1
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Romanazzo S, Zhu Y, Sheikh R, Lin X, Liu H, He TC, Roohani I. Highly disordered and resorbable lithiated nanoparticles with osteogenic and angiogenic properties. J Mater Chem B 2024; 12:9575-9591. [PMID: 39210776 DOI: 10.1039/d4tb00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this study, we have developed unique bioresorbable lithiated nanoparticles (LiCP, d50 = 20 nm), demonstrating a versatile material for bone repair and regeneration applications. The LiCPs are biocompatible even at the highest concentration tested (1000 μg mL-1) where bone marrow derived mesenchymal stem cells (BM-MSCs) maintained over 90% viability compared to the control. Notably, LiCP significantly enhanced the expression of osteogenic and angiogenic markers in vitro; collagen I, Runx2, angiogenin, and EGF increased by 8-fold, 8-fold, 9-fold, and 7.5-fold, respectively. Additionally, LiCP facilitated a marked improvement in tubulogenesis in endothelial cells across all tested concentrations. Remarkably, in an ectopic mouse model, LiCP induced mature bone formation, outperforming both the control group and non-lithiated nanoparticles. These findings establish lithiated nanoparticles as a highly promising material for advancing bone repair and regeneration therapies, offering dual benefits in osteogenesis and angiogenesis. The results lay the groundwork for future studies and potential clinical applications, where precise modulation of lithium release could tailor therapeutic outcomes to meet specific patient needs in bone and vascular tissue engineering.
Collapse
Affiliation(s)
- Sara Romanazzo
- School of Chemistry, Australian Centre for Nanomedicine, University of New South Wales, Sydney NSW, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, NSW 2052, Australia
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rakib Sheikh
- School of Chemistry, Australian Centre for Nanomedicine, University of New South Wales, Sydney NSW, Australia
| | - Xiaoting Lin
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, City Road, Sydney, NSW 2006, Australia
| | - Hongwei Liu
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, City Road, Sydney, NSW 2006, Australia
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Iman Roohani
- School of Biomedical Engineering, University of Technology Sydney, Sydney NSW, Australia.
| |
Collapse
|
3
|
Zhang W, Wu L, Qu R, Liu T, Wang J, Tong Y, Bei W, Guo J, Hu X. Hesperidin activates the GLP-1R/cAMP-CREB/IRS2/PDX1 pathway to promote transdifferentiation of islet α cells into β cells Across the spectrum. Heliyon 2024; 10:e35424. [PMID: 39220963 PMCID: PMC11365324 DOI: 10.1016/j.heliyon.2024.e35424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aims In all age, FoShou as a Chinese medicinal herb has been active in various kinds of Traditional Chinese medicine formula to treating diabetes. Hesperidin (HES), the main monomeric component of FoShou, has been extensively investigated for interventions with pathogenic mechanism of diabetes as well as subsequent treatment of associated complications. Islet β-cells have an essential effect on dynamically regulating blood sugar. Functional abnormalities in these cells and their death are strongly associated with the onset of diabetes. Therefore, induction of islet endocrine cell lineage re-editing for damaged βcell replenishment would be a promising therapeutic tool. Previously, it has been found that HES can protect islet β-cells in vivo, But, the regenerative function of HES in islet β cells and its role in promoting differential non-β cells transdifferentiation into β cells and cell fate rewriting associated mechanisms remain unclear.This work focused on investigating whether HES can induce islet α cells transdifferentiation into β cells for achieving damaged β cell regeneration and the causes and possible mechanisms involved in the process. Materials and methods In brief, 60 mg/kg/d streptozotocin (STZ) was administered intraperitoneally in each male C57bL/6J mouse raised by the high-sugar and high-fat diet (HFD) to create a diabetic mouse model with severe β-cell damage. After 28 consecutive days of HES treatment (160 mg/kg; 320 mg/kg; once daily, as appropriate). Tracing the dynamics of α as well as β cell transformation, together with β cells growth and apoptosis levels during treatment by cell lineage tracing. The self-enforcing transcriptional network on which the cell lineage is based is used as a clue to explore the underlying mechanisms. Guangdong Pharmaceutical University's Animal Experiment Ethics Committee (GDPulac2019180) approved all animal experiments. Results Localization by cell lineage we find that transdifferentiated newborn β-cells derived from α cells appeared in the islet endocrine cell mass of DM mice under HES'action. Compared to the model group, expressed by Tunel staining and CXCL10 levels the overall apoptosis rate of β-cells of the pancreas were reduced,the inflammatory infiltration feedback from HE staining were lower.Ki-67 positive cells showed enhanced β-cell proliferation. Decreased HbA1c and blood glucose contents, elevated C-Peptide and insulin contents which respond to ability of nascent beta cells. Also upregulated the mRNA levels of MafA, Ngn3, PDX-1, Pax4 and Arx. Moreover, increased the expression of TGR5/cAMP-CREB/GLP-1 in mouse intestinal tissues and GLP-1/GLP-1R and cAMP-CREB/IRS2/PDX-1 in pancreatic tissues. Conclusions HES directly affects β-cells, apart from being anti-apoptotic and reducing inflammatory infiltration. HES promotes GLP-1 release by intestinal L cells by activating the TGR5 receptor in DM mouse and regulating its response element CREB signaling. GLP-1 then uses the GLP-1/GLP-1R system to act on IRS2, IRS2 as a port to influence α precursor cells to express PDX-1, with the mobilization of Pax4 strong expression than Arx so that α cell lineage is finally reversed for achieving β cell endogenous proliferation.
Collapse
Affiliation(s)
- Wang Zhang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lele Wu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ru Qu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tianfeng Liu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiliang Wang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ying Tong
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Weijian Bei
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiao Guo
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuguang Hu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Tan X, Li G, Li C, Kong C, Li H, Wu S. Animal models, treatment options, and biomaterials for female stress urinary incontinence. Front Bioeng Biotechnol 2024; 12:1414323. [PMID: 39267906 PMCID: PMC11390547 DOI: 10.3389/fbioe.2024.1414323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
In the quest to tackle stress urinary incontinence (SUI), the synthesis of cutting-edge biomaterials and regenerative materials has emerged as a promising frontier. Briefly, animal models like vaginal distension and bilateral ovariectomy serve as crucial platforms for unraveling the intricacies of SUI, facilitating the evaluation of innovative treatments. The spotlight, however, shines on the development and application of novel biomaterials-ranging from urethral bulking agents to nano-gel composites-which aim to bolster urethral support and foster tissue regeneration. Furthermore, the exploration of stem cell therapies, particularly those derived from adipose tissues and urine, heralds a new era of regenerative medicine, offering potential for significant improvements in urinary function. This review encapsulates the progress in biomaterials and regenerative strategies, highlighting their pivotal role in advancing the treatment of SUI, thereby opening new avenues for effective and minimally invasive solutions.
Collapse
Affiliation(s)
- Xiyang Tan
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, China
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Guangzhi Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chenchen Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chenfan Kong
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, China
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Huizhen Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Song Wu
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, China
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Modaresi S, Pacelli S, Chakraborty A, Coyle A, Luo W, Singh I, Paul A. Engineering a Microfluidic Platform to Cryopreserve Stem Cells: A DMSO-Free Sustainable Approach. Adv Healthc Mater 2024:e2401264. [PMID: 39152923 DOI: 10.1002/adhm.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Indexed: 08/19/2024]
Abstract
Human adipose-derived stem cells (hASCs) are cryopreserved traditionally using dimethyl sulfoxide (DMSO) as the cryoprotectant agent. DMSO penetrates cell membranes and prevents cellular damage during cryopreservation. However, DMSO is not inert to cells, inducing cytotoxic effects by causing mitochondrial dysfunction, reduced cell proliferation, and impaired hASCs transplantation. Additionally, large-scale production of DMSO and contamination can adversely impact the environment. A sustainable, green alternative to DMSO is trehalose, a natural disaccharide cryoprotectant agent that does not pose any risk of cytotoxicity. However, the cellular permeability of trehalose is less compared to DMSO. Here, a microfluidic chip is developed for the intracellular delivery of trehalose in hASCs. The chip is designed for mechanoporation, which creates transient pores in cell membranes by mechanical deformation. Mechanoporation allows the sparingly permeable trehalose to be internalized within the cell cytosol. The amount of trehalose delivered intracellularly is quantified and optimized based on cellular compatibility and functionality. Furthermore, whole-transcriptome sequencing confirms that less than 1% of all target genes display at least a twofold change in expression when cells are passed through the chip compared to untreated cells. Overall, the results confirm the feasibility and effectiveness of using this microfluidic chip for DMSO-free cryopreservation of hASCs.
Collapse
Affiliation(s)
- Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, The University of Kansas, Lawrence, KS, 66045, USA
| | - Settimio Pacelli
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Wei Luo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Irtisha Singh
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77840, USA
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Department of Chemistry, The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON, N6A 5B9, Canada
| |
Collapse
|
6
|
Abbaspour M, Ghafourian Boroujerdnia M, Tahoori MT, Oraki Kohshour M, Ghasemi Dehcheshmeh M, Amirzadeh S, Amari A. Poly (I:C) increases the expression of galectin 1, 3, 9 and HGF genes in exosomes isolated from human Wharton's jelly mesenchymal stem cells. Heliyon 2024; 10:e35343. [PMID: 39170483 PMCID: PMC11336598 DOI: 10.1016/j.heliyon.2024.e35343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are commonly employed as a powerful tool for the treatment of immune-mediated problems owing to their capacity to regulate the immune system and differentiate into different tissues. Researchers use mesenchymal stem cell products given the limitations associated with the application of MSCs. Exosomes are nanometer vesicles derived from MSCs that are used in cell-free therapy. Inflammatory environmental conditions, such as stimulation of Toll-like receptor 3 (TLR-3), has the ability to adjust the immune-regulating properties and anti-inflammatory function of mesenchymal stem cells and their exosomes. Galectins and hepatocyte growth factor (HGF) are known as immunomodulatory factors in mesenchymal stem cells. This study was designed to examine the expression of galectin-1, galectin-3, galectin-9, and HGF genes in exosomes isolated from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) after stimulation with Poly (I:C) (Polyinosinic:polycytidylic acid sodium salt). Methods To begin, the explant technique was used to extract mesenchymal stem cells from human umbilical cord Wharton's jelly. Then, the stem cells were stimulated using Poly (I:C) at three time intervals of 12, 24 and 48 h. Exosomes secreted from the supernatant of cells were extracted and exosome confirmation tests, including Scanning electron microscopy (SEM), Dynamic light scattering (DLS) and Flow cytometry were performed. Finally, the expression of galectin-1, galectin-3, galectin-9, and HGF genes in exosomes was evaluated by Real-Time PCR at three time intervals of 12, 24 and 48 h after stimulation. Results The findings of our study indicated that following stimulation with Poly (I:C), the expression of galectin-9 and HGF (P < 0.05) genes was markedly higher than in the control group after 12 h. After 24 h, the expression of galectin-9 (P < 0.01), galectin-3 and HGF (P < 0.05) increased; the expression of galectin-1, galectin-3, (P < 0.05), galectin-9 and HGF genes (p < 0.01) significantly increased compared to the control group after 48 h. Conclusion TLR3 stimulation can increase the expression of galectins and HGF genes in exosomes derived from hWJ-MSCs and may be improve the immunosuppressive abilities of exosomes.
Collapse
Affiliation(s)
- Mehdi Abbaspour
- Department of Immunology, School of Medicine Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian Boroujerdnia
- Department of Immunology, School of Medicine Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taher Tahoori
- Department of Immunology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojtaba Oraki Kohshour
- Department of Immunology, School of Medicine Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Sareh Amirzadeh
- Department of Infertility, Infertility Research and Treatment Center of ACECR, Ahvaz, Iran
| | - Afshin Amari
- Department of Immunology, School of Medicine Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Kim D, Lee MJ, Arai Y, Ahn J, Lee GW, Lee SH. Ultrasound-triggered three dimensional hyaluronic acid hydrogel promotes in vitro and in vivo reprogramming into induced pluripotent stem cells. Bioact Mater 2024; 38:331-345. [PMID: 38764447 PMCID: PMC11101682 DOI: 10.1016/j.bioactmat.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Cellular reprogramming technologies have been developed with different physicochemical factors to improve the reprogramming efficiencies of induced pluripotent stem cells (iPSCs). Ultrasound is a clinically applied noncontact biophysical factor known for regulating various cellular behaviors but remains uninvestigated for cellular reprogramming. Here, we present a new reprogramming strategy using low-intensity ultrasound (LIUS) to improve cellular reprogramming of iPSCs in vitro and in vivo. Under 3D microenvironment conditions, increased LIUS stimulation shows enhanced cellular reprogramming of the iPSCs. The cellular reprogramming process facilitated by LIUS is accompanied by increased mesenchymal to epithelial transition and histone modification. LIUS stimulation transiently modulates the cytoskeletal rearrangement, along with increased membrane fluidity and mobility to increase HA/CD44 interactions. Furthermore, LIUS stimulation with HA hydrogel can be utilized in application of both human cells and in vivo environment, for enhanced reprogrammed cells into iPSCs. Thus, LIUS stimulation with a combinatorial 3D microenvironment system can improve cellular reprogramming in vitro and in vivo environments, which can be applied in various biomedical fields.
Collapse
Affiliation(s)
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Jinsung Ahn
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Gun Woo Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| |
Collapse
|
8
|
Park HW, Lee CE, Kim S, Jeong WJ, Kim K. Ex Vivo Peptide Decoration Strategies on Stem Cell Surfaces for Augmenting Endothelium Interaction. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:327-339. [PMID: 37830185 DOI: 10.1089/ten.teb.2023.0210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ischemic vascular diseases remain leading causes of disability and death. Although various clinical therapies have been tried, reperfusion injury is a major issue, occurring when blood recirculates at the damaged lesion. As an alternative approach, cell-based therapy has emerged. Mesenchymal stem cells (MSCs) are attractive cellular candidates due to their therapeutic capacities, including differentiation, safety, angiogenesis, and tissue repair. However, low levels of receptors/ligands limit targeted migration of stem cells. Thus, it is important to improve homing efficacy of transplanted MSCs toward damaged endothelium. Among various MSC modulations, ex vivo cell surface engineering could effectively augment homing efficiency by decorating MSC surfaces with alternative receptors/ligands, thereby facilitating intercellular interactions with the endothelium. Especially, exogenous decoration of peptides onto stem cell surfaces could provide appropriate functional signaling moieties to achieve sufficient MSC homing. Based on their protein-like functionalities, high modularity in molecular design, and high specific affinities and multivalency to target receptors, peptides could be representative surface-presentable moieties. Moreover, peptides feature a mild synthetic process, enabling precise control of amino acid composition and sequence. Such ex vivo stem cell surface engineering could be achieved primarily by hydrophobic interactions of the cellular bilayer with peptide-conjugated anchor modules and by covalent conjugation between peptides and available compartments in membranes. To this end, this review provides an overview of currently available peptide-mediated, ex vivo stem cell surface engineering strategies for enhancing MSC homing efficiency by facilitating interactions with endothelial cells. Stem cell surface engineering techniques using peptide-based bioconjugates have the potential to revolutionize current vascular disease treatments while addressing their technical limitations.
Collapse
Affiliation(s)
- Hee Won Park
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Yang DH, Nah H, Lee D, Min SJ, Park S, An SH, Wang J, He H, Choi KS, Ko WK, Lee JS, Kwon IK, Lee SJ, Heo DN. A review on gold nanoparticles as an innovative therapeutic cue in bone tissue engineering: Prospects and future clinical applications. Mater Today Bio 2024; 26:101016. [PMID: 38516171 PMCID: PMC10952045 DOI: 10.1016/j.mtbio.2024.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.
Collapse
Affiliation(s)
- Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Donghyun Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Seulki Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kyu-Sun Choi
- Department of Neurosurgery, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Wan-Kyu Ko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Biofriends Inc, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
10
|
Su Y, Yu Z, Yang Y, Wong KC, Li X. Distribution-Agnostic Deep Learning Enables Accurate Single-Cell Data Recovery and Transcriptional Regulation Interpretation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307280. [PMID: 38380499 DOI: 10.1002/advs.202307280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Indexed: 02/22/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a robust method for studying gene expression at the single-cell level, but accurately quantifying genetic material is often hindered by limited mRNA capture, resulting in many missing expression values. Existing imputation methods rely on strict data assumptions, limiting their broader application, and lack reliable supervision, leading to biased signal recovery. To address these challenges, authors developed Bis, a distribution-agnostic deep learning model for accurately recovering missing sing-cell gene expression from multiple platforms. Bis is an optimal transport-based autoencoder model that can capture the intricate distribution of scRNA-seq data while addressing the characteristic sparsity by regularizing the cellular embedding space. Additionally, they propose a module using bulk RNA-seq data to guide reconstruction and ensure expression consistency. Experimental results show Bis outperforms other models across simulated and real datasets, showcasing superiority in various downstream analyses including batch effect removal, clustering, differential expression analysis, and trajectory inference. Moreover, Bis successfully restores gene expression levels in rare cell subsets in a tumor-matched peripheral blood dataset, revealing developmental characteristics of cytokine-induced natural killer cells within a head and neck squamous cell carcinoma microenvironment.
Collapse
Affiliation(s)
- Yanchi Su
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Zhuohan Yu
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Yuning Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| |
Collapse
|
11
|
Huang K, Wang Q, Qu H, Hu X, Niu W, Hultgårdh-Nilsson A, Nilsson J, Liang C, Chen Y. Effect of acidosis on adipose-derived stem cell impairment and gene expression. Regen Ther 2024; 25:331-343. [PMID: 38333090 PMCID: PMC10850859 DOI: 10.1016/j.reth.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Based on disappointing results of stem cell-based application in clinical trials for patients with critical limb ischemia, we hypothesized that the acidic environment might be the key factor limiting cell survival and function. In the present study, we used microdialysis to determine presence of acidosis and metabolic imbalance in critical ischemia. Moreover, we explored the effect of extracellular acidosis on adipose-derived stem cells (ADSCs) at molecular and transcriptional level. Our data demonstrate that low pH negatively regulates cell proliferation and survival, also, it results in cell cycle arrest, mitochondrial dynamics disorder, DNA damage as well as the impairment of proangiogenic function in a pH-dependent manner. Further transcriptome profiling identified the pivotal signaling pathways and hub genes in response to acidosis. Collectively, these findings provide strong evidences for a critical role of acidosis in ADSCs impairment with ischemic condition and suggest treatments focus on tissue pH balance and acidosis-mediated hub genes may have therapeutic potential in stem cell-based application.
Collapse
Affiliation(s)
- Kun Huang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
| | - Qinqin Wang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
| | - Huilong Qu
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
| | - Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, Netherlands
| | - Wenhao Niu
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
| | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, 20502 Malmö, Sweden
| | - Chun Liang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
| | - Yihong Chen
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| |
Collapse
|
12
|
Tu J, Jiang F, Fang J, Xu L, Zeng Z, Zhang X, Ba L, Liu H, Lin F. Anticipation and Verification of Dendrobium-Derived Nanovesicles for Skin Wound Healing Targets, Predicated Upon Immune Infiltration and Senescence. Int J Nanomedicine 2024; 19:1629-1644. [PMID: 38406605 PMCID: PMC10893893 DOI: 10.2147/ijn.s438398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
Background Dendrobium, with profound botanical importance, reveals a rich composition of bioactive compounds, including polysaccharides, flavonoids, alkaloids, and diverse amino acids, holding promise for skin regeneration. However, the precise mechanism remains elusive. Seeking a potent natural remedy for wound healing, exocyst vesicles were successfully isolated from Dendrobium. Aims of the Study This investigation aimed to employ bioinformatics and in vivo experiments to elucidate target genes of Dendrobium-derived nanovesicles in skin wound healing, focusing on immune infiltration and senescence characteristics. Materials and Methods C57 mice experienced facilitated wound healing through Dendrobium-derived nanovesicles (DDNVs). Bioinformatics analysis and GEO database mining identified crucial genes by intersecting immune-related, senescence-related, and PANoptosis-associated genes. The identified genes underwent in vivo validation. Results DDNVs remarkably accelerated skin wound healing in C57 mice. Bioinformatics analysis revealed abnormal expression patterns of immune-related, senescence-related, and pan-apoptosis-related genes, highlighting an overexpressed IL-1β and downregulated IL-18 in the model group, Exploration of signaling pathways included IL-17, NF-kappa B, NOD-like receptor, and Toll-like receptor pathways. In vivo experiments confirmed DDNVs' efficacy in suppressing IL-1β expression, enhancing wound healing. Conclusion Plant-derived nanovesicles (PDNV) emerged as a natural, reliable, and productive approach to wound healing. DDNVs uptake by mouse skin tissues, labeled with a fluorescent dye, led to enhanced wound healing in C57 mice. Notably, IL-1β overexpression in immune cells and genes played a key role. DDNVs intervention effectively suppressed IL-1β expression, accelerating skin wound tissue repair.
Collapse
Affiliation(s)
- Jin Tu
- Department of Nursing, Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
- Department of Cardiovascular, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
- Department of Nursing, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Feng Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Jieni Fang
- Department of Cardiovascular, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Luhua Xu
- Department of Cardiovascular, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Zhicong Zeng
- Department of Cardiovascular, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Xuanyue Zhang
- Department of Nursing, Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Li Ba
- Department of Nursing, Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Hanjiao Liu
- Department of Nursing, Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
- Department of Nursing, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Fengxia Lin
- Department of Cardiovascular, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| |
Collapse
|
13
|
Salah RA, El-Derby AM, El-Gammal Z, Wadie B, Ahmed SM, Elshenawy SE, Magdy S, Salah A, Gabr M, Mohamed I, El-Badri N. Hepatocellular carcinoma patients serum modulates the regenerative capacities of adipose mesenchymal stromal cells. Heliyon 2024; 10:e24794. [PMID: 38333871 PMCID: PMC10850426 DOI: 10.1016/j.heliyon.2024.e24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers causing the highest mortality rate worldwide. Treatment options of surgery, radiation, cytotoxic drugs and liver transplantation suffer significant side effects and a high frequency of relapse. Stem cell therapy has been proposed as a new effective therapy, however, controversial reports are emerging on the role of mesenchymal stem cells in cancer. In this work, we aimed to assess the regenerative capacities of adipose mesenchymal stem cells when exposed to serum from HCC patients, by assessing the effect of the sera on modulating the regenerative capacities of h-AMSCs and the cancer properties in HCC cells. This will pave the way for maximizing the efficacy of MSCs in cancer therapy. Our data show that HCC serum-treated hA-MSCs suffered oncogene-induced senescence as shown by their altered morphology and ameliorated proliferation and differentiation. The cells were enlarged with small irregular nuclei, swollen rough endoplasmic reticulum cisternae, and aging lysosomes typified by dark residual bodies. HCC serum-treated Huh-7 cancer cells on the other hand displayed higher tumor aggressiveness as depicted by altered morphology, increased cellular proliferation and migration, and decreased percentage of early and late apoptotic cells. Our findings provide evidence that exposure of hA-MSCs to the serum of HCC patients decreases their regenerative capacities and should be considered when employed as a potential therapy in HCC patients.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza M. El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Bishoy Wadie
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Sara M. Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Shimaa E. Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman Salah
- Department of Hepatogastroenterology, Kasr El-Aini Cairo University, Cairo, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura, 35516, Egypt
| | - Ihab Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| |
Collapse
|
14
|
Sadeghi S, Mosaffa N, Huang B, Ramezani Tehrani F. Protective role of stem cells in POI: Current status and mechanism of action, a review article. Heliyon 2024; 10:e23271. [PMID: 38169739 PMCID: PMC10758796 DOI: 10.1016/j.heliyon.2023.e23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Premature ovarian insufficiency (POI) has far-reaching consequences on women's life quality. Due to the lack of full recognition of the etiology and complexity of this disease, there is no appropriate treatment for infected patients. Recently, stem cell therapy has attracted the attention of regenerative medicine scholars and offered promising outcomes for POI patients. Several kinds of stem cells, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) have been used for the treatment of ovarian diseases. However, their potential protective mechanisms are still unknown. Undoubtedly, a better understanding of the therapeutic molecular and cellular mechanisms of stem cells will address uncover strategies to increase their clinical application for multiple disorders such as POI. This paper describes a detailed account of the potential properties of different types of stem cells and provides a comprehensive review of their protective mechanisms, particularly MSC, in POI disorder. In addition, ongoing challenges and several strategies to improve the efficacy of MSC in clinical use are addressed. Therefore, this review will provide proof-of-concept for further clinical application of stem cells in POI.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Foundation for Research & Education Excellence, AL, USA
| |
Collapse
|
15
|
Adibi H, Arjmand B, Aghayan HR, Bahrami-Vahdat E, Alavi-Moghadam S, Rezaei-Tavirani M, Arjmand R, Namazi N, Larijani B. Standardized GMP-Compliant Scalable 3D-Bioprocessing of Epidermal Stem Cells for Diabetic Foot Ulcers. Methods Mol Biol 2024; 2849:173-183. [PMID: 38376750 DOI: 10.1007/7651_2024_514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Diabetic foot ulcers (DFUs) pose a significant threat to the health and well-being of individuals with diabetes, often leading to lower limb amputations. Fortunately, epidermal stem cell therapy offers hope for improving the treatment of DFUs. By leveraging 3D culture techniques, the scalability of stem cell manufacturing can be greatly enhanced. In particular, using bioactive materials and scaffolds can promote the healing potential of cells, enhance their proliferation, and facilitate their survival. Furthermore, 3D tissue-mimicking cultures can accurately replicate the complex interactions between cells and extracellular matrix, thereby ensuring that the stem cells are primed for therapeutic application. To ensure the safety and quality of these stem cells, it is essential to adhere to good manufacturing practice (GMP) principles during cultivation. This chapter provides a comprehensive overview of the step-by-step process for GMP-based 3D epidermal stem cell cultivation, thus laying the groundwork for developing reliable regenerative medicine therapies.
Collapse
Affiliation(s)
- Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Aja University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Azimi-Alamouty M, Habibi MA, Ebrahimi Sadrabadi A, Jamalpoor Z. An in situ forming gelatin-based hydrogel loaded with soluble amniotic membrane promotes full-thickness wound regeneration in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1005-1014. [PMID: 38911243 PMCID: PMC11193504 DOI: 10.22038/ijbms.2024.74290.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/11/2023] [Indexed: 06/25/2024]
Abstract
Objectives Early effective treatment and appropriate coverage are vital for full-thickness wounds. Amnion membrane-derived products have recently emerged in tissue engineering. However, the optimal concentration, carrier for controlled release, and handling have remained challenges. This study aims to develop and optimize an in situ forming, amniotic-based hydrogel for wound healing. Materials and Methods Here, a composite matrix was fabricated with gelatin hydrogel modified with methacrylate functional group conjugated (GelMA) and keratose (wt.1%), loaded with mesenchymal stem cells (MSCs, 1×105 cell/ml) and optimized soluble amniotic membrane (SAM, 0.5 mg/ml). The physicochemical properties of the final subject were evaluated in vitro and in vivo environments. Results The results of the in vitro assay demonstrated that conjugation of the methacryloyl group with gelatin resulted in the formation of GelMA hydrogel (26.7±1.2 kPa) with higher mechanical stability. Modification of GelMA with a glycosaminoglycan sulfate (Keratose) increased controlled delivery of SAM (47.3% vs. 84.3%). Metabolic activity (93%) and proliferation (21.2 ± 1.5 µg/ml) of MSCs encapsulated in hydrogel improved by incorporation of SAM (0.5 mg/ml). Furthermore, the migration of fibroblasts was facilitated in the scratched assay by SAM (0.5 mg/ml)/MSCs (1×105 cell/ml) conditioned medium. The GelMA hydrogel groupes revealed regeneration of full-thickness skin defects in rats after 3 weeks due to the high angiogenesis (6.3 ± 0.3), cell migration, and epithelialization. Conclusion The results indicated in situ forming and tunable GelMA hydrogels containing SAM and MSCs could be used as efficient substrates for full-thickness wound regeneration.
Collapse
Affiliation(s)
- Mohammad Azimi-Alamouty
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, Faculty of Basic Sciences and Advanced Technologies in Medicine, Royan Institute, ACECR, Tehran, Iran
| | - Mohammad amin Habibi
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Institute, Tehran university of Medical Sciences, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Tissue Engineering, Faculty of Basic Sciences and Advanced Technologies in Medicine, Royan Institute, ACECR, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Ali Mohammed S, Elbaramawy A, Hassan Abd-Allah S, Elkholy A, Ibrahim Elsayed N, Hussein S. Therapeutic potentials of mesenchymal stem cells in the treatment of inflammatory bowel disease in rats. J Biochem Mol Toxicol 2024; 38:e23532. [PMID: 37676835 DOI: 10.1002/jbt.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Interleukin-1beta (IL-1β) and interleukin-17A (IL-17A) have strong pro-inflammatory activities that are involved in inflammatory bowel diseases (IBDs). Mesenchymal stem cell (MSC) therapy is considered a promising treatment for IBD. This study was performed to understand the role of rat Nlrp3 inflammasome, Hmgb1, and pro-inflammatory cytokines (IL-1β and IL-17a) in the pathogenesis of IBD. Also, to evaluate the role of human umbilical cord blood-MSCs (hUCB-MSCs) in the management of IBD. The rats were in four groups: normal controls, indomethacin-induced IBD group, indomethacin-induced IBD rats that received phosphate-buffered saline (PBS), and the IBD group that received hUCB-MSCs as a treatment. The messenger RNA (mRNA) expression levels of rat Nlrp3, Hmgb1, IL-1β, and IL-17a were evaluated by quantitative real-time polymerase chain reaction. Histopathological examination of the small intestinal tissues of the studied rats was performed. There was a significant upregulation of the rat Nlrp3, IL-1β, IL-17a mRNA expression (p < 0.001 for the three parameters), and Hmgb1 (p < 0.05) in the untreated IBD group compared to the normal control group. In the MSC-treated group, IL-1β, IL-17a, and rat Nlrp3 mRNA expression significantly decreased compared to both the untreated IBD group and PBS group (p < 0.05 for all). hUCB-MSCs ameliorated IBD in rats by downregulating the pro-inflammatory cytokines (IL-1β and IL-17a) and other inflammatory mediators such as Hmgb1 and rat Nlrp3.
Collapse
Affiliation(s)
- Shuzan Ali Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Azza Elbaramawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Somia Hassan Abd-Allah
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Elkholy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nashwa Ibrahim Elsayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Shafiei G, Saheli M, Ganjalikhan-Hakemi S, Haghpanah T, Nematollahi-Mahani SN. Administration of adipose-derived mesenchymal stem cell conditioned medium improves ovarian function in polycystic ovary syndrome rats: involvement of epigenetic modifiers system. J Ovarian Res 2023; 16:238. [PMID: 38102694 PMCID: PMC10722730 DOI: 10.1186/s13048-023-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a widespread heterogeneous disease that is in association with genetic, epigenetic, endocrine and environmental factors. Adipose-derived mesenchymal stem cell (ASC) and ASC-conditioned medium (ASC-CM) have shown promising abilities in tissue regeneration. In the present study, we aimed to investigate the effects of ASC and ASC-CM on epigenetic regulators, steroidal function and folliculogenesis in the letrozole-induced PCOS rats. RESULTS Based on the measurement of the oral glucose tolerance test and physical parameters including body weight, estrus cycle pattern as well as ovary dimensions, PCOS-induced rats in sham and control (CTRL) groups showed signs of reproductive dysfunctions such as lack of regular estrus cyclicity, metabolic disorders such as increased ovary dimension, body weight and blood glucose level alteration which were improved especially by ASC-CM administration.
Collapse
Affiliation(s)
- Golnaz Shafiei
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Saheli
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Ganjalikhan-Hakemi
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Seyed Noureddin Nematollahi-Mahani
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
19
|
Xu Y, Wan W, Zeng H, Xiang Z, Li M, Yao Y, Li Y, Bortolanza M, Wu J. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. J Transl Int Med 2023; 11:341-354. [PMID: 38130647 PMCID: PMC10732499 DOI: 10.2478/jtim-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Microvesicles known as exosomes have a diameter of 40 to 160 nm and are derived from small endosomal membranes. Exosomes have attracted increasing attention over the past ten years in part because they are functional vehicles that can deliver a variety of lipids, proteins, and nucleic acids to the target cells they encounter. Because of this function, exosomes may be used for the diagnosis, prognosis and treatment of many diseases. All throughout the world, cardiovascular diseases (CVDs) continue to be a significant cause of death. Because exosomes are mediators of communication between cells, which contribute to many physiological and pathological aspects, they may aid in improving CVD therapies as biomarkers for diagnosing and predicting CVDs. Many studies demonstrated that exosomes are associated with CVDs, such as coronary artery disease, heart failure, cardiomyopathy and atrial fibrillation. Exosomes participate in the progression or inhibition of these diseases mainly through the contents they deliver. However, the application of exosomes in diferent CVDs is not very mature. So further research is needed in this field.
Collapse
Affiliation(s)
- Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Huixuan Zeng
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| |
Collapse
|
20
|
Han H, Zhao X, Ma H, Zhang Y, Lei B. Multifunctional injectable hydrogels with controlled delivery of bioactive factors for efficient repair of intervertebral disc degeneration. Heliyon 2023; 9:e21867. [PMID: 38027562 PMCID: PMC10665751 DOI: 10.1016/j.heliyon.2023.e21867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Millions of people worldwide suffer from intervertebral disc degeneration (IVDD), which imposes a significant socioeconomic burden on society. There is an urgent clinical demand for more effective treatments for IVDD because conventional treatments can only alleviate the symptoms rather than preventing the progression of IVDD. Hydrogels, a class of elastic biomaterials with good biocompatibility, are promising candidates for intervertebral disc repair and regeneration. In recent years, various hydrogels have been investigated in vitro and in vivo for the repair of intervertebral discs, some of which are ready for clinical testing. This review summarizes the latest findings and developments in using bioactive factors-released bioactive injectable hydrogels for the repair and regeneration of intervertebral discs. It focuses on the analysis and summary of the use of multifunctional injectable hydrogels to delivery bioactive factors (cells, exosomes, growth factors, genes, drugs) for disc regeneration, providing guidance for future study. Finally, we discussed and analyzed the optimal timing for the application of controlled-release hydrogels in the treatment of IVDD to meet the high standards required for intervertebral disc regeneration and precision medicine.
Collapse
Affiliation(s)
- Hao Han
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoming Zhao
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongyun Ma
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bo Lei
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China
- Fronter Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
21
|
Mohsen ROM, Hassan R. A comparative study of the therapeutic effect of bone marrow mesenchymal stem cells versus insulin on mandibular dento-alveolar complex collagen formation and beta-catenin expression in experimentally induced type I diabetes. Saudi Dent J 2023; 35:668-677. [PMID: 37817792 PMCID: PMC10562111 DOI: 10.1016/j.sdentj.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 10/12/2023] Open
Abstract
Objective To assess and compare the therapeutic effect of bone marrow mesenchymal stem cells (BM-MSCs) versus insulin on mandibular dento-alveolar complex collagen formation and beta-catenin (β-catenin) expression in experimentally induced type I diabetes in albino rat. Design Twenty-eight male albino rats were equally divided as follows; Group I: was composed of rats which received no drug. The remaining rats were administrated a single streptozotocin (STZ) (40 mg/kg) intra-peritoneal injection. After affirmation of diabetes induction, the rats were divided into: Group II: Diabetic rats were given no treatment. Group III: Diabetic rats received a single BM-MSCs intravenous injection (1x106 cells). Group IV: Diabetic rats were given a daily insulin subcutaneous injection (5 IU/kg). After 28 days, mandibles were processed and stained by Hematoxylin & Eosin (H&E), Masson's trichrome and anti-β-catenin antibody. A statistical analysis was performed to measure positive area% of Masson's trichrome and β-catenin. Results Dento-alveolar complex tissues and cells of Group II showed destructive changes histologically, while Groups III and IV demonstrated improved histological features. Group II presented almost old collagen in all dento-alveolar complex tissues, and nearly negative β-catenin expression. Groups III and IV revealed a newly formed collagen intermingled with very few areas of old collagen, and both groups showed positive β-catenin immunoreactivity. Statistically, Groups III and IV represented the highest mean values of Masson's trichrome area% and β-catenin area%, while Group II reported the lowest mean. Conclusions Streptozotocin has a destructive effect on the dento-alveolar complex structure and function. BM-MSCs and insulin show regenerative capacity in STZ-affected periodontal tissues, and statistically, they increase collagen formation and β-catenin expression.
Collapse
Affiliation(s)
| | - Rabab Hassan
- Associate professor of Oral Biology, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
22
|
Iftikhar A, Nausheen R, Khurshid M, Iqbal RK, Muzaffar H, Malik A, Ali Khan A, Batool F, Akhtar S, Yasin A, Anwar H. Pancreatic regenerative potential of manuka honey evidenced through pancreatic histology and levels of transcription factors in diabetic rat model. Heliyon 2023; 9:e20017. [PMID: 37809953 PMCID: PMC10559747 DOI: 10.1016/j.heliyon.2023.e20017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background Diabetes mellitus is a commonly occurring metabolic disorder accompanied by high morbidity and alarming mortality. Besides various available therapies, induction of pancreatic regeneration has emerged as a promising strategy for alleviating the damaging effect of diabetes. Honey, a potent antioxidative and anti-inflammatory agent, has been reported in the literature archive to exhibit favourable results in the regeneration process of several organ systems. Design The current research work was intended to explore the potential role of manuka honey in pancreatic regeneration in alloxan-induced diabetic rats by accessing the pancreatic histology and levels of relevant transcription factors, including MAFA, PDX-1, INS-1, INS-2, NEUROG3, NKX6-1, and NEUROD. An equal number of rats were allocated to all four experimental groups: normal, negative control, positive control, and treatment group. Diabetes was induced in all groups except normal through a single intraperitoneal dose of alloxan monohydrate. No subsequent treatment was given to the negative control group, while the positive control and treatment groups were supplemented with metformin (150 mg/kg/day) and manuka honey (3 g/kg/day), respectively. Results Statistical comparison of glucose and insulin levels, oxidative stress indicators, changes in the architecture of pancreatic islets, and expression levels of regeneration-associated transcription factors advocated the potential role of manuka honey in ameliorating the alloxan-induced hyperglycaemia, hyperinsulinemia, oxidative stress, and necrotic changes in islets along with significant upregulation of relevant transcription factors. Conclusion This suggests to us the auspicious role of antioxidants in honey in pancreatic regeneration and advocates the favourable role of manuka honey in combating diabetes mellitus.
Collapse
Affiliation(s)
- Arslan Iftikhar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Nausheen
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Rana Khalid Iqbal
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Humaira Muzaffar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farwah Batool
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Ayesha Yasin
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
23
|
Moradi-Gharibvand N, Hashemibeni B. The Effect of Stem Cells and Vascular Endothelial Growth Factor on Cancer Angiogenesis. Adv Biomed Res 2023; 12:124. [PMID: 37434939 PMCID: PMC10331557 DOI: 10.4103/abr.abr_378_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 07/13/2023] Open
Abstract
The formation of new vessels from pre-existing vessels is known as angiogenesis. The process is controlled by stimuli and inhibitors. Angiogenesis starts as a result of the unbalance of these factors, where balance has a tendency toward the stimulus. One of the most important factors promoting angiogenesis is the vascular endothelial growth factor (VEGF). In addition to being involved in vascular regeneration in normal tissues, VEGF also takes part in tumor tissue angiogenesis. These factors affect endothelial cells (ECs) directly as well as differentiate tumor cells from endothelial cells and play an active role in tumor tissue angiogenesis. Angiogenesis partakes in the growth and proliferation of tumor tissue. Because anti-angiogenic treatment is favorable in existing cancer therapies, the potential benefits should be considered. One of these new therapies is cell therapy using mesenchymal stem cells (MSCs). Research on MSCs remains controversial because much of the earlier research on MSCs has shown their effectiveness, but more recent research has identified harmful effects of these cells. This article reviews the role of stem cells and their secretions in the angiogenesis of tumor tissues.
Collapse
Affiliation(s)
- Nahid Moradi-Gharibvand
- Abadan University of Medical Sciences, Abadan, Iran
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Salari Sedigh H, Saffarpour A, Jamshidi S, Ashouri M, Nassiri SM, Dehghan MM, Ranjbar E, Shafieian R. In vitro investigation of canine periodontal ligament-derived mesenchymal stem cells: A possibility of promising tool for periodontal regeneration. J Oral Biol Craniofac Res 2023; 13:403-411. [PMID: 37113531 PMCID: PMC10127137 DOI: 10.1016/j.jobcr.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/09/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Objectives Recent investigations indicate that canine periodontal ligament-derived stem cells (cPDLSCs) may reveal a reliable strategy for repair of periodontal tissues via cell-based tissue engineering approaches. Due to limited research, this study aimed to demonstrate the phenotypic characterization of cPDLSc in comparison with canine bone marrow-derived mesenchymal stem cells (cBMSCs) in vitro. Methods Mesenchymal stem cells (MSCs) were obtained from PDL and BM of five male adult Mongrel dogs. In vitro isolation and expansion as well as biologic characterization including colony unit formation (CFU), osteogenic and adipogenic differentiation, flow cytometric analysis of CD34 and CD44, and RT-PCR of alkaline phosphatase (ALP), osteocalcin (OCN), periostin (POSTN) and S100A4 were performed. Furthermore, electron microscopy analysis was done to complement the comparative research. Results CFU assay revealed that colonies of cPDLSCs presented 70% confluency with a more finite lifespan than BM-MSCs, showing a significant increase in cPDLSCs. Both types of MSCs showed osteogenic and adipogenic phenotypic characterized with clusters of mineralized depositions and lipid vacuoles, respectively. Both types of MSCs expressed CD44 with limited expression of CD34. RT-PCR of cPDLSCs revealed that expression of ALP, POSTN, OCN and S100A4 genes were significantly higher than those of BMSCs. In addition, comparison of SEM and revealed that cPDLSCs expressed more extracellular collagen fibers. Conclusions The current study indicated that cPDLSCs show potency as a novel cellular therapy for periodontal regeneration a large animal model.
Collapse
Affiliation(s)
- Hamideh Salari Sedigh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Anna Saffarpour
- Department of Periodontology, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Shahram Jamshidi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahdi Ashouri
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Esmail Ranjbar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Stem Cell and Regenerative Medicine Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA, Rigi A, Kiasari BA. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res 2023; 28:47. [PMID: 36707899 PMCID: PMC9881387 DOI: 10.1186/s40001-023-01008-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of inflammatory bowel disease (IBD), given their immunoregulatory and pro-survival attributes. MSCs alleviate dysregulated inflammatory responses through the secretion of a myriad of anti-inflammatory mediators, such as interleukin 10 (IL-10), transforming growth factor-β (TGFβ), prostaglandin E2 (PGE2), tumor necrosis factor-stimulated gene-6 (TSG-6), etc. Indeed, MSC treatment of IBD is largely carried out through local microcirculation construction, colonization and repair, and immunomodulation, thus alleviating diseases severity. The clinical therapeutic efficacy relies on to the marked secretion of various secretory molecules from viable MSCs via paracrine mechanisms that are required for gut immuno-microbiota regulation and the proliferation and differentiation of surrounding cells like intestinal epithelial cells (IECs) and intestinal stem cells (ISCs). For example, MSCs can induce IECs proliferation and upregulate the expression of tight junction (TJs)-associated protein, ensuring intestinal barrier integrity. Concerning the encouraging results derived from animal studies, various clinical trials are conducted or ongoing to address the safety and efficacy of MSCs administration in IBD patients. Although the safety and short-term efficacy of MSCs administration have been evinced, the long-term efficacy of MSCs transplantation has not yet been verified. Herein, we have emphasized the illumination of the therapeutic capacity of MSCs therapy, including naïve MSCs, preconditioned MSCs, and also MSCs-derived exosomes, to alleviate IBD severity in experimental models. Also, a brief overview of published clinical trials in IBD patients has been delivered.
Collapse
Affiliation(s)
- Mohamed J. Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, 11831 Jordan
| | - Maria V. Mikhailova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Soheil Rasoolzadegan
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Falaki
- Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Azad University, Zahedan, Iran
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran
| |
Collapse
|
26
|
Haridhasapavalan KK, Borthakur A, Thummer RP. Direct Cardiac Reprogramming: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:1-18. [PMID: 36662416 DOI: 10.1007/5584_2022_760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in cellular reprogramming articulated the path for direct cardiac lineage conversion, bypassing the pluripotent state. Direct cardiac reprogramming attracts major attention because of the low or nil regenerative ability of cardiomyocytes, resulting in permanent cell loss in various heart diseases. In the field of cardiology, balancing this loss of cardiomyocytes was highly challenging, even in the modern medical world. Soon after the discovery of cell reprogramming, direct cardiac reprogramming also became a promising alternative for heart regeneration. This review mainly focused on the various direct cardiac reprogramming approaches (integrative and non-integrative) for the derivation of induced autologous cardiomyocytes. It also explains the advancements in cardiac reprogramming over the decade with the pros and cons of each approach. Further, the review highlights the importance of clinically relevant (non-integrative) approaches and their challenges for the prospective applications for personalized medicine. Apart from direct cardiac reprogramming, it also discusses the other strategies for generating cardiomyocytes from different sources. The understanding of these strategies could pave the way for the efficient generation of integration-free functional autologous cardiomyocytes through direct cardiac reprogramming for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atreyee Borthakur
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
27
|
Manshori M, Kazemnejad S, Naderi N, Darzi M, Aboutaleb N, Golshahi H. Systemic delivery of menstrual blood stem cells is more effective in preventing remote organ injuries following myocardial infarction in comparison with bone marrow stem cells in rat. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:645-652. [PMID: 37275762 PMCID: PMC10237164 DOI: 10.22038/ijbms.2023.67574.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/15/2023] [Indexed: 06/07/2023]
Abstract
Objectives Remote organ injury is a phenomenon that could happen following myocardial infarction (MI). We evaluated the potency of menstrual blood stromal (stem) cells (MenSCs) and bone marrow stem cells (BMSCs) to alleviate remote organ injuries following MI in rats. Materials and Methods 2 × 106 MenSCs or BMSCs were administrated seven days after MI induction via the tail vein. Four weeks after cell therapy, activities of aspartate aminotransferase (AST), urea, creatinine, and Blood Urea Nitrogen (BUN) were evaluated. The level of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were determined by ELISA assay. The expression of Nuclear Factor-κB (NF-κB) was evaluated by immunohistochemical staining. Apoptosis activity and tissue damage were also determined by TUNEL and H&E staining, respectively. Results MenSCs and BMSCs administration caused a significant reduction in AST, urea, and BUN levels compared with the MI group. In addition, systemic injection of MenSCs significantly decreased the IL-1β level compared with BMSCs and MI groups (P<0.05 and P<0.01 respectively). Apoptosis in injured kidneys was noticeably diminished in MenSCs-treated rats compared with BMSCs administrated and MI groups (P<0.05 and P<0.05, respectively). In hepatic tissue, limited numbers of TUNEL-positive cells were detected in all groups. Interestingly, MenSCs therapy evoked inhibition of NF-κB in the kidney strikingly. Although, no significant NF-κB expression was observed in hepatic tissue in any group (P>0.05). Conclusion MenSCs are probably more protective than BMSCs on remote organ injuries following MI via decreasing cell death and immunoregulatory properties.
Collapse
Affiliation(s)
- Mahmood Manshori
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Darzi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hannaneh Golshahi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Alipour R, Hashemibeni B, Asgari V, Bahramian H. Time- and Concentration-Dependent Effects of the Stem Cells Derived from Human Exfoliated Deciduous Teeth on Osteosarcoma Cells. Adv Biomed Res 2023; 12:81. [PMID: 37200742 PMCID: PMC10186045 DOI: 10.4103/abr.abr_277_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 05/20/2023] Open
Abstract
Background Stem cells have been proposed to be one of the potent sources for treatment applications. Among diverse types of stem cells, stem cells derived from human exfoliated deciduous teeth (SHEDs) are known as the immature stem cell population, which are easily isolated, fast, and without ethical implications. SHEDs could induce pluripotent stem cells and show differentiation in chondrocytes, adipocytes, osteoblasts, neural cells, hepatocytes, myocytes, odontoblasts, and skin cells. Materials and Methods In the current study, we investigated the effects of SHED on osteosarcoma cells (Saos-II) following 3 and 5 days indirect coculture. Results Our results showed that indirect coculture of SHED with Saos-II cells could promote or inhibit Saos-II cells' growth in a concentration (the number of SHED vs. Saos-II cells) and time (days of indirect co-culture) dependent manner. Conclusion Our findings suggested that, indirectly, SHED co-culture with the Soas-II cells might functions as a tumor suppressor where a higher number of SHEDs are used in the culture in comparison with the one cultured in the absence of/or fewer SHED incubation.
Collapse
Affiliation(s)
- Razieh Alipour
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Asgari
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Bahramian
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Address for correspondence: Dr. Hamid Bahramian, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran. E-mail:
| |
Collapse
|
29
|
Mahmoud A, Moussa S, El Backly R, El-Gendy R. Investigating the residual effect of silver nanoparticles gel as an intra-canal medicament on dental pulp stromal cells. BMC Oral Health 2022; 22:545. [PMID: 36451174 PMCID: PMC9710138 DOI: 10.1186/s12903-022-02542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/27/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the indirect effects of residual silver nanoparticles (AgNPs) gel on human dental pulp stromal cells (DPSCs). METHODS Ninety-five dentin discs (4x4x1 mm) were prepared from freshly extracted human single-rooted teeth following institutional ethical approval and informed consent. Samples were cleaned, autoclaved, and treated with: 1.5%NaOCl, Saline and 17% EDTA then randomly assigned to 5 groups that received 50 μl of one of the following treatments: 0.01%AgNPs, 0.015%AgNPs, 0.02%AgNPs, Calcium hydroxide (Ca (OH)2) or no treatment for 1 week. Discs were washed with Saline and 17%EDTA then seeded with DPSCs and incubated for 3 and 7 days. At 24 hours unattached cells were collected and counted. At each time point cytotoxicity (LDH assay), cell viability (live/dead staining and confocal microscopy) and cell proliferation (WST1 assay) were assessed. All experiments were repeated a minimum of 3 times using DPSCs isolated from 3 different donors for each time point assessed (n = 9/group). Statistical analysis was done using One-Way ANOVA followed by Tukey's test and Kruskal Wallis followed by post-hoc comparisons with significance set at p ≤ 0.05. RESULTS After 24 hours, the percentage of DPSCs attachment ranged between 92.66% ±4.54 and 95.08% ±1.44 with no significant difference between groups (P = 0.126). Cell viability was ≥92% at 24 hours for all groups. However this percentage dropped to less than 60% at 3 days then started to rise again at 7 days. There was no significant difference in cytotoxicity between different groups at all time points except for 0.01%AgNPs group which had the highest cytotoxicity. DPSCs proliferation increased significantly from 3 to 7 days in all groups except for Ca (OH)2 which showed lower proliferation rates at both 3 (45.89%) and 7 days (79.25%). CONCLUSION Dentin discs treated for 7 days with concentrations of AgNPs gel (0.01-0.02%) allowed more than 90% DPSCs cell attachment after 24 hours. The cytotoxicity and proliferation of DPSCs in response to AgNPs gel were comparable to those with calcium hydroxide. This suggests that AgNPs gel may represent a promising future candidate for clinical use in regenerative endodontics. However, its effects may be concentration-dependent warranting further investigation.
Collapse
Affiliation(s)
- Ahmed Mahmoud
- grid.411978.20000 0004 0578 3577Endodontics, Faculty of Dentistry, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt ,grid.9909.90000 0004 1936 8403Division of Oral Biology, University of Leeds, School of Dentistry, Leeds, UK
| | - Sybel Moussa
- grid.7155.60000 0001 2260 6941Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania El Backly
- grid.7155.60000 0001 2260 6941Endodontics, Conservative Dentistry Department and tissue engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Reem El-Gendy
- grid.9909.90000 0004 1936 8403Division of Oral Biology, University of Leeds, School of Dentistry, Leeds, UK ,grid.33003.330000 0000 9889 5690Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
30
|
Zhang J, Huang Y, Wang Y, Xu J, Huang T, Luo X. Construction of biomimetic cell-sheet-engineered periosteum with a double cell sheet to repair calvarial defects of rats. J Orthop Translat 2022; 38:1-11. [PMID: 36313975 PMCID: PMC9582589 DOI: 10.1016/j.jot.2022.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
Background The periosteum plays a crucial role in the development and injury healing process of bone. The purpose of this study was to construct a biomimetic periosteum with a double cell sheet for bone tissue regeneration. Methods In vitro, the human amniotic mesenchymal stem cells (hAMSCs) sheet was first fabricated by adding 50 μg/ml ascorbic acid to the cell sheet induction medium. Characterization of the hAMSCs sheet was tested by general observation, microscopic observation, live/dead staining, scanning electron microscopy (SEM) and hematoxylin and eosin (HE) staining. Afterwards, the osteogenic cell sheet and vascular cell sheet were constructed and evaluated by general observation, alkaline phosphatase (ALP) staining, Alizarin Red S staining, SEM, live/dead staining and CD31 immunofluorescent staining for characterization. Then, we prepared the double cell sheet. In vivo, rat calvarial defect model was introduced to verify the regeneration of bone defects treated by different methods. Calvarial defects (diameter: 4 mm) were created of Sprague–Dawley rats. The rats were randomly divided into 4 groups: the control group, the osteogenic cell sheet group, the vascular cell sheet group and the double cell sheet group. Macroscopic, micro-CT and histological evaluations of the regenerated bone were performed to assess the treatment results at 8 weeks and 12 weeks after surgery. Results In vitro, hAMSCs sheet was successfully prepared. The hAMSCs sheet consisted of a large number of live hAMSCs and abundant extracellular matrix (ECM) that secreted by hAMSCs, as evidenced by macroscopic/microscopic observation, live/dead staining, SEM and HE staining. Besides, the osteogenic cell sheet and the vascular cell sheet were successfully prepared, which were verified by general observation, ALP staining, Alizarin Red S staining, SEM and CD31 immunofluorescent staining. In vivo, the macroscopic observation and micro-CT results both demonstrated that the double cell sheet group had better effect on bone regeneration than other groups. In addition, histological assessments indicated that large amounts of new bone had formed in the calvarial defects and more mature collagen in the double cell sheet group. Conclusion The double cell sheet could promote to repair calvarial defects of rats and accelerate bone regeneration. The translational potential of this article We successfully constructed a biomimetic cell-sheet-engineered periosteum with a double cell sheet by a simple, low-cost and effective method. This biomimetic periosteum may be a promising therapeutic strategy for the treatment of bone defects, which may be used in clinic in the future.
Collapse
Key Words
- Biomimetic periosteum
- Bone regeneration
- Double cell sheet
- Osteogenic cell sheet
- Trabecular number, Tb.N
- Trabecular thickness, Tb.Th
- Vascular cell sheet
- adiposetissue derivedstromalcells, ADSCs
- alkaline phosphatase, ALP
- bone mineral density, BMD
- bonemarrowmesenchymlstemcells, BMSCs
- bonevolume fraction, BV/TV
- cell sheet technology, CST
- cytokeratin 19, CK-19
- extracellular matrix, ECM
- hAMSCs sheet
- hematoxylin and eosin, HE
- human amniotic mesenchymal stem cells, hAMSCs
- human ethmoid sinus mucosa derived mesenchymal stem cells, hESMSCs
- periodontal ligament-derived cells, PDLCs
- polylactic-co-glycolic acid, PLGA
- scanning electron microscopy, SEM
Collapse
|
31
|
Identification and characterization of a novel cell binding and cross-reactive region on spike protein of SARS-CoV-2. Sci Rep 2022; 12:15668. [PMID: 36123381 PMCID: PMC9484712 DOI: 10.1038/s41598-022-19886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Given that COVID-19 continues to wreak havoc around the world, it is imperative to search for a conserved region involved in viral infection so that effective vaccines can be developed to prevent the virus from rapid mutations. We have established a twelve-fragment library of recombinant proteins covering the entire region of spike protein of both SARS-CoV-2 and SARS-CoV from Escherichia coli. IgGs from murine antisera specifically against 6 spike protein fragments of SARS-CoV-2 were produced, purified, and characterized. We found that one specific IgG against the fusion process region, named COVID19-SF5, serologically cross-reacted with all twelve S-protein fragments. COVID19-SF5, with amino acid sequences from 880 to 1084, specifically bound to VERO-E6 and BEAS-2B cells, with Kd values of 449.1 ± 21.41 and 381.9 ± 31.53 nM, and IC50 values of 761.2 ± 28.2 nM and 862.4 ± 32.1 nM, respectively. In addition, COVID19-SF5 greatly enhanced binding of the full-length CHO cell-derived spike protein to the host cells in a concentration-dependent manner. Furthermore, COVID19-SF5 and its IgGs inhibited the infection of the host cells by pseudovirus. The combined data from our studies reveal that COVID19-SF5, a novel cell-binding fragment, may contain a common region(s) for mediating viral binding during infection. Our studies also provide valuable insights into how virus variants may evade host immune recognition. Significantly, the observation that the IgGs against COVID19-SF5 possesses cross reactivity to all other fragments of S protein, suggesting that it is possible to develop universal neutralizing monoclonal antibodies to curb rapid mutations of COVID-19.
Collapse
|
32
|
Increasing angiogenic efficacy of conditioned medium using light stimulation of human adipose-derived stem cells. Commun Biol 2022; 5:957. [PMID: 36100628 PMCID: PMC9470574 DOI: 10.1038/s42003-022-03838-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Conditioned medium (CM) contains various therapeutic molecules produced by cells. However, the low concentration of therapeutic molecules in CM is a major challenge for successful tissue regeneration. Here, we aim to develop a CM enriched in angiogenic paracrine factors for the treatment of ischemic diseases. Combining spheroidal culture and light irradiation significantly upregulates the angiogenic factor expression in human adipose-derived stem cells (hADSCs). Spheroids of light-irradiated hADSCs (SR group) show significantly enhanced expression of angiogenic paracrine factors compared with spheroids without light stimulation. Enhanced viability, migration, and angiogenesis are observed in cells treated with CM derived from the SR group. Furthermore, we performed in vivo experiments using a mouse hindlimb ischemia model; the results demonstrate that CM derived from densely cultured spheroids of light-irradiated hADSCs induced increased angiogenesis in vivo. In conclusion, our proposed approach of using light to stimulate stem cells may overcome the major drawbacks of CM-based therapies. Combining spheroidal culture of human adipose-derived stem cells with light irradiation enhances angiogenic growth factor secretion in conditioned media, which can improve angiogenesis in a mouse hindlimb ischemia model.
Collapse
|
33
|
Parisi L, Rihs S, La Scala GC, Schnyder I, Katsaros C, Degen M. Discovery and characterization of heterogeneous and multipotent fibroblast populations isolated from excised cleft lip tissue. Stem Cell Res Ther 2022; 13:469. [PMID: 36076255 PMCID: PMC9461253 DOI: 10.1186/s13287-022-03154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Regularly discarded lip tissue obtained from corrective surgeries to close the cleft lip represents an easily accessible and rich source for the isolation of primary fibroblasts. Primary fibroblasts have been described to show compelling similarities to mesenchymal stem cells (MSCs). Hence, cleft lip and palate (CLP) lip-derived fibroblasts could be thought as an intriguing cell source for personalized regenerative therapies in CLP-affected patients. Methods Initially, we thoroughly characterized the fibroblastic nature of the lip-derived mesenchymal outgrowths by molecular and functional assays. Next, we compared their phenotype and genotype to that of bone marrow-mesenchymal stem cells (BM-MSCs) and of human lung-derived fibroblasts WI38, by assessing their morphology, surface marker expression, trilineage differentiation potential, colony-forming (CFU) capacity, and immunomodulation property. Finally, to better decipher the heterogeneity of our CLP cultures, we performed a single cell clonal analysis and tested expanded clones for surface marker expression, as well as osteogenic and CFU potential. Results We identified intriguingly similar phenotypic and genotypic properties between CLP lip fibroblasts and BM-MSCs, which makes them distinct from WI38. Furthermore, our own data in combination with the complex anatomy of the lip tissue indicated heterogeneity in our CLP cultures. Using a clonal analysis, we discovered single cell-derived clones with increased levels of the MSC markers CD106 and CD146 and clones with variabilities in their commitment to differentiate into bone-forming cells and in their potential to form single cell-derived colonies. However, we were not able to gain clones possessing superior MSC-like capacities when compared to the heterogeneous parental CLP population. Additionally, all clones could still generate contractile forces and retained robust levels of the fibroblast specific marker FSP1, which was not detectable in BM-MSCs. Conclusions Our results suggest that we isolate heterogeneous populations of fibroblasts from discarded CLP lip tissue, which show a prominently multipotent character in their entirety avoiding the need for elaborate subpopulation selections in vitro. These findings suggest that CLP lip fibroblasts might be a novel potential cell source for personalized regenerative medicine of clinical benefit for CLP patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03154-x.
Collapse
Affiliation(s)
- Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Silvia Rihs
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland.
| |
Collapse
|
34
|
Hasani Fard AH, Kamalipour F, Mazaheri Z, Hosseini SJ. The Effect of miR-106b-5p Expression in The Production of iPS-Like Cells from Mice SSCs during The Formation of Teratoma and The Three Embryonic Layers. CELL JOURNAL 2022; 24:442-448. [PMID: 36093803 PMCID: PMC9468720 DOI: 10.22074/cellj.2022.8147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 11/24/2022]
Abstract
<strong>Objective:</strong> According to the mounting data, microRNAs (miRNAs) may play a key role in reprogramming. miR-106b<br />is considered as an enhancer in reprogramming efficiency. Based on induced pluripotent stem cells (iPSCs), cell treatments have a huge amount of potential. One of the main concerns about using iPSCs in therapeutic settings is the possibility of tumor formation. It is hypothesized that a procedure that can reprogram cells with less genetic manipulation reduces the possibility of tumorigenicity.<br /><strong>Materials and Methods:</strong> In this experimental study, miR-106b-5p transduced by pLV-miRNA vector into mice isolated spermatogonial stem cells (SSCs) to achieve iPS-like cells. Then the transduced cells were cultured in specific conditions to study the formation of three germ layers. The tumorigenicity of these iPS-like cells was investigated by transplantation into male BALB/C mice.<br /><strong>Results:</strong> We show that SSCs can be successfully reprogrammed into induced iPS-like cells by pLV-miRNA vector to transduce the hsa-mir-106b-5p into SSCs and generating osteogenic, neural and hepatoblast lineage cells in vitro as a result of pluripotency. Although these iPS-like cells are pluripotent, they cannot form palpable tumors in vivo.<br /><strong>Conclusion:</strong> These results demonstrate that infection of hsa-mir-106b-5p into SSCs can reprogram them into iPSCs<br />and advanced germ cell lineages without tumorigenicity. Also, a novel approach for studying the generation of iPSCs<br />and the application of iPS or iPS-like cells in regenerative medicine is presented.
Collapse
Affiliation(s)
- Amir Hossein Hasani Fard
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kamalipour
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Jalil Hosseini
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,P.O.Box: 19899/34148Men’s Health and Reproductive Health Research CenterShahid Beheshti University of
Medical SciencesTehranIran
| |
Collapse
|
35
|
Mousa SO, Abd El-Hafez AH, Abu El-Ela MA, Mourad MAF, Saleh RN, Sayed SZ. RANK/RANKL/OPG axis genes relation to cognitive impairment in children with transfusion-dependent thalassemia: a cross-sectional study. BMC Pediatr 2022; 22:435. [PMID: 35858838 PMCID: PMC9297631 DOI: 10.1186/s12887-022-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/06/2022] [Indexed: 01/19/2023] Open
Abstract
Background RANK/RANKL/OPG axis was implicated in many pathological conditions. The study aimed to assess the relationship between the studied RANK, RANKL, and OPG polymorphisms and alleles and cognitive impairment in children with transfusion-dependent thalassemia (TDT). Methods This study included 60 TDT children. Real-time PCR was done for: rs1805034, rs1245811, and rs75404003 polymorphisms for the RANK gene, rs9594782 and rs2277438 polymorphisms for the RANKL gene, and rs207318 polymorphism for the OPG gene. The intelligence quotient (IQ) was assessed using the Wechsler Intelligence Scale for Children-Third Edition. Results TDT children had a low average total IQ, verbal IQ, and borderline performance IQ. RANK rs1805034 (C > T) had a significant effect on total IQ (p = 0.03). Its TT polymorphism and the CT polymorphism of RANKL rs9494782 (C > T) had a significantly lower total IQ (p = 0.01 for both). The G allele of the RANKL rs2277438 (G > A) had a significantly lower total IQ (p = 0.02). RANK rs1805034 (C > T) and RANKL rs2277438 (G > A) significantly affected verbal IQ (p = 0.01 and 0.03). TT genotype of RANK rs1805034 (C > T) had significantly lower verbal IQ (p = 0.002). Furthermore, the GG genotype of RANKL rs2277438 (G > A) had a significantly lower verbal and performance IQ than the AA genotype (p = 0.04 and 0.01 respectively), and its G allele had a significantly lower performance IQ than the A allele (p = 0.02). Conclusion TDT children had low average total and verbal IQ while their performance IQ was borderline. The RANK/RANKL/OPG pathway affects cognition in TDT children, as some of the studied genes’ polymorphisms and alleles had significant effects on total, verbal, and performance IQ of the studied TDT children.
Collapse
Affiliation(s)
- Suzan Omar Mousa
- Department of Pediatrics, Children's University hospital, Faculty of Medicine, Minia University, El-Minya, Egypt.
| | - Asmaa Hosni Abd El-Hafez
- Department of Pediatrics, Children's University hospital, Faculty of Medicine, Minia University, El-Minya, Egypt
| | | | | | - Rasha Nady Saleh
- Department of Neuropsychiatry, Faculty of Medicine, El-Minya, Egypt
| | - Samira Zain Sayed
- Department of Pediatrics, Children's University hospital, Faculty of Medicine, Minia University, El-Minya, Egypt
| |
Collapse
|
36
|
Insights into the Critical Role of Exosomes in the Brain; from Neuronal Activity to Therapeutic Effects. Mol Neurobiol 2022; 59:4453-4465. [DOI: 10.1007/s12035-022-02853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
37
|
Zargar MJ, Kaviani S, Vasei M, Soufi Zomorrod M, Heidari Keshel S, Soleimani M. Therapeutic role of mesenchymal stem cell-derived exosomes in respiratory disease. Stem Cell Res Ther 2022; 13:194. [PMID: 35550188 PMCID: PMC9096764 DOI: 10.1186/s13287-022-02866-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Exosomes are extracellular vesicles found in various tissues, blood circulation, and tissue fluids, secreted into the extracellular environment by fusing a multivesicular body with a plasma membrane. Various cell types release these vesicles to contribute to many cellular functions, including intercellular communication, cell proliferation, differentiation, angiogenesis, response to stress, and immune system signaling. These natural nanoparticles have therapeutic effects in various diseases and exhibit a behavior similar to the cell from which they originated. In the meantime, exosomes derived from mesenchymal stem cells have attracted the attention of many researchers and physicians due to their unique ability to modulate the immune system, repair tissue and reduce inflammation. Numerous clinical and preclinical studies have examined the effect of MSC-derived exosomes in various diseases, and their results have been published in prestigious journals. This review article discusses the biogenesis and sources of exosomes, MSC-derived exosomes, the use of these exosomes in regenerative medicine, and treatments based on exosomes derived from stem cells in respiratory diseases.
Collapse
Affiliation(s)
- Mehdi Jahedi Zargar
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Kaviani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Vasei
- Cell Therapy Based Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Soufi Zomorrod
- Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran. .,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Zhu D, Krause M, Yawno T, Kusuma GD, Schwab R, Barabadi M, Maleken AS, Chan ST, Hunt R, Greening D, Wallace EM, Lim R. Assessing the impact of gestational age of donors on the efficacy of amniotic epithelial cell-derived extracellular vesicles in experimental bronchopulmonary dysplasia. Stem Cell Res Ther 2022; 13:196. [PMID: 35550006 PMCID: PMC9102678 DOI: 10.1186/s13287-022-02874-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Background and rationale Extracellular vesicles (EVs) are a potential cell-free regenerative medicine. Human amniotic epithelial cells (hAECs) are a viable source of cell therapy for diseases like bronchopulmonary dysplasia (BPD). However, little is known about the impact of gestational age of the donor on the quality of hAEC-derived EVs.
Aims To determine the impact of gestational age on hAEC-derived EVs in experimental BPD.
Results Term hAEC-derived EVs displayed a significantly higher density of surface epitopes (CD142 and CD133) and induced greater macrophage phagocytosis compared to preterm hAEC-EVs. However, T cell proliferation was more significantly suppressed by preterm hAEC-EVs. Using a model of experimental BPD, we observed that term but not preterm hAEC-EVs improved tissue-to-airspace ratio and septal crest density. While both term and preterm hAEC-EVs reduced the levels of inflammatory cytokines on postnatal day 7, the improvement in lung injury was associated with increased type II alveolar cells which was only observed in term hAEC-EV treatment group. Furthermore, only neonatal term hAEC-EVs reduced airway hyper-responsiveness, mitigated pulmonary hypertension and protected against right ventricular hypertrophy at 6 weeks of age. Conclusion Term hAEC-EVs, but not preterm hAEC-EVs, have therapeutic efficacy in a mouse model of BPD-like lung injury. Therefore, the impact of donor criteria should be considered when applying perinatal cells-derived EV therapy for clinical use.
Collapse
Affiliation(s)
- Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Mirja Krause
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia. .,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia. .,Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia.
| | - Gina D Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Renate Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Amina S Maleken
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Siow T Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Rod Hunt
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - David Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Central Clinical School, Monash University, Clayton, VIC, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
39
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
40
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal Stromal/Stem Cells and Their Extracellular Vesicles Application in Acute and Chronic Inflammatory Liver Diseases: Emphasizing on the Anti-Fibrotic and Immunomodulatory Mechanisms. Front Immunol 2022; 13:865888. [PMID: 35464407 PMCID: PMC9021384 DOI: 10.3389/fimmu.2022.865888] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Various factors, including viral and bacterial infections, autoimmune responses, diabetes, drugs, alcohol abuse, and fat deposition, can damage liver tissue and impair its function. These factors affect the liver tissue and lead to acute and chronic liver damage, and if left untreated, can eventually lead to cirrhosis, fibrosis, and liver carcinoma. The main treatment for these disorders is liver transplantation. Still, given the few tissue donors, problems with tissue rejection, immunosuppression caused by medications taken while receiving tissue, and the high cost of transplantation, liver transplantation have been limited. Therefore, finding alternative treatments that do not have the mentioned problems is significant. Cell therapy is one of the treatments that has received a lot of attention today. Hepatocytes and mesenchymal stromal/stem cells (MSCs) are used in many patients to treat liver-related diseases. In the meantime, the use of mesenchymal stem cells has been studied more than other cells due to their favourable characteristics and has reduced the need for liver transplantation. These cells increase the regeneration and repair of liver tissue through various mechanisms, including migration to the site of liver injury, differentiation into liver cells, production of extracellular vesicles (EVs), secretion of various growth factors, and regulation of the immune system. Notably, cell therapy is not entirely excellent and has problems such as cell rejection, undesirable differentiation, accumulation in unwanted locations, and potential tumorigenesis. Therefore, the application of MSCs derived EVs, including exosomes, can help treat liver disease and prevent its progression. Exosomes can prevent apoptosis and induce proliferation by transferring different cargos to the target cell. In addition, these vesicles have been shown to transport hepatocyte growth factor (HGF) and can promote the hepatocytes'(one of the most important cells in the liver parenchyma) growths.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Thomas S, Jaganathan BG. Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal 2022; 16:47-61. [PMID: 34236594 PMCID: PMC8688675 DOI: 10.1007/s12079-021-00635-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Osteogenesis is an important developmental event that results in bone formation. Bone forming cells or osteoblasts develop from mesenchymal stem cells (MSCs) through a highly controlled process regulated by several signaling pathways. The osteogenic lineage commitment of MSCs is controlled by cell-cell interactions, paracrine factors, mechanical signals, hormones, and cytokines present in their niche, which activate a plethora of signaling molecules belonging to bone morphogenetic proteins, Wnt, Hedgehog, and Notch signaling. These signaling pathways individually as well as in coordination with other signaling molecules, regulate the osteogenic lineage commitment of MSCs by activating several osteo-lineage specific transcription factors. Here, we discuss the key signaling pathways that regulate osteogenic differentiation of MSCs and the cross-talk between them during osteogenic differentiation. We also discuss how these signaling pathways can be modified for therapy for bone repair and regeneration.
Collapse
Affiliation(s)
- Sachin Thomas
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
42
|
Xu J, Liu J, Li B, Wei X, Qi Y, Zhang B, Liu H, Xiao P. Comparison of blood tonic efficacy and chemical constituents of Kadsura interior A.C. Smith and its closely related species. Chin Med 2022; 17:14. [PMID: 35039063 PMCID: PMC8762946 DOI: 10.1186/s13020-021-00544-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The stems of Kadsura interior A. C. Smith are used as traditional Chinese medicine (TCM) Kadsurae Caulis, with the traditional efficacy of tonifying and invigorating the blood, therefore being favored to treat blood deficiency (BD) widely. However, the stems of K. interior and its closely related species are morphologically similar and they may readily be misused as Kadsurae Caulis, thus likely to exert negative effects on clinical efficacy and clinical medication safety. METHODS Firstly, blood tonic efficacies of the stems of K. interior (KIS) and its closely related species were compared using BD mouse model induced by 1-acetyl-2-phenylhydrazine (APH) and cyclophosphamide (CTX). Secondly, the chemical constituents from the stems of K. interior and its closely related species were evaluated and compared using a plant metabolomics approach. Plant metabolomics in this study aims at discovering differential metabolites and comprehensively assessing the chemical constituents by combining state-of-the-art high-resolution UPLC-Q/TOF-MS/MS technique and multivariate data analysis. Finally, based on the pharmacological data and the chemical constituents in UPLC-Q/TOF-MS fingerprints, the potential blood tonic active markers were screened by the spectrum-effect relationship analysis and quantified by UPLC-UV-DAD. RESULTS The ethanol extract of the stems of K. interior significantly increased the levels of hematocrit (HCT), hemoglobin (HGB), and red blood cells (RBC) in BD mice. In addition, it significantly increased the serum levels of interleukin 3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and macrophage-stimulating factor (M-CSF) in BD mice (P < 0.01). The blood tonic efficacy of the stems of K. interior was superior to those of its closely related species, especially at the dose of 200 mg/kg. Six differential compounds in the stems of K. interior were screened out to distinguish it from its closely related species. In combination with the results of the spectrum-effect relationship analysis, heteroclitin D, interiorin C, and heteroclitin G were identified as potential bioactive markers. The contents of heteroclitin D and heteroclitin G in the freeze-dried powder of KIS were 15.90 and 3.74 μg/mg. CONCLUSIONS This study illustrated the differences in the blood tonic efficacies and the chemical constituents of the stems of K. interior and its closely related species, and pinpointed the potential bioactive markers of K. interior.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bin Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xueping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yaodong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
- Engineering Research Center of Traditional Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Traditional Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Malekpour K, Hazrati A, Zahar M, Markov A, Zekiy AO, Navashenaq JG, Roshangar L, Ahmadi M. The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes for Orthopedic Diseases Treatment. Stem Cell Rev Rep 2022; 18:933-951. [PMID: 34169411 PMCID: PMC8224994 DOI: 10.1007/s12015-021-10185-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Musculoskeletal disorders (MSDs) are conditions that can affect muscles, bones, and joints. These disorders are very painful and severely limit patients' mobility and are more common in the elderly. MSCs are multipotent stem cells isolated from embryonic (such as the umbilical cord) and mature sources (such as adipose tissue and bone marrow). These cells can differentiate into various cells such as osteoblasts, adipocytes, chondrocytes, NP-like cells, Etc. Due to MSC characteristics such as immunomodulatory properties, ability to migrate to the site of injury, recruitment of cells involved in repair, production of growth factors, and large amount production of extracellular vesicles, these cells have been used in many regenerative-related medicine studies. Also, MSCs produce different types of EVs, such as exosomes, to the extracellular environment. Exosomes reflect MSCs' characteristics and do not have cell therapy-associated problems because they are cell-free. These vesicles carry proteins, nucleic acids, and lipids to the host cell and change their function. This review focuses on MSCs and MSCs exosomes' role in repairing dense connective tissues such as tendons, cartilage, invertebrate disc, bone fracture, and osteoporosis treatment.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marziah Zahar
- Social Security Centre of Excellence, School of Business Management, College of Business, Universiti Utara Malaysia, Sintok Kedah, Malaysia
| | | | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Mehrandish S, Mohammadi G, Mirzaeei S. Preparation and functional evaluation of electrospun polymeric nanofibers as a new system for sustained topical ocular delivery of itraconazole. Pharm Dev Technol 2021; 27:25-39. [PMID: 34895024 DOI: 10.1080/10837450.2021.2018609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to the rapid clearance of external agents from the surface of the cornea, conventional ocular formulations usually require frequent and long duration of administration to achieve a therapeutic level of the drug on the cornea which can be conquered using prolonged-release nanofibrous inserts. In the present study, for the first time, polymeric nanofibers of itraconazole (ITZ), a potent triazole antifungal agent, were prepared as ocular inserts to enhance the topical ocular delivery of the drug. Three different nanofibers were prepared by electrospinning using polyvinyl alcohol-cellulose acetate and polycaprolactone-polyethylene glycol 12 000 polymeric blends. Nanofibers indicated uniform structures with the mean diameter ranging between 137 and 180 nm. Differential scanning calorimetry and Fourier-transform infrared spectroscopy confirmed the amorphous state of the drug in the formulations and the no drug-polymer interaction. Appropriate stability, suitable flexibility, and 2.2-3.9 MPa tensile strength were observed. Formulations indicated antifungal efficacy against Candida albicans and Aspergillus fumigatus and cell viability >70% at different concentrations. Results of bioassay against Candida albicans exhibited prolonged in vitro release of 50-70% of ITZ for almost 55 days. The results suggested that the nanofibers could be considered suitable for prolonged delivery of the ITZ as an antifungal requiring frequent and long duration of administration.
Collapse
Affiliation(s)
- Saba Mehrandish
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
45
|
Attar A, Bahmanzadegan Jahromi F, Kavousi S, Monabati A, Kazemi A. Mesenchymal stem cell transplantation after acute myocardial infarction: a meta-analysis of clinical trials. Stem Cell Res Ther 2021; 12:600. [PMID: 34876213 PMCID: PMC8650261 DOI: 10.1186/s13287-021-02667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background Trials investigating the role of mesenchymal stem cells (MSCs) in increasing ejection fraction (LVEF) after acute myocardial infarction (AMI) have raised some controversies. This study was conducted to find whether transplantation of MSCs after AMI can help improve myocardial performance indices or clinical outcomes. Methods Randomized trials which evaluated transplantation of MSCs after AMI were enrolled. The primary outcome was LVEF change. We also assessed the role of cell origin, cell number, transplantation time interval after AMI, and route of cell delivery on the primary outcome. Results Thirteen trials including 956 patients (468 and 488 in the intervention and control arms) were enrolled. After excluding the biased data, LVEF was significantly increased compared to the baseline among those who received MSC (WMD = 3.78%, 95% CI: 2.14 to 5.42, p < 0.001, I2 = 90.2%) with more pronounced effect if the transplantation occurred within the first week after AMI (MD = 5.74%, 95%CI: 4.297 to 7.183; I2 = 79.2% p < 0.001). The efficacy of trans-endocardial injection was similar to that of intracoronary infusion (4% [95%CI: 2.741 to 5.259, p < 0.001] vs. 3.565% [95%CI: 1.912 to 5.218, p < 0.001], respectively). MSC doses of lower and higher than 107 cells did not improve LVEF differently (5.24% [95%CI: 2.06 to 8.82, p = 0.001] vs. 3.19% [95%CI: 0.17 to 6.12, p = 0.04], respectively).
Conclusion Transplantation of MSCs after AMI significantly increases LVEF, showing a higher efficacy if done in the first week. Further clinical studies should be conducted to investigate long-term clinical outcomes such as heart failure and cardiovascular mortality. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02667-1.
Collapse
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| | | | - Shahin Kavousi
- Students' Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, PO Box 71645-111, Shiraz, Iran.
| |
Collapse
|
46
|
Nasif E, Ragab OA, Elhassanien ME, Al-Malt AM. Omentin-1: a biomarker in large artery ischaemic stroke patients. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Omentin-1 is a novel adipocytokine that is related to atherosclerosis-based ischaemic cardiovascular disease and stroke. Previous studies have linked its lower levels with poor stroke outcomes. We aimed to assess the level of serum omentin-1 as a prognostic marker in patients with large artery ischaemic stroke.
Methods
Fifty ischaemic stroke patients suffering large artery ischaemic stroke and another 50 subjects without a prior history of strokes were recruited. All participants were subjected to neurological examinations, echocardiography and laboratory investigations including a lipid profile and HBA1c. Carotid intima-media thickness (IMT) was measured for all participants. Stroke patients were evaluated by the National Institute of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRS). Infarction volume was measured by magnetic resonance image (MRI) and serum level of omentin-1 was gauged for all participants.
Results
Carotid IMT significantly increased in stroke patients compared to control subjects. While serum omentin-1 levels were higher in control non-diabetic subjects, they were lower in diabetic patients with ischaemic stroke. Serum omentin-1 levels were inversely correlated with NIHSS, carotid IMT, infarction volume and mRS scores in all stroke patients. Serum omentin-1 level less than 24.5 ng/ml showed 93.7%sensitivity and 44.4% specificity in prediction of poor stroke outcome while values less than 27.8 ng/ml in non-diabetic stroke patients had sensitivity and specificity with 87.5% and 55.6% respectively.
Conclusion
Lower levels of serum omentin-1 are associated with increased ischaemic stroke severity and poor functional outcome.
Collapse
|
47
|
Ebrahimi A, Ahmadi H, Ghasrodashti ZP, Tanideh N, Shahriarirad R, Erfani A, Ranjbar K, Ashkani-Esfahani S. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: A comprehensive review. Bosn J Basic Med Sci 2021; 21:672-701. [PMID: 34255619 PMCID: PMC8554700 DOI: 10.17305/bjbms.2021.5508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022] Open
Abstract
Stem cell therapy has been used to treat several types of diseases, and it is expected that its therapeutic uses shall increase as novel lines of evidence begin to appear. Furthermore, stem cells have the potential to make new tissues and organs. Thus, some scientists propose that organ transplantation will significantly rely on stem cell technology and organogenesis in the future. Stem cells and its robust potential to differentiate into specific types of cells and regenerate tissues and body organs, have been investigated by numerous clinician scientists and researchers for their therapeutic effects. Degenerative diseases in different organs have been the main target of stem cell therapy. Neurodegenerative diseases such as Alzheimer's, musculoskeletal diseases such as osteoarthritis, congenital cardiovascular diseases, and blood cell diseases such as leukemia are among the health conditions that have benefited from stem cell therapy advancements. One of the most challenging parts of the process of incorporating stem cells into clinical practice is controlling their division and differentiation potentials. Sometimes, their potential for uncontrolled growth will make these cells tumorigenic. Another caveat in this process is the ability to control the differentiation process. While stem cells can easily differentiate into a wide variety of cells, a paracrine effect controlled activity, being in an appropriate medium will cause abnormal differentiation leading to treatment failure. In this review, we aim to provide an overview of the therapeutic effects of stem cells in diseases of various organ systems. In order to advance this new treatment to its full potential, researchers should focus on establishing methods to control the differentiation process, while policymakers should take an active role in providing adequate facilities and equipment for these projects. Large population clinical trials are a necessary tool that will help build trust in this method. Moreover, improving social awareness about the advantages and adverse effects of stem cell therapy is required to develop a rational demand in the society, and consequently, healthcare systems should consider established stem cell-based therapeutic methods in their treatment algorithms.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanie Ahmadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Pourfraidon Ghasrodashti
- Molecular Pathology and Cytogenetics Laboratory, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Department of Pharmacology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Erfani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keivan Ranjbar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Ashkani-Esfahani
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Moe YM, Nuntanaranont T, Khangkhamano M, Meesane J. Mimicked Periosteum Layer Based on Deposited Particle Silk Fibroin Membrane for Osteogenesis and Guided Bone Regeneration in Alveolar Cleft Surgery: Formation and in Vitro Testing. Organogenesis 2021; 17:100-116. [PMID: 34719332 PMCID: PMC9208804 DOI: 10.1080/15476278.2021.1991743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/26/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
An alveolar cleft is a critical tissue defect often treated with surgery. In this research, the mimicked periosteum layer based on deposited silk fibroin membrane was fabricated for guided bone regeneration in alveolar cleft surgery. The deposited silk fibroin particle membranes were fabricated by spray-drying with different concentrations of silk fibroin (v/v): 0.5% silk fibroin (0.5% SFM), 1% silk fibroin (1% SFM), 2% silk fibroin (2% SFM), and 1% silk fibroin film (1% SFF) as the control. The membranes were then characterized and the molecular organization, structure, and morphology were observed with FT-IR, DSC, and SEM. Their physical properties, mechanical properties, swelling, and degradation were tested. The membranes were cultured with osteoblast cells and their biological performance, cell viability and proliferation, total protein, ALP activity, and calcium deposition were evaluated. The results demonstrated that the membranes showed molecular transformation of random coils to beta sheets and stable structures. The membranes had a porous layer. Furthermore, they had more stress and strain, swelling, and degradation than the film. They had more unique cell viability and proliferation, total protein, ALP activity, calcium deposition than the film. The results of the study indicated that 1% SFM is promising for guided bone regeneration for alveolar cleft surgery.
Collapse
Affiliation(s)
- Yadanar Mya Moe
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Matthana Khangkhamano
- Department of Mine and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
49
|
Karimi-Shahri M, Javid H, Sharbaf Mashhad A, Yazdani S, Hashemy SI. Mesenchymal stem cells in cancer therapy; the art of harnessing a foe to a friend. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1307-1323. [PMID: 35096289 PMCID: PMC8769515 DOI: 10.22038/ijbms.2021.58227.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 12/09/2022]
Abstract
For a long time, mesenchymal stem cells (MSCs) were discussed only as stem cells which could give rise to different types of cells. However, when it became clear that their presence in the tumor microenvironment (TME) was like a green light for tumorigenesis, they emerged from the ashes. This review was arranged to provide a comprehensive and precise description of MSCs' role in regulating tumorigenesis and to discuss the dark and the bright sides of cancer treatment strategies using MSCs. To gather the details about MSCs, we made an intensive literature review using keywords, including MSCs, tumor microenvironment, tumorigenesis, and targeted therapy. Through transferring cytokines, growth factors, and microRNAs, MSCs maintain the cancer stem cell population, increase angiogenesis, provide a facility for cancer metastasis, and shut down the anti-tumor activity of the immune system. Although MSCs progress tumorigenesis, there is a consensus that these cells could be used as a vehicle to transfer anti-cancer agents into the tumor milieu. This feature opened a new chapter in MSCs biology, this time from the therapeutic perspective. Although the data are not sufficient, the advent of new genetic engineering methods might make it possible to engage these cells as Trojan horses to eliminate the malignant population. So many years of investigation showed that MSCs are an important group of cells, residing in the TME, studying the function of which not only could add a delicate series of information to the process of tumorigenesis but also could revolutionize cancer treatment strategies.
Collapse
Affiliation(s)
- Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Ilam Institute for Medical Sciences, Ilam, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Therapeutic approach of adipose-derived mesenchymal stem cells in refractory peptic ulcer. Stem Cell Res Ther 2021; 12:515. [PMID: 34565461 PMCID: PMC8474857 DOI: 10.1186/s13287-021-02584-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Peptic ulcer is one of the most common gastrointestinal tract disorders worldwide, associated with challenges such as refractory morbidity, bleeding, interference with use of anticoagulants, and potential side effects associated with long-term use of proton pump inhibitors. A peptic ulcer is a defect in gastric or duodenal mucosa extending from muscularis mucosa to deeper layers of the stomach wall. In most cases, ulcers respond to standard treatments. However, in some people, peptic ulcer becomes resistant to conventional treatment or recurs after initially successful therapy. Therefore, new and safe treatments, including the use of stem cells, are highly favored for these patients. Adipose-derived mesenchymal stem cells are readily available in large quantities with minimal invasive intervention, and isolation of adipose-derived mesenchymal stromal stem cells (ASC) produces large amounts of stem cells, which are essential for cell-based and restorative therapies. These cells have high flexibility and can differentiate into several types of cells in vitro. This article will investigate the effects and possible mechanisms and signaling pathways of adipose tissue-derived mesenchymal stem cells in patients with refractory peptic ulcers.
Collapse
|