1
|
Yue Q, Cao Z, Li R, Wang Y, Rui S, Yin N, Liu L. Analysis of Physiological Oxygen Concentrations in Different Abdominal Fat Layers by Body Mass Index. Aesthetic Plast Surg 2024:10.1007/s00266-024-04479-z. [PMID: 39466422 DOI: 10.1007/s00266-024-04479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Physiological oxygen concentration in adipose tissue is closely linked to metabolic disorders such as chronic inflammation and insulin resistance. However, the nature of the variation in the oxygen levels of adipose tissue with body mass index (BMI) and depths of abdominal fat remain unclear. Therefore, this study aimed to elucidate the patterns of oxygen concentration in adipose tissue layers according to BMI. METHODS In this study, patients undergoing abdominal fat removal surgery were divided into the normal-weight (NW) or overweight-obese (OW) groups based on their BMI. Oxygen concentrations in abdominal superficial (sSAT) and deep subcutaneous adipose tissue (dSAT) were measured. The oxygen consumption rate, mean cell area, and capillary density in both tissue layers were compared between the two groups. Furthermore, the interaction between these three variables, BMI, and adipose tissue oxygen concentration, was analyzed using linear regression. RESULTS A total of 42 patients were recruited in this study and we observed that oxygen concentration in the sSAT was significantly lower than in the dSAT, irrespective of BMI. In terms of the oxygen concentration in the dSAT, OW's was significantly lower than that of NW's. Linear regression analysis revealed a significant correlation between dSAT oxygen concentration and BMI, mean adipocyte area, and vascular density. CONCLUSION Individuals who are obese have significantly lower oxygen levels in the deep abdominal adipose tissue, and this is influenced by BMI, adipocyte area, and capillary density. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Qiang Yue
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Zilong Cao
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Rui Li
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yunzhang Wang
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Shu Rui
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Ningbei Yin
- The Department of Cleft Lip and Palate of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| | - Liqiang Liu
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
2
|
Tung PW, Bloomquist TR, Baccarelli AA, Herbstman JB, Rauh V, Perera F, Goldsmith J, Margolis A, Kupsco A. Mitochondrial DNA copy number and neurocognitive outcomes in children. Pediatr Res 2024:10.1038/s41390-024-03653-y. [PMID: 39415039 DOI: 10.1038/s41390-024-03653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Low mitochondria DNA copy number (mtDNAcn) has been linked to cognitive decline. However, the role of mtDNAcn in healthy cognitive development is unclear. We hypothesized early-life mtDNAcn would be associated with children's learning and memory. METHODS We quantified mtDNAcn in umbilical cord blood and child blood at ages 5-7 from participants in a prospective birth cohort. We administered the Children's Memory Scale (CMS) at ages 9-14 (N = 342) and the Wechsler Intelligence Scale for Children (WISC-IV) at ages 7 and 9 (N = 457). Associations between mtDNAcn tertiles and CMS and WISC were evaluated with linear regression and linear mixed-effects models, respectively. We examined non-linear associations using generalized additive mixed models. RESULTS Relative to the middle tertile of mtDNAcn, lower childhood mtDNAcn was associated with lower WISC Working Memory (β = -2.65, 95% CI [-5.24, -0.06]) and Full-Scale IQ (β = -3.71 [-6.42, -1.00]), and higher CMS Visual Memory (β = 4.70 [0.47, 8.93]). Higher childhood mtDNAcn was linked to higher CMS Verbal Memory (β = 7.75 [2.50, 13.01]). In non-linear models, higher childhood mtDNAcn was associated with lower WISC Verbal Comprehension. CONCLUSIONS Our study provides novel evidence that mtDNAcn measured in childhood is associated with children's neurocognitive performance. mtDNAcn may be a marker of healthy child development. IMPACT Mitochondrial DNA copy number (mtDNAcn) may serve as a biomarker for early-life neurocognitive performances in the children's population. Both low and high mtDNAcn may contribute to poorer neurocognition, reflected through learning and memory abilities. This research elucidated the importance of investigating mitochondrial biomarkers in healthy populations and facilitated advancements of future studies to better understand the associations between mitochondrial markers and adverse children's health outcomes.
Collapse
Affiliation(s)
- Pei Wen Tung
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Amy Margolis
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Hinton AO, Vue Z, Scudese E, Neikirk K, Kirabo A, Montano M. Mitochondrial heterogeneity and crosstalk in aging: Time for a paradigm shift? Aging Cell 2024; 23:e14296. [PMID: 39188058 PMCID: PMC11464123 DOI: 10.1111/acel.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/24/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
The hallmarks of aging have been influential in guiding the biology of aging research, with more recent and growing recognition of the interdependence of these hallmarks on age-related health outcomes. However, a current challenge is personalizing aging trajectories to promote healthy aging, given the diversity of genotypes and lived experience. We suggest that incorporating heterogeneity-including intrinsic (e.g., genetic and structural) and extrinsic (e.g., environmental and exposome) factors and their interdependence of hallmarks-may move the dial. This editorial perspective will focus on one hallmark, namely mitochondrial dysfunction, to exemplify how consideration of heterogeneity and interdependence or crosstalk may reveal new perspectives and opportunities for personalizing aging research. To this end, we highlight heterogeneity within mitochondria as a model.
Collapse
Affiliation(s)
- Antentor O. Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Zer Vue
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Estevão Scudese
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Annet Kirabo
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Center for ImmunobiologyNashvilleTennesseeUSA
- Immunology and InflammationVanderbilt Institute for InfectionNashvilleTennesseeUSA
- Vanderbilt Institute for Global HealthNashvilleTennesseeUSA
| | - Monty Montano
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Kaur S, Khullar N, Navik U, Bali A, Bhatti GK, Bhatti JS. Multifaceted role of dynamin-related protein 1 in cardiovascular disease: From mitochondrial fission to therapeutic interventions. Mitochondrion 2024; 78:101904. [PMID: 38763184 DOI: 10.1016/j.mito.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Mitochondria are central to cellular energy production and metabolic regulation, particularly in cardiomyocytes. These organelles constantly undergo cycles of fusion and fission, orchestrated by key proteins like Dynamin-related Protein 1 (Drp-1). This review focuses on the intricate roles of Drp-1 in regulating mitochondrial dynamics, its implications in cardiovascular health, and particularly in myocardial infarction. Drp-1 is not merely a mediator of mitochondrial fission; it also plays pivotal roles in autophagy, mitophagy, apoptosis, and necrosis in cardiac cells. This multifaceted functionality is often modulated through various post-translational alterations, and Drp-1's interaction with intracellular calcium (Ca2 + ) adds another layer of complexity. We also explore the pathological consequences of Drp-1 dysregulation, including increased reactive oxygen species (ROS) production and endothelial dysfunction. Furthermore, this review delves into the potential therapeutic interventions targeting Drp-1 to modulate mitochondrial dynamics and improve cardiovascular outcomes. We highlight recent findings on the interaction between Drp-1 and sirtuin-3 and suggest that understanding this interaction may open new avenues for therapeutically modulating endothelial cells, fibroblasts, and cardiomyocytes. As the cardiovascular system increasingly becomes the focal point of aging and chronic disease research, understanding the nuances of Drp-1's functionality can lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India.
| |
Collapse
|
5
|
Navas-Enamorado C, Capo X, Galmes-Panades AM, Ortega-Moral A, Sánchez-Polo A, Masmiquel L, Torrens-Mas M, Navas P, Gonzalez-Freire M. The association of circulating bioenergetic metabolites with healthy human aging. Exp Gerontol 2024; 194:112488. [PMID: 38879093 DOI: 10.1016/j.exger.2024.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Aging is an inevitable and gradual decline in several biological functions. Mitochondrial dysfunction is one of the most important hallmarks of aging. In this context, alterations in metabolites associated with mitochondrial dysfunction may serve as a significant biomarker. This study aimed to investigate the existence of a relationship between the key metabolites involved in bioenergetics metabolism and aging. 53 volunteers ranged 20-85 years participated in the study. We tested the association between different tricarboxylic acid (TCA) cycle metabolites, fatty acid metabolism, and amino acid metabolism with age, sex, body composition, and proxy markers of aging such as walking speed, grip strength and chair test. We found that lactic acid negatively correlated with age while several fatty acid metabolites, such as azelaic, sebacic, and linoleic acids, showed positive correlations with age (p < 0.05). Sex-specific trends, such as glycerol, and dodecanoic acid, were also observed for certain metabolites. Furthermore, citric acid levels were found to have a significant association with physical function and body composition measures. Participants with higher citric acid levels displayed improved performance in physical tests and favorable body composition indices. Additionally, fumaric acid and adipic acid showed positive correlations with fat-free body mass, while sebacic acid was negatively associated with measures of fat mass. These findings underscore the importance of understanding the role of circulating bioenergetics metabolites with age, sex variations, and their potential implications in body composition and physical performance.
Collapse
Affiliation(s)
- C Navas-Enamorado
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - X Capo
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - A M Galmes-Panades
- Physical Activity and Sport Sciences Research Group (GICAFE), Institute for Educational Research and Innovation (IRIE), University of the Balearic Islands, 07120 Palma de Mallorca, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - A Ortega-Moral
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - A Sánchez-Polo
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - L Masmiquel
- Vascular and Metabolic Pathologies Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - M Torrens-Mas
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain.
| | - P Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide- Consejo superior de Investigaciones Científicas- Junta de Andalucía, Sevilla, Spain; CIBERER, Instituto de Salud Carlos III, Madrid, Spain.
| | - M Gonzalez-Freire
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcon, Madrid, Spain.
| |
Collapse
|
6
|
Sanchez-Roman I, Ferrando B, Myrup Holst C, Mengel-From J, Hoei Rasmussen S, Thinggaard M, Bohr VA, Christensen K, Stevnsner T. Markers of Mitochondrial Function and DNA Repair Associated with Physical Function in Centenarians. Biomolecules 2024; 14:909. [PMID: 39199297 PMCID: PMC11353237 DOI: 10.3390/biom14080909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Mitochondrial dysfunction and genomic instability are key hallmarks of aging. The aim of this study was to evaluate whether maintenance of physical capacities at very old age is associated with key hallmarks of aging. To investigate this, we measured mitochondrial bioenergetics, mitochondrial DNA (mtDNA) copy number and DNA repair capacity in peripheral blood mononuclear cells from centenarians. In addition, circulating levels of NAD+/NADH, brain-derived neurotrophic factor (BDNF) and carbonylated proteins were measured in plasma and these parameters were correlated to physical capacities. Centenarians without physical disabilities had lower mitochondrial respiration values including ATP production, reserve capacity, maximal respiration and non-mitochondrial oxygen-consumption rate and had higher mtDNA copy number than centenarians with moderate and severe disabilities (p < 0.05). In centenarian females, grip strength had a positive association with mtDNA copy number (p < 0.05), and a borderline positive trend for activity of the central DNA repair enzyme, APE 1 (p = 0.075), while a negative trend was found with circulating protein carbonylation (p = 0.07) in the entire cohort. Lastly, a trend was observed for a negative association between BDNF and activity of daily living disability score (p = 0.06). Our results suggest that mechanisms involved in maintaining mitochondrial function and genomic stability may be associated with maintenance of physical function in centenarians.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (C.M.H.)
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
| | - Beatriz Ferrando
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (C.M.H.)
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
- Facultad de Humanidades y Ciencias Sociales, Universidad Isabel I, 09003 Burgos, Spain; (B.F.)
| | - Camilla Myrup Holst
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (C.M.H.)
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
| | - Jonas Mengel-From
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5230 Odense, Denmark; (J.M.-F.); (S.H.R.); (M.T.); (K.C.)
| | - Signe Hoei Rasmussen
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5230 Odense, Denmark; (J.M.-F.); (S.H.R.); (M.T.); (K.C.)
- Geriatric Research Unit, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Mikael Thinggaard
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5230 Odense, Denmark; (J.M.-F.); (S.H.R.); (M.T.); (K.C.)
| | - Vilhelm A. Bohr
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Kaare Christensen
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5230 Odense, Denmark; (J.M.-F.); (S.H.R.); (M.T.); (K.C.)
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (C.M.H.)
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
7
|
Kusmierczyk J, Wiecek M, Bawelski M, Szygula Z, Rafa-Zablocka K, Kantorowicz M, Szymura J. Pre-exercise cryotherapy reduces myoglobin and creatine kinase levels after eccentric muscle stress in young women. Front Physiol 2024; 15:1413949. [PMID: 38962071 PMCID: PMC11220252 DOI: 10.3389/fphys.2024.1413949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: The aim of this study was to investigate the effect of pre-exercise whole-body cryotherapy (WBC) on muscle damage indicators following eccentric treadmill exercise in young women. Methods: Twenty-seven participants underwent two 1-h downhill treadmill runs, replicating 60% of their maximal oxygen uptake, with a 4-week intermission for recovery and treatment application. In this intermission, one group underwent 20 sessions of WBC, delivered five times a week at -120°C for 3 min each, while the comparison group received no such treatment. Markers of muscle injury-serum myoglobin concentration, creatine kinase and lactate dehydrogenase activity and also uric acid, and cell-free DNA concentration-were measured before and after downhill runs. Results: The study observed a notable reduction in post-exercise myoglobin and CK levels in the WBC group after the second running session. Discussion: The results suggest that WBC can have a protective effects against muscle damage resulting from eccentric exercise.
Collapse
Affiliation(s)
- Justyna Kusmierczyk
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, Kraków, Poland
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, Kraków, Poland
| | - Marek Bawelski
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, Kraków, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Kraków, Kraków, Poland
| | - Katarzyna Rafa-Zablocka
- Department Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Jadwiga Szymura
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Kraków, Kraków, Poland
- Department of Clinical Rehabilitation, University of Physical Education in Kraków, Kraków, Poland
| |
Collapse
|
8
|
Tseng CEJ, Canales C, Marcus RE, Parmar AJ, Hightower BG, Mullett JE, Makary MM, Tassone AU, Saro HK, Townsend PH, Birtwell K, Nowinski L, Thom RP, Palumbo ML, Keary C, Catana C, McDougle CJ, Hooker JM, Zürcher NR. In vivo translocator protein in females with autism spectrum disorder: a pilot study. Neuropsychopharmacology 2024; 49:1193-1201. [PMID: 38615126 PMCID: PMC11109261 DOI: 10.1038/s41386-024-01859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Sex-based differences in the prevalence of autism spectrum disorder (ASD) are well-documented, with a male-to-female ratio of approximately 4:1. The clinical presentation of the core symptoms of ASD can also vary between sexes. Previously, positron emission tomography (PET) studies have identified alterations in the in vivo levels of translocator protein (TSPO)-a mitochondrial protein-in primarily or only male adults with ASD, with our group reporting lower TSPO relative to whole brain mean in males with ASD. However, whether in vivo TSPO levels are altered in females with ASD, specifically, is unknown. This is the first pilot study to measure in vivo TSPO in the brain in adult females with ASD using [11C]PBR28 PET-magnetic resonance imaging (MRI). Twelve adult females with ASD and 10 age- and TSPO genotype-matched controls (CON) completed one or two [11C]PBR28 PET-MRI scans. Females with ASD exhibited elevated [11C]PBR28 standardized uptake value ratio (SUVR) in the midcingulate cortex and splenium of the corpus callosum compared to CON. No brain area showed lower [11C]PBR28 SUVR in females with ASD compared to CON. Test-retest over several months showed stable [11C]PBR28 SUVR across time in both groups. Elevated regional [11C]PBR28 SUVR in females with ASD stand in stark contrast to our previous findings of lower regional [11C]PBR28 SUVR in males with ASD. Preliminary evidence of regionally elevated mitochondrial protein TSPO relative to whole brain mean in ASD females may reflect neuroimmuno-metabolic alterations specific to females with ASD.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Camila Canales
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Rachel E Marcus
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Anjali J Parmar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Baileigh G Hightower
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Jennifer E Mullett
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Meena M Makary
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
| | - Alison U Tassone
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Hannah K Saro
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Paige Hickey Townsend
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Kirstin Birtwell
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Lisa Nowinski
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Robyn P Thom
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Michelle L Palumbo
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Christopher Keary
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher J McDougle
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA.
| |
Collapse
|
9
|
Liabeuf G, Saguez R, Márquez C, Angel B, Bravo-Sagua R, Albala C. Decreased mitochondrial respiration associates with frailty in community-dwelling older adults. Front Cell Dev Biol 2024; 12:1301433. [PMID: 38778912 PMCID: PMC11110568 DOI: 10.3389/fcell.2024.1301433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Aging population has led to an increased prevalence of chronic and degenerative pathologies. A manifestation of unhealthy aging is frailty, a geriatric syndrome that implies a non-specific state of greater vulnerability. Currently, methods for frailty diagnosis are based exclusively on clinical observation. The aim of this study is to determine whether the bioenergetic capacity defined as mitochondrial oxygen consumption rate (OCR) of peripheral circulation mononuclear cells (PBMC) associates with the frailty phenotype in older adults and with their nutritional status. This is a cross-sectional analytic study of 58 participants 70 years and older, 18 frail and 40 non-frail adults, from the ALEXANDROS cohort study, previously described. Participants were characterized through sociodemographic and anthropometric assessments. Frail individuals displayed a higher frequency of osteoporosis and depression. The mean age of the participants was 80.2 ± 5.2 years, similar in both groups of men and women. Regarding the nutritional status defined as the body mass index, most non-frail individuals were normal or overweight, while frail participants were mostly overweight or obese. We observed that OCR was significantly decreased in frail men (p < 0.01). Age was also associated with significant differences in oxygen consumption in frail patients, with lower oxygen consumption being observed in those over 80 years of age. Therefore, the use of PBMC can result in an accessible fingerprint that may identify initial stages of frailty in a minimally invasive way.
Collapse
Affiliation(s)
- Gianella Liabeuf
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Escuela de Nutrición y Dietética, Facultad de Salud y Ciencias Sociales, Universidad de las Américas, Santiago, Chile
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Rodrigo Saguez
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Carlos Márquez
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Bárbara Angel
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Centro Interuniversitario de Envejecimiento Saludable RED21993, Santiago, Chile
| | - Roberto Bravo-Sagua
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Centro Interuniversitario de Envejecimiento Saludable RED21993, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cecilia Albala
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Centro Interuniversitario de Envejecimiento Saludable RED21993, Santiago, Chile
| |
Collapse
|
10
|
Mahapatra G, Gao Z, Bateman JR, Lockhart SN, Bergstrom J, Piloso JE, Craft S, Molina AJA. Peripheral Blood Cells From Older Adults Exhibit Sex-Associated Differences in Mitochondrial Function. J Gerontol A Biol Sci Med Sci 2024; 79:glae098. [PMID: 38602189 PMCID: PMC11059251 DOI: 10.1093/gerona/glae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/12/2024] Open
Abstract
Blood-based mitochondrial bioenergetic profiling is a feasible, economical, and minimally invasive approach that can be used to examine mitochondrial function and energy metabolism in human subjects. In this study, we use 2 complementary respirometric techniques to evaluate mitochondrial bioenergetics in both intact and permeabilized peripheral blood mononuclear cells (PBMCs) and platelets to examine sex dimorphism in mitochondrial function among older adults. Employing equal numbers of PBMCs and platelets to assess mitochondrial bioenergetics, we observe significantly higher respiration rates in female compared to male participants. Mitochondrial bioenergetic differences remain significant after controlling for independent parameters including demographic parameters (age, years of education), and cognitive parameters (mPACC5, COGDX). Our study illustrates that circulating blood cells, immune cells in particular, have distinctly different mitochondrial bioenergetic profiles between females and males. These differences should be taken into account as blood-based bioenergetic profiling is now commonly used to understand the role of mitochondrial bioenergetics in human health and aging.
Collapse
Affiliation(s)
- Gargi Mahapatra
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Zhengrong Gao
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - James R Bateman
- Department of Neurology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Samuel Neal Lockhart
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Jaclyn Bergstrom
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Jemima Elizabeth Piloso
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Suzanne Craft
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Anthony J A Molina
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
11
|
King DE, Sparling AC, Joyce AS, Ryde IT, DeSouza B, Ferguson PL, Murphy SK, Meyer JN. Lack of detectable sex differences in the mitochondrial function of Caenorhabditis elegans. BMC Ecol Evol 2024; 24:55. [PMID: 38664688 PMCID: PMC11046947 DOI: 10.1186/s12862-024-02238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Sex differences in mitochondrial function have been reported in multiple tissue and cell types. Additionally, sex-variable responses to stressors including environmental pollutants and drugs that cause mitochondrial toxicity have been observed. The mechanisms that establish these differences are thought to include hormonal modulation, epigenetic regulation, double dosing of X-linked genes, and the maternal inheritance of mtDNA. Understanding the drivers of sex differences in mitochondrial function and being able to model them in vitro is important for identifying toxic compounds with sex-variable effects. Additionally, understanding how sex differences in mitochondrial function compare across species may permit insight into the drivers of these differences, which is important for basic biology research. This study explored whether Caenorhabditis elegans, a model organism commonly used to study stress biology and toxicology, exhibits sex differences in mitochondrial function and toxicant susceptibility. To assess sex differences in mitochondrial function, we utilized four male enriched populations (N2 wild-type male enriched, fog-2(q71), him-5(e1490), and him-8(e1498)). We performed whole worm respirometry and determined whole worm ATP levels and mtDNA copy number. To probe whether sex differences manifest only after stress and inform the growing use of C. elegans as a mitochondrial health and toxicologic model, we also assessed susceptibility to a classic mitochondrial toxicant, rotenone. RESULTS We detected few to no large differences in mitochondrial function between C. elegans sexes. Though we saw no sex differences in vulnerability to rotenone, we did observe sex differences in the uptake of this lipophilic compound, which may be of interest to those utilizing C. elegans as a model organism for toxicologic studies. Additionally, we observed altered non-mitochondrial respiration in two him strains, which may be of interest to other researchers utilizing these strains. CONCLUSIONS Basal mitochondrial parameters in male and hermaphrodite C. elegans are similar, at least at the whole-organism level, as is toxicity associated with a mitochondrial Complex I inhibitor, rotenone. Our data highlights the limitation of using C. elegans as a model to study sex-variable mitochondrial function and toxicological responses.
Collapse
Affiliation(s)
- Dillon E King
- Nicholas School of Environment, Duke University, 308 Research Drive, A304, Durham, NC, 27708, USA
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - A Clare Sparling
- Nicholas School of Environment, Duke University, 308 Research Drive, A304, Durham, NC, 27708, USA
| | - Abigail S Joyce
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Ian T Ryde
- Nicholas School of Environment, Duke University, 308 Research Drive, A304, Durham, NC, 27708, USA
| | - Beverly DeSouza
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - P Lee Ferguson
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Susan K Murphy
- Nicholas School of Environment, Duke University, 308 Research Drive, A304, Durham, NC, 27708, USA
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Joel N Meyer
- Nicholas School of Environment, Duke University, 308 Research Drive, A304, Durham, NC, 27708, USA.
| |
Collapse
|
12
|
Lopez-Lee C, Torres ERS, Carling G, Gan L. Mechanisms of sex differences in Alzheimer's disease. Neuron 2024; 112:1208-1221. [PMID: 38402606 PMCID: PMC11076015 DOI: 10.1016/j.neuron.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Alzheimer's disease (AD) and the mechanisms underlying its etiology and progression are complex and multifactorial. The higher AD risk in women may serve as a clue to better understand these complicated processes. In this review, we examine aspects of AD that demonstrate sex-dependent effects and delve into the potential biological mechanisms responsible, compiling findings from advanced technologies such as single-cell RNA sequencing, metabolomics, and multi-omics analyses. We review evidence that sex hormones and sex chromosomes interact with various disease mechanisms during aging, encompassing inflammation, metabolism, and autophagy, leading to unique characteristics in disease progression between men and women.
Collapse
Affiliation(s)
- Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Eileen Ruth S Torres
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Duchowny KA, Marcinek DJ, Mau T, Diaz-Ramierz LG, Lui LY, Toledo FGS, Cawthon PM, Hepple RT, Kramer PA, Newman AB, Kritchevsky SB, Cummings SR, Coen PM, Molina AJA. Childhood adverse life events and skeletal muscle mitochondrial function. SCIENCE ADVANCES 2024; 10:eadj6411. [PMID: 38446898 PMCID: PMC10917337 DOI: 10.1126/sciadv.adj6411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Social stress experienced in childhood is associated with adverse health later in life. Mitochondrial function has been implicated as a mechanism for how stressful life events "get under the skin" to influence physical well-being. Using data from the Study of Muscle, Mobility, and Aging (n = 879, 59% women), linear models examined whether adverse childhood events (i.e., physical abuse) were associated with two measures of skeletal muscle mitochondrial energetics in older adults: (i) maximal adenosine triphosphate production (ATPmax) and (ii) maximal state 3 respiration (Max OXPHOS). Forty-five percent of the sample reported experiencing one or more adverse childhood events. After adjustment, each additional event was associated with -0.08 SD (95% confidence interval = -0.13, -0.02) lower ATPmax. No association was observed with Max OXPHOS. Adverse childhood events are associated with lower ATP production in later life. Findings indicate that mitochondrial function may be a mechanism for understanding how early social stress influences health in later life.
Collapse
Affiliation(s)
- Kate A. Duchowny
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | | | - Theresa Mau
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - L. Grisell Diaz-Ramierz
- Division of Geriatrics, Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA
| | - Li-Yung Lui
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Frederico G. S. Toledo
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peggy M. Cawthon
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Russell T. Hepple
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Philip A. Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anne B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Paul M. Coen
- AdventHealth, Translational Research Institute, Orlando, FL, USA
| | - Anthony J. A. Molina
- Department of Medicine-Division of Geriatrics, Gerontology, and Palliative Care, University of California San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
14
|
Mosconi L, Williams S, Carlton C, Zarate C, Boneu C, Fauci F, Ajila T, Nerattini M, Jett S, Andy C, Battista M, Pahlajani S, Osborne J, Brinton RD, Dyke JP. Sex-specific associations of serum cortisol with brain biomarkers of Alzheimer's risk. Sci Rep 2024; 14:5519. [PMID: 38448497 PMCID: PMC10918173 DOI: 10.1038/s41598-024-56071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Emerging evidence implicates chronic psychological stress as a risk factor for Alzheimer's disease (AD). Herein, we examined the relationships between serum cortisol and multimodality brain AD biomarkers in 277 cognitively normal midlife individuals at risk for AD. Overall, higher cortisol was associated with lower total brain volume, lower glucose metabolism (CMRglc) in frontal cortex, and higher β-amyloid (Aβ) load in AD-vulnerable regions; and marginally associated with phosphocreatine to ATP ratios (PCr/ATP) in precuneus and parietal regions. Sex-specific modification effects were noted: in women, cortisol exhibited stronger associations with Aβ load and frontal CMRglc, the latter being more pronounced postmenopause. In men, cortisol exhibited stronger associations with gray matter volume and PCr/ATP measures. Higher cortisol was associated with poorer delayed memory in men but not in women. Results were adjusted for age, Apolipoprotein E (APOE) epsilon 4 status, midlife health factors, and hormone therapy use. These results suggest sex-specific neurophysiological responses to stress, and support a role for stress reduction in AD prevention.
Collapse
Affiliation(s)
- Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Fauci
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Trisha Ajila
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Clinical Pathophysiology, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael Battista
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Joseph Osborne
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Roberta Diaz Brinton
- Department of Neurology and Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Frye RE, McCarty PJ, Werner BA, Rose S, Scheck AC. Bioenergetic signatures of neurodevelopmental regression. Front Physiol 2024; 15:1306038. [PMID: 38449786 PMCID: PMC10916717 DOI: 10.3389/fphys.2024.1306038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Background: Studies have linked autism spectrum disorder (ASD) to physiological abnormalities including mitochondrial dysfunction. Mitochondrial dysfunction may be linked to a subset of children with ASD who have neurodevelopmental regression (NDR). We have developed a cell model of ASD which demonstrates a unique mitochondrial profile with mitochondrial respiration higher than normal and sensitive to physiological stress. We have previously shown similar mitochondrial profiles in individuals with ASD and NDR. Methods: Twenty-six ASD individuals without a history of NDR (ASD-NoNDR) and 15 ASD individuals with a history of NDR (ASD-NDR) were recruited from 34 families. From these families, 30 mothers, 17 fathers and 5 typically developing (TD) siblings participated. Mitochondrial respiration was measured in peripheral blood mononuclear cells (PBMCs) with the Seahorse 96 XF Analyzer. PBMCs were exposed to various levels of physiological stress for 1 h prior to the assay using 2,3-dimethoxy-1,4-napthoquinone. Results: ASD-NDR children were found to have higher respiratory rates with mitochondria that were more sensitive to physiological stress as compared to ASD-NoNDR children, similar to our cellular model of NDR. Differences in mitochondrial respiration between ASD-NDR and TD siblings were similar to the differences between ASD-NDR and ASD-NoNDR children. Interesting, parents of children with ASD and NDR demonstrated patterns of mitochondrial respiration similar to their children such that parents of children with ASD and NDR demonstrated elevated respiratory rates with mitochondria that were more sensitive to physiological stress. In addition, sex differences were seen in ASD children and parents. Age effects in parents suggested that mitochondria of older parents were more sensitive to physiological stress. Conclusion: This study provides further evidence that children with ASD and NDR may have a unique type of mitochondrial physiology that may make them susceptible to physiological stressors. Identifying these children early in life before NDR occurs and providing treatment to protect mitochondrial physiology may protect children from experiencing NDR. The fact that parents also demonstrate mitochondrial respiration patterns similar to their children implies that this unique change in mitochondrial physiology may be a heritable factor (genetic or epigenetic), a result of shared environment, or both.
Collapse
Affiliation(s)
- Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, United States
| | | | - Brianna A. Werner
- Creighton University School of Medicine Phoenix Regional Campus, Phoenix, AZ, United States
| | - Shannon Rose
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Adrienne C. Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| |
Collapse
|
16
|
Silaidos CV, Reutzel M, Wachter L, Dieter F, Ludin N, Blum WF, Wudy SA, Matura S, Pilatus U, Hattingen E, Pantel J, Eckert GP. Age-related changes in energy metabolism in peripheral mononuclear blood cells (PBMCs) and the brains of cognitively healthy seniors. GeroScience 2024; 46:981-998. [PMID: 37308768 PMCID: PMC10828287 DOI: 10.1007/s11357-023-00810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 06/14/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of cellular senescence and many age-related neurodegenerative diseases. We therefore investigated the relationship between mitochondrial function in peripheral blood cells and cerebral energy metabolites in young and older sex-matched, physically and mentally healthy volunteers. Cross-sectional observational study involving 65 young (26.0 ± 0.49 years) and 65 older (71.7 ± 0.71 years) women and men recruited. Cognitive health was evaluated using established psychometric methods (MMSE, CERAD). Blood samples were collected and analyzed, and fresh peripheral blood mononuclear cells (PBMCs) were isolated. Mitochondrial respiratory complex activity was measured using a Clarke electrode. Adenosine triphosphate (ATP) and citrate synthase activity (CS) were determined by bioluminescence and photometrically. N-aspartyl-aspartate (tNAA), ATP, creatine (Cr), and phosphocreatine (PCr) were quantified in brains using 1H- and 31P-magnetic resonance spectroscopic imaging (MRSI). Levels of insulin-like growth factor 1 (IGF-1) were determined using a radio-immune assay (RIA). Complex IV activity (CIV) (- 15%) and ATP levels (- 11%) were reduced in PBMCs isolated from older participants. Serum levels of IGF-1 were significantly reduced (- 34%) in older participants. Genes involved in mitochondrial activity, antioxidant mechanisms, and autophagy were unaffected by age. tNAA levels were reduced (- 5%), Cr (+ 11%), and PCr (+ 14%) levels were increased, and ATP levels were unchanged in the brains of older participants. Markers of energy metabolism in blood cells did not significantly correlate with energy metabolites in the brain. Age-related bioenergetic changes were detected in peripheral blood cells and the brains of healthy older people. However, mitochondrial function in peripheral blood cells does not reflect energy related metabolites in the brain. While ATP levels in PBMCs may be be a valid marker for age-related mitochondrial dysfunction in humans, cerebral ATP remained constant.
Collapse
Affiliation(s)
- Carmina V Silaidos
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Martina Reutzel
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Lena Wachter
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Fabian Dieter
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Nasir Ludin
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
| | - Werner F Blum
- Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Peptide Hormone Research Unit Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Peptide Hormone Research Unit Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Ulrich Pilatus
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
- Brain Imaging Center (BIC), University Hospital Frankfurt, Frankfurt a. M, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
| | - Johannes Pantel
- Geriatric Medicine, Institute of General Practice, Goethe University, Frankfurt a. M, Germany
| | - Gunter P Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
17
|
Hogg M, Wolfschmitt EM, Wachter U, Zink F, Radermacher P, Vogt JA. Ex Vivo 13C-Metabolic Flux Analysis of Porcine Circulating Immune Cells Reveals Cell Type-Specific Metabolic Patterns and Sex Differences in the Pentose Phosphate Pathway. Biomolecules 2024; 14:98. [PMID: 38254698 PMCID: PMC10813356 DOI: 10.3390/biom14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
In general, females present with stronger immune responses than males, but scarce data are available on sex-specific differences in immunometabolism. In this study, we characterized porcine peripheral blood mononuclear cell (PBMC) and granulocyte energy metabolism using a Bayesian 13C-metabolic flux analysis, which allowed precise determination of the glycolytic, pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA) fluxes, together with an assessment of the superoxide anion radical (O2•-) production and mitochondrial O2 consumption. A principal component analysis allowed for identifying the cell type-specific patterns of metabolic plasticity. PBMCs displayed higher TCA cycle activity, especially glutamine-derived aspartate biosynthesis, which was directly related to mitochondrial respiratory activity and inversely related to O2•- production. In contrast, the granulocytes mainly utilized glucose via glycolysis, which was coupled to oxidative PPP utilization and O2•- production rates. The granulocytes of the males had higher oxidative PPP fluxes compared to the females, while the PBMCs of the females displayed higher non-oxidative PPP fluxes compared to the males associated with the T helper cell (CD3+CD4+) subpopulation of PBMCs. The observed sex-specific differences were not directly attributable to sex steroid plasma levels, but we detected an inverse correlation between testosterone and aldosterone plasma levels and showed that aldosterone levels were related with non-oxidative PPP fluxes of both cell types.
Collapse
Affiliation(s)
- Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (E.-M.W.); (U.W.); (F.Z.); (P.R.); (J.A.V.)
| | | | | | | | | | | |
Collapse
|
18
|
Duchowny KA, Mau T, Diaz-Ramierz LG, Lui LY, Marcinek DJ, Toledo FGS, Cawthon PM, Hepple RT, Kramer PA, Newman AB, Kritchevsky SB, Cummings SR, Coen PM, Molina AJA. Childhood adverse life events and skeletal muscle mitochondrial function. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.07.23298177. [PMID: 37986889 PMCID: PMC10659458 DOI: 10.1101/2023.11.07.23298177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Social stress experienced in childhood is associated with adverse health later in life. Mitochondrial function has been implicated as a mechanism for how stressful life events "get under the skin" to influence physical wellbeing. Using data from the Study of Muscle, Mobility and Aging (n=879, 59% women), linear models examined whether adverse childhood events (i.e., physical abuse) were associated with two measures of skeletal muscle mitochondrial energetics in older adults: (1) maximal adenosine triphosphate production (ATP max ) and (2) maximal state 3 respiration (Max OXPHOS). Forty-five percent of the sample reported experiencing 1+ adverse childhood event. After adjustment, each additional event was associated with -0.07 SD (95% CI= - 0.12, -0.01) lower ATP max . No association was observed with Max OXPHOS. Adverse childhood events are associated with lower ATP production in later life. Findings indicate that mitochondrial function may be a mechanism in understanding how early social stress influences health in later life.
Collapse
|
19
|
Karrasch S, Mavioğlu RN, Matits L, Gumpp AM, Mack M, Behnke A, Tumani V, Karabatsiakis A, Bongartz W, Kolassa IT. Randomized controlled trial investigating potential effects of relaxation on mitochondrial function in immune cells: A pilot experiment. Biol Psychol 2023; 183:108656. [PMID: 37544424 DOI: 10.1016/j.biopsycho.2023.108656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
This study aimed to investigate the effect of a relaxation response induced by hypnosis on the mitochondrial energy production of immune cells compared to an everyday relaxing situation. Chronically stressed individuals (88% women) with at least moderate suggestibility were randomized to a hypnosis (20 min relaxation hypnosis; n = 20) or a control condition (20 min documentary; n = 22). Before and after intervention, peripheral blood was collected. The primary outcomes were mitochondrial respiration and density in immune cells measured by high-resolution respirometry and citrate synthase activity assays. As secondary outcome, perceived stress, anxiety, and depressive mood were assessed. The intervention led to no significant Group × Time effects on mitochondrial bioenergetic parameters but a significant Time effect (ηp2 = .09 -.10). Thus, there were no differences in the experimental conditions concerning the measured parameters of mitochondrial bioenergetics. Exploratory subanalyses indicated that stress, anxiety, and depressive mood were linked to lower mitochondrial respiration. Individuals with higher anxiety had less decrease in routine respiration over time than those with lower anxiety (ηp2 = .09). This study explores the effects of relaxation in the form of hypnosis compared to watching a video on the energy metabolism of immune cells. Relaxation, whether in targeted (hypnosis) or untargeted (documentary) form, affected mitochondrial respiration. Further research should focus on the long-term effects of relaxation on bioenergetics. The trial was retrospectively registered on 07/12/2021, DRKS00027356, https://drks.de/search/de/trial/DRKS00027356.
Collapse
Affiliation(s)
- Sarah Karrasch
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | - Rezan Nehir Mavioğlu
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Lynn Matits
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany; Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Leimgrubenweg 14, D-89075 Ulm, Germany
| | - Anja Maria Gumpp
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Matthias Mack
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Behnke
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Visal Tumani
- Department of Psychiatry and Psychotherapy III, Ulm University, Leimgrubenweg 12, D-89075 Ulm, Germany
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany; Institute of Psychology, Department of Clinical Psychology-II, University of Innsbruck, Universitätsstrasse 57, A-6020 Innsbruck, Austria
| | - Walter Bongartz
- Klingenberg Institute of Clinical Hypnosis, Färberstr. 3a, D-78467 Konstanz, Germany
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| |
Collapse
|
20
|
DeFoor N, Paul S, Li S, Basso EKG, Stevenson V, Browning JL, Prater AK, Brindley S, Tao G, Pickrell AM. Remdesivir increases mtDNA copy number causing mild alterations to oxidative phosphorylation. Sci Rep 2023; 13:15339. [PMID: 37714940 PMCID: PMC10504289 DOI: 10.1038/s41598-023-42704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
SARS-CoV-2 causes the severe respiratory disease COVID-19. Remdesivir (RDV) was the first fast-tracked FDA approved treatment drug for COVID-19. RDV acts as an antiviral ribonucleoside (adenosine) analogue that becomes active once it accumulates intracellularly. It then diffuses into the host cell and terminates viral RNA transcription. Previous studies have shown that certain nucleoside analogues unintentionally inhibit mitochondrial RNA or DNA polymerases or cause mutational changes to mitochondrial DNA (mtDNA). These past findings on the mitochondrial toxicity of ribonucleoside analogues motivated us to investigate what effects RDV may have on mitochondrial function. Using in vitro and in vivo rodent models treated with RDV, we observed increases in mtDNA copy number in Mv1Lu cells (35.26% increase ± 11.33%) and liver (100.27% increase ± 32.73%) upon treatment. However, these increases only resulted in mild changes to mitochondrial function. Surprisingly, skeletal muscle and heart were extremely resistant to RDV treatment, tissues that have preferentially been affected by other nucleoside analogues. Although our data suggest that RDV does not greatly impact mitochondrial function, these data are insightful for the treatment of RDV for individuals with mitochondrial disease.
Collapse
Affiliation(s)
- Nicole DeFoor
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Swagatika Paul
- Graduate Program in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Erwin K Gudenschwager Basso
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Valentina Stevenson
- Virginia Tech Animal Laboratory Services, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Jack L Browning
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Anna K Prater
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Samantha Brindley
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA.
| |
Collapse
|
21
|
Nagwani AK, Budka A, Łacka A, Kaczmarek Ł, Kmita H. The effect of hypomagnetic field on survival and mitochondrial functionality of active Paramacrobiotus experimentalis females and males of different age. Front Physiol 2023; 14:1253483. [PMID: 37745239 PMCID: PMC10514487 DOI: 10.3389/fphys.2023.1253483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Even for tardigrades, often called the toughest animals on Earth, a hypomagnetic field (HMF) is an extreme environment. However, studies on the effect of HMF on tardigrades and other invertebrates are scarce. Mitochondria play an important role in an organism's response to extreme conditions. The effect of HMF on the mitochondrial inner membrane potential (Δψ), a well-known marker of mitochondria functionality, shows that mitochondria are very sensitive to HMF. To measure the HMF effect on Paramacrobiotus experimentalis, we calculated the tardigrade survival rate and Δψ level after HMF treatments of different durations. We also estimated the relationship between the age and sex of the tardigrade and the HMF effect. We observed age- and sex-related differences in Δψ and found that Δψ changes after HMF treatment were dependent on its duration as well as the animal's age and sex. Furthermore, active P. experimentalis individuals displayed a high survival rate after HMF treatment. The data may contribute to the understanding of tardigrade aging and their resistance to extreme conditions including HMF, which in turn may be useful for future space explorations.
Collapse
Affiliation(s)
- Amit Kumar Nagwani
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Anna Budka
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Agnieszka Łacka
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
22
|
Kroneisl M, Spraakman NA, Koomen JV, Hijazi Z, Hoogstra-Berends FH, Leuvenink HGD, Struys MMRF, Henning RH, Nieuwenhuijs-Moeke GJ. Peri-Operative Kinetics of Plasma Mitochondrial DNA Levels during Living Donor Kidney Transplantation. Int J Mol Sci 2023; 24:13579. [PMID: 37686384 PMCID: PMC10487554 DOI: 10.3390/ijms241713579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
During ischemia and reperfusion injury (IRI), mitochondria may release mitochondrial DNA (mtDNA). mtDNA can serve as a propagator of further injury but in specific settings has anti-inflammatory capacities as well. Therefore, the aim of this study was to study the perioperative dynamics of plasma mtDNA during living donor kidney transplantation (LDKT) and its potential as a marker of graft outcome. Fifty-six donor-recipient couples from the Volatile Anesthetic Protection of Renal Transplants-1 (VAPOR-1) trial were included. Systemic venous, systemic arterial, and renal venous samples were taken at multiple timepoints during and after LDKT. Levels of mtDNA genes changed over time and between vascular compartments. Several donor, recipient, and transplantation-related variables significantly explained the course of mtDNA genes over time. mtDNA genes predicted 1-month and 24-month estimated glomerular filtration rate (eGFR) and acute rejection episodes in the two-year follow-up period. To conclude, mtDNA is released in plasma during the process of LDKT, either from the kidney or from the whole body in response to transplantation. While circulating mtDNA levels positively and negatively predict post-transplantation outcomes, the exact mechanisms and difference between mtDNA genes are not yet understood and need further exploration.
Collapse
Affiliation(s)
- Marie Kroneisl
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nora A. Spraakman
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jeroen V. Koomen
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Zeinab Hijazi
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Femke H. Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Rob H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
23
|
Shan Z, Wang Y, Qiu T, Zhou Y, Zhang Y, Hu L, Zhang L, Liang J, Ding M, Fan S, Xiao Z. SS-31 alleviated nociceptive responses and restored mitochondrial function in a headache mouse model via Sirt3/Pgc-1α positive feedback loop. J Headache Pain 2023; 24:65. [PMID: 37271805 DOI: 10.1186/s10194-023-01600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
Migraine is the second highest cause of disability worldwide, bringing a huge socioeconomic burden. Improving mitochondrial function has promise as an effective treatment strategy for migraine. Szeto-Schiller peptide (SS-31) is a new mitochondria-targeted tetrapeptide molecule that has been shown to suppress the progression of diseases by restoring mitochondrial function, including renal disease, cardiac disease, and neurodegenerative disease. However, whether SS-31 has a therapeutic effect on migraine remains unclear. The aim of this study is to clarify the treatment of SS-31 for headache and its potential mechanisms. Here we used a mouse model induced by repeated dural infusion of inflammatory soup (IS), and examined roles of Sirt3/Pgc-1α positive feedback loop in headache pathogenesis and mitochondrial function. Our results showed that repeated IS infusion impaired mitochondrial function, mitochondrial ultrastructure and mitochondrial homeostasis in the trigeminal nucleus caudalis (TNC). These IS-induced damages in TNC were reversed by SS-31. In addition, IS-induced nociceptive responses were simultaneously alleviated. The effects of SS-31 on mitochondrial function and mitochondrial homeostasis (mainly mitochondrial biogenesis) were attenuated partially by the inhibitor of Sirt3/Pgc-1α. Overexpression of Sirt3/Pgc-1α increased the protein level of each other. These results indicated that SS-31 alleviated nociceptive responses and restored mitochondrial function in an IS-induced headache mouse model via Sirt3/Pgc-1α positive feedback loop. SS-31 has the potential to be an effective drug candidate for headache treatment.
Collapse
Affiliation(s)
- Zhengming Shan
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Tao Qiu
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Luyu Hu
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Lili Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Jingjing Liang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Man Ding
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Shanghua Fan
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
24
|
Piel S, Janowska JI, Ward JL, McManus MJ, Aronowitz DI, Janowski PK, Starr J, Hook JN, Hefti MM, Clayman CL, Elmér E, Hansson MJ, Jang DH, Karlsson M, Ehinger JK, Kilbaugh TJ. Succinate prodrugs as treatment for acute metabolic crisis during fluoroacetate intoxication in the rat. Mol Cell Biochem 2023; 478:1231-1244. [PMID: 36282352 PMCID: PMC10540239 DOI: 10.1007/s11010-022-04589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
Abstract
Sodium fluoroacetate (FA) is a metabolic poison that systemically inhibits the tricarboxylic acid (TCA) cycle, causing energy deficiency and ultimately multi-organ failure. It poses a significant threat to society because of its high toxicity, potential use as a chemical weapon and lack of effective antidotal therapy. In this study, we investigated cell-permeable succinate prodrugs as potential treatment for acute FA intoxication. We hypothesized that succinate prodrugs would bypass FA-induced mitochondrial dysfunction, provide metabolic support, and prevent metabolic crisis during acute FA intoxication. To test this hypothesis, rats were exposed to FA (0.75 mg/kg) and treated with the succinate prodrug candidate NV354. Treatment efficacy was evaluated based on cardiac and cerebral mitochondrial respiration, mitochondrial content, metabolic profiles and tissue pathology. In the heart, FA increased concentrations of the TCA metabolite citrate (+ 4.2-fold, p < 0.01) and lowered ATP levels (- 1.9-fold, p < 0.001), confirming the inhibition of the TCA cycle by FA. High-resolution respirometry of cardiac mitochondria further revealed an impairment of mitochondrial complex V (CV)-linked metabolism, as evident by a reduced phosphorylation system control ratio (- 41%, p < 0.05). The inhibition of CV-linked metabolism is a novel mechanism of FA cardiac toxicity, which has implications for drug development and which NV354 was unable to counteract at the given dose. In the brain, FA induced the accumulation of β-hydroxybutyrate (+ 1.4-fold, p < 0.05) and the reduction of mitochondrial complex I (CI)-linked oxidative phosphorylation (OXPHOSCI) (- 20%, p < 0.01), the latter of which was successfully alleviated by NV354. This promising effect of NV354 warrants further investigations to determine its potential neuroprotective effects.
Collapse
Affiliation(s)
- Sarah Piel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA.
| | - Joanna I Janowska
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - J Laurenson Ward
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Meagan J McManus
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Danielle I Aronowitz
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Piotr K Janowski
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jonathan Starr
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jordan N Hook
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Carly L Clayman
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Eskil Elmér
- Abliva AB, Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Magnus J Hansson
- Abliva AB, Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - David H Jang
- Department of Emergency Medicine, Division of Medical Toxicology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | - Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Todd J Kilbaugh
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
25
|
Bushana PN, Schmidt MA, Chang KM, Vuong T, Sorg BA, Wisor JP. Effect of N-Acetylcysteine on Sleep: Impacts of Sex and Time of Day. Antioxidants (Basel) 2023; 12:1124. [PMID: 37237990 PMCID: PMC10215863 DOI: 10.3390/antiox12051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Non-rapid eye movement sleep (NREMS) is accompanied by a decrease in cerebral metabolism, which reduces the consumption of glucose as a fuel source and decreases the overall accumulation of oxidative stress in neural and peripheral tissues. Enabling this metabolic shift towards a reductive redox environment may be a central function of sleep. Therefore, biochemical manipulations that potentiate cellular antioxidant pathways may facilitate this function of sleep. N-acetylcysteine increases cellular antioxidant capacity by serving as a precursor to glutathione. In mice, we observed that intraperitoneal administration of N-acetylcysteine at a time of day when sleep drive is naturally high accelerated the onset of sleep and reduced NREMS delta power. Additionally, N-acetylcysteine administration suppressed slow and beta electroencephalographic (EEG) activities during quiet wake, further demonstrating the fatigue-inducing properties of antioxidants and the impact of redox balance on cortical circuit properties related to sleep drive. These results implicate redox reactions in the homeostatic dynamics of cortical network events across sleep/wake cycles, illustrating the value of timing antioxidant administration relative to sleep/wake cycles. A systematic review of the relevant literature, summarized herein, indicates that this "chronotherapeutic hypothesis" is unaddressed within the clinical literature on antioxidant therapy for brain disorders such as schizophrenia. We, therefore, advocate for studies that systematically address the relationship between the time of day at which an antioxidant therapy is administered relative to sleep/wake cycles and the therapeutic benefit of that antioxidant treatment in brain disorders.
Collapse
Affiliation(s)
- Priyanka N. Bushana
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (P.N.B.); (M.A.S.); (K.M.C.); (T.V.)
| | - Michelle A. Schmidt
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (P.N.B.); (M.A.S.); (K.M.C.); (T.V.)
| | - Kevin M. Chang
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (P.N.B.); (M.A.S.); (K.M.C.); (T.V.)
| | - Trisha Vuong
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (P.N.B.); (M.A.S.); (K.M.C.); (T.V.)
| | - Barbara A. Sorg
- R.S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA;
| | - Jonathan P. Wisor
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (P.N.B.); (M.A.S.); (K.M.C.); (T.V.)
| |
Collapse
|
26
|
Zhang T, Feng T, Wu K, Guo J, Nana AL, Yang G, Seeley WW, Hu F. Progranulin deficiency results in sex-dependent alterations in microglia in response to demyelination. Acta Neuropathol 2023:10.1007/s00401-023-02578-w. [PMID: 37120788 PMCID: PMC10375542 DOI: 10.1007/s00401-023-02578-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Heterozygous mutations in the granulin (GRN) gene, resulting in the haploinsufficiency of the progranulin (PGRN) protein, is a leading cause of frontotemporal lobar degeneration (FTLD). Complete loss of the PGRN protein causes neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. Polymorphisms in the GRN gene have also been associated with several other neurodegenerative diseases, including Alzheimer's disease (AD), and Parkinson's disease (PD). PGRN deficiency has been shown to cause myelination defects previously, but how PGRN regulates myelination is unknown. Here, we report that PGRN deficiency leads to a sex-dependent myelination defect with male mice showing more severe demyelination in response to cuprizone treatment. This is accompanied by exacerbated microglial proliferation and activation in the male PGRN-deficient mice. Interestingly, both male and female PGRN-deficient mice show sustained microglial activation after cuprizone removal and a defect in remyelination. Specific ablation of PGRN in microglia results in similar sex-dependent phenotypes, confirming a microglial function of PGRN. Lipid droplets accumulate in microglia specifically in male PGRN-deficient mice. RNA-seq analysis and mitochondrial function assays reveal key differences in oxidative phosphorylation in male versus female microglia under PGRN deficiency. A significant decrease in myelination and accumulation of myelin debris and lipid droplets in microglia were found in the corpus callosum regions of FTLD patients with GRN mutations. Taken together, our data support that PGRN deficiency leads to sex-dependent alterations in microglia with subsequent myelination defects.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Kenton Wu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Jennifer Guo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Alissa L Nana
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
- Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
27
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
28
|
Lamontagne-Kam DM, Davari S, Aristizabal-Henao JJ, Cho S, Chalil D, Mielke JG, Stark KD. Sex differences in hippocampal-dependent memory and the hippocampal lipidome in adolescent rats raised on diets with or without DHA. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102569. [PMID: 36966673 DOI: 10.1016/j.plefa.2023.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Recent studies suggest the effects of DHA supplementation on human memory may differ between females and males during infancy, adolescence, and early adulthood, but the underlying mechanisms are not clear. As a result, this study sought to examine the spatial memory and brain lipidomic profiles in female and male adolescent rats with or without a DHA-enriched diet that began perinatally with the supplementation of dams. Spatial learning and memory were examined in adolescent rats using the Morris Water Maze beginning at 6 weeks of age and animals were sacrificed at 7 weeks of age to permit isolation of brain tissue and blood samples. Behavioral testing showed that there was a significant diet x sex interaction for two key measures of spatial memory (distance to zone and time spent in the correct quadrant during the probe test), with female rats benefiting the most from DHA supplementation. Lipidomic analyses suggest levels of arachidonic acid (ARA) and n-6 docosapentaenoic acid (DPA) containing phospholipid species were lower in the hippocampus of DHA supplemented compared with control animals, and principal component analyses revealed a potential dietary treatment effect for hippocampal PUFA. Females fed DHA had slightly more PE P-18:0_22:6 and maintained levels of PE 18:0_20:4 in the hippocampus in contrast with males fed DHA. Understanding how DHA supplementation during the perinatal and adolescent periods changes cognitive function in a sex-specific manner has important implications for determining the dietary requirements of DHA. This study adds to previous work highlighting the importance of DHA for spatial memory and provides evidence that further research needs to consider how DHA supplementation can cause sex-specific changes.
Collapse
Affiliation(s)
- Daniel M Lamontagne-Kam
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Saeideh Davari
- School of Public Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Juan J Aristizabal-Henao
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada; BPGbio Inc., 500 Old Connecticut Path Building B, Framingham, MA, 01701, USA
| | - Seungjae Cho
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dan Chalil
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - John G Mielke
- School of Public Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
29
|
Vostatek R, Hohensinner P, Nopp S, Haider P, Englisch C, Pointner J, Pabinger I, Ay C. Association of telomere length and mitochondrial DNA copy number, two biomarkers of biological aging, with the risk of venous thromboembolism. Thromb Res 2023; 223:168-173. [PMID: 36758285 DOI: 10.1016/j.thromres.2023.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Venous thromboembolism (VTE) is the third most common cardiovascular disease and occurs in all age groups, albeit the risk increases considerably with age. Previous research indicates mitochondrial dysfunction and telomere shortening in cardiovascular aging. However, in the context of VTE this has not been investigated in detail. AIM We aimed to explore biomarkers reflecting biological aging (i.e. human mitochondrial DNA copy number (mtDNA) and telomere length) and their association with VTE. METHODS mtDNA and telomere length were measured in a case-control study of 116 patients with a history of VTE and 128 age- and sex-matched healthy individuals from isolated blood using a qPCR-based assay kit. Cases had at least one unprovoked VTE event and were enrolled no earlier than 3 months after the last VTE event. RESULTS The mtDNA copy number was significantly lower in VTE cases compared to controls (median [IQR]: 663 per diploid cells [78.75-2204.5] vs. 2832 per diploid cells [724-4350]; p < 0.001). After adjustment for age, sex, BMI, and smoking, mtDNA copy number was independently associated with VTE risk (odds ratio per increase in 400 mtDNA per diploid cell: 0.889, 95%CI 0.834-0.947). mtDNA copy numbers were significantly different between women and men (2375 [455-3737] women vs. 893 [152-3154] men; p < 0.001). The analysis of telomere length showed no significant difference between patients and healthy controls. CONCLUSION Lower mtDNA levels were found in patients with VTE compared to controls, indicating an association of biological aging with risk of VTE.
Collapse
Affiliation(s)
- Rafaela Vostatek
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna, Austria
| | - Philipp Hohensinner
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Vienna, Austria
| | - Stephan Nopp
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Vienna, Austria
| | - Cornelia Englisch
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna, Austria
| | - Julia Pointner
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna, Austria
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna, Austria.
| |
Collapse
|
30
|
Raggio V, Graña M, Winiarski E, Mansilla S, Simoes C, Rodríguez S, Brandes M, Tapié A, Rodríguez L, Cibils L, Alonso M, Martínez J, Fernández-Calero T, Domínguez F, Mezquida MR, Castro L, Cerisola A, Naya H, Cassina A, Quijano C, Spangenberg L. Computational and mitochondrial functional studies of novel compound heterozygous variants in SPATA5 gene support a causal link with epileptogenic encephalopathy. Hum Genomics 2023; 17:14. [PMID: 36849973 PMCID: PMC9972848 DOI: 10.1186/s40246-023-00463-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
The SPATA5 gene encodes a 892 amino-acids long protein that has a putative mitochondrial targeting sequence and has been proposed to function in maintenance of mitochondrial function and integrity during mouse spermatogenesis. Several studies have associated homozygous or compound heterozygous mutations in SPATA5 gene to microcephaly, intellectual disability, seizures and hearing loss. This suggests a role of the SPATA5 gene also in neuronal development. Recently, our group presented results validating the use of blood cells for the assessment of mitochondrial function for diagnosis and follow-up of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsy. In this study, we were able to diagnose a patient with epileptogenic encephalopathy using next generation sequencing. We found two novel compound heterozygous variants in SPATA5 that are most likely causative. To analyze the impact of SPATA5 mutations on mitochondrial functional studies directly on the patients' mononuclear cells and platelets were undertaken. Oxygen consumption rates in platelets and PBMCs were impaired in the patient when compared to a healthy control. Also, a decrease in mitochondrial mass was observed in the patient monocytes with respect to the control. This suggests a true pathogenic effect of the mutations in mitochondrial function, especially in energy production and possibly biogenesis, leading to the observed phenotype.
Collapse
Affiliation(s)
- Víctor Raggio
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martín Graña
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Erik Winiarski
- grid.11630.350000000121657640Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mansilla
- grid.11630.350000000121657640Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Camila Simoes
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Soledad Rodríguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Brandes
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandra Tapié
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Rodríguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Cibils
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martina Alonso
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jennyfer Martínez
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Tamara Fernández-Calero
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.442041.70000 0001 2188 793XDepartment of Exact and Natural Sciences, Universidad Católica del Uruguay, 11600 Montevideo, Uruguay
| | - Fernanda Domínguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,grid.442041.70000 0001 2188 793XUniversidad Católica del Uruguay, 11600 Montevideo, Uruguay
| | - Melania Rosas Mezquida
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Castro
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alfredo Cerisola
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hugo Naya
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Celia Quijano
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay. .,Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
31
|
Systems level analysis of sex-dependent gene expression changes in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:8. [PMID: 36681675 PMCID: PMC9867746 DOI: 10.1038/s41531-023-00446-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease (PD) is a heterogeneous disorder, and among the factors which influence the symptom profile, biological sex has been reported to play a significant role. While males have a higher age-adjusted disease incidence and are more frequently affected by muscle rigidity, females present more often with disabling tremors. The molecular mechanisms involved in these differences are still largely unknown, and an improved understanding of the relevant factors may open new avenues for pharmacological disease modification. To help address this challenge, we conducted a meta-analysis of disease-associated molecular sex differences in brain transcriptomics data from case/control studies. Both sex-specific (alteration in only one sex) and sex-dimorphic changes (changes in both sexes, but with opposite direction) were identified. Using further systems level pathway and network analyses, coordinated sex-related alterations were studied. These analyses revealed significant disease-associated sex differences in mitochondrial pathways and highlight specific regulatory factors whose activity changes can explain downstream network alterations, propagated through gene regulatory cascades. Single-cell expression data analyses confirmed the main pathway-level changes observed in bulk transcriptomics data. Overall, our analyses revealed significant sex disparities in PD-associated transcriptomic changes, resulting in coordinated modulations of molecular processes. Among the regulatory factors involved, NR4A2 has already been reported to harbor rare mutations in familial PD and its pharmacological activation confers neuroprotective effects in toxin-induced models of Parkinsonism. Our observations suggest that NR4A2 may warrant further research as a potential adjuvant therapeutic target to address a subset of pathological molecular features of PD that display sex-associated profiles.
Collapse
|
32
|
Münz F, Wolfschmitt EM, Zink F, Abele N, Hogg M, Hoffmann A, Gröger M, Calzia E, Waller C, Radermacher P, Merz T. Porcine blood cell and brain tissue energy metabolism: Effects of "early life stress". Front Mol Biosci 2023; 10:1113570. [PMID: 37138659 PMCID: PMC10150084 DOI: 10.3389/fmolb.2023.1113570] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Early Life Stress (ELS) may exert long-lasting biological effects, e.g., on PBMC energy metabolism and mitochondrial respiration. Data on its effect on brain tissue mitochondrial respiration is scarce, and it is unclear whether blood cell mitochondrial activity mirrors that of brain tissue. This study investigated blood immune cell and brain tissue mitochondrial respiratory activity in a porcine ELS model. Methods: This prospective randomized, controlled, animal investigation comprised 12 German Large White swine of either sex, which were weaned at PND (postnatal day) 28-35 (control) or PND21 (ELS). At 20-24 weeks, animals were anesthetized, mechanically ventilated and surgically instrumented. We determined serum hormone, cytokine, and "brain injury marker" levels, superoxide anion (O2 •¯) formation and mitochondrial respiration in isolated immune cells and immediate post mortem frontal cortex brain tissue. Results: ELS animals presented with higher glucose levels, lower mean arterial pressure. Most determined serum factors did not differ. In male controls, TNFα and IL-10 levels were both higher than in female controls as well as, no matter the gender in ELS animals. MAP-2, GFAP, and NSE were also higher in male controls than in the other three groups. Neither PBMC routine respiration and brain tissue oxidative phosphorylation nor maximal electron transfer capacity in the uncoupled state (ETC) showed any difference between ELS and controls. There was no significant relation between brain tissue and PBMC, ETC, or brain tissue, ETC, and PBMC bioenergetic health index. Whole blood O2 •¯ concentrations and PBMC O2 •¯ production were comparable between groups. However, granulocyte O2 •¯ production after stimulation with E. coli was lower in the ELS group, and this effect was sex-specific: increased O2 •¯ production increased upon stimulation in all control animals, which was abolished in the female ELS swine. Conclusion: This study provides evidence that ELS i) may, gender-specifically, affect the immune response to general anesthesia as well as O2 •¯ radical production at sexual maturity, ii) has limited effects on brain and peripheral blood immune cell mitochondrial respiratory activity, and iii) mitochondrial respiratory activity of peripheral blood immune cells and brain tissue do not correlate.
Collapse
Affiliation(s)
- Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Nadja Abele
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Tamara Merz,
| |
Collapse
|
33
|
King DE, Sparling AC, Lloyd D, Satusky MJ, Martinez M, Grenier C, Bergemann CM, Maguire R, Hoyo C, Meyer JN, Murphy SK. Sex-specific DNA methylation and associations with in utero tobacco smoke exposure at nuclear-encoded mitochondrial genes. Epigenetics 2022; 17:1573-1589. [PMID: 35238269 PMCID: PMC9620986 DOI: 10.1080/15592294.2022.2043591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sex-linked differences in mitochondrial ATP production, enzyme activities, and reactive oxygen species generation have been reported in multiple tissue and cell types. While the effects of reproductive hormones underlie many of these differences, regulation of sexually dimorphic mitochondrial function has not been fully characterized. We hypothesized that sex-specific DNA methylation contributes to sex-specific expression of nuclear genes that influence mitochondrial function. Herein, we analysed DNA methylation data specifically focused on nuclear-encoded mitochondrial genes in 191 males and 190 females. We found 596 differentially methylated sites (DMSs) (FDR p < 0.05), corresponding to 324 genes, with at least a 1% difference in methylation between sexes. To investigate the potential functional significance, we utilized gene expression microarray data. Of the 324 genes containing DMSs, 17 showed differences in gene expression by sex. Particularly striking was that ATP5G2, encoding subunit C of ATP synthase, contains seven DMSs and exhibits a sex difference in expression (p = 0.04). Finally, we also found that alterations in DNA methylation associated with in utero tobacco smoke exposure were sex-specific in these nuclear-encoded mitochondrial genes. Interestingly, the level of sex differences in DNA methylation at nuclear-encoded mitochondrial genes and the level of methylation changes associated with smoke exposure were less prominent than that of other genes. This suggests more conservative regulation of DNA methylation at these nuclear-encoded mitochondrial genes as compared to others. Overall, our findings suggest that sex-specific DNA methylation may help establish sex differences in expression and function and that sex-specific alterations in DNA methylation in response to exposures could contribute to sex-variable toxicological responses.
Collapse
Affiliation(s)
- Dillon E. King
- Nicholas School of the Environment, Duke University, Durham, NC, USA,Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Anna Clare Sparling
- Nicholas School of the Environment, Duke University, Durham, NC, USA,Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Dillon Lloyd
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Matthew Joseph Satusky
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mackenzie Martinez
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - Rachel Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Joel Newman Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Susan K. Murphy
- Nicholas School of the Environment, Duke University, Durham, NC, USA,Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA,CONTACT Susan K. Murphy 701 W. Main Street, Suite 510, Durham, NC27701, USA Department of Obstetrics and Gynecology, Duke University Medical Center
| |
Collapse
|
34
|
Inoue Y, Igarashi T, Hasebe Y, Kawagishi-Hotta M, Okuno R, Yamada T, Hasegawa S. Identification of mitochondrial genetic variants associated with human corneocyte size in Japanese women. Exp Dermatol 2022; 31:1944-1948. [PMID: 36067013 DOI: 10.1111/exd.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
Mitochondria have their own DNA (mtDNA). Genetic variants are likely to accumulate in mtDNA, and its base substitution rate is known to be very fast, 10-20 times faster than that of nuclear DNA. For this reason, mtSNPs (mitochondrial genome single nucleotide polymorphisms) are frequently detected in mtDNA. Several thousands of copies of mtDNA are considered to be present in a cell, and variants that have occurred in mtDNA are expected to markedly affect the intracellular energy production system and ROS (reactive oxygen species) kinetics. Therefore, recently, mtSNPs have come to be considered very important as a determinant of the individual constitution such as the life-span and disease susceptibility. In this study, we searched for mtSNPs that affect the individual corneocyte size using samples from 358 Japanese women. As a result, mtSNPs 10609C and 12406A were found to be significantly related to the corneocyte size in the outermost layer of the epidermis. There have been a large number of reports concerning the association between mtSNPs and individual constitution, but little evaluation of their relationships with epidermal properties has been made. The results of the present study first suggested that mtSNPs may affect the epidermal properties in Japanese women.
Collapse
Affiliation(s)
- Yu Inoue
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Igarashi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan
| | - Yuichi Hasebe
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mika Kawagishi-Hotta
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryosuke Okuno
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, Nagoya, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Cunha-Oliveira T, Carvalho M, Sardão V, Ferreiro E, Mena D, Pereira FB, Borges F, Oliveira PJ, Silva FSG. Integrative Profiling of Amyotrophic Lateral Sclerosis Lymphoblasts Identifies Unique Metabolic and Mitochondrial Disease Fingerprints. Mol Neurobiol 2022; 59:6373-6396. [PMID: 35933467 DOI: 10.1007/s12035-022-02980-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with a rapid progression and no effective treatment. Metabolic and mitochondrial alterations in peripheral tissues of ALS patients may present diagnostic and therapeutic interest. We aimed to identify mitochondrial fingerprints in lymphoblast from ALS patients harboring SOD1 mutations (mutSOD1) or with unidentified mutations (undSOD1), compared with age-/sex-matched controls. Three groups of lymphoblasts, from mutSOD1 or undSOD1 ALS patients and age-/sex-matched controls, were obtained from Coriell Biobank and divided into 3 age-/sex-matched cohorts. Mitochondria-associated metabolic pathways were analyzed using Seahorse MitoStress and ATP Rate assays, complemented with metabolic phenotype microarrays, metabolite levels, gene expression, and protein expression and activity. Pooled (all cohorts) and paired (intra-cohort) analyses were performed by using bioinformatic tools, and the features with higher information gain values were selected and used for principal component analysis and Naïve Bayes classification. Considering the group as a target, the features that contributed to better segregation of control, undSOD1, and mutSOD1 were found to be the protein levels of Tfam and glycolytic ATP production rate. Metabolic phenotypic profiles in lymphoblasts from ALS patients with mutSOD1 and undSOD1 revealed unique age-dependent different substrate oxidation profiles. For most parameters, different patterns of variation in experimental endpoints in lymphoblasts were found between cohorts, which may be due to the age or sex of the donor. In the present work, we investigated several metabolic and mitochondrial hallmarks in lymphoblasts from each donor, and although a high heterogeneity of results was found, we identified specific metabolic and mitochondrial fingerprints, especially protein levels of Tfam and glycolytic ATP production rate, that may have a diagnostic and therapeutic interest.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Marcelo Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Vilma Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Débora Mena
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Francisco B Pereira
- CISUC-Center for Informatics & Systems, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Coimbra, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Filomena S G Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Mitotag Lda, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|
36
|
Bose M, Jefferies C. Sex bias in systemic lupus erythematosus: a molecular insight. IMMUNOMETABOLISM (COBHAM, SURREY) 2022; 4:e00004. [PMID: 35966636 PMCID: PMC9358995 DOI: 10.1097/in9.0000000000000004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Acknowledging sex differences in immune response is particularly important when we consider the differences between men and women in the incidence of disease. For example, over 80% of autoimmune disease occurs in women, whereas men have a higher incidence of solid tumors compared to women. In general women have stronger innate and adaptive immune responses than men, explaining their ability to clear viral and bacterial infections faster, but also contributing to their increased susceptibility to autoimmune disease. The autoimmune disease systemic lupus erythematosus (SLE) is the archetypical sexually dimorphic disease, with 90% of patients being women. Various mechanisms have been suggested to account for the female prevalence of SLE, including sex hormones, X-linked genes, and epigenetic regulation of gene expression. Here, we will discuss how these mechanisms contribute to pathobiology of SLE and how type I interferons work with them to augment sex specific disease pathogenesis in SLE.
Collapse
Affiliation(s)
- Moumita Bose
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Caroline Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
37
|
Gherardelli C, Cisternas P, Vera-Salazar RF, Mendez-Orellana C, Inestrosa NC. Age- and Sex-Associated Glucose Metabolism Decline in a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2022; 87:901-917. [DOI: 10.3233/jad-215273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Alzheimer’s disease (AD) is characterized by a high etiological and clinical heterogeneity, which has obscured the diagnostic and treatment efficacy, as well as limited the development of potential drugs. Sex differences are among the risk factors that contribute to the variability of disease manifestation. Unlike men, women are at greater risk of developing AD and suffer from higher cognitive deterioration, together with important changes in pathological features. Alterations in glucose metabolism are emerging as a key player in the pathogenesis of AD, which appear even decades before the presence of clinical symptoms. Objective: We aimed to study whether AD-related sex differences influence glucose metabolism. Methods: We used male and female APPswe/PS1dE9 (APP/PS1) transgenic mice of different ages to examine glucose metabolism effects on AD development. Results: Our analysis suggests an age-dependent decline of metabolic responses, cognitive functions, and brain energy homeostasis, together with an increase of Aβ levels in both males and females APP/PS1 mice. The administration of Andrographolide (Andro), an anti-inflammatory and anti-diabetic compound, was able to restore several metabolic disturbances, including the glycolytic and the pentose phosphate pathway fluxes, ATP levels, AMPKα activity, and Glut3 expression in 8-month-old mice, independent of the sex, while rescuing these abnormalities only in older females. Similarly, Andro also prevented Aβ accumulation and cognitive decline in all but old males. Conclusion: Our study provides insight into the heterogeneity of the disease and supports the use of Andro as a potential drug to promote personalized medicine in AD.
Collapse
Affiliation(s)
- Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Roberto F. Vera-Salazar
- Escuela de Kinesiología, Facultad de Ciencias Médicas. Universidad de Santiago de Chile, Santiago, Chile
| | - Carolina Mendez-Orellana
- Carrera de Fonoaudiología, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
38
|
Reid DM, Barber RC, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Mitochondrial DNA oxidative mutations are elevated in Mexican American women potentially implicating Alzheimer's disease. NPJ AGING 2022; 8:2. [PMID: 35927256 PMCID: PMC9158774 DOI: 10.1038/s41514-022-00082-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/15/2022] [Indexed: 11/08/2022]
Abstract
Mexican Americans (MAs) are the fastest-growing Hispanic population segment in the US; as this population increases in age, so will the societal burden of age-related diseases such as Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be implicated in MA AD risk since metabolic comorbidities are more prevalent in this group. Oxidative damage to guanosine (8oxoG) is one of the most prevalent DNA lesions and a putative indicator of mitochondrial dysfunction. Testing blood samples from participants of the Texas Alzheimer's Research and Care Consortium, we found mtDNA 8oxoG mutational load to be significantly higher in MAs compared to non-Hispanic whites and that MA females are differentially affected. Furthermore, we identified specific mtDNA haplotypes that confer increased risk for oxidative damage and suggestive evidence that cognitive function may be related to 8oxoG burden. Our understanding of these phenomena will elucidate population- and sex-specific mechanisms of AD pathogenesis, informing the development of more precise interventions and therapeutic approaches for MAs with AD in the future.
Collapse
Affiliation(s)
- Danielle Marie Reid
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Robert C Barber
- Pharmacology & Neuroscience, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Roland J Thorpe
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jie Sun
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Biostatistics & Epidemiology, School of Public Health, UNT Health Science Center, Fort Worth, TX, USA
| | - Nicole R Phillips
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
39
|
Zhou W, Zhao Z, Yu Z, Hou Y, Keerthiga R, Fu A. Mitochondrial transplantation therapy inhibits the proliferation of malignant hepatocellular carcinoma and its mechanism. Mitochondrion 2022; 65:11-22. [DOI: 10.1016/j.mito.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023]
|
40
|
Díaz-Resendiz KJG, Benitez-Trinidad AB, Covantes-Rosales CE, Toledo-Ibarra GA, Ortiz-Lazareno PC, Girón-Pérez DA, Bueno-Durán AY, Pérez-Díaz DA, Barcelos-García RG, Girón-Pérez MI. Loss of mitochondrial membrane potential (ΔΨ m ) in leucocytes as post-COVID-19 sequelae. J Leukoc Biol 2022; 112:23-29. [PMID: 35355308 PMCID: PMC9088601 DOI: 10.1002/jlb.3ma0322-279rrr] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
The mitochondrial membrane potential (ΔΨm) is a parameter often used to determine mitochondrial function; therefore, it can be used to determine the integrity and functionality of cells. A decrement of ΔΨm is implicated in several inflammatory‐related pathologies, such phenomena can be related to COVID‐19 infection. The present work aimed to compare the ΔΨm in leucocytes (human PBMCs; HPBMC) isolated from healthy control (HC) subjects, patients with COVID‐19 (C‐19), recovered subjects at 40 ± 13 (R1) and 335 ± 20 (R2) days after infection (dai). Obtained data showed that ΔΨm decreased in HPBMC of subjects with C‐19, R1, and R2 compared with HC. When analyzing the ΔΨm data by sex, in females, a significant decrease was observed in R1 and R2 groups versus HC. Regarding men, a significant decrease of ΔΨm was observed in R1, with respect to HC, contrary to R2 group, who reestablished this parameter. Obtained results suggest that the loss of ΔΨm could be related to the long‐COVID.
Collapse
Affiliation(s)
| | - Alma Betsaida Benitez-Trinidad
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Carlos Eduardo Covantes-Rosales
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Gladys Alejandra Toledo-Ibarra
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica de Occidente (CIBO), Guadalajara, Jalisco, Mexico
| | - Daniel Alberto Girón-Pérez
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Adela Yolanda Bueno-Durán
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Daniela Alejandra Pérez-Díaz
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Rocío Guadalupe Barcelos-García
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Manuel Iván Girón-Pérez
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| |
Collapse
|
41
|
Junker A, Wang J, Gouspillou G, Ehinger JK, Elmér E, Sjövall F, Fisher-Wellman KH, Neufer PD, Molina AJA, Ferrucci L, Picard M. Human studies of mitochondrial biology demonstrate an overall lack of binary sex differences: A multivariate meta-analysis. FASEB J 2022; 36:e22146. [PMID: 35073429 PMCID: PMC9885138 DOI: 10.1096/fj.202101628r] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023]
Abstract
Mitochondria are maternally inherited organelles that play critical tissue-specific roles, including hormone synthesis and energy production, that influence human development, health, and aging. However, whether mitochondria from women and men exhibit consistent biological differences remains unclear, representing a major gap in knowledge. This meta-analysis systematically examined four domains and six subdomains of mitochondrial biology (total 39 measures), including mitochondrial content, respiratory capacity, reactive oxygen species (ROS) production, morphometry, and mitochondrial DNA copy number. Standardized effect sizes (Hedge's g) of sex differences were computed for each measure using data in 2258 participants (51.5% women) from 50 studies. Only two measures demonstrated aggregate binary sex differences: higher mitochondrial content in women's WAT and isolated leukocyte subpopulations (g = 0.20, χ2 p = .01), and higher ROS production in men's skeletal muscle (g = 0.49, χ2 p < .0001). Sex differences showed weak to no correlation with age or BMI. Studies with small sample sizes tended to overestimate effect sizes (r = -.17, p < .001), and sex differences varied by tissue examined. Our findings point to a wide variability of findings in the literature concerning possible binary sex differences in mitochondrial biology. Studies specifically designed to capture sex- and gender-related differences in mitochondrial biology are needed, including detailed considerations of physical activity and sex hormones.
Collapse
Affiliation(s)
- Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer Wang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Gilles Gouspillou
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal (UQAM), Montreal, Québec, Canada
| | - Johannes K. Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden,Otorhinolaryngology Head and Neck Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Fredrik Sjövall
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kelsey H. Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - P. Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Anthony J. A. Molina
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA,Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, New York, USA,NewYork State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
42
|
Janssen JJE, Lagerwaard B, Porbahaie M, Nieuwenhuizen AG, Savelkoul HFJ, van Neerven RJJ, Keijer J, de Boer VCJ. Extracellular flux analyses reveal differences in mitochondrial PBMC metabolism between high-fit and low-fit females. Am J Physiol Endocrinol Metab 2022; 322:E141-E153. [PMID: 35001658 PMCID: PMC8897018 DOI: 10.1152/ajpendo.00365.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analyzing metabolism of peripheral blood mononuclear cells (PBMCs) can possibly serve as a cellular metabolic read-out for lifestyle factors and lifestyle interventions. However, the impact of PBMC composition on PBMC metabolism is not yet clear, neither is the differential impact of a longer-term lifestyle factor versus a short-term lifestyle intervention. We investigated the effect of aerobic fitness level and a recent exercise bout on PBMC metabolism in females. PBMCs from 31 young female adults divided into a high-fit (V̇o2peak ≥ 47 mL/kg/min, n = 15) and low-fit (V̇o2peak ≤ 37 mL/kg/min, n = 16) groups were isolated at baseline and overnight after a single bout of exercise (60 min, 70% V̇o2peak). Oxygen consumption rate (OCR) and glycolytic rate (GR) were measured using extracellular flux (XF) assays and PBMC subsets were characterized using fluorescence-activated cell sorting (FACS). Basal OCR, FCCP-induced OCR, spare respiratory capacity, ATP-linked OCR, and proton leak were significantly higher in high-fit than in low-fit females (all P < 0.01), whereas no significant differences in glycolytic rate (GR) were found (all P > 0.05). A recent exercise bout did not significantly affect GR or OCR parameters (all P > 0.05). The overall PBMC composition was similar between high-fit and low-fit females. Mitochondrial PBMC function was significantly higher in PBMCs from high-fit than from low-fit females, which was unrelated to PBMC composition and not impacted by a recent bout of exercise. Our study reveals a link between PBMC metabolism and levels of aerobic fitness, increasing the relevance of PBMC metabolism as a marker to study the impact of lifestyle factors on human health.NEW & NOTEWORTHY Mitochondrial metabolism was significantly higher in PBMCs from high-fit than from low-fit females. This was unrelated to PBMC composition and not impacted by a recent bout of exercise. Our study reveals a link between PBMC metabolism and levels of aerobic fitness, increasing the relevance of PBMC metabolism as a marker to study the impact of lifestyle factors on human health.
Collapse
Affiliation(s)
- Joëlle J E Janssen
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands
| | - Bart Lagerwaard
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| | - Mojtaba Porbahaie
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands
| | - Arie G Nieuwenhuizen
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands
| | - R J Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
43
|
Lee JW, Profant M, Wang C. Metabolic Sex Dimorphism of the Brain at the Gene, Cell, and Tissue Level. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:212-220. [PMID: 35017210 DOI: 10.4049/jimmunol.2100853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022]
Abstract
The palpable observation in the sex bias of disease prevalence in the CNS has fascinated scientists for several generations. Brain sex dimorphism has been visualized by imaging and analytical tools at the tissue, cellular, and molecular levels. Recent work highlighted the specificity of such sex bias in the brain and its subregions, offering a unique lens through which disease pathogenesis can be investigated. The brain is the largest consumer of energy in the body and provides a unique metabolic environment for diverse lineages of cells. Immune cells are increasingly recognized as an integral part of brain physiology, and their function depends on metabolic homeostasis. This review focuses on metabolic sex dimorphism in brain tissue, resident, and infiltrating immune cells. In this context, we highlight the relevance of recent advances in metabolomics and RNA sequencing technologies at the single cell resolution and the development of novel computational approaches.
Collapse
Affiliation(s)
- Jun Won Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and
| | - Martin Profant
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Sanchez-Roman I, Ferrando B, Holst CM, Mengel-From J, Rasmussen SH, Thinggaard M, Bohr VA, Christensen K, Stevnsner T. Molecular markers of DNA repair and brain metabolism correlate with cognition in centenarians. GeroScience 2021; 44:103-125. [PMID: 34966960 DOI: 10.1007/s11357-021-00502-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress is an important factor in age-associated neurodegeneration. Accordingly, mitochondrial dysfunction and genomic instability have been considered as key hallmarks of aging and have important roles in age-associated cognitive decline and neurodegenerative disorders. In order to evaluate whether maintenance of cognitive abilities at very old age is associated with key hallmarks of aging, we measured mitochondrial bioenergetics, mitochondrial DNA copy number and DNA repair capacity in peripheral blood mononuclear cells from centenarians in a Danish 1915 birth cohort (n = 120). Also, the circulating levels of brain-derived neurotrophic factor, NAD+ /NADH and carbonylated proteins were measured in plasma of the centenarians and correlated to cognitive capacity. Mitochondrial respiration was well preserved in the centenarian cohort when compared to young individuals (21-35 years of age, n = 33). When correlating cognitive performance of the centenarians with mitochondrial function such as basal respiration, ATP production, reserve capacity and maximal respiration, no overall correlations were observed, but when stratifying by sex, inverse associations were observed in the males (p < 0.05). Centenarians with the most severe cognitive impairment displayed the lowest activity of the central DNA repair enzyme, APE1 (p < 0.05). A positive correlation between cognitive capacity and levels of NAD+ /NADH was observed (p < 0.05), which may be because NAD+ /NADH consuming enzyme activities strive to reduce the oxidative DNA damage load. Also, circulating protein carbonylation was lowest in centenarians with highest cognitive capacity (p < 0.05). An opposite trend was observed for levels of brain-derived neurotrophic factor (p = 0.17). Our results suggest that maintenance of cognitive capacity at very old age may be associated with cellular mechanisms related to oxidative stress and DNA metabolism.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Aging Research Center, Aarhus, Denmark
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Ferrando
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Aging Research Center, Aarhus, Denmark
| | - Camilla Myrup Holst
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Aging Research Center, Aarhus, Denmark
| | - Jonas Mengel-From
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Signe Høi Rasmussen
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
- Department of Geriatrics, Odense University Hospital, Svendborg, Denmark
| | - Mikael Thinggaard
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Vilhelm A Bohr
- Danish Aging Research Center, Aarhus, Denmark
- National Institute On Aging, NIH, Baltimore, MD, USA
| | - Kaare Christensen
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Danish Aging Research Center, Aarhus, Denmark.
| |
Collapse
|
45
|
Akbari H, Taghizadeh-Hesary F, Bahadori M. Mitochondria determine response to anti-programmed cell death protein-1 (anti-PD-1) immunotherapy: An evidence-based hypothesis. Mitochondrion 2021; 62:151-158. [PMID: 34890822 DOI: 10.1016/j.mito.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
Immunotherapy based on programmed cell death protein-1 (PD-1) is a promising approach in oncology. However, a significant fraction of patients remain unresponsive. Therefore, it is imperative to clarify the relevant predictive factors. A decrease in cellular adenosine triphosphate (c-ATP) level can predispose to cellular dysfunction. ATP is a prerequisite for proper T cell migration and activation. Therefore, a decrease in the c-ATP level impairs T cell function and promotes cancer progression. This article gives an overview of the potential predictive factors of PD-1 blockade. Besides, it highlights the pivotal role of mitochondria in response to anti-PD-1 therapies.
Collapse
Affiliation(s)
- Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Traditional Medicine School, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Moslem Bahadori
- Professor Emeritus, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Theall B, Stampley J, Cho E, Granger J, Johannsen NM, Irving BA, Spielmann G. Impact of acute exercise on peripheral blood mononuclear cells nutrient sensing and mitochondrial oxidative capacity in healthy young adults. Physiol Rep 2021; 9:e15147. [PMID: 34889067 PMCID: PMC8661513 DOI: 10.14814/phy2.15147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Regular exercise is associated with changes in peripheral blood mononuclear cell (PBMC) proportions that have enhanced effector functions in young and old adults; however, the effects of acute exercise on PBMC nutrient sensors and metabolic function in active young adults is unknown. To fill this gap, activation status and nutrient-sensing mechanisms of PBMCs isolated from 21 healthy active adults (20-35 yr; 36.5 ± 6.3 V̇O2peak ) were characterized before and after 30 min of moderate-to-vigorous cycling (65%-75% V̇O2peak ). In addition, changes in PBMC mitochondrial respiratory function in response to exercise were assessed using high-resolution respirometry. There was an increase in the number of activated CD69+/CD4 (79% increase) and CD69+/CD8 (166% increase) T-cells in response to the acute bout of exercise, while the nutrient-sensing mechanisms remained unchanged. PBMC mitochondrial respiration did not increase on a cell-per-cell basis, however, mitochondrial oxidative capacity (OXPHOS) increased at the tissue level (18.6 pmol/(s*ml blood) versus 29.3 pmol/(s*ml blood); p < 0.05) in response to acute exercise. Thus, this study shows that acute exercise preferentially mobilizes activated T-cells while concomitantly increasing PBMC mitochondrial oxidative capacity at the tissue level, rather than acutely changing mitochondrial oxidative capacity at the cellular level in young adults.
Collapse
Affiliation(s)
- Bailey Theall
- School of KinesiologyLouisiana State UniversityHuey P Long FieldhouseBaton RougeLouisinaUSA
| | - James Stampley
- School of KinesiologyLouisiana State UniversityHuey P Long FieldhouseBaton RougeLouisinaUSA
| | - Eunhan Cho
- School of KinesiologyLouisiana State UniversityHuey P Long FieldhouseBaton RougeLouisinaUSA
| | - Joshua Granger
- School of KinesiologyLouisiana State UniversityHuey P Long FieldhouseBaton RougeLouisinaUSA
| | - Neil M. Johannsen
- School of KinesiologyLouisiana State UniversityHuey P Long FieldhouseBaton RougeLouisinaUSA
- Pennington Biomedical Research CenterBaton RougeLouisinaUSA
| | - Brian A. Irving
- School of KinesiologyLouisiana State UniversityHuey P Long FieldhouseBaton RougeLouisinaUSA
- Pennington Biomedical Research CenterBaton RougeLouisinaUSA
| | - Guillaume Spielmann
- School of KinesiologyLouisiana State UniversityHuey P Long FieldhouseBaton RougeLouisinaUSA
- Pennington Biomedical Research CenterBaton RougeLouisinaUSA
| |
Collapse
|
47
|
Casaril AM, Dantzer R, Bas-Orth C. Neuronal Mitochondrial Dysfunction and Bioenergetic Failure in Inflammation-Associated Depression. Front Neurosci 2021; 15:725547. [PMID: 34790089 PMCID: PMC8592286 DOI: 10.3389/fnins.2021.725547] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023] Open
Abstract
Depression is a leading cause of disability and affects more than 4% of the population worldwide. Even though its pathophysiology remains elusive, it is now well accepted that peripheral inflammation might increase the risk of depressive episodes in a subgroup of patients. However, there is still insufficient knowledge about the mechanisms by which inflammation induces alterations in brain function. In neurodegenerative and neuroinflammatory diseases, extensive studies have reported that inflammation negatively impacts mitochondrial health, contributing to excitotoxicity, oxidative stress, energy deficits, and eventually neuronal death. In addition, damaged mitochondria can release a wide range of damage-associated molecular patterns that are potent activators of the inflammatory response, creating a feed-forward cycle between oxidative stress, mitochondrial impairment, inflammation, and neuronal dysfunction. Surprisingly, the possible involvement of this vicious cycle in the pathophysiology of inflammation-associated depression remains understudied. In this mini-review we summarize the research supporting the association between neuroinflammation, mitochondrial dysfunction, and bioenergetic failure in inflammation-associated depression to highlight the relevance of further studies addressing this crosstalk.
Collapse
Affiliation(s)
- Angela Maria Casaril
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
48
|
Rausser S, Trumpff C, McGill MA, Junker A, Wang W, Ho SH, Mitchell A, Karan KR, Monk C, Segerstrom SC, Reed RG, Picard M. Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures. eLife 2021; 10:70899. [PMID: 34698636 PMCID: PMC8612706 DOI: 10.7554/elife.70899] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Using a high-throughput mitochondrial phenotyping platform to quantify multiple mitochondrial features among molecularly defined immune cell subtypes, we quantify the natural variation in mitochondrial DNA copy number (mtDNAcn), citrate synthase, and respiratory chain enzymatic activities in human neutrophils, monocytes, B cells, and naïve and memory T lymphocyte subtypes. In mixed peripheral blood mononuclear cells (PBMCs) from the same individuals, we show to what extent mitochondrial measures are confounded by both cell type distributions and contaminating platelets. Cell subtype-specific measures among women and men spanning four decades of life indicate potential age- and sex-related differences, including an age-related elevation in mtDNAcn, which are masked or blunted in mixed PBMCs. Finally, a proof-of-concept, repeated-measures study in a single individual validates cell type differences and also reveals week-to-week changes in mitochondrial activities. Larger studies are required to validate and mechanistically extend these findings. These mitochondrial phenotyping data build upon established immunometabolic differences among leukocyte subpopulations, and provide foundational quantitative knowledge to develop interpretable blood-based assays of mitochondrial health.
Collapse
Affiliation(s)
- Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Marlon A McGill
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Alex Junker
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Wei Wang
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, United States
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, United States
| | - Anika Mitchell
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Catherine Monk
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States.,Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States
| | | | - Rebecca G Reed
- Department of Psychology, University of Pittsburgh, Pittsburgh, United States
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States.,Department of Neurology, Merritt Center and Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
49
|
Kitase Y, Chin EM, Ramachandra S, Burkhardt C, Madurai NK, Lenz C, Hoon AH, Robinson S, Jantzie LL. Sustained peripheral immune hyper-reactivity (SPIHR): an enduring biomarker of altered inflammatory responses in adult rats after perinatal brain injury. J Neuroinflammation 2021; 18:242. [PMID: 34666799 PMCID: PMC8527679 DOI: 10.1186/s12974-021-02291-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Chorioamnionitis (CHORIO) is a principal risk factor for preterm birth and is the most common pathological abnormality found in the placentae of preterm infants. CHORIO has a multitude of effects on the maternal–placental–fetal axis including profound inflammation. Cumulatively, these changes trigger injury in the developing immune and central nervous systems, thereby increasing susceptibility to chronic sequelae later in life. Despite this and reports of neural–immune changes in children with cerebral palsy, the extent and chronicity of the peripheral immune and neuroinflammatory changes secondary to CHORIO has not been fully characterized. Methods We examined the persistence and time course of peripheral immune hyper-reactivity in an established and translational model of perinatal brain injury (PBI) secondary to CHORIO. Pregnant Sprague–Dawley rats underwent laparotomy on embryonic day 18 (E18, preterm equivalent). Uterine arteries were occluded for 60 min, followed by intra-amniotic injection of lipopolysaccharide (LPS). Serum and peripheral blood mononuclear cells (PBMCs) were collected at young adult (postnatal day P60) and middle-aged equivalents (P120). Serum and PBMCs secretome chemokines and cytokines were assayed using multiplex electrochemiluminescent immunoassay. Multiparameter flow cytometry was performed to interrogate immune cell populations. Results Serum levels of interleukin-1β (IL-1β), IL-5, IL-6, C–X–C Motif Chemokine Ligand 1 (CXCL1), tumor necrosis factor-α (TNF-α), and C–C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) were significantly higher in CHORIO animals compared to sham controls at P60. Notably, CHORIO PBMCs were primed. Specifically, they were hyper-reactive and secreted more inflammatory mediators both at baseline and when stimulated in vitro. While serum levels of cytokines normalized by P120, PBMCs remained primed, and hyper-reactive with a robust pro-inflammatory secretome concomitant with a persistent change in multiple T cell populations in CHORIO animals. Conclusions The data indicate that an in utero inflammatory insult leads to neural–immune changes that persist through adulthood, thereby conferring vulnerability to brain and immune system injury throughout the lifespan. This unique molecular and cellular immune signature including sustained peripheral immune hyper-reactivity (SPIHR) and immune cell priming may be a viable biomarker of altered inflammatory responses following in utero insults and advances our understanding of the neuroinflammatory cascade that leads to perinatal brain injury and later neurodevelopmental disorders, including cerebral palsy.
Collapse
Affiliation(s)
- Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD, USA
| | - Eric M Chin
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Sindhu Ramachandra
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD, USA
| | - Christopher Burkhardt
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD, USA
| | - Nethra K Madurai
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD, USA
| | - Colleen Lenz
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Alexander H Hoon
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren L Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD, USA. .,Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA. .,Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
50
|
Acin-Perez R, Benincá C, Shabane B, Shirihai OS, Stiles L. Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life (Basel) 2021; 11:949. [PMID: 34575097 PMCID: PMC8467772 DOI: 10.3390/life11090949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial bioenergetic function is a central component of cellular metabolism in health and disease. Mitochondrial oxidative phosphorylation is critical for maintaining energetic homeostasis, and impairment of mitochondrial function underlies the development and progression of metabolic diseases and aging. However, measurement of mitochondrial bioenergetic function can be challenging in human samples due to limitations in the size of the collected sample. Furthermore, the collection of samples from human cohorts is often spread over multiple days and locations, which makes immediate sample processing and bioenergetics analysis challenging. Therefore, sample selection and choice of tests should be carefully considered. Basic research, clinical trials, and mitochondrial disease diagnosis rely primarily on skeletal muscle samples. However, obtaining skeletal muscle biopsies requires an appropriate clinical setting and specialized personnel, making skeletal muscle a less suitable tissue for certain research studies. Circulating white blood cells and platelets offer a promising primary tissue alternative to biopsies for the study of mitochondrial bioenergetics. Recent advances in frozen respirometry protocols combined with the utilization of minimally invasive and non-invasive samples may provide promise for future mitochondrial research studies in humans. Here we review the human samples commonly used for the measurement of mitochondrial bioenergetics with a focus on the advantages and limitations of each sample.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Cristiane Benincá
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Byourak Shabane
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Orian S. Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|