerging as an alternative to the transplantation of live MSCs. MSCs harvested from different anatomical locations (e.g. bone marrow, umbilical cord, placenta, adipose tissue, and pancreas) have shown differences in gene expression profiles and function. Data from clinical trials suggest that umbilical cord-derived MSCs could be superior to bone marrow-derived MSCs for the treatment of T1D. Autologous MSCs from diabetic patients may present abnormal functions. BM-MSCs from T1D patients exhibit gene expression differences that may impact in vivo function. BM-MSCs from T2D patients seem to be significantly impaired due to the T2D diabetic milieu. In this review, we highlight how the harvesting site and donor derivation can affect the efficacy of MSC-based treatments for T1D and T2D.
Collapse
Affiliation(s)
- L Zazzeroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - G Lanzoni
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - G Pasquinelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - C Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
34
|
Song L, Sun Z, Kim DS, Gou W, Strange C, Dong H, Cui W, Gilkeson G, Morgan KA, Adams DB, Wang H. Adipose stem cells from chronic pancreatitis patients improve mouse and human islet survival and function. Stem Cell Res Ther 2017; 8:192. [PMID: 28854965 PMCID: PMC5577777 DOI: 10.1186/s13287-017-0627-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/09/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic pancreatitis has surgical options including total pancreatectomy to control pain. To avoid surgical diabetes, the explanted pancreas can have islets harvested and transplanted. Immediately following total pancreatectomy with islet autotransplantation (TP-IAT), many islet cells die due to isolation and transplantation stresses. The percentage of patients remaining insulin free after TP-IAT is therefore low. We determined whether cotransplantation of adipose-derived mesenchymal stem cells (ASCs) from chronic pancreatitis patients (CP-ASCs) would protect islets after transplantation. METHODS In a marginal mass islet transplantation model, islets from C57BL/6 mice were cotransplanted with CP-ASCs into syngeneic streptozotocin-treated diabetic mice. Treatment response was defined by the percentage of recipients reaching normoglycemia, and by the area under the curve for glucose and c-peptide in a glucose tolerance test. Macrophage infiltration, β-cell apoptosis, and islet graft vasculature were measured in transplanted islet grafts by immunohistochemistry. mRNA expression profiling of 84 apoptosis-related genes in islet grafts transplanted alone or with CP-ASCs was measured by the RT2 Profiler™ Apoptosis PCR Array. The impact of insulin-like growth factor-1 (IGF-1) on islet apoptosis was determined in islets stimulated with cytokines (IL-1β and IFN-γ) in the presence and absence of CP-ASC conditioned medium. RESULTS CP-ASC-treated mice were more often normoglycemic compared to mice receiving islets alone. ASC cotransplantation reduced macrophage infiltration, β-cell death, suppressed expression of TNF-α and Bcl-2 modifying factor (BMF), and upregulated expressions of IGF-1 and TNF Receptor Superfamily Member 11b (TNFRSF11B) in islet grafts. Islets cultured in conditioned medium from CP-ASCs showed reduced cell death. This protective effect was diminished when IGF-1 was blocked in the conditioned medium by the anti-IGF-1 antibody. CONCLUSION Cotransplantation of islets with ASCs from the adipose of chronic pancreatitis patients improved islet survival and islet function after transplantation. The effects are in part mediated by paracrine secretion of IGF-1, suppression of inflammation, and promotion of angiogenesis. ASCs from chronic pancreatitis patients have the potential to be used as a synergistic therapy to enhance the efficacy of islet transplantation following pancreatectomy.
Collapse
Affiliation(s)
- Lili Song
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Zhen Sun
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Wenyu Gou
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Huansheng Dong
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Wanxing Cui
- Medstar Georgetown University Hospital, Washington, DC, USA
| | - Gary Gilkeson
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Katherine A Morgan
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - David B Adams
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, BSB 641, 173 Ashley Avenue, Charleston, SC, 29425, USA. .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
35
|
|
36
|
van de Vyver M. Intrinsic Mesenchymal Stem Cell Dysfunction in Diabetes Mellitus: Implications for Autologous Cell Therapy. Stem Cells Dev 2017; 26:1042-1053. [DOI: 10.1089/scd.2017.0025] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mari van de Vyver
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
37
|
Effect of Co-incubation with Mesenchymal Stromal Cells in Cultural Medium on Structure and Mechanical Properties of Polylactide-Based Scaffolds. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0429-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Dobatkin SV, Lukyanova EA, Martynenko NS, Anisimova NY, Kiselevskiy MV, Gorshenkov MV, Yurchenko NY, Raab GI, Yusupov VS, Birbilis N, Salishchev GA, Estrin YZ. Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/194/1/012004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Dang LTT, Bui ANT, Le-Thanh Nguyen C, Truong NC, Bui ATV, Kim NP, Truong KD, Van Pham P. Intravenous Infusion of Human Adipose Tissue-Derived Mesenchymal Stem Cells to Treat Type 1 Diabetic Mellitus in Mice: An Evaluation of Grafted Cell Doses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:145-156. [PMID: 29423674 DOI: 10.1007/5584_2017_127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cell (MSC) transplantation is a novel treatment for diabetes mellitus, especially type 1 diabetes. Many recent publications have demonstrated the efficacy of MSC transplantation on reducing blood glucose and increasing insulin production in both preclinical and clinical trials. However, the investigation of grafted cell doses has been lacking. Therefore, this study aimed to evaluate the different doses of MSCs on treatment of type 1 diabetes in mouse models. MSCs were isolated and expanded from human adipose tissue. Streptozotocin (STZ)-induced diabetic mice were divided into two groups that were intravenously transfused with two different doses of human MSCs: 106 or 2.106 cells/mouse. After transplantation, both grafted and placebo mice were monitored weekly for their blood glucose levels, glucose and insulin tolerance, pancreatic structural changes, and insulin production for 56 days after transplantation. The results showed that the higher dose of MSCs (2.106 cells/mouse) remarkably reduced death rate. The death rates were 50%, 66%, and 0% in placebo group, low-dose (1.106 MSCs) group, and high-dose (2.106 MSCs) group, respectively, after 56 days of treatment. Moreover, blood glucose levels were lower for the high-dose group compared to other groups. Glucose and insulin tolerance, as well as insulin production, were significantly improved in mice transplanted with 2.106 cells. The histochemical analyses also support these results. Thus, a higher (e.g., 2.106) dose of MSCs may be an effective dose for treatment of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Loan Thi-Tung Dang
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | - Anh Nguyen-Tu Bui
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | - Cong Le-Thanh Nguyen
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
- Laboratory of Stem Cell Research and Application, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | - Nhat Chau Truong
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
- Laboratory of Stem Cell Research and Application, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | - Anh Thi-Van Bui
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
- Laboratory of Stem Cell Research and Application, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | - Ngoc Phan Kim
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | | | - Phuc Van Pham
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam.
- Laboratory of Stem Cell Research and Application, University of Science, VNUHCM, Ho Chi Minh city, Vietnam.
| |
Collapse
|