1
|
Wang Y, Fu J, He W, Gao Y, Du J, Xu J, Guo L, Liu Y. Bone marrow mesenchymal stem cells ameliorate diet-induced obesity by activating thermogenesis and alleviating inflammation in adipose tissue. Biochem Biophys Res Commun 2025; 747:151172. [PMID: 39793396 DOI: 10.1016/j.bbrc.2024.151172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Obesity and its related metabolic disorders seriously threaten our health and significantly reduce our life expectancy. The aim of the present study was to explore the effects of bone marrow mesenchymal stem cells (BMSCs) on high-fat diet (HFD)-induced obesity mice. The results demonstrated that BMSCs significantly reduced body weight, improved glucose tolerance and insulin sensitivity in obese mice. Further analysis showed that BMSCs could promote brown adipose tissue (BAT) activity and white adipose tissue (WAT) browning by increasing the expression of mitochondrial uncouple protein 1 (UCP1). Additionally, BMSCs markedly increase mitochondrial biogenesis, activate oxidative phosphorylation (OXPHOS) in adipose tissue, further contributing to energy metabolism regulation. Moreover, BMSCs were effective in inhibiting macrophage-related inflammation in adipose tissue, thereby mitigating obesity-associated inflammatory responses. Overall, our results lay the foundation for research on the potential of BMSCs as a promising strategy in alleviating obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Wanghong He
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yike Gao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Lijia Guo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China; Department of Orthodontics (WangFuJing Campus), School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
2
|
Jiang L, Song X, Yan L, Liu Y, Qiao X, Zhang W. Molecular insights into the interplay between type 2 diabetes mellitus and osteoporosis: implications for endocrine health. Front Endocrinol (Lausanne) 2025; 15:1483512. [PMID: 39897963 PMCID: PMC11782046 DOI: 10.3389/fendo.2024.1483512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/05/2024] [Indexed: 02/04/2025] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) and osteoporosis are prevalent, interconnected chronic diseases that significantly impact global health. Understanding their complex biological relationship is crucial for improving patient outcomes and treatment strategies. Method This review examines recent research on the mechanisms linking T2DM with osteoporosis. It focuses on how abnormalities in bone metabolism, autophagy, ferroptosis, and vitamin D receptor (VDR) gene polymorphisms contribute to osteoporosis in T2DM patients. Results Our analysis indicates that T2DM is associated with reduced bone formation and increased bone resorption, which are influenced by hormonal changes, inflammation, and disrupted cellular signaling pathways. Additionally, increased perirenal fat thickness worsens osteoporosis through local inflammation and altered adipokine levels. VDR gene polymorphisms provide new molecular insights into this connection. Conclusion Addressing the identified mechanisms with targeted management strategies may improve bone health in individuals with T2DM. Future research should explore these associations in greater detail to develop more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Liyun Jiang
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xia Song
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Li Yan
- Medical Laboratory Center, Gansu Provincial People’s Hospital, Lanzhou, China
| | - Yali Liu
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiumei Qiao
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wen Zhang
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Liang B, Chen X, Li M, Zhang L, Yang X, Shi L, Gong Y, Gong Y, Xu H, Wu X, Jin Z, Wang Y, Liu L, Yi X, Xie L, Zhong H, Shen C, Wang Y, Yang L. Liuwei Dihuang pills attenuate ovariectomy-induced bone loss by alleviating bone marrow mesenchymal stem cell (BMSC) senescence via the Yes-associated protein (YAP)-autophagy axis. PHARMACEUTICAL BIOLOGY 2024; 62:42-52. [PMID: 38112463 PMCID: PMC11734888 DOI: 10.1080/13880209.2023.2291675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
CONTEXT Liuwei Dihuang pill (LWDH) has been used to treat postmenopausal osteoporosis (PMOP). OBJECTIVE To explore the effects and mechanisms of action of LWDH in PMOP. MATERIALS AND METHODS Forty-eight female Sprague-Dawley rats were divided into four groups: sham-operated (SHAM), ovariectomized (OVX), LWDH high dose (LWDH-H, 1.6 g/kg/d) and LWDH low dose (LWDH-L, 0.8 g/kg/d); the doses were administered after ovariectomy via gavage for eight weeks. After eight weeks, the bone microarchitecture was evaluated. The effect of LWDH on the differentiation of bone marrow mesenchymal stem cells (BMSCs) was assessed via osteogenesis- and lipogenesis-induced BMSC differentiation. The senescence-related biological indices were also detected using senescence staining, cell cycle analysis, quantitative real-time polymerase chain reaction and western blotting. Finally, the expression levels of autophagy-related proteins and Yes-associated protein (YAP) were evaluated. RESULTS LWDH-L and LWDH-H significantly modified OVX-induced bone loss. LWDH promoted osteogenesis and inhibited adipogenesis in OVX-BMSCs. Additionally, LWDH decreased the positive ratio of senescence OVX-BMSCs and improved cell viability, cell cycle, and the mRNA and protein levels of p53 and p21. LWDH upregulated the expression of autophagy-related proteins, LC3, Beclin1 and YAP, in OVX-BMSCs and downregulated the expression of p62. DISCUSSION AND CONCLUSIONS LWDH improves osteoporosis by delaying the BMSC senescence through the YAP-autophagy axis.
Collapse
Affiliation(s)
- Bing Liang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongbin Chen
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Li
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingling Zhang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Yang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangqin Shi
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanju Gong
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Gong
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Xu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhong Jin
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanru Wang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luwei Liu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Yi
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lushuang Xie
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Zhong
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chongyang Shen
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Cui F, Chen Y, Wu X, Zhao W. Mesenchymal stem cell-derived exosomes carrying miR-486-5p inhibit glycolysis and cell stemness in colorectal cancer by targeting NEK2. BMC Cancer 2024; 24:1356. [PMID: 39506654 PMCID: PMC11539302 DOI: 10.1186/s12885-024-13086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Colorectal cancer (CRC) is a major global concern. Mesenchymal stem cell-derived exosomes (MSC-EXOs) have demonstrated efficacy as a therapeutic approach for colorectal cancer. However, the precise mechanism by which MSC-EXOs treat colorectal cancer remains unclear. Human umbilical cord (hUC)-MSC-EXOs were isolated and identified. Cell Counting Kit-8 (CCK-8), Transwell, and colony formation assays were used to assess the activity of CRC cells. Glucose consumption, lactic acid production, and extracellular acidification rate (ECAR) were measured to assess glycolytic activity. Cell stemness was assessed using a sphere-formation assay. Furthermore, MSC-exosomal microRNAs (miRNAs) in CRC tissues were analyzed using the EVmiRNA database, and aberrantly expressed miRNAs in CRC cells were obtained from the Gene Expression Omnibus (GEO) database. The binding relationship between miR-486-5p and the never in mitosis gene A-related kinase 2 (NEK2) was predicted using the Starbase database and validated through RNA binding protein immunoprecipitation (RIP) and dual luciferase assays. These results showed that hUC-MSC-EXOs inhibited the proliferation and metastasis of CRC cells. Moreover, glycolysis and stemness abilities of CRC cells also decreased after treatment with hUC-MSC-EXOs. miR-486-5p was found to be enriched in hUC-MSC-EXOs and significantly downregulated in CRC cells. miR-486-5p directly bound to NEK2. Overexpression of NEK2 reversed the inhibitory effect of miR-486-5p on CRC cell glycolysis and stemness. Our study highlights that hUC-MSC-EXO miR-486-5p inhibits glycolysis and cell stemness in CRC by targeting NEK2. This finding offers compelling evidence supporting the potential application of hUC-MSC-EXOs in the treatment of CRC.
Collapse
Affiliation(s)
- Facai Cui
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, 450003, Henan, China.
| | - Yu Chen
- Department of Pathology, Affiliated Tumor Hospital of Zhengzhou University, No. 127 Dongming Road, Jinshui District, Zhengzhou City, 450003, Henan, China
| | - Xiaoyu Wu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, 450003, Henan, China
| | - Weifeng Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, 450003, Henan, China
| |
Collapse
|
5
|
Li J, Guo T, Li Y, Wang Q, Du Y, Li R, Lin J, Fu J, Chen X, Luo S. Adipose stem cells regulate lipid metabolism by upregulating mitochondrial fatty acid β-oxidation in macrophages to improve the retention rate of transplanted fat. Stem Cell Res Ther 2024; 15:328. [PMID: 39334483 PMCID: PMC11438425 DOI: 10.1186/s13287-024-03953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND At present, fat transplantation is widely used in the plastic surgery industry, but the long-term preservation rate of transplanted fat decreases because of complications such as oil cysts due to the inability in macrophages to metabolize absorption. In cell-assisted lipotransfer technology, adipose-derived stem cells (ASCs) can influence the inflammatory response of grafts through the immunoregulation in macrophages, and the lipid metabolism in macrophages plays an important role in this process. Therefore, we hypothesized ASCs could improve the retention rate of fat grafts by regulating the progress of lipid metabolism in macrophages. METHODS We established fat transplantation and ASC-assisted fat transplantation model in C57BL/6 mice in vivo, and bone marrow-derived macrophages cocultured with apoptotic adipocytes were treated with or without ASCs in vitro. Graft retention, tissue structure, fibrosis, macrophage phenotype transformation, lipid deposition, mitochondrial morphology, oxygen consumption rate (OCR), fatty acid β-oxidation (FAO) level, and ATP production were assessed. Additionally, fat transplantation and ASC-assisted fat transplantation model was treated with etomoxir which inhibits mitochondrial FAO. Macrophages pretreated with etomoxir were co-cultured with apoptotic adipocytes and treated with or without ASCs. The method aboved was used for detection and verification. RESULTS In vivo, ASC-assisted fat transplantation improved macrophage mitochondrial expression and FAO level, promoted the early transformation of M2 macrophages, reduced the long-term lipid deposition of macrophages, and improved the retention rate of fat grafts. In vitro, ASCs up-regulated the level of mitochondrial FAO, OCR and ATP production in macrophages, reduced lipid deposition of macrophages and promoted M2 macrophages polarization by paracine function. The ability of ASCs in group pretreated with etomoxir to reduce the foaming of macrophages, promote the transformation to M2 macrophages, and improve the retention rate of fat transplantation was weakened. CONCLUSIONS ASCs increased the retention rate of transplanted fat by upregulating mitochondrial FAO to promote M2 polaration in macrophages. In addition, ASCs up-regulate mitochondrial FAO by paracrine effect to reduce foam cells formation and promote M2 transformation in macrophages in vitro.
Collapse
Affiliation(s)
- Jiapeng Li
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150000, Heilongjiang, People's Republic of China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang, 150000, China
| | - Tingting Guo
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150000, Heilongjiang, People's Republic of China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang, 150000, China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, 510515, China
| | - Qing Wang
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150000, Heilongjiang, People's Republic of China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang, 150000, China
| | - Yuyang Du
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150000, Heilongjiang, People's Republic of China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang, 150000, China
| | - Rou Li
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
| | - Jiani Lin
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150000, Heilongjiang, People's Republic of China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang, 150000, China
| | - Jiayue Fu
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150000, Heilongjiang, People's Republic of China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang, 150000, China
| | - Xinyao Chen
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150000, Heilongjiang, People's Republic of China.
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang, 150000, China.
| | - Sai Luo
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150000, Heilongjiang, People's Republic of China.
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang, 150000, China.
| |
Collapse
|
6
|
Gao FQ, Zhu JQ, Feng XD. Innovative mesenchymal stem cell treatments for fatty liver disease. World J Stem Cells 2024; 16:846-853. [PMID: 39351260 PMCID: PMC11438732 DOI: 10.4252/wjsc.v16.i9.846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/24/2024] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) is increasing year by year due to changes in the contemporary environment and dietary structure, and is an important public health problem worldwide. There is an urgent need to continuously improve the understanding of their disease mechanisms and develop novel therapeutic strategies. Mesenchymal stem cells (MSCs) have shown promise as a potential therapeutic strategy in therapeutic studies of NAFLD and ALD. NAFLD and ALD have different triggers and their specific mechanisms of disease progression are different, but both involve disease processes such as hepatocellular steatosis and potential fibrosis, cirrhosis, and even hepatocellular carcinoma. MSCs have metabolic regulatory, anti-apoptotic, antioxidant, and immunomodulatory effects that together promote liver injury repair and functional recovery, and have demonstrated positive results in preclinical studies. This editorial is a continuum of Jiang et al's review focusing on the advantages and limitations of MSCs and their derivatives as therapeutics for NAFLD and ALD. They detail how MSCs attenuate the progression of NAFLD by modulating molecular pathways involved in glucolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. Based on recent advances, we discuss MSCs and their derivatives as therapeutic strategies for NAFLD and ALD, providing useful information for their clinical application.
Collapse
Affiliation(s)
- Fei-Qiong Gao
- Department of Endocrinology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310003, Zhejiang Province, China
| | - Jia-Qi Zhu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Xu-Dong Feng
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China.
| |
Collapse
|
7
|
Chávez-López LM, Carballo-López GI, Lugo-Ibarra KDC, Castro-Ceseña AB. A comprehensive framework for managing metabolic dysfunction-associated steatotic liver disease: analyzing novel risk factors and advances in nanotechnology-based treatments and diagnosis. RSC Med Chem 2024; 15:2622-2642. [PMID: 39149095 PMCID: PMC11324041 DOI: 10.1039/d4md00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/17/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) presents a growing global health challenge requiring innovative approaches for effective management. This comprehensive review examines novel risk factors, including environmental pollutants like heavy metals, and underscores the complexity of personalized medicine tailored to individual patient profiles, influenced by gender and sex differences. Traditional treatments for MASLD, such as glucose- and lipid-lowering agents, show mixed results, highlighting the necessity for larger, long-term studies to establish safety and efficacy. Alternative therapies, including antioxidants, stem cells, and antiplatelets, although promising, demand extensive clinical trials for validation. This review highlights the importance of personalized medicine, considering individual variations and specific factors such as gender and sex, to optimize treatment responses. The shift from metabolic-associated fatty liver disease (MAFLD) to MASLD terminology underscores the metabolic components of the disease, aligning with the multiple-hit theory and highlighting the necessity for comprehensive risk factor management. Our vision advocates for an integrated approach to MASLD, encompassing extensive risk factor analysis and the development of safer, more effective treatments. Primary prevention and awareness initiatives are crucial in addressing the rising prevalence of MASLD. Future research must prioritize larger, long-term studies and personalized medicine principles to ensure the effective use of emerging therapies and technologies. The review underscores the need for continuous exploration and innovation, balancing the benefits and challenges of nanotechnology, to combat MASLD and improve patient outcomes comprehensively.
Collapse
Affiliation(s)
- Lucia M Chávez-López
- Facultad de Medicina, Centro de Estudios Universitarios Xochicalco Campus Ensenada San Francisco 1139, Fraccionamiento Misión C.P. 22830 Ensenada Baja California Mexico
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| | - Gabriela I Carballo-López
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| | | | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
- CONAHCYT - Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| |
Collapse
|
8
|
Qin X, Liu J. Nanoformulations for the diagnosis and treatment of metabolic dysfunction-associated steatohepatitis. Acta Biomater 2024; 184:37-53. [PMID: 38879104 DOI: 10.1016/j.actbio.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive phase of metabolic dysfunction-associated steatotic liver disease (MASLD) that develops into irreversible liver cirrhosis and hepatocellular carcinoma, ultimately necessitating liver transplantation as the sole life-saving option. However, given the drawbacks of liver transplantation, including invasiveness, chronic immunosuppression, and a lack of donor livers, prompt diagnosis and effective treatment are indispensable. Due to the limitations of liver biopsy and conventional imaging modalities in diagnosing MASH, as well as the potential hazards associated with liver-protecting medicines, numerous nanoformulations have been created for MASH theranostics. Particularly, there has been significant study interest in artificial nanoparticles, natural biomaterials, and bionic nanoparticles that exhibit exceptional biocompatibility and bioavailability. In this review, we summarized extracellular vesicles (EVs)-based omics analysis and Fe3O4-based functional magnetic nanoparticles as magnetic resonance imaging (MRI) contrast agents for MASH diagnosis. Additionally, artificial nanoparticles such as organic and inorganic nanoparticles, as well as natural biomaterials such as cells and cell-derived EVs and bionic nanoparticles including cell membrane-coated nanoparticles, have also been reported for MASH treatment owing to their specific targeting and superior therapeutic effect. This review has the potential to stimulate advancements in nanoformulation fabrication techniques. By exploring their compatibility with cell biology, it could lead to the creation of innovative material systems for efficient theragnostic uses for MASH. STATEMENT OF SIGNIFICANCE: People with metabolic dysfunction-associated steatohepatitis (MASH) will progress to fibrosis, cirrhosis, or even liver cancer. It is imperative to establish effective theragnostic techniques to stop MASH from progressing into a lethal condition. In our review, we summarize the advancement of artificial, natural, and bionic nanoparticles applied in MASH theragnosis. Furthermore, the issues that need to be resolved for these cutting-edge techniques are summarized to realize a more significant clinical impact. We forecast the key fields that will advance further as nanotechnology and MASH research progress. Generally, our discovery has significant implications for the advancement of nanoformulation fabrication techniques, and their potential to be compatible with cell biology could lead to the creation of innovative materials systems for effective MASH theragnostic.
Collapse
Affiliation(s)
- Xueying Qin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| |
Collapse
|
9
|
Jiang Y, Yusoff NM, Du J, Moses EJ, Lin JT. Current perspectives on mesenchymal stem cells as a potential therapeutic strategy for non-alcoholic fatty liver disease. World J Stem Cells 2024; 16:760-772. [PMID: 39086561 PMCID: PMC11287429 DOI: 10.4252/wjsc.v16.i7.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant health challenge, characterized by its widespread prevalence, intricate natural progression and multifaceted pathogenesis. Although NAFLD initially presents as benign fat accumulation, it may progress to steatosis, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Mesenchymal stem cells (MSCs) are recognized for their intrinsic self-renewal, superior biocompatibility, and minimal immunogenicity, positioning them as a therapeutic innovation for liver diseases. Therefore, this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways, including glycolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics, and support the development of MSC-based therapy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yan Jiang
- School of Nursing, Xinxiang Medical University, Xinxiang 453000, Henan Province, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Jiang Du
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Emmanuel Jairaj Moses
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Jun-Tang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453000, Henan Province, China.
| |
Collapse
|
10
|
Iorio R, Petricca S, Mattei V, Delle Monache S. Horizontal mitochondrial transfer as a novel bioenergetic tool for mesenchymal stromal/stem cells: molecular mechanisms and therapeutic potential in a variety of diseases. J Transl Med 2024; 22:491. [PMID: 38790026 PMCID: PMC11127344 DOI: 10.1186/s12967-024-05047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 05/26/2024] Open
Abstract
Intercellular mitochondrial transfer (MT) is a newly discovered form of cell-to-cell signalling involving the active incorporation of healthy mitochondria into stressed/injured recipient cells, contributing to the restoration of bioenergetic profile and cell viability, reduction of inflammatory processes and normalisation of calcium dynamics. Recent evidence has shown that MT can occur through multiple cellular structures and mechanisms: tunneling nanotubes (TNTs), via gap junctions (GJs), mediated by extracellular vesicles (EVs) and other mechanisms (cell fusion, mitochondrial extrusion and migrasome-mediated mitocytosis) and in different contexts, such as under physiological (tissue homeostasis and stemness maintenance) and pathological conditions (hypoxia, inflammation and cancer). As Mesenchimal Stromal/ Stem Cells (MSC)-mediated MT has emerged as a critical regulatory and restorative mechanism for cell and tissue regeneration and damage repair in recent years, its potential in stem cell therapy has received increasing attention. In particular, the potential therapeutic role of MSCs has been reported in several articles, suggesting that MSCs can enhance tissue repair after injury via MT and membrane vesicle release. For these reasons, in this review, we will discuss the different mechanisms of MSCs-mediated MT and therapeutic effects on different diseases such as neuronal, ischaemic, vascular and pulmonary diseases. Therefore, understanding the molecular and cellular mechanisms of MT and demonstrating its efficacy could be an important milestone that lays the foundation for future clinical trials.
Collapse
Affiliation(s)
- Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, Della Salute e delle Professioni Sanitarie, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy.
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| |
Collapse
|
11
|
Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, Li L. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis 2024; 11:101115. [PMID: 38299199 PMCID: PMC10828599 DOI: 10.1016/j.gendis.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 02/02/2024] Open
Abstract
The liver is an important metabolic and detoxification organ and hence demands a large amount of energy, which is mainly produced by the mitochondria. Liver tissues of patients with alcohol-related or non-alcohol-related liver diseases contain ultrastructural mitochondrial lesions, mitochondrial DNA damage, disturbed mitochondrial dynamics, and compromised ATP production. Overproduction of mitochondrial reactive oxygen species induces oxidative damage to mitochondrial proteins and mitochondrial DNA, decreases mitochondrial membrane potential, triggers hepatocyte inflammation, and promotes programmed cell death, all of which impair liver function. Mitochondrial DNA may be a potential novel non-invasive biomarker of the risk of progression to liver cirrhosis and hepatocellular carcinoma in patients infected with the hepatitis B virus. We herein present a review of the mechanisms of mitochondrial dysfunction in the development of acute liver injury and chronic liver diseases, such as hepatocellular carcinoma, viral hepatitis, drug-induced liver injury, alcoholic liver disease, and non-alcoholic fatty liver disease. This review also discusses mitochondrion-centric therapies for treating liver diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
12
|
Jiang T, Xu L, Qu X, Li R, Cheng Y, He H. Hsa_circ_0014606 Derived from Exosomes Promotes Gastric Carcinoma Tumorigenesis and Proliferation by Sponging miR-514b-3p to Upregulate HNRNPC. Dig Dis Sci 2024; 69:811-820. [PMID: 38217675 DOI: 10.1007/s10620-023-08254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Gastric cancer is a common malignant tumor, and due to its insidious onset and limited screening methods, most patients are diagnosed with advanced disease and have a poor prognosis. The circRNA in exosomes has an essential role in cancer diagnosis and treatment. However, the part of hsa_circ_0014606 within exosomes in gastric cancer progression is unclear. Firstly, we extracted exosomes from the serum of gastric cancer patients and healthy individuals by ultracentrifugation and analyzed the expression of hsa_circ_0014606 in both exosomes; then knocked down hsa_circ_0014606 in vivo and in vitro, respectively, to observe its effect on the physiological function of gastric cancer cells; finally, we used bioinformatics to screen hsa_circ_0014606 targeting miRNAs and mRNAs, and experiments were performed to verify the interrelationship between the three. The results showed that the level of hsa_circ_0014606 in the serum exosomes of gastric cancer patients was significantly higher than that of the healthy population. The knockdown of hsa_circ_0014606 slowed the proliferation of gastric cancer cells, significantly reduced migration and invasion ability, accelerated apoptosis, and reduced tumor size in mice. In addition, the expression of hsa_circ_0014606 was negatively correlated with the expression of miR-514b-3p and positively correlated with the expression of heterogeneous nuclear ribonucleoprotein C (HNRNPC). In conclusion, hsa_circ_0014606 exerted a pro-cancer effect indirectly through miR-514b-3p targeting gene HNRNPC, and this study provides a new potential target for treating gastric cancer.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Lingling Xu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaona Qu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Rui Li
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Ye Cheng
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hongmei He
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
13
|
Chen P, Yuan M, Yao L, Xiong Z, Liu P, Wang Z, Jiang Y, Li L. Human umbilical cord-derived mesenchymal stem cells ameliorate liver fibrosis by improving mitochondrial function via Slc25a47-Sirt3 signaling pathway. Biomed Pharmacother 2024; 171:116133. [PMID: 38198960 DOI: 10.1016/j.biopha.2024.116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chronic Liver fibrosis may progress to liver cirrhosis and hepatocellular carcinoma (HCC), hence cause a substantial global burden. However, effective therapies for blocking fibrosis are still lacking. Although mesenchymal stem cells (MSCs) have been proven beneficial to liver regeneration after damage, the underlying mechanism of their therapeutic effects are not fully understood. Oxidative stress and mitochondrial functionality alteration directly contributes to the hepatocyte apoptosis and development of liver fibrosis. This study aims to elucidate the mechanism by which hUC-MSC alleviates liver fibrosis and mitochondrial dysfunction. RNA-sequencing was performed to characterize the transcriptomic changes after implantation of hUC-MSCs in mice with liver fibrosis. Next, western blot, RT-PCR, immunohistochemical and immunofluorescence staining were used to evaluate the expression of different genes in vitro and in vivo. Additionally, mitochondrial morphological and dynamic changes, ROS content, and ATP production were examined. Slc25a47, a newly identified liver-specific mitochondrial NAD+ transporter, was notably reduced in CCl4-treated mice and H2O2-stimulated hepatocytes. Conversely, hUC-MSCs increased the Slc25a47 expression and NAD+ level within mitochondria, thereby enhanced Sirt3 protein activity and alleviated mitochondrial dysfunction in the liver. Furthermore, Slc25a47 knockdown could partially abrogate the protective effects of hUC-MSCs on H2O2-induced mitochondrial fission and oxidative stress in hepatocytes. Our study illustrates that Slc25a47 is a key molecular for hUC-MSCs to improve liver fibrosis and regulates mitochondrial function through Sirt3 for the first time, and providing a theoretical basis for the clinical translation of hUC-MSCs transplantation in the treatment of patients with liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
14
|
Sadeghi S, Mosaffa N, Huang B, Ramezani Tehrani F. Protective role of stem cells in POI: Current status and mechanism of action, a review article. Heliyon 2024; 10:e23271. [PMID: 38169739 PMCID: PMC10758796 DOI: 10.1016/j.heliyon.2023.e23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Premature ovarian insufficiency (POI) has far-reaching consequences on women's life quality. Due to the lack of full recognition of the etiology and complexity of this disease, there is no appropriate treatment for infected patients. Recently, stem cell therapy has attracted the attention of regenerative medicine scholars and offered promising outcomes for POI patients. Several kinds of stem cells, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) have been used for the treatment of ovarian diseases. However, their potential protective mechanisms are still unknown. Undoubtedly, a better understanding of the therapeutic molecular and cellular mechanisms of stem cells will address uncover strategies to increase their clinical application for multiple disorders such as POI. This paper describes a detailed account of the potential properties of different types of stem cells and provides a comprehensive review of their protective mechanisms, particularly MSC, in POI disorder. In addition, ongoing challenges and several strategies to improve the efficacy of MSC in clinical use are addressed. Therefore, this review will provide proof-of-concept for further clinical application of stem cells in POI.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Foundation for Research & Education Excellence, AL, USA
| |
Collapse
|
15
|
Lu Q, Zhang Y, Botchway BOA, Huang M, Liu X. Syntaphilin Inactivation Can Enhance Axonal Mitochondrial Transport to Improve Spinal Cord Injury. Mol Neurobiol 2023; 60:6556-6565. [PMID: 37458986 DOI: 10.1007/s12035-023-03494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/08/2023] [Indexed: 09/28/2023]
Abstract
Mitochondria are important organelle of eukaryotic cells. They consists of a large number of different proteins that provide most of the ATP and supply power for the growth, function, and regeneration of neurons. Therefore, smitochondrial transport ensures that adequate ATP is supplied for metabolic activities. Spinal cord injury (SCI), a detrimental condition, has high morbidity and mortality rates. Currently, the available treatments only provide symptomatic relief for long-term disabilities. Studies have implicated mitochondrial transport as a critical factor in axonal regeneration. Hence, enhancing mitochondrial transports could be beneficial for ameliorating SCI. Syntaphilin (Snph) is a mitochondrial docking protein that acts as a "static anchor," and its inhibition enhances mitochondrial transports. Therefore, Snph as a key mediator of mitochondrial transports, may contribute to improving axonal regeneration following SCI. Herein, we examine Snph's biological effects and its relation to mitochondrial pathway. Then, we elaborate on mitochondrial transports after SCI, the possible role of Snph in SCI, and some possible therapeutic approaches by Snph.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
16
|
Paliwal S, Jain S, Mudgal P, Verma K, Paliwal S, Sharma S. Mitochondrial transfer restores impaired liver functions by AMPK/ mTOR/PI3K-AKT pathways in metabolic syndrome. Life Sci 2023; 332:122116. [PMID: 37739165 DOI: 10.1016/j.lfs.2023.122116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
AIM We investigated the effect of mitochondria transfer in high fat diet and streptozotocin (HFD + STZ) induced metabolic syndrome (MeS) in rats. The effect of mitochondria transfer in MeS with co-existing hypertension, hyperlipidaemia, diabetes and fatty liver together, has not been reported. MATERIALS AND METHODS Heathy mitochondria was transferred intravenously and the effect on several physiological parameters and biochemical parameters were examined in HFD + STZ rats. In addition, RNA-sequencing of healthy liver tissues was performed to elucidate the molecular pathways affected by mitochondria transfer in restoring metabolic health. KEY FINDINGS We observed reduction in both systolic and diastolic blood pressure levels, reduced blood glucose levels, and a marked reduction in serum lipid profiles. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) also improved along with evident restoration of liver morphology demonstrated by histopathological analysis. Enhanced mitochondrial biogenetics and reduction in oxidative stress and inflammatory markers was also observed. The pathway enrichment analysis revealed reduction in insulin resistance, inflammatory markers, regulation of mitochondrial bioenergetics, calcium ion homeostasis, fatty-acid β-oxidation, cytokine immune regulators, and enhanced lipid solubilisation. The significant effect of healthy mitochondria transfer in restoration of metabolic functions was observed by the activation of PI3K-AKT, AMPK/mTOR pathways and cytokine immune regulators, suggesting that inflammatory mediators were also significantly affected after mitochondria transfer. SIGNIFICANCE This study, provides insights on molecular processes triggered by mitochondria transfer in fatty liver regeneration and improvement of overall metabolic health.
Collapse
Affiliation(s)
- Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pallavi Mudgal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| |
Collapse
|
17
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
18
|
Zhang T, Nie Y, Wang J. The emerging significance of mitochondrial targeted strategies in NAFLD treatment. Life Sci 2023; 329:121943. [PMID: 37454757 DOI: 10.1016/j.lfs.2023.121943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, ranging from liver steatosis to nonalcoholic steatohepatitis, which ultimately progresses to fibrosis, cirrhosis, and hepatocellular carcinoma. Individuals with NAFLD have a higher risk of developing cardiovascular and extrahepatic cancers. Despite the great progress being made in understanding the pathogenesis and the introduction of new pharmacological targets for NAFLD, no drug or intervention has been accepted for its management. Recent evidence suggests that NAFLD may be a mitochondrial disease, as mitochondrial dysfunction is involved in the pathological processes that lead to NAFLD. In this review, we describe the recent advances in our understanding of the mechanisms associated with mitochondrial dysfunction in NAFLD progression. Moreover, we discuss recent advances in the efficacy of mitochondria-targeted compounds (e.g., Mito-Q, MitoVit-E, MitoTEMPO, SS-31, mitochondrial uncouplers, and mitochondrial pyruvate carrier inhibitors) for treating NAFLD. Furthermore, we present some medications currently being tested in clinical trials for NAFLD treatment, such as exercise, mesenchymal stem cells, bile acids and their analogs, and antidiabetic drugs, with a focus on their efficacy in improving mitochondrial function. Based on this evidence, further investigations into the development of mitochondria-based agents may provide new and promising alternatives for NAFLD management.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
19
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stromal/stem cells and their extracellular vesicles in liver diseases: insights on their immunomodulatory roles and clinical applications. Cell Biosci 2023; 13:162. [PMID: 37670393 PMCID: PMC10478279 DOI: 10.1186/s13578-023-01122-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Liver disease is a leading cause of mortality and morbidity that is rising globally. Liver dysfunctions are classified into acute and chronic diseases. Various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Up to now, liver transplantation could be the last resort for patients with end-stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stromal/stem cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties can be effectively used for treating liver diseases but without the limitation that are associated with liver transplantation. In this review, we summarize and discuss recent advances in the characteristics of MSCs and the potential action mechanisms of MSCs-based cell therapies for liver diseases. We also draw attention to strategies to potentiate the therapeutic properties of MSCs through pre-treatments or gene modifications. Finally, we discuss progress toward clinical application of MSCs or their extracellular vesicles in liver diseases.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Liu Q, Bi Y, Song S, Zhu K, Qiao X, Wang H, Ji G. Exosomal miR-17-5p from human embryonic stem cells prevents pulmonary fibrosis by targeting thrombospondin-2. Stem Cell Res Ther 2023; 14:234. [PMID: 37667335 PMCID: PMC10478444 DOI: 10.1186/s13287-023-03449-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/11/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease characterized by pulmonary fibrosis and lung dysfunction, ultimately leading to respiratory failure. Many preclinical studies have investigated the therapeutic potential of stem cell-derived exosomes in this disease, particularly mesenchymal stem cell-derived exosomes. However, the effects of embryonic stem cell-derived exosomes in IPF remain unclear. METHODS We established a bleomycin (BLM)-induced pulmonary fibrosis mice model and administered human embryonic stem cell exosomes (hESC-exo) from the first day after BLM treatment. The effects of hESC-exo were assessed by pulmonary function tests, biochemical analysis, histochemistry, quantitative real-time polymerase chain reaction (qPCR), and western blot (WB). RNA-seq was used to screen for the potential therapeutic targets of hESC-exo in fibrotic lungs; the identified signaling axis was characterized using a luciferase assay, qPCR, and WB. RESULTS Results indicated hESC-exo administration notably alleviated inflammation, removed deposited collagen, and rescued alveolar architecture in the lungs of BLM-induced mice. In vivo and in vitro tests revealed that hESC-exo-derived miR-17-5p directly bound thrombospondin-2 (Thbs2) to regulate inflammation and fibrosis; thus, hESC-exo protected against BLM toxicity in the lungs via the miR-17-5p/Thbs2 axis. CONCLUSION These results suggest a promising new treatment for fibrosis-associated diseases.
Collapse
Affiliation(s)
- Qun Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youkun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaole Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqi Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlong Qiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiwen Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guangju Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Chang R, Jia H, Dong Z, Xu Q, Liu L, Majigsuren Z, Batbaatar T, Xu C, Yang Q, Sun X. Free Fatty Acids Induce Apoptosis of Mammary Epithelial Cells of Ketotic Dairy Cows via the Mito-ROS/NLRP3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12645-12656. [PMID: 37585786 DOI: 10.1021/acs.jafc.3c02090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Early lactation increases metabolic stress in ketotic dairy cows, leading to mitochondrial damage, apoptosis, and inflammatory response in mammary epithelial cells. The pyrin domain 3 (NLRP3) pathway involving the mitochondrial reactive oxygen species (Mito-ROS)-induced nucleotide-binding oligomerization domain-like receptor has been recognized as a key mechanism in this inflammatory response and cell apoptosis. This study aimed to elucidate the underlying regulatory mechanism of Mito-ROS-NLRP3 pathway-mediated mammary epithelial cell apoptosis in dairy cows with ketosis. Mitochondrial damage and cellular apoptotic program and NLRP3 inflammasome activation were observed in the mammary gland of ketotic cows. Similar damage was detected in MAC-T cells treated with exogenous fatty acids (FFAs). However, NLRP3 inhibitor MCC950 pretreatment or Mito-ROS scavenging by MitoTEMPO attenuated apoptosis in FFA-induced MAC-T cells by inhibiting the NLRP3 inflammasome pathway. These findings reveal that the Mito-ROS-NLRP3 pathway activation is a potent mechanism underlying mammary epithelial cell apoptosis in response to metabolic stress in ketotic dairy cows, which further contributes to reduced milk yield.
Collapse
Affiliation(s)
- Renxu Chang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongdou Jia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhihao Dong
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qiushi Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zolzaya Majigsuren
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar 17024, Mongolia
| | - Tugsjargal Batbaatar
- State Central Veterinary Laboratory, P. O. Box 53/33, Zaisan, Ulaanbaatar 210153, Mongolia
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xudong Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
22
|
Wang YH, Wang ML, Tao YC, Wu DB, Chen EQ, Tang H. The high level of IL-1β in the serum of ACLF patients induces increased IL-8 expression in hUC-MSCs and reduces the efficacy of hUC-MSCs in liver failure. Stem Cell Res Ther 2023; 14:231. [PMID: 37649110 PMCID: PMC10468895 DOI: 10.1186/s13287-023-03455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Stem cells play a therapeutic role mainly through immunoregulation. However, the immunomodulatory function of stem cells may be affected by inflammation-related factors in patients' serum. Therefore, this study aims to investigate the possible mechanism by which acute-on-chronic liver failure (ACLF) patient serum influences the efficacy of hUC-MSCs. METHODS The serum of surviving and dead ACLF patients was collected to culture hUC-MSCs in vitro, and the hUC-MSCs cultured in the serum of ACLF patients were used to treat acute liver failure (ALF) rats. The therapeutic effect on the rats was evaluated by a survival curve, the transaminase level and liver histopathology. The expression of cytokines in hUC-MSCs was detected by Q-PCR and ELISA. RESULTS Serum pretreatment reduced the therapeutic effect of hUC-MSCs on ALF, especially pretreatment in the serum from dead ACLF patients. After hUC-MSCs were cultured in the serum of surviving or dead ACLF patients, the most differentially expressed factor was IL-8. Interfering with the expression of IL-8 in hUC-MSCs can improve the therapeutic effect of hUC-MSCs on ALF. The high level of IL-1β in the serum of dead ACLF patients causes the increased expression of IL-8 in hUC-MSCs through the activation of the NF-κB signaling pathway. Meanwhile, we found that the neutralizing IL-1β in serum from dead ACLF patients can improve the therapeutic effect of hUC-MSCs on ALF. CONCLUSION The high level of IL-1β in ACLF serum can promote the expression of IL-8 in hUC-MSCs through the NF-κB signaling pathway, thus reducing the effect of hUC-MSCs on ALF.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Cen Y, Lou G, Qi J, Zheng M, Liu Y. A new perspective on mesenchymal stem cell-based therapy for liver diseases: restoring mitochondrial function. Cell Commun Signal 2023; 21:214. [PMID: 37596671 PMCID: PMC10436412 DOI: 10.1186/s12964-023-01230-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/16/2023] [Indexed: 08/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising alternative treatment for liver disease due to their roles in regeneration, fibrosis inhibition, and immunoregulation. Mitochondria are crucial in maintaining hepatocyte integrity and function. Mitochondrial dysfunction, such as impaired synthesis of adenosine triphosphate (ATP), decreased activity of respiratory chain complexes, and altered mitochondrial dynamics, is observed in most liver diseases. Accumulating evidence has substantiated that the therapeutic potential of MSCs is mediated not only through their cell replacement and paracrine effects but also through their regulation of mitochondrial dysfunction in liver disease. Here, we comprehensively review the involvement of mitochondrial dysfunction in the development of liver disease and how MSCs can target mitochondrial dysfunction. We also discuss recent advances in a novel method that modifies MSCs to enhance their functions in liver disease. A full understanding of MSC restoration of mitochondrial function and the underlying mechanisms will provide innovative strategies for clinical applications. Video Abstract.
Collapse
Affiliation(s)
- Yelei Cen
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Guohua Lou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Jinjin Qi
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| |
Collapse
|
24
|
Mechanisms of Action of Mesenchymal Stem Cells in Metabolic-Associated Fatty Liver Disease. Stem Cells Int 2023; 2023:3919002. [PMID: 36644008 PMCID: PMC9839417 DOI: 10.1155/2023/3919002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is currently the most common chronic liver disease worldwide. However, its pathophysiological mechanism is complicated, and currently, it has no FDA-approved pharmacological therapies. In recent years, mesenchymal stem cell (MSC) therapy has attracted increasing attention in the treatment of hepatic diseases. MSCs are multipotent stromal cells that originated from mesoderm mesenchyme, which have self-renewal and multipotent differentiation capability. Recent experiments and studies have found that MSCs have the latent capacity to be used for MAFLD treatment. MSCs have the potential to differentiate into hepatocytes, which could be induced into hepatocyte-like cells (HLCs) with liver-specific morphology and function under appropriate conditions to promote liver tissue regeneration. They can also reduce liver tissue injury and reverse the development of MAFLD by regulating immune response, antifibrotic activities, and lipid metabolism. Moreover, several advantages are attributed to MSC-derived exosomes (MSC-exosomes), such as targeted delivery, reliable reparability, and poor immunogenicity. After entering the target cells, MSC-exosomes help regulate cell function and signal transduction; thus, it is expected to become an emerging treatment for MAFLD. In this review, we comprehensively discussed the roles of MSCs in MAFLD, main signaling pathways of MSCs that affect MAFLD, and mechanisms of MSC-exosomes on MAFLD.
Collapse
|
25
|
Amniotic stem cells as a source of regenerative medicine to treat female infertility. Hum Cell 2023; 36:15-25. [PMID: 36251241 PMCID: PMC9813167 DOI: 10.1007/s13577-022-00795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023]
Abstract
Impaired reproductive health is a worldwide problem that affects the psychological well-being of a society. Despite the technological developments to treat infertility, the global infertility rate is increasing significantly. Many infertility conditions are currently treated using various advanced clinical approaches such as intrauterine semination (IUI), in vitro fertilization (IVF), and intracytoplasmic injection (ICSI). Nonetheless, clinical management of some conditions such as dysfunctional endometrium, premature ovarian failure, and ovarian physiological aging still pose significant challenges. Stem cells based therapeutic strategies have a long-standing history to treat many infertility conditions, but ethical restrictions do not allow the broad-scale utilization of adult mesenchymal stromal/stem cells (MSCs). Easily accessible, placental derived or amniotic stem cells present an invaluable alternative source of non-immunogenic and non-tumorigenic stem cells that possess multilineage potential. Given these characteristics, placental or amniotic stem cells (ASCs) have been investigated for therapeutic purposes to address infertility in the last decade. This study aims to summarize the current standing and progress of human amniotic epithelial stem cells (hAECs), amniotic mesenchymal stem cells (hAMSCs), and amniotic fluid stem cells (hAFSCs) in the field of reproductive medicine. The therapeutic potential of these cells to restore or enhance normal ovarian function and pregnancy outcomes are highlighted in this study.
Collapse
|
26
|
Han J, Lee C, Hur J, Jung Y. Current Therapeutic Options and Potential of Mesenchymal Stem Cell Therapy for Alcoholic Liver Disease. Cells 2022; 12:cells12010022. [PMID: 36611816 PMCID: PMC9818513 DOI: 10.3390/cells12010022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The therapeutic efficiency of current therapies for ALD is limited, and there is no FDA-approved therapy for ALD at present. Various strategies targeting pathogenic events in the progression of ALD are being investigated in preclinical and clinical trials. Recently, mesenchymal stem cells (MSCs) have emerged as a promising candidate for ALD treatment and have been tested in several clinical trials. MSC-released factors have captured attention, as they have the same therapeutic function as MSCs. Herein, we focus on current therapeutic options, recently proposed strategies, and their limitations in ALD treatment. Also, we review the therapeutic effects of MSCs and those of MSC-related secretory factors on ALD. Although accumulating evidence suggests the therapeutic potential of MSCs and related factors in ALD, the mechanisms underlying their actions in ALD have not been well studied. Further investigations of the detailed mechanisms underlying the therapeutic role of MSCs in ALD are required to expand MSC therapies to clinical applications. This review provides information on current or possible treatments for ALD and contributes to our understanding of the development of effective and safe treatments for ALD.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Correspondence: (J.H.); (Y.J.); Tel.: +82-51-510-8074 (J.H.); +82-51-510-2262 (Y.J.)
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
- Correspondence: (J.H.); (Y.J.); Tel.: +82-51-510-8074 (J.H.); +82-51-510-2262 (Y.J.)
| |
Collapse
|
27
|
Shi Y, Yang X, Wang S, Wu Y, Zheng L, Tang Y, Gao Y, Niu J. Human umbilical cord mesenchymal stromal cell-derived exosomes protect against MCD-induced NASH in a mouse model. Stem Cell Res Ther 2022; 13:517. [DOI: 10.1186/s13287-022-03201-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background and aims
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are increasingly being studied in clinical trials of end-stage liver disease because of their good tissue repair and anti-inflammatory effects. hUC-MSC exosomes are vesicles with spherical structures secreted by cells that produce them. The diameter of exosomes is much smaller than that of hUC-MSCs, suggesting that exosomes might be a novel and safer therapeutic product of mesenchymal stem cells. As exosomes have been suggested to have biochemical functions similar to those of hUC-MSCs, this study investigated the efficiency of hUC-MSC-derived exosomes in protecting against nonalcoholic steatohepatitis using an MCD-induced mouse model.
Methods
Human umbilical cord mesenchymal stem cell-derived exosomes were extracted and purified. The effect of these exosomes on disease progression in an MCD-induced nonalcoholic steatohepatitis mouse model was investigated.
Results
The results showed that UC-MSC exosomes intravenously transplanted into mice with MCD-induced NASH improved MCD-induced body weight loss and liver damage in a mouse model. Additionally, the inflammatory cytokines in liver tissue were reduced, which may be caused by exosome-induced macrophage anti-inflammatory phenotypes both in vitro and in vivo. In addition, UC-MSC exosomes reversed PPARα level in ox-LDL-treated hepatocytes in vitro and in NASH mouse liver, which had been downregulated.
Conclusions
UC-MSC exosomes alleviate MCD-induced NASH in mice by regulating the anti-inflammatory phenotype of macrophages and by reversing PPARα protein expression in liver cells, which holds great potential in NASH therapy.
Collapse
|
28
|
Mesenchymal stem cells-derived exosomal miR-24-3p ameliorates non-alcohol fatty liver disease by targeting Keap-1. Biochem Biophys Res Commun 2022; 637:331-340. [DOI: 10.1016/j.bbrc.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
29
|
Chen Y, Yang F, Chu Y, Yun Z, Yan Y, Jin J. Mitochondrial transplantation: opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease. Lab Invest 2022; 20:483. [PMID: 36273156 PMCID: PMC9588235 DOI: 10.1186/s12967-022-03693-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
Abstract
Metabolic diseases, including obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD), are rising in both incidence and prevalence and remain a major global health and socioeconomic burden in the twenty-first century. Despite an increasing understanding of these diseases, the lack of effective treatments remains an ongoing challenge. Mitochondria are key players in intracellular energy production, calcium homeostasis, signaling, and apoptosis. Emerging evidence shows that mitochondrial dysfunction participates in the pathogeneses of metabolic diseases. Exogenous supplementation with healthy mitochondria is emerging as a promising therapeutic approach to treating these diseases. This article reviews recent advances in the use of mitochondrial transplantation therapy (MRT) in such treatment.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,School of Medicine, Jiangsu University, ZhenjiangJiangsu Province, 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,School of Medicine, Jiangsu University, ZhenjiangJiangsu Province, 212013, China
| | - Ying Chu
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,Central Laboratory, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China
| | - Zhihua Yun
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China. .,Central Laboratory, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.
| | - Jianhua Jin
- Department of Oncology, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.
| |
Collapse
|
30
|
Bi Y, Qiao X, Liu Q, Song S, Zhu K, Qiu X, Zhang X, Jia C, Wang H, Yang Z, Zhang Y, Ji G. Systemic proteomics and miRNA profile analysis of exosomes derived from human pluripotent stem cells. Stem Cell Res Ther 2022; 13:449. [PMID: 36064647 PMCID: PMC9444124 DOI: 10.1186/s13287-022-03142-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing studies have reported the therapeutic effect of mesenchymal stem cell (MSC)-derived exosomes by which protein and miRNA are clearly characterized. However, the proteomics and miRNA profiles of exosomes derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) remain unclear. METHODS In this study, we isolated exosomes from hESCs, hiPSCs, and human umbilical cord mesenchymal stem cells (hUC-MSCs) via classic ultracentrifugation and a 0.22-μm filter, followed by the conservative identification. Tandem mass tag labeling and label-free relative peptide quantification together defined their proteomics. High-throughput sequencing was performed to determine miRNA profiles. Then, we conducted a bioinformatics analysis to identify the dominant biological processes and pathways modulated by exosome cargos. Finally, the western blot and RT-qPCR were performed to detect the actual loads of proteins and miRNAs in three types of exosomes. RESULTS Based on our study, the cargos from three types of exosomes contribute to sophisticated biological processes. In comparison, hESC exosomes (hESC-Exos) were superior in regulating development, metabolism, and anti-aging, and hiPSC exosomes (hiPSC-Exos) had similar biological functions as hESC-Exos, whereas hUC-MSCs exosomes (hUC-MSC-Exos) contributed more to immune regulation. CONCLUSIONS The data presented in our study help define the protein and miRNA landscapes of three exosomes, predict their biological functions via systematic and comprehensive network analysis at the system level, and reveal their respective potential applications in different fields so as to optimize exosome selection in preclinical and clinical trials.
Collapse
Affiliation(s)
- Youkun Bi
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlong Qiao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Liu
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaole Song
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqi Zhu
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Qiu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiang Zhang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ce Jia
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huiwen Wang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiguang Yang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Zhang
- Sixth Department of Liver Disease, Dalian Public Health Clinical Center, Dalian Medical University, Dalian, 116023, China.
| | - Guangju Ji
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
32
|
Wang ZH, Chen L, Li W, Chen L, Wang YP. Mitochondria transfer and transplantation in human health and diseases. Mitochondrion 2022; 65:80-87. [PMID: 35623561 DOI: 10.1016/j.mito.2022.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/16/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
Mitochondria are dynamic organelles responsible for energy production and cell metabolism. Disorders in mitochondrial function impair tissue integrity and have been implicated in multiple human diseases. Rather than constrained in host cells, mitochondria were recently found to actively travel between cells through nanotubes or extracellular vesicles. Mitochondria transportation represents a key mechanism of intercellular communication implicated in metabolic homeostasis, immune response, and stress signaling. Here we reviewed recent progress in mitochondria transfer under physiological and pathological conditions. Specifically, tumor cells imported mitochondria from adjacent cells in the microenvironment which potentially modulated cancer progression. Intercellular mitochondria trafficking also inspired therapeutic intervention of human diseases with mitochondria transplantation. Artificial mitochondria, generated through mitochondria genome engineering or mitochondria-nucleus hybridization, further advanced our understanding of mitochondrial biology and its therapeutic potential. Innovative tools and animal models of mitochondria transplantation will assist the development of new therapies for mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Zi-Hao Wang
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, Cancer Institute, and The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai 20032, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China.
| | - Yi-Ping Wang
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, Cancer Institute, and The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai 20032, China.
| |
Collapse
|
33
|
The assessment of mesenchymal stem cells therapy in acute on chronic liver failure and chronic liver disease: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res Ther 2022; 13:204. [PMID: 35578365 PMCID: PMC9109309 DOI: 10.1186/s13287-022-02882-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) therapy is showing potential therapeutic effects on liver function improvement in patients with chronic liver disease; however, the consensus on efficacy and safety of MSCs has not been reached. Methods We performed this systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the efficacy and safety of MSCs therapy for patients with chronic liver disease. A detailed search of the Cochrane Library, MEDLINE, Web of Science, and EMBASE databases was conducted to find studies published prior to September 15, 2021. The outcome measures were survival rate, model of end-stage liver disease (MELD) score, albumin, total bilirubin, coagulation function, and aminotransferase. Results A literature search resulted in 892 citations. Of these, 12 studies met the inclusion criteria. It was found that compared with conventional treatment, MSCs therapy was associated with improved liver function including the MELD score, albumin levels, and coagulation function. However, it had no obvious beneficial effects on survival rate and aminotransferase levels. Subgroup analyses indicated that MSCs therapy had therapeutic effects on patients with both acute on chronic liver failure (ACLF) and cirrhosis. BM-MSCs and UC-MSCs treatment had similar efficacy to improve liver function. The effectiveness varied slightly between the peripheral intravenous injection and hepatic arterial injection. Five studies reported that the only adverse event of the MSCs therapy was fever, and no serious adverse events and side effects were reported. Analysis on clinical symptoms showed that encephalopathy and gastrointestinal hemorrhage events were reduced after MSCs therapy. Conclusions In conclusion, this study suggested that MSCs therapy could be a potential therapeutic alternative for patients with chronic liver disease in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02882-4.
Collapse
|
34
|
The Mighty Mitochondria Are Unifying Organelles and Metabolic Hubs in Multiple Organs of Obesity, Insulin Resistance, Metabolic Syndrome, and Type 2 Diabetes: An Observational Ultrastructure Study. Int J Mol Sci 2022; 23:ijms23094820. [PMID: 35563211 PMCID: PMC9101653 DOI: 10.3390/ijms23094820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022] Open
Abstract
Mitochondria (Mt) are essential cellular organelles for the production of energy and thermogenesis. Mt also serve a host of functions in addition to energy production, which include cell signaling, metabolism, cell death, and aging. Due to the central role of Mt in metabolism as metabolic hubs, there has been renewed interest in how Mt impact metabolic pathways and multiple pathologies. This review shares multiple observational ultrastructural findings in multiple cells and organs to depict aberrant mitochondrial (aMt) remodeling in pre-clinical rodent models. Further, it is intended to show how remodeling of Mt are associated with obesity, insulin resistance, metabolic syndrome (MetS), and type 2 diabetes mellitus (T2DM). Specifically, Mt remodeling in hypertensive and insulin-resistant lean models (Ren2 rat models), lean mice with streptozotocin-induced diabetes, obesity models including diet-induced obesity, genetic leptin-deficient ob/ob, and leptin receptor-deficient db/db diabetic mice are examined. Indeed, aMt dysfunction and damage have been implicated in multiple pathogenic diseases. Manipulation of Mt such as the induction of Mt biogenesis coupled with improvement of mitophagy machinery may be helpful to remove leaky damaged aMt in order to prevent the complications associated with the generation of superoxide-derived reactive oxygen species and the subsequent reactive species interactome. A better understanding of Mt remodeling may help to unlock many of the mysteries in obesity, insulin resistance, MetS, T2DM, and the associated complications of diabetic end-organ disease.
Collapse
|