1
|
Hérault C, Pihl T, Hudry B. Cellular sex throughout the organism underlies somatic sexual differentiation. Nat Commun 2024; 15:6925. [PMID: 39138201 PMCID: PMC11322332 DOI: 10.1038/s41467-024-51228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Sex chromosomes underlie the development of male or female sex organs across species. While systemic signals derived from sex organs prominently contribute to sex-linked differences, it is unclear whether the intrinsic presence of sex chromosomes in somatic tissues has a specific function. Here, we use genetic tools to show that cellular sex is crucial for sexual differentiation throughout the body in Drosophila melanogaster. We reveal that every somatic cell converts the intrinsic presence of sex chromosomes into the active production of a sex determinant, a female specific serine- and arginine-rich (SR) splicing factor. This discovery dismisses the mosaic model which posits that only a subset of cells has the potential to sexually differentiate. Using cell-specific sex reversals, we show that this prevalence of cellular sex drives sex differences in organ size and body weight and is essential for fecundity. These findings demonstrate that cellular sex drives differentiation programs at an organismal scale and highlight the importance of cellular sex pathways in sex trait evolution.
Collapse
Affiliation(s)
- Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
2
|
Paylar B, Pramanik S, Bezabhe YH, Olsson PE. Temporal sex specific brain gene expression pattern during early rat embryonic development. Front Cell Dev Biol 2024; 12:1343800. [PMID: 38961864 PMCID: PMC11219815 DOI: 10.3389/fcell.2024.1343800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Background: The classical concept of brain sex differentiation suggests that steroid hormones released from the gonads program male and female brains differently. However, several studies indicate that steroid hormones are not the only determinant of brain sex differentiation and that genetic differences could also be involved. Methods: In this study, we have performed RNA sequencing of rat brains at embryonic days 12 (E12), E13, and E14. The aim was to identify differentially expressed genes between male and female rat brains during early development. Results: Analysis of genes expressed with the highest sex differences showed that Xist was highly expressed in females having XX genotype with an increasing expression over time. Analysis of genes expressed with the highest male expression identified three early genes, Sry2, Eif2s3y, and Ddx3y. Discussion: The observed sex-specific expression of genes at early development confirms that the rat brain is sexually dimorphic prior to gonadal action on the brain and identifies Sry2 and Eif2s3y as early genes contributing to male brain development.
Collapse
Affiliation(s)
| | | | | | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
3
|
Olney KC, Plaisier SB, Phung TN, Silasi M, Perley L, O'Bryan J, Ramirez L, Kliman HJ, Wilson MA. Sex differences in early and term placenta are conserved in adult tissues. Biol Sex Differ 2022; 13:74. [PMID: 36550527 PMCID: PMC9773522 DOI: 10.1186/s13293-022-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pregnancy complications vary based on the fetus's genetic sex, which may, in part, be modulated by the placenta. Furthermore, developmental differences early in life can have lifelong health outcomes. Yet, sex differences in gene expression within the placenta at different timepoints throughout pregnancy and comparisons to adult tissues remains poorly characterized. METHODS Here, we collect and characterize sex differences in gene expression in term placentas (≥ 36.6 weeks; 23 male XY and 27 female XX). These are compared with sex differences in previously collected first trimester placenta samples and 42 non-reproductive adult tissues from GTEx. RESULTS We identify 268 and 53 sex-differentially expressed genes in the uncomplicated late first trimester and term placentas, respectively. Of the 53 sex-differentially expressed genes observed in the term placentas, 31 are also sex-differentially expressed genes in the late first trimester placentas. Furthermore, sex differences in gene expression in term placentas are highly correlated with sex differences in the late first trimester placentas. We found that sex-differential gene expression in the term placenta is significantly correlated with sex differences in gene expression in 42 non-reproductive adult tissues (correlation coefficient ranged from 0.892 to 0.957), with the highest correlation in brain tissues. Sex differences in gene expression were largely driven by gene expression on the sex chromosomes. We further show that some gametologous genes (genes with functional copies on X and Y) will have different inferred sex differences if the X-linked gene expression in females is compared to the sum of the X-linked and Y-linked gene expression in males. CONCLUSIONS We find that sex differences in gene expression are conserved in late first trimester and term placentas and that these sex differences are conserved in adult tissues. We demonstrate that there are sex differences associated with innate immune response in late first trimester placentas but there is no significant difference in gene expression of innate immune genes between sexes in healthy full-term placentas. Finally, sex differences are predominantly driven by expression from sex-linked genes.
Collapse
Affiliation(s)
- Kimberly C Olney
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Seema B Plaisier
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Tanya N Phung
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Michelle Silasi
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mercy Hospital St. Louis, St. Louis, MO, 63141, USA
| | - Lauren Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jane O'Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lucia Ramirez
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA.
- The Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85282, USA.
| |
Collapse
|
4
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
5
|
Heydari R, Jangravi Z, Maleknia S, Seresht-Ahmadi M, Bahari Z, Salekdeh GH, Meyfour A. Y chromosome is moving out of sex determination shadow. Cell Biosci 2022; 12:4. [PMID: 34983649 PMCID: PMC8724748 DOI: 10.1186/s13578-021-00741-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Although sex hormones play a key role in sex differences in susceptibility, severity, outcomes, and response to therapy of different diseases, sex chromosomes are also increasingly recognized as an important factor. Studies demonstrated that the Y chromosome is not a 'genetic wasteland' and can be a useful genetic marker for interpreting various male-specific physiological and pathophysiological characteristics. Y chromosome harbors male‑specific genes, which either solely or in cooperation with their X-counterpart, and independent or in conjunction with sex hormones have a considerable impact on basic physiology and disease mechanisms in most or all tissues development. Furthermore, loss of Y chromosome and/or aberrant expression of Y chromosome genes cause sex differences in disease mechanisms. With the launch of the human proteome project (HPP), the association of Y chromosome proteins with pathological conditions has been increasingly explored. In this review, the involvement of Y chromosome genes in male-specific diseases such as prostate cancer and the cases that are more prevalent in men, such as cardiovascular disease, neurological disease, and cancers, has been highlighted. Understanding the molecular mechanisms underlying Y chromosome-related diseases can have a significant impact on the prevention, diagnosis, and treatment of diseases.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrshad Seresht-Ahmadi
- Department of Basic Science and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Hoffman GE, Ma Y, Montgomery KS, Bendl J, Jaiswal MK, Kozlenkov A, Peters MA, Dracheva S, Fullard JF, Chess A, Devlin B, Sieberts SK, Roussos P. Sex Differences in the Human Brain Transcriptome of Cases With Schizophrenia. Biol Psychiatry 2022; 91:92-101. [PMID: 34154796 PMCID: PMC8463632 DOI: 10.1016/j.biopsych.2021.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND While schizophrenia differs between males and females in the age of onset, symptomatology, and disease course, the molecular mechanisms underlying these differences remain uncharacterized. METHODS To address questions about the sex-specific effects of schizophrenia, we performed a large-scale transcriptome analysis of RNA sequencing data from 437 controls and 341 cases from two distinct cohorts from the CommonMind Consortium. RESULTS Analysis across the cohorts identified a reproducible gene expression signature of schizophrenia that was highly concordant with previous work. Differential expression across sex was reproducible across cohorts and identified X- and Y-linked genes, as well as those involved in dosage compensation. Intriguingly, the sex expression signature was also enriched for genes involved in neurexin family protein binding and synaptic organization. Differential expression analysis testing a sex-by-diagnosis interaction effect did not identify any genome-wide signature after multiple testing corrections. Gene coexpression network analysis was performed to reduce dimensionality from thousands of genes to dozens of modules and elucidate interactions among genes. We found enrichment of coexpression modules for sex-by-diagnosis differential expression signatures, which were highly reproducible across the two cohorts and involved a number of diverse pathways, including neural nucleus development, neuron projection morphogenesis, and regulation of neural precursor cell proliferation. CONCLUSIONS Overall, our results indicate that the effect size of sex differences in schizophrenia gene expression signatures is small and underscore the challenge of identifying robust sex-by-diagnosis signatures, which will require future analyses in larger cohorts.
Collapse
Affiliation(s)
- Gabriel E Hoffman
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Yixuan Ma
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Jaroslav Bendl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Manoj Kumar Jaiswal
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - Alex Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | | | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - John F Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Chess
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York.
| |
Collapse
|
7
|
Łysiak M, Smits A, Roodakker KR, Sandberg E, Dimberg A, Mudaisi M, Bratthäll C, Strandeus M, Milos P, Hallbeck M, Söderkvist P, Malmström A. Deletions on Chromosome Y and Downregulation of the SRY Gene in Tumor Tissue Are Associated with Worse Survival of Glioblastoma Patients. Cancers (Basel) 2021; 13:cancers13071619. [PMID: 33807423 PMCID: PMC8036637 DOI: 10.3390/cancers13071619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Biological causes of sex disparity seen in the prevalence of cancer, including glioblastoma (GBM), remain poorly understood. One of the considered aspects is the involvement of the sex chromosomes, especially loss of chromosome Y (LOY). METHODS Tumors from 105 isocitrate dehydrogenase (IDH) wild type male GBM patients were tested with droplet digital PCR for copy number changes of ten genes on chromosome Y. Decreased gene expression, a proxy of gene loss, was then analyzed in 225 IDH wild type GBM derived from TCGA and overall survival in both cohorts was tested with Kaplan-Meier log-rank analysis and maximally selected rank statistics for cut-off determination. RESULTS LOY was associated with significantly shorter overall survival (7 vs. 14.6 months, p = 0.0016), and among investigated individual genes survival correlated most prominently with loss of the sex-determining region Y gene (SRY) (10.8 vs. 14.8 months, p = 0.0031). Gene set enrichment analysis revealed that epidermal growth factor receptor, platelet-derived growth factor receptor, and MYC proto-oncogene signaling pathways are associated with low SRY expression. CONCLUSION Our data show that deletions and reduced gene expression of chromosome Y genes, especially SRY, are associated with reduced survival of male GBM patients and connected to major susceptibility pathways of gliomagenesis.
Collapse
Affiliation(s)
- Małgorzata Łysiak
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Correspondence: (M.Ł.); (P.S.)
| | - Anja Smits
- Department of Neuroscience and Physiology, Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden;
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, 75185 Uppsala, Sweden; (K.R.R.); (E.S.)
| | - Kenney Roy Roodakker
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, 75185 Uppsala, Sweden; (K.R.R.); (E.S.)
| | - Elisabeth Sandberg
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, 75185 Uppsala, Sweden; (K.R.R.); (E.S.)
| | - Anna Dimberg
- Institute of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden;
| | - Munila Mudaisi
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Oncology in Linköping, Linköping University, 58185 Linköping, Sweden
| | | | | | - Peter Milos
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Neurosurgery in Linköping, Linköping University, 58185 Linköping, Sweden
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Clinical Pathology, Linköping University, 58185 Linköping, Sweden
| | - Peter Söderkvist
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Correspondence: (M.Ł.); (P.S.)
| | - Annika Malmström
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Advanced Home Care, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
8
|
Maxeiner S, Benseler F, Krasteva-Christ G, Brose N, Südhof TC. Evolution of the Autism-Associated Neuroligin-4 Gene Reveals Broad Erosion of Pseudoautosomal Regions in Rodents. Mol Biol Evol 2021; 37:1243-1258. [PMID: 32011705 PMCID: PMC7182215 DOI: 10.1093/molbev/msaa014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Variants in genes encoding synaptic adhesion proteins of the neuroligin family, most notably neuroligin-4, are a significant cause of autism spectrum disorders in humans. Although human neuroligin-4 is encoded by two genes, NLGN4X and NLGN4Y, that are localized on the X-specific and male-specific regions of the two sex chromosomes, the chromosomal localization and full genomic sequence of the mouse Nlgn4 gene remain elusive. Here, we analyzed the neuroligin-4 genes of numerous rodent species by direct sequencing and bioinformatics, generated complete drafts of multiple rodent neuroligin-4 genes, and examined their evolution. Surprisingly, we find that the murine Nlgn4 gene is localized to the pseudoautosomal region (PAR) of the sex chromosomes, different from its human orthologs. We show that the sequence differences between various neuroligin-4 proteins are restricted to hotspots in which rodent neuroligin-4 proteins contain short repetitive sequence insertions compared with neuroligin-4 proteins from other species, whereas all other protein sequences are highly conserved. Evolutionarily, these sequence insertions initiate in the clade eumuroidea of the infraorder myomorpha and are additionally associated with dramatic changes in noncoding sequences and gene size. Importantly, these changes are not exclusively restricted to neuroligin-4 genes but reflect major evolutionary changes that substantially altered or even deleted genes from the PARs of both sex chromosomes. Our results show that despite the fact that the PAR in rodents and the neuroligin-4 genes within the rodent PAR underwent massive evolutionary changes, neuroligin-4 proteins maintained a highly conserved core structure, consistent with a substantial evolutionary pressure preserving its physiological function.
Collapse
Affiliation(s)
- Stephan Maxeiner
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA.,Institute for Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | | - Nils Brose
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
9
|
Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev 2021; 120:28-47. [PMID: 33171144 PMCID: PMC7855816 DOI: 10.1016/j.neubiorev.2020.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Humans show reproducible sex-differences in cognition and psychopathology that may be contributed to by influences of gonadal sex-steroids and/or sex-chromosomes on regional brain development. Gonadal sex-steroids are well known to play a major role in sexual differentiation of the vertebrate brain, but far less is known regarding the role of sex-chromosomes. Our review focuses on this latter issue by bridging together two literatures that have to date been largely disconnected. We first consider "bottom-up" genetic and molecular studies focused on sex-chromosome gene content and regulation. This literature nominates specific sex-chromosome genes that could drive developmental sex-differences by virtue of their sex-biased expression and their functions within the brain. We then consider the complementary "top down" view, from magnetic resonance imaging studies that map sex- and sex chromosome effects on regional brain anatomy, and link these maps to regional gene-expression within the brain. By connecting these top-down and bottom-up approaches, we emphasize the potential role of X-linked genes in driving sex-biased brain development and outline key goals for future work in this field.
Collapse
Affiliation(s)
- Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, 20892, USA.
| | - Christine M Disteche
- Department of Pathology and Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Pottmeier P, Doszyn O, Peuckert C, Jazin E. Increased Expression of Y-Encoded Demethylases During Differentiation of Human Male Neural Stem Cells. Stem Cells Dev 2020; 29:1497-1509. [PMID: 33040644 DOI: 10.1089/scd.2020.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human neural stem cells (hNSCs) have long been used as an in vitro model to study neurogenesis and as candidates for nervous system therapy. Many parameters have been considered when evaluating the success of transplantation, but sex of donor and recipients is often not discussed. We investigated two commercial NSC lines, the female hNSC-H9 and male hNSC-H14, and we observed faster growth rates in the male cells. At 4 days of differentiation, male cells presented a significant increase in expression of DCX, an immature neuronal marker, while female cells showed a significant increase in RMST, a long noncoding RNA, which is indispensable during neurogenesis. In addition, expression of neural markers MAP2, PSD95, SYP, DCX, and TUJ1 at day 14 of differentiation suggested a similar differentiation potential in both lines. The most significant differences at day 14 of differentiation were the expression levels of RELN, with almost 100-fold difference between the sexes, and MASH1, with more than 1,000-fold increase in male cells. To evaluate whether some of the observed differences may be sex related, we measured the expression of gametologous genes located on the X- and Y-chromosome. Most noticeable was the increase of Y-encoded demethylases KDM6C (UTY) and KDM5D during differentiation of male cells. Our results indicate that attention should be paid to sex when planning neurogenesis and transplantation experiments.
Collapse
Affiliation(s)
- Philipp Pottmeier
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Olga Doszyn
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Christiane Peuckert
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden.,Department of Molecular Biology, Stockholm University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Godfrey AK, Naqvi S, Chmátal L, Chick JM, Mitchell RN, Gygi SP, Skaletsky H, Page DC. Quantitative analysis of Y-Chromosome gene expression across 36 human tissues. Genome Res 2020; 30:860-873. [PMID: 32461223 PMCID: PMC7370882 DOI: 10.1101/gr.261248.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Little is known about how human Y-Chromosome gene expression directly contributes to differences between XX (female) and XY (male) individuals in nonreproductive tissues. Here, we analyzed quantitative profiles of Y-Chromosome gene expression across 36 human tissues from hundreds of individuals. Although it is often said that Y-Chromosome genes are lowly expressed outside the testis, we report many instances of elevated Y-Chromosome gene expression in a nonreproductive tissue. A notable example is EIF1AY, which encodes eukaryotic translation initiation factor 1A Y-linked, together with its X-linked homolog EIF1AX. Evolutionary loss of a Y-linked microRNA target site enabled up-regulation of EIF1AY, but not of EIF1AX, in the heart. Consequently, this essential translation initiation factor is nearly twice as abundant in male as in female heart tissue at the protein level. Divergence between the X and Y Chromosomes in regulatory sequence can therefore lead to tissue-specific Y-Chromosome-driven sex biases in expression of critical, dosage-sensitive regulatory genes.
Collapse
Affiliation(s)
- Alexander K Godfrey
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sahin Naqvi
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lukáš Chmátal
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard N Mitchell
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
12
|
Navarro-Cobos MJ, Balaton BP, Brown CJ. Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:226-238. [PMID: 32441398 PMCID: PMC7384012 DOI: 10.1002/ajmg.c.31800] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
One of the two X chromosomes in females is epigenetically inactivated, thereby compensating for the dosage difference in X-linked genes between XX females and XY males. Not all X-linked genes are completely inactivated, however, with 12% of genes escaping X chromosome inactivation and another 15% of genes varying in their X chromosome inactivation status across individuals, tissues or cells. Expression of these genes from the second and otherwise inactive X chromosome may underlie sex differences between males and females, and feature in many of the symptoms of XXY Klinefelter males, who have both an inactive X and a Y chromosome. We review the approaches used to identify genes that escape from X-chromosome inactivation and discuss the nature of their sex-biased expression. These genes are enriched on the short arm of the X chromosome, and, in addition to genes in the pseudoautosomal regions, include genes with and without Y-chromosomal counterparts. We highlight candidate escape genes for some of the features of Klinefelter syndrome and discuss our current understanding of the mechanisms underlying silencing and escape on the X chromosome as well as additional differences between the X in males and females that may contribute to Klinefelter syndrome.
Collapse
Affiliation(s)
- Maria Jose Navarro-Cobos
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Bradley P Balaton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Johansson MM, Pottmeier P, Suciu P, Ahmad T, Zaghlool A, Halvardson J, Darj E, Feuk L, Peuckert C, Jazin E. Novel Y-Chromosome Long Non-Coding RNAs Expressed in Human Male CNS During Early Development. Front Genet 2019; 10:891. [PMID: 31608120 PMCID: PMC6769107 DOI: 10.3389/fgene.2019.00891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/23/2019] [Indexed: 01/01/2023] Open
Abstract
Global microarray gene expression analyses previously demonstrated differences in female and male embryos during neurodevelopment. In particular, before sexual maturation of the gonads, the differences seem to concentrate on the expression of genes encoded on the X- and Y-chromosomes. To investigate genome-wide differences in expression during this early developmental window, we combined high-resolution RNA sequencing with qPCR to analyze brain samples from human embryos during the first trimester of development. Our analysis was tailored for maximum sensitivity to discover Y-chromosome gene expression, but at the same time, it was underpowered to detect X-inactivation escapees. Using this approach, we found that 5 out of 13 expressed gametolog pairs showed unbalanced gene dosage, and as a consequence, a male-biased expression. In addition, we found six novel non-annotated long non-coding RNAs on the Y-chromosome with conserved expression patterns in newborn chimpanzee. The tissue specific and time-restricted expression of these long non-coding RNAs strongly suggests important functions during central nervous system development in human males.
Collapse
Affiliation(s)
- Martin M Johansson
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Philipp Pottmeier
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Pascalina Suciu
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Tauseef Ahmad
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Ammar Zaghlool
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elisabeth Darj
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden.,Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christiane Peuckert
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden.,Department of Molecular Biology, Stockholms University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Wu CC, Klaesson A, Buskas J, Ranefall P, Mirzazadeh R, Söderberg O, Wolf JBW. In situ quantification of individual mRNA transcripts in melanocytes discloses gene regulation of relevance to speciation. J Exp Biol 2019; 222:jeb194431. [PMID: 30718374 PMCID: PMC6650291 DOI: 10.1242/jeb.194431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 01/12/2023]
Abstract
Functional validation of candidate genes involved in adaptation and speciation remains challenging. Here, we exemplify the utility of a method quantifying individual mRNA transcripts in revealing the molecular basis of divergence in feather pigment synthesis during early-stage speciation in crows. Using a padlock probe assay combined with rolling circle amplification, we quantified cell-type-specific gene expression in the histological context of growing feather follicles. Expression of Tyrosinase Related Protein 1 (TYRP1), Solute Carrier Family 45 member 2 (SLC45A2) and Hematopoietic Prostaglandin D Synthase (HPGDS) was melanocyte-limited and significantly reduced in follicles from hooded crow, explaining the substantially lower eumelanin content in grey versus black feathers. The central upstream Melanocyte Inducing Transcription Factor (MITF) only showed differential expression specific to melanocytes - a feature not captured by bulk RNA-seq. Overall, this study provides insight into the molecular basis of an evolutionary young transition in pigment synthesis, and demonstrates the power of histologically explicit, statistically substantiated single-cell gene expression quantification for functional genetic inference in natural populations.
Collapse
Affiliation(s)
- Chi-Chih Wu
- Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Axel Klaesson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Julia Buskas
- Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Petter Ranefall
- Science of Life Laboratories and Department of Information Technology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Jochen B W Wolf
- Science of Life Laboratories and Department of Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Abstract
Rapid development of high-throughput DNA analyzation methods has enabled global characterization of genetic landscapes and aberrations in study subjects in a time and cost effective fashion. In most methods, however, spatial tissue context is lost since sample preparation requires isolation of nucleic acids out of their native environment. We hereby present the most recent protocol for multiplexed, in situ detection of mRNAs and single nucleotide polymorphisms using padlock probes and rolling circle amplification. We take advantage of a single nucleotide variant within conserved ACTB mRNA to successfully differentiate human and mice cocultured cells and apply presented protocol to genotype PCDH X and Y homologs in human brain. We provide a method for automated characterization and quantitation of target mRNA in single cells or chosen tissue area. mRNA of interest, harboring a polymorphism, is first reverse-transcribed to cDNA. Allele specific padlock probes are hybridized to the cDNA target and enzymatically circularized maintaining a physical link with the parent mRNA molecule. Lastly, circularized probes are replicated in situ, using rolling circle amplification mechanism to facilitate detection.
Collapse
|
16
|
Colaco S, Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod Biol Endocrinol 2018; 16:14. [PMID: 29454353 PMCID: PMC5816366 DOI: 10.1186/s12958-018-0330-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
The human Y chromosome harbors genes that are responsible for testis development and also for initiation and maintenance of spermatogenesis in adulthood. The long arm of the Y chromosome (Yq) contains many ampliconic and palindromic sequences making it predisposed to self-recombination during spermatogenesis and hence susceptible to intra-chromosomal deletions. Such deletions lead to copy number variation in genes of the Y chromosome resulting in male infertility. Three common Yq deletions that recur in infertile males are termed as AZF (Azoospermia Factor) microdeletions viz. AZFa, AZFb and AZFc. As estimated from data of nearly 40,000 Y chromosomes, the global prevalence of Yq microdeletions is 7.5% in infertile males; however the European infertile men are less susceptible to Yq microdeletions, the highest prevalence is in Americans and East Asian infertile men. In addition, partial deletions of the AZFc locus have been associated with infertility but the effect seems to be ethnicity dependent. Analysis of > 17,000 Y chromosomes from fertile and infertile men has revealed an association of gr/gr deletion with male infertility in Caucasians and Mongolian men, while the b2/b3 deletion is associated with male infertility in African and Dravidian men. Clinically, the screening for Yq microdeletions would aid the clinician in determining the cause of male infertility and decide a rational management strategy for the patient. As these deletions are transmitted to 100% of male offspring born through assisted reproduction, testing of Yq deletions will allow the couples to make an informed choice regarding the perpetuation of male infertility in future generations. With the emerging data on association of Yq deletions with testicular cancers and neuropsychiatric conditions long term follow-up data is urgently needed for infertile men harboring Yq deletions. If found so, the information will change the current the perspective of androgenetics from infertility and might have broad implication in men health.
Collapse
Affiliation(s)
- Stacy Colaco
- Department of Molecular and Cellular Biology, ICMR-National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, Maharashtra, 400012, India
| | - Deepak Modi
- Department of Molecular and Cellular Biology, ICMR-National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
17
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 1 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: protocol for a test of the double hit hypothesis. Wellcome Open Res 2018; 3:10. [PMID: 29744390 PMCID: PMC5904730 DOI: 10.12688/wellcomeopenres.13828.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. Group averages, however, obscure a wide range of outcomes. Hypothesis: The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects.
Neuroligin-4 genes are expressed from X and Y chromosomes; they play an important role in synaptic development and have been implicated in neurodevelopment. We predict that the impact of an additional sex chromosome on neurodevelopment will be correlated with common autosomal variants involved in related synaptic functions. We describe here an analysis plan for testing this hypothesis using existing data. The analysis of genotype-phenotype associations will be conducted after this plan is published and peer-reviewed Methods: Neurodevelopmental data and DNA are available for 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Children from a twin study using the same phenotype measures will form two comparison groups (Ns = 184 and 186). Three indicators of a neurodevelopment disorder phenotype will be used: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Autosomal genes were identified by literature search on the basis of prior association with (a) speech/language/reading phenotypes and (b) synaptic function. Preselected regions of two genes scoring high on both criteria,
CNTNAP2 and
NRXN1, will be tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. We predict the association with one or both genes will be detectable in children with SCTs and stronger than in the comparison samples.
Collapse
Affiliation(s)
- Dianne F Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, Oxfordshire, OX3 0BP, UK
| | - Nuala H Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| | - Paul A Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| | - Dorothy V M Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| |
Collapse
|
18
|
Printzlau F, Wolstencroft J, Skuse DH. Cognitive, behavioral, and neural consequences of sex chromosome aneuploidy. J Neurosci Res 2017; 95:311-319. [PMID: 27870409 DOI: 10.1002/jnr.23951] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 02/04/2023]
Abstract
The X chromosome has played a critical role in the development of sexually selected characteristics for over 300 million years, and during that time it has accumulated a disproportionate number of genes concerned with mental functions. There are relatively specific effects of X-linked genes on social cognition, language, emotional regulation, visuospatial, and numerical skills. Many human X-linked genes outside the X-Y pairing pseudoautosomal regions escape X-inactivation. Dosage differences in the expression of such genes (which constitute at least 15% of the total) are likely to play an important role in male-female neural differentiation, and in cognitive deficits and behavioral characteristics, particularly in the realm of social communication, that are associated with sex chromosome aneuploidies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Frida Printzlau
- Great Ormond Street Hospital Institute of Child Health, University College London, United Kingdom
| | - Jeanne Wolstencroft
- Great Ormond Street Hospital Institute of Child Health, University College London, United Kingdom
| | - David H Skuse
- Great Ormond Street Hospital Institute of Child Health, University College London, United Kingdom
| |
Collapse
|
19
|
Meyfour A, Pooyan P, Pahlavan S, Rezaei-Tavirani M, Gourabi H, Baharvand H, Salekdeh GH. Chromosome-Centric Human Proteome Project Allies with Developmental Biology: A Case Study of the Role of Y Chromosome Genes in Organ Development. J Proteome Res 2017; 16:4259-4272. [PMID: 28914051 DOI: 10.1021/acs.jproteome.7b00446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the main goals of Chromosome-Centric Human Proteome Project is to identify protein evidence for missing proteins (MPs). Here, we present a case study of the role of Y chromosome genes in organ development and how to overcome the challenges facing MPs identification by employing human pluripotent stem cell differentiation into cells of different organs yielding unprecedented biological insight into adult silenced proteins. Y chromosome is a male-specific sex chromosome which escapes meiotic recombination. From an evolutionary perspective, Y chromosome has preserved 3% of ancestral genes compared to 98% preservation of the X chromosome based on Ohno's law. Male specific region of Y chromosome (MSY) contains genes that contribute to central dogma and govern the expression of various targets throughout the genome. One of the most well-known functions of MSY genes is to decide the male-specific characteristics including sex, testis formation, and spermatogenesis, which are majorly formed by ampliconic gene families. Beyond its role in sex-specific gonad development, MSY genes in coexpression with their X counterparts, as single copy and broadly expressed genes, inhibit haplolethality and play a key role in embryogenesis. The role of X-Y related gene mutations in the development of hereditary syndromes suggests an essential contribution of sex chromosome genes to development. MSY genes, solely and independent of their X counterparts and/or in association with sex hormones, have a considerable impact on organ development. In this Review, we present major recent findings on the contribution of MSY genes to gonad formation, spermatogenesis, and the brain, heart, and kidney development and discuss how Y chromosome proteome project may exploit developmental biology to find missing proteins.
Collapse
Affiliation(s)
- Anna Meyfour
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran.,Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , 19839-63113 Tehran, Iran
| | - Paria Pooyan
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , 19839-63113 Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute , 19395-4644 Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture , 19395-4644 Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran.,Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran , 31535-1897 Karaj, Iran
| |
Collapse
|
20
|
Castro A, Rodríguez F, Flórez M, López P, Curotto B, Martínez D, Maturana A, Lardone MC, Palma C, Mericq V, Ebensperger M, Cassorla F. Pseudoautosomal abnormalities in terminal AZFb+c deletions are associated with isochromosomes Yp and may lead to abnormal growth and neuropsychiatric function. Hum Reprod 2017; 32:465-475. [PMID: 28057878 DOI: 10.1093/humrep/dew333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/23/2016] [Accepted: 12/07/2016] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Are copy number variations (CNVs) in the pseudoautosomal regions (PARs) frequent in subjects with Y-chromosome microdeletions and can they lead to abnormal stature and/or neuropsychiatric disorders? SUMMARY ANSWER Only subjects diagnosed with azoospermia factor (AZF)b+c deletions spanning to the end of the Y chromosome (i.e. terminal deletions) harbor Y isochromosomes and/or cells 45,X that lead to pseudoautosomal gene CNVs, which were associated with abnormal stature and/or neuropsychiatric disorders. WHAT IS KNOWN ALREADY The microdeletions in the long arm of the Y chromosome (Yq) that include the loss of one to three AZF regions, referred to as Yq microdeletions, constitute the most important known etiological factor for primary spermatogenic failure. Recently, controversy has arisen about whether Yq microdeletions are associated with gain or loss of PAR genes, which are implicated in skeletal development and neuropsychiatric function. STUDY DESIGN, SIZE, DURATION We studied a cohort of 42 Chilean patients with complete AZF deletions (4 AZFa, 4 AZFb, 23 AZFc, 11 AZFb+c) from a university medical center, diagnosed over a period of 15 years. The subjects underwent complete medical examinations with special attention to their stature and neuropsychiatric function. PARTICIPANTS/MATERIALS, SETTING, METHODS All subjects were characterized for Yq breakpoints by PCR, and for CNVs in PARs by multiplex ligation-dependent probe amplification (MLPA), followed by qPCR analysis for genes in PAR1 (SHOX and ZBED1), PAR2 (IL9R) and two single copy genes (SRY and DDX3Y, respectively located in Yp11.3 and AZFa). In addition, karyotypes revision and fluorescence in situ hybridization (FISH) for SRY and centromeric probes for X (DXZ1) and Y (DYZ3) chromosomes were performed in males affected with CNVs. MAIN RESULTS AND THE ROLE OF CHANCE We did not detect CNVs in any of the 35 AZF-deleted men with interstitial deletions (AZFa, AZFb, AZFc or AZFb+c). However, six of the seven patients with terminal AZFb+c deletions showed CNVs: two patients showed a loss and four patients showed a gain of PAR1 genes, with the expected loss of VAMP-7 in PAR2. In these patients, the Yq breakpoints localized to the palindromes P8, P5 or P4. In the four cases with gain of PAR1, qPCR analysis showed duplicated signals for SRY and DDX3Y and one copy of IL9R, indicating isodicentric Yp chromosomes [idic(Y)] with breakpoint in Yq11.22. The two patients who had loss of PAR1, as shown by MLPA, had an additional reduction for SRY and DDX3Y, as shown by qPCR, associated with a high proportion of 45,X cells, as determined by FISH and karyotype. In agreement with the karyotype analysis, we detected DYZ3++ and DYZ3+ cells by FISH in the six patients, confirming idic(Y) and revealing additional monocentric Y chromosome [i(Y)]. Five patients had a history of major depressive disorders or bipolar disorder, and three had language impairment, whereas two patients showed severe short stature (Z score: -2.75 and -2.62), while a man with bipolar disorder was very tall (Z score: +2.56). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The number of males studied with Y-chromosome microdeletions and normozoospermic controls with normal karyotypes may not be enough to rule out an association between AZF deletions and PAR abnormalities. The prevalence of Y isochromosomes and/or 45,X cells detected in peripheral blood does not necessarily reflect the variations of PAR genes in target tissues. WIDER IMPLICATIONS OF THE FINDINGS This study shows that CNVs in PARs were present exclusively in patients with terminal AZFb+c deletions associated with the presence of Y isochromosomes and 45,X cells, and may lead to neuropsychiatric and growth disorders. In contrast, we show that men with interstitial Yq microdeletions with normal karyotypes do not have an increased risk of PAR abnormalities and of phenotypical consequences. Moreover, our results highlight the importance of performing molecular studies, which are not considered in the usual screening for patients with Yq microdeletions. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Fund for Scientific and Technological Development of Chile (FONDECYT), grant no. 1120176 (A.C.). The authors declare that no conflicting interests exist.
Collapse
Affiliation(s)
- A Castro
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - F Rodríguez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - M Flórez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - P López
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - B Curotto
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - D Martínez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - A Maturana
- Psychiatric Unit, Clínica Las Condes, Santiago 7591046, Chile
| | - M C Lardone
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - C Palma
- Department of Urology, José Joaquín Aguirre Clinical Hospital, School of Medicine, University of Chile, Santiago 8380453, Chile
- Department of Urology, Clínica Las Condes, Santiago 7591046, Chile
| | - V Mericq
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - M Ebensperger
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - F Cassorla
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| |
Collapse
|