1
|
Li J, Cai X, Yang Y, Mao Y, Ding L, Xue Q, Hu X, Huang Y, Sui C, Zhang Y. Macrophage MST1 protects against schistosomiasis-induced liver fibrosis by promoting the PPARγ-CD36 pathway and suppressing NF-κB signaling. PLoS Pathog 2024; 20:e1012790. [PMID: 39700261 DOI: 10.1371/journal.ppat.1012790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Schistosomiasis is characterized by egg-induced hepatic granulomas and subsequent fibrosis. Monocyte-derived macrophages play critical and plastic roles in the progression and regression of liver fibrosis, adopting different polarization phenotypes. Mammalian STE20-like protein kinase 1 (MST1), a serine/threonine kinase, has been established to act as a negative regulator of macrophage-associated inflammation. However, the specific role of MST1 in Schistosoma-induced liver fibrosis has not been fully understood. In this study, we demonstrate that macrophage MST1 functions as an inhibitor of inflammation and fibrosis following infection with Schistosoma japonicum (S. japonicum). Mice with macrophages-specific Mst1 knockout (termed Mst1△M/△M) mice developed exacerbated liver pathology, characterized by larger egg-induced granulomas, and increased fibrosis post infection. This was accompanied by enhanced production of proinflammatory cytokines (IL1B, IL6, IL23, TNFA and TGFB) and a shift in macrophage phenotype towards Ly6Chigh. Mechanistically, MST1 activation by soluble egg antigen (SEA) promoted PPARγ-mediated CD36 expression, enhancing phagocytosis and consequently upregulation of fibrolytic genes such as Arg1 and Mmps. Conversely, MST1 deletion leads to up-regulation of pro-inflammatory genes instead of fibrolytic genes in macrophages, accompanied by decreased expression of CD36 and impaired phagocytosis. Furthermore, the ablation of MST1 enhances NF-κB activation in S. japonicum-infected and SEA-stimulated macrophages, resulting in increased production of proinflammatory cytokines. Overall, our data identified MST1 as a novel regulator for egg-induced liver fibrosis via modulation of macrophage function and phenotype by CD36-mediated phagocytosis and suppression of NF-κB pathway.
Collapse
Affiliation(s)
- Jianyang Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
- The First Affiliated Hospital of Anhui medical University, Hefei, Anhui, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xinyuan Cai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Yan Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Yulin Mao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Lin Ding
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Qian Xue
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Xunhao Hu
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Cong Sui
- The First Affiliated Hospital of Anhui medical University, Hefei, Anhui, China
| | - Yuxia Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| |
Collapse
|
2
|
Wan XX, Hu XM, Zhang Q, Xiong K. Pretreatment can alleviate programmed cell death in mesenchymal stem cells. World J Stem Cells 2024; 16:773-779. [PMID: 39219726 PMCID: PMC11362856 DOI: 10.4252/wjsc.v16.i8.773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024] Open
Abstract
In this editorial, we delved into the article titled "Cellular preconditioning and mesenchymal stem cell ferroptosis." This groundbreaking study underscores a pivotal discovery: Ferroptosis, a type of programmed cell death, drastically reduces the viability of donor mesenchymal stem cells (MSCs) after engraftment, thereby undermining the therapeutic value of cell-based therapies. Furthermore, the article proposes that by manipulating ferroptosis mechanisms through preconditioning, we can potentially enhance the survival rate and functionality of MSCs, ultimately amplifying their therapeutic potential. Given the crucial role ferroptosis plays in shaping the therapeutic outcomes of MSCs, we deem it imperative to further investigate the intricate interplay between programmed cell death and the therapeutic effectiveness of MSCs.
Collapse
Affiliation(s)
- Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, Central South University, Changsha 410000, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
3
|
Zhang J, Wu P, Wen Q. Optimization strategies for mesenchymal stem cell-based analgesia therapy: a promising therapy for pain management. Stem Cell Res Ther 2024; 15:211. [PMID: 39020426 PMCID: PMC11256674 DOI: 10.1186/s13287-024-03828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Pain is a very common and complex medical problem that has a serious impact on individuals' physical and mental health as well as society. Non-steroidal anti-inflammatory drugs and opioids are currently the main drugs used for pain management, but they are not effective in controlling all types of pain, and their long-term use can cause adverse effects that significantly impair patients' quality of life. Mesenchymal stem cells (MSCs) have shown great potential in pain treatment. However, limitations such as the low proliferation rate of MSCs in vitro and low survival rate in vivo restrict their analgesic efficacy and clinical translation. In recent years, researchers have explored various innovative approaches to improve the therapeutic effectiveness of MSCs in pain treatment. This article reviews the latest research progress of MSCs in pain treatment, with a focus on methods to enhance the analgesic efficacy of MSCs, including engineering strategies to optimize the in vitro culture environment of MSCs and to improve the in vivo delivery efficiency of MSCs. We also discuss the unresolved issues to be explored in future MSCs and pain research and the challenges faced by the clinical translation of MSC therapy, aiming to promote the optimization and clinical translation of MSC-based analgesia therapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
4
|
Sadr S, Ahmadi Simab P, Niazi M, Yousefsani Z, Lotfalizadeh N, Hajjafari A, Borji H. Anti-inflammatory and immunomodulatory effects of mesenchymal stem cell therapy on parasitic drug resistance. Expert Rev Anti Infect Ther 2024; 22:435-451. [PMID: 38804866 DOI: 10.1080/14787210.2024.2360684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The emergence of antiparasitic drug resistance poses a concerning threat to animals and humans. Mesenchymal Stem Cells (MSCs) have been widely used to treat infections in humans, pets, and livestock. Although this is an emerging field of study, the current review outlines possible mechanisms and examines potential synergism in combination therapies and the possible harmful effects of such an approach. AREAS COVERED The present study delved into the latest pre-clinical research on utilizing MSCs to treat parasitic infections. As per investigations, the introduction of MSCs to patients grappling with parasitic diseases like schistosomiasis, malaria, cystic echinococcosis, toxoplasmosis, leishmaniasis, and trypanosomiasis has shown a reduction in parasite prevalence. This intervention also alters the levels of both pro- and anti-inflammatory cytokines. Furthermore, the combined administration of MSCs and antiparasitic drugs has demonstrated enhanced efficacy in combating parasites and modulating the immune response. EXPERT OPINION Mesenchymal stem cells are a potential solution for addressing parasitic drug resistance. This is mainly because of their remarkable immunomodulatory abilities, which can potentially help combat parasites' resistance to drugs.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pouria Ahmadi Simab
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mahta Niazi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Yousefsani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Wang X, Gong Q, Nie H, Tu J, Fan W, Tan X. High level of C3 is associated with Th2 immune response and liver fibrosis in patients with schistosomiasis. Parasite Immunol 2024; 46:e13029. [PMID: 38465509 DOI: 10.1111/pim.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Long-term infection of schistosomiasis will seriously affect the liver health of patients. The serum of 334 chronic Schistosoma japonicum patients and 149 healthy volunteers was collected. Compared with heathy people, the level of C4 (complement 4) was increased, and the level of C3 (complement 3) was in an obvious skewed distribution. ELISA was performed to detect the serum cytokines, the results showed that the levels of IFN-γ (interferon-γ), IL (interleukin)-2 and TNF-α (tumour necrosis factor-α) were reduced, while the levels of Th2 cytokines (IL-4, IL-6 and IL-10) were increased. In the serum of patients with high C3, the secretion of HA (hyaluronic acid), LN (laminin), IV-C (type IV collagen) and PCIII (type III procollagen) were increased, the activation of hepatic stellate cells was promoted. Exogenous human recombinant C3 made mice liver structure of the mice damaged and collagen deposition. IFN-γ and IFN-γ/IL-4 were decreased, while HA, LN, PCIII and IV-C were increased, and the expressions of α-SMA and TGF-β1 in liver tissues were up-regulated. However, the addition of IFN-γ partially reversed the effect of C3 on promoting fibrosis. High level of C3 is associated with Th2 immune response and liver fibrosis in patients with schistosomiasis.
Collapse
Affiliation(s)
- Xianmo Wang
- Clinical Laboratory, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Quan Gong
- Yangtze University, Jingzhou, Hubei Province, China
| | - Hao Nie
- Yangtze University, Jingzhou, Hubei Province, China
| | - Jiancheng Tu
- Clinical Laboratory, The Second Clinical College of Wuhan University, Wuhan, Hubei province, China
| | - Wen Fan
- Clinical Laboratory, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Xiaoping Tan
- Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
6
|
Liu J, Wan XX, Zheng SY, Khan MA, He HH, Feng YX, Xiao JG, Chen Y, Hu XM, Zhang Q, Xiong K. Mesenchymal Stem Cell Transplantation in Type 1 Diabetes Treatment: Current Advances and Future Opportunity. Curr Stem Cell Res Ther 2024; 19:1175-1184. [PMID: 37817652 DOI: 10.2174/011574888x268740231002054459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023]
Abstract
Type 1 Diabetes (T1D) is characterized by hyperglycemia, and caused by a lack of insulin secretion. At present there is no cure for T1D and patients are dependent on exogenous insulin for lifelong, which seriously affects their lives. Mesenchymal stem cells (MSCs) can be differentiated to β cell-like cells to rescue the secretion of insulin and reconstruct immunotolerance to preserve the function of islet β cells. Due to the higher proportion of children and adolescents in T1D patients, the efficacy and safety issue of the application of MSC's transplant in T1D was primarily demonstrated and identified by human clinical trials in this review. Then we clarified the mechanism of MSCs to relieve the symptom of T1D and found out that UC-MSCs have no obvious advantage over the other types of MSCs, the autologous MSCs from BM or menstrual blood with less expanded ex vivo could be the better choice for clinical application to treat with T1D through documentary analysis. Finally, we summarized the advances of MSCs with different interventions such as genetic engineering in the treatment of T1D, and demonstrated the advantages and shortage of MSCs intervened by different treatments in the transplantation, which may enhance the clinical efficacy and overcome the shortcomings in the application of MSCs to T1D in future.
Collapse
Affiliation(s)
- Jie Liu
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Sheng-Yuan Zheng
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | | | - Hui-Hong He
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yu-Xing Feng
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jing-Ge Xiao
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yu Chen
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 57119, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 57119, China
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China
| |
Collapse
|
7
|
Wang Z, Yao L, Hu X, Yuan M, Chen P, Liu P, Zhang Q, Xiong Z, Dai K, Jiang Y. Advancements in mesenchymal stem cell therapy for liver cirrhosis: Unveiling origins, treatment mechanisms, and current research frontiers. Tissue Cell 2023; 84:102198. [PMID: 37604091 DOI: 10.1016/j.tice.2023.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Chronic liver disease inevitably progresses to liver cirrhosis, significantly compromising patients' overall survival and quality of life. However, a glimmer of hope emerges with the emergence of mesenchymal stem cells, possessing remarkable abilities for self-renewal, differentiation, and immunomodulation. Leveraging their potential, MSCs have become a focal point in both basic and clinical trials, offering a promising therapeutic avenue to impede fibrosis progression and enhance the life expectancy of individuals battling hepatic cirrhosis. This comprehensive review serves to shed light on the origin of MSCs, the intricate mechanisms underlying cirrhosis treatment, and the cutting-edge advancements in basic and clinical research surrounding MSC-based therapies for liver cirrhosis patients.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China.
| |
Collapse
|
8
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stromal/stem cells and their extracellular vesicles in liver diseases: insights on their immunomodulatory roles and clinical applications. Cell Biosci 2023; 13:162. [PMID: 37670393 PMCID: PMC10478279 DOI: 10.1186/s13578-023-01122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Liver disease is a leading cause of mortality and morbidity that is rising globally. Liver dysfunctions are classified into acute and chronic diseases. Various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Up to now, liver transplantation could be the last resort for patients with end-stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stromal/stem cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties can be effectively used for treating liver diseases but without the limitation that are associated with liver transplantation. In this review, we summarize and discuss recent advances in the characteristics of MSCs and the potential action mechanisms of MSCs-based cell therapies for liver diseases. We also draw attention to strategies to potentiate the therapeutic properties of MSCs through pre-treatments or gene modifications. Finally, we discuss progress toward clinical application of MSCs or their extracellular vesicles in liver diseases.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
9
|
Xie S, Zhang Y, Li J, Zhou J, Li J, Zhang P, Liu Y, Luo Y, Ming Y. IgG persistence showed weak clinical aspects in chronic schistosomiasis patients. Sci Rep 2023; 13:13222. [PMID: 37580417 PMCID: PMC10425409 DOI: 10.1038/s41598-023-40082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Schistosomiasis is a chronic parasitic disease, which affects the quality of daily life of patients and imposes a huge burden on society. Hepatic fibrosis in response to continuous insult of eggs to the liver is a significant cause of morbidity and mortality. However, the mechanisms of hepatic fibrosis in schistosomiasis are largely undefined. The purpose of our study is to detect the indicator to hepatic fibrosis in schistosomiasis. A total of 488 patients with chronic schistosomiasis japonica were enrolled in our study. The patients were divided into two groups according to liver ultrasound examination, which could indicate liver fibrosis of schistosomiasis with unique reticular changes. Logistic regression analysis showed that globulin, albumin/globulin, GGT levels and anti-Schistosoma IgG were independently associated with liver fibrosis in patients with schistosomiasis and IgG was the largest association of liver fibrosis (OR 2.039, 95% CI 1.293-3.213). We further compared IgG+ patients with IgG- patients. IgG+ patients (ALT 25 U/L, GGT 31 U/L) slightly higher than IgG- patients (ALT 22 U/L, GGT 26 U/L) in ALT and GGT. However, the fibrosis of liver in IgG+ patients (Grade II(19.7%), Grade III(7.3%)) were more severe than that in IgG- patients(Grade II(12.5%), Grade III(2.9%)) according to the grade of liver ultrasonography. Our results showed anti-Schistosoma IgG was independently associated with liver fibrosis in patients with chronic schistosomiasis japonica and patients with persistent anti-Schistosoma IgG might have more liver fibrosis than negative patients despite no obvious clinical signs or symptoms.
Collapse
Affiliation(s)
- Shudong Xie
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Jie Zhou
- Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, People's Republic of China
| | - Jun Li
- Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, People's Republic of China
| | - Pengpeng Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Yang Liu
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Yulin Luo
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
11
|
Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y, Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol 2023; 20:583-599. [PMID: 36823236 PMCID: PMC10229624 DOI: 10.1038/s41423-023-00983-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Hepatic fibrosis/cirrhosis is a significant health burden worldwide, resulting in liver failure or hepatocellular carcinoma (HCC) and accounting for many deaths each year. The pathogenesis of hepatic fibrosis/cirrhosis is very complex, which makes treatment challenging. Endogenous mesenchymal stromal cells (MSCs) have been shown to play pivotal roles in the pathogenesis of hepatic fibrosis. Paradoxically, exogenous MSCs have also been used in clinical trials for liver cirrhosis, and their effectiveness has been observed in most completed clinical trials. There are still many issues to be resolved to promote the use of MSCs in the clinic in the future. In this review, we will examine the controversial role of MSCs in the pathogenesis and treatment of hepatic fibrosis/cirrhosis. We also investigated the clinical trials involving MSCs in liver cirrhosis, summarized the parameters that need to be standardized, and discussed how to promote the use of MSCs from a clinical perspective.
Collapse
Affiliation(s)
- Xue Yang
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China.
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Zhipeng Han
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
12
|
Zheng J, Zhang R, Liu C, Yang H, Jin X. The TLR4/NF-κB signaling pathway-mediated type 2 skewing of T helper cell in cough variant asthma was counteracted by ethanol extract of Anacyclus pyrethrum root. Immunobiology 2023; 228:152379. [PMID: 36990039 DOI: 10.1016/j.imbio.2023.152379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Type 2 T helper (Th2) cells-mediated immune response plays a pivotal role in the pathogenesis of cough variant asthma (CVA), and this study aims to determine the effect and mechanism of ethanol extract of Anacyclus pyrethrum root (EEAP) on regulating Th2 response in CVA. Peripheral blood mononuclear cells (PBMCs) collected from patients with CVA, and naive CD4+T cells induced by Th2-polarizing medium were administrated with EEAP. Interestingly, through conducting flow cytometry and enzyme linked immunosorbent assay method, we found that EEAP significantly alleviated Th2 skewing and increased Th1 response in these two kinds of cells. Results of western blot assay and quantitative reverse transcription PCR displayed that EEAP suppressed the expression of TLR4, total NF-κB p65, nuclear NF-κB p65 and the downstream genes. Subsequently, we proved that TLR4 antagonist E5564 played a similar improvement role to EEAP in Th1/Th2 imbalance, while combination of TLR4 agonist LPS and EEAP abolished the inhibitory effect of EEAP on Th2 polarization in Th2-induced CD4+T cells. Finally, CVA models induced by ovalbumin and capsaicin were established in cavies, and data showed that EEAP also improved Th1/Th2 imbalance in CVA in vivo, manifested in the increase of IL4+CD4+T cell ratio, Th2 cytokines (IL-4, IL-5, IL-6 and IL-13) and the decrease of Th1 cytokines (IL-2 and IFN-γ). Co-treatment of LPS and EEAP counteracted the inhibition of EEAP on Th2 response in CVA model cavies. Moreover, we found that EEAP mitigated airway inflammation and hyper-responsiveness in vivo, which was abolished by the combined application of LPS. In a word, EEAP restores Th1/Th2 balance in CVA through restraining the TLR4/NF-кB signaling pathway. This study may contribute to the clinical application of EEAP in CVA-related disease.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Rui Zhang
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Changjiang Liu
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Hao Yang
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Xiaoyue Jin
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.
| |
Collapse
|
13
|
Liu Z, Zhang L, Liang Y, Lu L. Pathology and molecular mechanisms of Schistosoma japonicum-associated liver fibrosis. Front Cell Infect Microbiol 2022; 12:1035765. [PMID: 36389166 PMCID: PMC9650140 DOI: 10.3389/fcimb.2022.1035765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Schistosomiasis has been widely disseminated around the world, and poses a significant threat to human health. Schistosoma eggs and soluble egg antigen (SEA) mediated inflammatory responses promote the formation of egg granulomas and liver fibrosis. With continuous liver injuries and inflammatory stimulation, liver fibrosis can develop into liver cirrhosis and liver cancer. Therefore, anti-fibrotic therapy is crucial to increase the survival rate of patients. However, current research on antifibrotic treatments for schistosomiasis requires further exploration. In the complicated microenvironment of schistosome infections, it is important to understand the mechanism and pathology of schistosomiasis-associated liver fibrosis(SSLF). In this review, we discuss the role of SEA in inhibiting liver fibrosis, describe its mechanism, and comprehensively explore the role of host-derived and schistosome-derived microRNAs (miRNAs) in SSLF. Inflammasomes and cytokines are significant factors in promoting SSLF, and we discuss the mechanisms of some critical inflammatory signals and pro-fibrotic cytokines. Natural killer(NK) cells and Natural killer T(NKT) cells can inhibit SSLF but are rarely described, therefore, we highlight their significance. This summarizes and provides insights into the mechanisms of key molecules involved in SSLF development.
Collapse
Affiliation(s)
- Zhilong Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| |
Collapse
|
14
|
Kian M, Mirzavand S, Sharifzadeh S, Kalantari T, Ashrafmansouri M, Nasri F. Efficacy of Mesenchymal Stem Cells Therapy in Parasitic Infections: Are Anti-parasitic Drugs Combined with MSCs More Effective? Acta Parasitol 2022; 67:1487-1499. [DOI: 10.1007/s11686-022-00620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
15
|
Dibo N, Liu X, Chang Y, Huang S, Wu X. Pattern recognition receptor signaling and innate immune responses to schistosome infection. Front Cell Infect Microbiol 2022; 12:1040270. [PMID: 36339337 PMCID: PMC9633954 DOI: 10.3389/fcimb.2022.1040270] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 08/22/2023] Open
Abstract
Schistosomiasis remains to be a significant public health problem in tropical and subtropical regions. Despite remarkable progress that has been made in the control of the disease over the past decades, its elimination remains a daunting challenge in many countries. This disease is an inflammatory response-driven, and the positive outcome after infection depends on the regulation of immune responses that efficiently clear worms and allow protective immunity to develop. The innate immune responses play a critical role in host defense against schistosome infection and pathogenesis. Initial pro-inflammatory responses are essential for clearing invading parasites by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged inflammatory responses against the eggs trapped in the host tissues contribute to disease progression. A better understanding of the molecular mechanisms of innate immune responses is important for developing effective therapies and vaccines. Here, we update the recent advances in the definitive host innate immune response to schistosome infection, especially highlighting the critical roles of pattern recognition receptors and cytokines. The considerations for further research are also provided.
Collapse
Affiliation(s)
- Nouhoum Dibo
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Xianshu Liu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Yunfeng Chang
- Department of Forensic Medicine Science, Xiangya School of Basic Medicine, Central South University, Yueyang, China
| | - Shuaiqin Huang
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| | - Xiang Wu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| |
Collapse
|
16
|
Saad AE, Ashour DS, Osman EM. Different panel of toll-like receptors expression during chronic Schistosoma mansoni infection in experimental animals. Exp Parasitol 2022; 239:108317. [PMID: 35777451 DOI: 10.1016/j.exppara.2022.108317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Many studies have reported the immunomodulatory effect of helminths to avoid the lethal immunopathology. During schistosomiasis, the immune response is orchestrated by toll-like receptors (TLRs). Modulating TLRs can alter the function of antigen presentation cells with the shift of the host's Th1 response to a dominant regulatory Th2 response. The objective of our study was to clarify which TLRs are related to the immune response of chronic Schistosoma infection. METHODS The study animals were divided into two groups; group I: uninfected mice; control group and group II: Schistosoma mansoni infected mice. mRNA expression of TLR2, 3, 4, 7, and 9 in different organs (liver, large intestine, and spleen) were assessed on day 90 post-infection. RESULTS TLR gene expression has changed depending on the tissue studied as the mRNA level of TLR2, TLR7, and TLR9 were significantly upregulated in all examined organs while TLR3 expression showed only significant upregulation in the liver of infected mice. On the other hand, TLR4 expression was significantly upregulated in the liver while significantly downregulated in the large intestine. CONCLUSION This study provides a better understanding of TLRs profile in different organs against S. mansoni parasites during the chronic phase of infection.
Collapse
Affiliation(s)
- Abeer E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt; Medical Parasitology Sub-unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Eman M Osman
- Department of Immunology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Yang L, Wang D, Zhang Z, Jiang Y, Liu Y. Isoliquiritigenin alleviates diabetic symptoms via activating AMPK and inhibiting mTORC1 signaling in diet-induced diabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153950. [PMID: 35114453 DOI: 10.1016/j.phymed.2022.153950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE To determine the effects of isoliquiritigenin (ISL), a chalcone compound isolated from licorice, on type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS 8-week-old C7BL/6 mice were used to establish the T2DM animal model by feeding with high-fat-high-glucose diet (HFD) combined with intraperitoneal injection of streptozotocin. The animals were treated with ISL for 3 weeks. Blood glucose levels, oral glucose tolerance, and insulin tolerance were examined, serum parameters were determined, histologic sections were prepared, activities of enzymes related to glucolipid metabolism were analyzed, and the mitochondrial function was investigated to evaluate effects of ISL on metabolism. The underlying mechanisms of ISL alleviating insulin resistance and restoring metabolic homeostasis were analyzed in HepG2 and INS-1 cells. RESULTS ISL exhibits a potent activity in relieving hyperglycemia of type 2 diabetic mice. It alleviates insulin resistance and restores metabolic homeostasis without obvious adversary effects in HFD-induced diabetic mice. The metabolic benefits of ISL treatment include promoting hepatic glycogenesis, inhibiting hepatic lipogenesis, reducing hepatic steatosis, and sensitizing insulin signaling. Mechanistically, ISL activates adenosine monophosphate-activated protein kinase (AMPK) and inhibits mammalian target of rapamycin complex 1 (mTORC1). It also suppresses mitochondrial function and reduces ATP production. CONCLUSION Our findings demonstrate that ISL is able to significantly reduce blood glucose level and alleviate insulin resistance without obvious side effects in diabetic mice, hence uncovering a great potential of ISL as a novel drug candidate in prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
18
|
Dunbar H, Weiss DJ, Rolandsson Enes S, Laffey JG, English K. The Inflammatory Lung Microenvironment; a Key Mediator in MSC Licensing. Cells 2021; 10:cells10112982. [PMID: 34831203 PMCID: PMC8616504 DOI: 10.3390/cells10112982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Recent clinical trials of mesenchymal stromal cell (MSC) therapy for various inflammatory conditions have highlighted the significant benefit to patients who respond to MSC administration. Thus, there is strong interest in investigating MSC therapy in acute inflammatory lung conditions, such as acute respiratory distress syndrome (ARDS). Unfortunately, not all patients respond, and evidence now suggests that the differential disease microenvironment present across patients and sub-phenotypes of disease or across disease severities influences MSC licensing, function and therapeutic efficacy. Here, we discuss the importance of licensing MSCs and the need to better understand how the disease microenvironment influences MSC activation and therapeutic actions, in addition to the need for a patient-stratification approach.
Collapse
Affiliation(s)
- Hazel Dunbar
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Daniel J Weiss
- Department of Medicine, 226 Health Science Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden;
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, H91 W2TY Galway, Ireland;
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group, H91 YR71 Galway, Ireland
| | - Karen English
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
- Correspondence: ; Tel.: +353-1-7086290
| |
Collapse
|
19
|
Xue Y, Qian K, Sun Y, Xiao L, Shi X. Application of TGF-β1, TIMP-1 and TIMP-2 small interfering RNAs can alleviate CCl 4-induced hepatic fibrosis in rats by rebalancing Th1/Th2 cytokines. Exp Ther Med 2021; 22:963. [PMID: 34335905 PMCID: PMC8290469 DOI: 10.3892/etm.2021.10395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/17/2021] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the effects of TGF-β1, tissue inhibitor of metalloproteinase (TIMP)-1 small interfering (si)RNA and TIMP-2 siRNA on hepatic fibrosis in rats and explore the T helper (Th)1/Th2 balance. Moreover, IFN-γ, IL-4 and IL-13 are the main cytokines associated with Th1/Th2 responses and have significant influence on the progression of hepatic fibrosis. The expression levels of IFN-γ, IL-4 and IL-13 in rats with hepatic fibrosis that were treated with siRNAs against the aforementioned molecules were measured using various techniques including immunohistochemical staining, western blotting and reverse transcription-quantitative PCR. The principal outcomes revealed the downregulation of IFN-γ and the upregulation of IL-4 and IL-13 in the model group compared with the normal group. Moreover, the expression of IFN-γ was significantly increased, while IL-4 and IL-13 demonstrated no significant difference in the TGF-β1 siRNA treatment group compared with the model group. The TIMP-1 and TIMP-2 siRNA treatment groups exhibited significantly increased expression levels of IFN-γ, but lower expression levels of IL-4 and IL-13 compared with the model group. These results indicated that TIMP-1 and TIMP-2 were improved antifibrotic targets compared with TGF-β1.
Collapse
Affiliation(s)
- Ying Xue
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Keli Qian
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China.,Department of Infection Control, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yinchun Sun
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Lang Xiao
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaofeng Shi
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
20
|
Yeo GEC, Ng MH, Nordin FB, Law JX. Potential of Mesenchymal Stem Cells in the Rejuvenation of the Aging Immune System. Int J Mol Sci 2021; 22:5749. [PMID: 34072224 PMCID: PMC8198707 DOI: 10.3390/ijms22115749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras 56000, Malaysia; (G.E.C.Y.); (M.H.N.); (F.B.N.)
| |
Collapse
|
21
|
Chlorogenic acid ameliorated allergic rhinitis-related symptoms in mice by regulating Th17 cells. Biosci Rep 2021; 40:226575. [PMID: 33015714 PMCID: PMC7607190 DOI: 10.1042/bsr20201643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Allergic rhinitis (AR) is a non-infectious chronic inflammatory disease of nasal mucosa provoking T helper cell (Th) 17 response. Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in various agricultural products, possesses antiviral, anti-inflammatory, and antibacterial properties. However, the effect of CGA on AR is unclear. Thus, our study explored the effect of CGA in modulating AR-related symptoms and immunoreaction, especially Th17 response. AR mice were induced by ovalbumin (OVA) administration and further treated with CGA or dexamethasone (Dex). The frequencies of rubbing and sneezing of AR mice were recorded. Histopathological analysis of nasal mucosa was conducted by Hematoxylin–Eosin and Periodic acid–Schiff stainings. The serum and nasal mucosa levels of OVA-immunoglobulin (Ig)E, interferon (IFN)-γ, retinoic acid-associated nuclear orphan receptor (ROR)-γt, and interleukin (IL)-17A were measured by enzyme-linked immunosorbent assay, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), or Western blot. The ratio of CD4+IL-17+Th17 cells to CD4+ T cells in peripheral blood of AR mice was assessed by flow cytometer. CGA diminished the frequencies of rubbing and sneezing of AR mice in a concentration-dependent manner. CGA attenuated histopathological abnormalities and decreased goblet cell number in nasal mucosa of AR mice. CGA decreased the serum levels of OVA-IgE, ROR-γt, and IL-17A, while increasing the serum level of IFN-γ in AR mice. Meanwhile, CGA decreased the ratio of CD4+IL-17+Th17 cells to CD4+T cells in peripheral blood and the mRNA and protein levels of IL-17A and ROR-γt in AR mice. CGA ameliorated AR-related symptoms in mice by regulating Th17 cells, which could be a candidate for the treatment of AR.
Collapse
|