1
|
Sookhoo JRV, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S. Protein Expression Platforms and the Challenges of Viral Antigen Production. Vaccines (Basel) 2024; 12:1344. [PMID: 39772006 PMCID: PMC11680109 DOI: 10.3390/vaccines12121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research. Post-translational modifications, immunogenicity, efficacy, complexity, scalability and the cost of production are major points discussed. Examples of licenced and experimental vaccines are included along with images which summarize the processes involved.
Collapse
Affiliation(s)
- Jamie R. V. Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
2
|
Wendlandt T, Britz B, Kleinow T, Hipp K, Eber FJ, Wege C. Getting Hold of the Tobamovirus Particle-Why and How? Purification Routes over Time and a New Customizable Approach. Viruses 2024; 16:884. [PMID: 38932176 PMCID: PMC11209083 DOI: 10.3390/v16060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
This article develops a multi-perspective view on motivations and methods for tobamovirus purification through the ages and presents a novel, efficient, easy-to-use approach that can be well-adapted to different species of native and functionalized virions. We survey the various driving forces prompting researchers to enrich tobamoviruses, from the search for the causative agents of mosaic diseases in plants to their increasing recognition as versatile nanocarriers in biomedical and engineering applications. The best practices and rarely applied options for the serial processing steps required for successful isolation of tobamoviruses are then reviewed. Adaptations for distinct particle species, pitfalls, and 'forgotten' or underrepresented technologies are considered as well. The article is topped off with our own development of a method for virion preparation, rooted in historical protocols. It combines selective re-solubilization of polyethylene glycol (PEG) virion raw precipitates with density step gradient centrifugation in biocompatible iodixanol formulations, yielding ready-to-use particle suspensions. This newly established protocol and some considerations for perhaps worthwhile further developments could serve as putative stepping stones towards preparation procedures appropriate for routine practical uses of these multivalent soft-matter nanorods.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Beate Britz
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Tatjana Kleinow
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany;
| | - Fabian J. Eber
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany;
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| |
Collapse
|
3
|
Robi DT, Bogale A, Temteme S, Aleme M, Urge B. Adoption of veterinary vaccines, determining factors, and barriers in Southwest Ethiopia: Implications for livestock health and disease management strategies. Prev Vet Med 2024; 225:106143. [PMID: 38387228 DOI: 10.1016/j.prevetmed.2024.106143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
In Ethiopia, the use of veterinary vaccines to control animal diseases is an effective strategy. A study conducted in Southwest Ethiopia from October 2020 to October 2021 aimed to determine the adoption level of veterinary vaccines and factors affecting their use. The study used multistage random sampling to select districts and interviewed 476 farmers who had either adopted or not adopted the vaccines. The study found that certain diseases should be prioritized for vaccination to safeguard the health of cattle, sheep, goats, and poultry. These include anthrax (19.12 %), blackleg (17.65 %), foot and mouth disease (10.50 %), and lumpy skin disease (8.82 %) in cattle, and pasteurellosis (18.07 %), contagious caprine pleuropneumonia (15.97 %), peste des petits ruminants (14.15 %), and Orf (13.45 %) in sheep and goats. Newcastle disease (21.85 %), infectious bursal disease (19.33 %), and coccidiosis (17.02 %) were identified as high-priority diseases for flock health. Overall, 30.7 % of farmers were adopters of veterinary vaccines, while 69.3 % were non-adopters. The study identified several factors that influence the likelihood of adopting veterinary vaccines, including breed type (OR = 9.1, p < 0.0001), production size (OR = 9.7, p < 0.0001), production type (OR = 2.7, p < 0.0001), and farm location (OR = 9.8, p = 0.001). Common barriers to vaccination included a lack of disease knowledge, high vaccine costs, limited vaccine availability, and administration difficulties. Insights from the study can guide strategies for promoting veterinary vaccine adoption in Ethiopia. Stakeholders should pay attention to these findings since vaccine use is crucial for controlling animal diseases, enhancing animal health, and preventing economic losses. Further research is needed to investigate factors affecting enhanced veterinary vaccine adoption.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia.
| | - Ararsa Bogale
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia
| | - Melkam Aleme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia
| | - Beksisa Urge
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| |
Collapse
|
4
|
Kaldis A, Uddin MS, Guluarte JO, Martin C, Alexander TW, Menassa R. Development of a plant-based oral vaccine candidate against the bovine respiratory pathogen Mannheimia haemolytica. FRONTIERS IN PLANT SCIENCE 2023; 14:1251046. [PMID: 37790785 PMCID: PMC10542578 DOI: 10.3389/fpls.2023.1251046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023]
Abstract
Bovine respiratory disease (BRD) affects feedlot cattle across North America, resulting in economic losses due to animal treatment and reduced performance. In an effort to develop a vaccine candidate targeting a primary bacterial agent contributing to BRD, we produced a tripartite antigen consisting of segments of the virulence factor Leukotoxin A (LktA) and lipoprotein PlpE from Mannheimia haemolytica, fused to a cholera toxin mucosal adjuvant (CTB). This recombinant subunit vaccine candidate was expressed in the leaves of Nicotiana benthamiana plants, with accumulation tested in five subcellular compartments. The recombinant protein was found to accumulate highest in the endoplasmic reticulum, but targeting to the chloroplast was employed for scaling up production due the absence of post-translational modification while still producing feasible levels. Leaves were freeze dried, then orally administered to mice to determine its immunogenicity. Sera from mice immunized with leaf tissue expressing the recombinant antigen contained IgG antibodies, specifically recognizing both LktA and PlpE. These mice also had a mucosal immune response to the CTB+LktA+PlpE protein as measured by the presence of LktA- and PlpE-specific IgA antibodies in lung and fecal material. Moreover, the antigen remained stable at room temperature with limited deterioration for up to one year when stored as lyophilized plant material. This study demonstrated that a recombinant antigen expressed in plant tissue elicited both humoral and mucosal immune responses when fed to mice, and warrants evaluation in cattle.
Collapse
Affiliation(s)
- Angelo Kaldis
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Muhammed Salah Uddin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jose Ortiz Guluarte
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Coby Martin
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
5
|
Smith T, O’Kennedy MM, Ross CS, Lewis NS, Abolnik C. The production of Newcastle disease virus-like particles in Nicotiana benthamiana as potential vaccines. FRONTIERS IN PLANT SCIENCE 2023; 14:1130910. [PMID: 36875611 PMCID: PMC9978804 DOI: 10.3389/fpls.2023.1130910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Newcastle disease (ND) is a highly contagious viral respiratory and neurological disease that has a severe impact on poultry production worldwide. In the present study, an expression platform was established for the transient production in N.bethamiana of ND virus-like particles (VLPs) for use as vaccines against ND. The expression of the ND Fusion (F) and/or Hemagglutinin-neuraminidase (HN) proteins of a genotype VII.2 strain formed ND VLPs in planta as visualized under the transmission electron microscope, and HN-containing VLPs agglutinated chicken erythrocytes with hemagglutination (HA) titres of up to 13 log2.The immunogenicity of the partially-purified ND VLPs was confirmed in specific-pathogen-free White leghorn chickens. Birds receiving a single intramuscular immunization with 1024 HA units (10 log2) of the F/HN ND VLPs administered with 20% [v/v] Emulsigen®-P adjuvant, seroconverted after 14 days with F- and HN-specific antibodies at ELISA titres of 5705.17 and HI geometric mean titres (GMTs) of 6.2 log2, respectively. Furthermore, these ND-specific antibodies successfully inhibited viral replication in vitro of two antigenically closely-related ND virus isolates, with virus-neutralization test GMTs of 3.47 and 3.4, respectively. Plant-produced ND VLPs have great potential as antigen-matched vaccines for poultry and other avian species that are highly immunogenic, cost-effective, and facilitate prompt updating to ensure improved protection against emerging ND field viruses.
Collapse
Affiliation(s)
- Tanja Smith
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Gauteng, Pretoria, South Africa
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Martha M. O’Kennedy
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Gauteng, Pretoria, South Africa
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Craig S. Ross
- Avian Virology Department, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, United Kingdom
| | - Nicola S. Lewis
- Avian Virology Department, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Gauteng, Pretoria, South Africa
| |
Collapse
|
6
|
VanderBurgt JT, Harper O, Garnham CP, Kohalmi SE, Menassa R. Plant production of a virus-like particle-based vaccine candidate against porcine reproductive and respiratory syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1044675. [PMID: 36760639 PMCID: PMC9902946 DOI: 10.3389/fpls.2023.1044675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease leading to spontaneous abortions and stillbirths in sows and lowered life quality and expectancy in growing pigs. PRRS is prevalent worldwide and has significant economic impacts to swine industries around the globe. Co-expression of the two most abundant proteins in the viral envelope, the matrix protein (M) and glycosylated protein 5 (GP5), can produce a neutralizing immune response for the virus providing a potentially effective subunit vaccine against the disease, but these proteins are difficult to express. The goal of this research was to display antigenic portions of the M and GP5 proteins on the surface of tobacco mosaic virus-like particles. A modified tobacco mosaic virus coat protein (TMVc) was transiently expressed in Nicotiana benthamiana leaves and targeted to three subcellular compartments along the secretory pathway to introduce glycosylation patterns important for M-GP5 epitope immunogenicity. We found that accumulation levels in the apoplast were similar to the ER and the vacuole. Because glycans present on plant apoplastic proteins are closest to those present on PRRSV proteins, a TMVc-M-GP5 fusion construct was targeted to the apoplast and accumulated at over 0.5 mg/g of plant fresh weight. TMVc virus-like particles self-assembled in plant cells and surface-displayed the M-GP5 epitope, as visualized by transmission electron microscopy and immunogold localization. These promising findings lay the foundation for immunogenicity and protective-immunity studies in animals to examine the efficacy of this vaccine candidate as a measure to control PRRS.
Collapse
Affiliation(s)
- Jordan T. VanderBurgt
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ondre Harper
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | - Christopher P. Garnham
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | | | - Rima Menassa
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
7
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
8
|
Phan HT, Tran HX, Ho TT, Pham VT, Trinh VT, Nguyen TT, Pham NB, Chu HH, Conrad U. Plant crude extracts containing oligomeric hemagglutinins protect chickens against highly Pathogenic Avian Influenza Virus after one dose of immunization. Vet Res Commun 2023; 47:191-205. [PMID: 35633471 PMCID: PMC9145123 DOI: 10.1007/s11259-022-09942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/18/2022] [Indexed: 01/27/2023]
Abstract
Highly pathogenic avian influenza viruses (HPAIV) have been responsible for causing several severe outbreaks across the world. To protect poultry farms and to prevent the possible spread of new influenza pandemics, vaccines that are both efficacious and low-cost are in high demand. We produced stable, large hemagglutinin H5 oligomers in planta by the specific interaction between S•Tag and S•Protein. H5 oligomers combined via S•Tag::S•Protein interaction in plant crude extracts induced strong humoral immune responses, strong neutralizing antibody responses, and resistance in chickens after challenge with a wild type HPAIV H5 virus strain. In all three parameters, plant crude extracts with H5 oligomers induced better responses than crude extracts containing trimers. The neutralizing antibodies induced by by two-dose and one dose immunization with an adjuvanted crude extract containing H5 oligomer protected vaccinated chickens from two lethal H5N1 virus strains with the efficiency of 92% and 100%, respectively. Following housing vaccinated chickens together with ten non-immunized chickens, only one of these chickens had detectable levels of the H5N1 virus. To facilitate the easy storage of a candidate vaccine, the H5 oligomer crude extracts were mixed with adjuvants and stored for 3.5 and 5.5 months at 4 °C, and chickens were immunized with these crude extracts. All these vaccinated chickens survived after a lethal H5N1 virus challenge. H5 oligomer crude extracts are comparable to commercial vaccines as they also induce strong virus-neutralizing immune responses following the administration of a single dose. The cost-effective production of plant crude extract vaccine candidates and the high stability after long-term storage will enable and encourage the further exploration of this technology for veterinary vaccine development.
Collapse
Affiliation(s)
- Hoang Trong Phan
- grid.418934.30000 0001 0943 9907Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hanh Xuan Tran
- JSC Central Veterinary NAVETCO, 29A Nguyen Dinh Chieu, 1 District, Ho Chi Minh, Vietnam
| | - Thuong Thi Ho
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Van Thi Pham
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Vy Thai Trinh
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Tra Thi Nguyen
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Ngoc Bich Pham
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Ha Hoang Chu
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Udo Conrad
- grid.418934.30000 0001 0943 9907Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
9
|
Rozov SM, Zagorskaya AA, Konstantinov YM, Deineko EV. Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins. PLANTS (BASEL, SWITZERLAND) 2022; 12:38. [PMID: 36616166 PMCID: PMC9824153 DOI: 10.3390/plants12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are the most important product of current industrial biotechnology. They are indispensable in medicine (for diagnostics and treatment), food and chemical industries, and research. Plant cells combine advantages of the eukaryotic protein production system with simplicity and efficacy of the bacterial one. The use of plants for the production of recombinant proteins is an economically important and promising area that has emerged as an alternative to traditional approaches. This review discusses advantages of plant systems for the expression of recombinant proteins using nuclear, plastid, and mitochondrial genomes. Possibilities, problems, and prospects of modifications of the three parts of the genome in light of obtaining producer plants are examined. Examples of successful use of the nuclear expression platform for production of various biopharmaceuticals, veterinary drugs, and technologically important proteins are described, as are examples of a high yield of recombinant proteins upon modification of the chloroplast genome. Potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated. Although these opportunities have not yet been exploited, potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated.
Collapse
Affiliation(s)
- Sergey M. Rozov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Alla A. Zagorskaya
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, Lermontova Str. 132, Irkutsk 664033, Russia
| | - Elena V. Deineko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Mondal H, Thomas J. A review on the recent advances and application of vaccines against fish pathogens in aquaculture. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2022; 30:1971-2000. [PMID: 35528247 PMCID: PMC9059915 DOI: 10.1007/s10499-022-00884-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 05/03/2023]
Abstract
Globally, aquaculture has faced serious economic problems due to bacterial, viral, and various other infectious diseases of different origins. Even though such diseases are being detected and simultaneously treated with several therapeutic and prophylactic methods, the broad-spectrum activity of vaccines plays a vital role as a preventive measure in aquaculture. However, treatments like use of antibiotics and probiotics seem to be less effective when new mutant strains develop and disease causing pathogens become resistant to commonly used antibiotics. Therefore, vaccines developed by using recent advanced molecular techniques can be considered as an effective way of treating disease causing pathogens in aquatic organisms. The present review emphasizes on the current advances in technology and future outlook with reference to different types of vaccines used in the aquaculture industries. Beginning with traditional killed/inactivated and live attenuated vaccines, this work culminates in the review of modern new generation ones including recombinant, synthetic peptides, mucosal and DNA, subunit, nanoparticle-based and plant-based edible vaccines, reverse vaccinology, and monovalent and polyvalent vaccines.
Collapse
Affiliation(s)
- Haimanti Mondal
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| |
Collapse
|
11
|
Plant-Derived Recombinant Vaccines against Zoonotic Viruses. Life (Basel) 2022; 12:life12020156. [PMID: 35207444 PMCID: PMC8878793 DOI: 10.3390/life12020156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
Collapse
|
12
|
Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021; 11:1072. [PMID: 34439738 PMCID: PMC8394948 DOI: 10.3390/biom11081072] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.
Collapse
Affiliation(s)
- Raquel Cid
- ADL Bionatur Solutions S.A., Av. del Desarrollo Tecnológico 11, 11591 Jerez de la Frontera, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
13
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Nogue F, Rostoks N, Sanchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Casacuberta J, De Schrijver A, Messean A, Patron N, Zurbriggen M, Alvarez F, Devos Y, Gennaro A, Streissl F, Papadopoulou N, Mullins E. Evaluation of existing guidelines for their adequacy for the molecular characterisation and environmental risk assessment of genetically modified plants obtained through synthetic biology. EFSA J 2021; 19:e06301. [PMID: 33598046 PMCID: PMC7863006 DOI: 10.2903/j.efsa.2021.6301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Synthetic Biology (SynBio) is an interdisciplinary field at the interface of engineering and biology aiming to develop new biological systems and impart new functions to living cells. EFSA has been asked by the European Commission to evaluate SynBio developments in agri-food with the aim of identifying the adequacy of existing guidelines for risk assessment and determine if updated guidance is needed. The scope of this opinion covers the molecular characterisation and environmental risk assessment of such genetically modified plants obtained through SynBio, meant to be for cultivation or food and feed purposes. The previous work on SynBio by the non-food scientific Committees (2014, 2015) was used and complemented with the output of a horizon scanning exercise, which was commissioned by the EFSA to identify the most realistic and forthcoming SynBio cases of relevance to this remit. The horizon scan did not identify other sectors/advances in addition to the six SynBio categories previously identified by the non-food scientific committees of the European Commission. The exercise did show that plant SynBio products reaching the market in the near future (next decade) are likely to apply SynBio approaches to their development using existing genetic modification and genome editing technologies. In addition, three hypothetical SynBio case studies were selected by the working group of the Panel on Genetically Modified Organisms (GMO), to further support the scoping exercise of this Scientific Opinion. Using the selected cases, the GMO Panel concludes that the requirements of the EU regulatory framework and existing EFSA guidelines are adequate for the risk assessment of SynBio products to be developed in the next 10 years, although specific requirements may not apply to all products. The GMO Panel acknowledges that as SynBio developments evolve, a need may exist to adjust the guidelines to ensure they are adequate and sufficient.
Collapse
|
14
|
Sander VA, Sánchez López EF, Mendoza Morales L, Ramos Duarte VA, Corigliano MG, Clemente M. Use of Veterinary Vaccines for Livestock as a Strategy to Control Foodborne Parasitic Diseases. Front Cell Infect Microbiol 2020; 10:288. [PMID: 32670892 PMCID: PMC7332557 DOI: 10.3389/fcimb.2020.00288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Foodborne diseases (FBDs) are a major concern worldwide since they are associated with high mortality and morbidity in the human population. Among the causative agents of FBDs, Taenia solium, Echinococcus granulosus, Toxoplasma gondii, Cryptosporidium spp., and Trichinella spiralis are listed in the top global risk ranking of foodborne parasites. One common feature between them is that they affect domestic livestock, encompassing an enormous risk to global food production and human health from farm to fork, infecting animals, and people either directly or indirectly. Several approaches have been employed to control FBDs caused by parasites, including veterinary vaccines for livestock. Veterinary vaccines against foodborne parasites not only improve the animal health by controlling animal infections but also contribute to increase public health by controlling an important source of FBDs. In the present review, we discuss the advances in the development of veterinary vaccines for domestic livestock as a strategy to control foodborne parasitic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Unidad Biotecnológica 6-UB6, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
15
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
16
|
Van Giap D, Jung JW, Kim NS. Production of functional recombinant cyclic citrullinated peptide monoclonal antibody in transgenic rice cell suspension culture. Transgenic Res 2019; 28:177-188. [PMID: 30746589 DOI: 10.1007/s11248-019-00113-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/27/2019] [Indexed: 01/26/2023]
Abstract
Cyclic citrullinated peptide (CCP) antibody has been shown recently to be a promising marker for early detection and diagnosis of rheumatoid arthritis (RA). In order to exploit newly developed therapies for RA, early intervention is crucial in preventing irreversible joint damage. Here, we describe use of a plant expression system to produce a CCP antibody that could be used in the early diagnosis of RA. Heavy and light chain gene sequences of a CCP monoclonal antibody (CCP mAb) were cloned from the hybridoma cell (12G1) and introduced into two separate plant expression vectors under the control of the rice α-amylase 3D (RAmy3D) promoter system. The vectors were introduced into rice calli (Oryza sativa L. cv. Dongjin) using Agrobacterium tumefaciens mediated transformation. Integration of the CCP mAb genes into rice chromosomes was confirmed by a genomic DNA polymerase chain reaction and expression was verified by northern blot analysis of mRNA. The in vivo assembly and secretion of CCP mAb occurred in transgenic rice cell suspension culture under the RAmy3D expression system; accumulated CCP mAbs in the medium were purified by protein G affinity chromatography. Immunoblot assays and ELISA showed these plant-produced CCP mAbs successfully bound to a synthetic CCP antigen. Taken together, our results suggest that CCP mAb produced in a transgenic rice suspension culture were easily purified and biologically active against their antigen in the RA, and thus may be used a specific serological marker, which is present very early in the RA.
Collapse
Affiliation(s)
- Do Van Giap
- Department of Molecular Biology, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Jae-Wan Jung
- Department of Molecular Biology, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Nan-Sun Kim
- Department of Molecular Biology, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea. .,National Institute of Horticultural & Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju, Jellabuk-do, 55365, Republic of Korea.
| |
Collapse
|
17
|
Laughlin RC, Madera R, Peres Y, Berquist BR, Wang L, Buist S, Burakova Y, Palle S, Chung CJ, Rasmussen MV, Martel E, Brake DA, Neilan JG, Lawhon SD, Adams LG, Shi J, Marcel S. Plant-made E2 glycoprotein single-dose vaccine protects pigs against classical swine fever. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:410-420. [PMID: 29993179 PMCID: PMC6335066 DOI: 10.1111/pbi.12986] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 05/20/2023]
Abstract
Classical Swine Fever Virus (CSFV) causes classical swine fever, a highly contagious hemorrhagic fever affecting both feral and domesticated pigs. Outbreaks of CSF in Europe, Asia, Africa and South America had significant adverse impacts on animal health, food security and the pig industry. The disease is generally contained by prevention of exposure through import restrictions (e.g. banning import of live pigs and pork products), localized vaccination programmes and culling of infected or at-risk animals, often at very high cost. Current CSFV-modified live virus vaccines are protective, but do not allow differentiation of infected from vaccinated animals (DIVA), a critical aspect of disease surveillance programmes. Alternatively, first-generation subunit vaccines using the viral protein E2 allow for use of DIVA diagnostic tests, but are slow to induce a protective response, provide limited prevention of vertical transmission and may fail to block viral shedding. CSFV E2 subunit vaccines from a baculovirus/insect cell system have been developed for several vaccination campaigns in Europe and Asia. However, this expression system is considered expensive for a veterinary vaccine and is not ideal for wide-spread deployment. To address the issues of scalability, cost of production and immunogenicity, we have employed an Agrobacterium-mediated transient expression platform in Nicotiana benthamiana and formulated the purified antigen in novel oil-in-water emulsion adjuvants. We report the manufacturing of adjuvanted, plant-made CSFV E2 subunit vaccine. The vaccine provided complete protection in challenged pigs, even after single-dose vaccination, which was accompanied by strong virus neutralization antibody responses.
Collapse
Affiliation(s)
- Richard C. Laughlin
- Department of Biological and Health SciencesTexas A&M University KingsvilleKingsvilleTXUSA
| | - Rachel Madera
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKSUSA
| | | | | | - Lihua Wang
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKSUSA
| | - Sterling Buist
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKSUSA
| | - Yulia Burakova
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKSUSA
| | | | - Chungwon J. Chung
- U.S. Department of Homeland Security Science and Technology DirectoratePlum Island Animal Disease CenterGreenportNew YorkUSA
| | - Max V. Rasmussen
- U.S. Department of Homeland Security Science and Technology DirectoratePlum Island Animal Disease CenterGreenportNew YorkUSA
| | - Erica Martel
- Oak Ridge Institute for Science and EducationPlum Island Animal Disease Center Research Participation ProgramOak RidgeTNUSA
| | - David A. Brake
- BioQuest Associates LLCPlum Island Animal Disease CenterGreenportNew YorkUSA
| | - John G. Neilan
- U.S. Department of Homeland Security Science and Technology DirectoratePlum Island Animal Disease CenterGreenportNew YorkUSA
| | - Sara D. Lawhon
- Department of Veterinary PathobiologyTexas A&M UniversityCollege StationTXUSA
| | - L. Garry Adams
- Department of Veterinary PathobiologyTexas A&M UniversityCollege StationTXUSA
| | - Jishu Shi
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKSUSA
| | | |
Collapse
|
18
|
Wesołowska A, Kozak Ljunggren M, Jedlina L, Basałaj K, Legocki A, Wedrychowicz H, Kesik-Brodacka M. A Preliminary Study of a Lettuce-Based Edible Vaccine Expressing the Cysteine Proteinase of Fasciola hepatica for Fasciolosis Control in Livestock. Front Immunol 2018; 9:2592. [PMID: 30483259 PMCID: PMC6244665 DOI: 10.3389/fimmu.2018.02592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022] Open
Abstract
Oral vaccination with edible vaccines is one of the most promising approaches in modern vaccinology. Edible vaccines are an alternative to conventional vaccines, which are typically delivered by injection. Here, freeze-dried transgenic lettuce expressing the cysteine proteinase of the trematode Fasciola hepatica (CPFhW) was used to orally vaccinate cattle and sheep against fasciolosis, which is the most important trematode disease due to the parasite's global distribution, wide spectrum of host species and significant economic losses of farmers. In the study, goals such as reducing the intensity of infection, liver damage and F. hepatica fecundity were achieved. Moreover, we demonstrated that the host sex influenced the outcome of infection following vaccination, with female calves and male lambs showing better protection than their counterparts. Since differences occurred following vaccination and infection, different immunization strategies should be considered for different sexes and host species when developing new control methods. The results of the present study highlight the potential of oral vaccination with plant-made and plant-delivered vaccines for F. hepatica infection control.
Collapse
Affiliation(s)
- Agnieszka Wesołowska
- Polish Academy of Sciences, Witold Stefanski Institute of Parasitology, Warsaw, Poland
| | | | - Luiza Jedlina
- Polish Academy of Sciences, Witold Stefanski Institute of Parasitology, Warsaw, Poland
| | - Katarzyna Basałaj
- Polish Academy of Sciences, Witold Stefanski Institute of Parasitology, Warsaw, Poland
| | - Andrzej Legocki
- Polish Academy of Sciences, Institute of Bioorganic Chemistry, Poznan, Poland
| | - Halina Wedrychowicz
- Polish Academy of Sciences, Witold Stefanski Institute of Parasitology, Warsaw, Poland
| | | |
Collapse
|
19
|
Ruiz V, Baztarrica J, Rybicki EP, Meyers AE, Wigdorovitz A. Minimally processed crude leaf extracts of Nicotiana benthamiana containing recombinant foot and mouth disease virus-like particles are immunogenic in mice. ACTA ACUST UNITED AC 2018; 20:e00283. [PMID: 30319941 PMCID: PMC6180338 DOI: 10.1016/j.btre.2018.e00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/27/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
Foot-and-mouth disease (FMD) remains one of the most feared viral diseases affecting cloven-hoofed animals, and results in severe economic losses. Currently available vaccines are based on inactivated FMD virus (FMDV). The use of recombinant FMDV-like particles (VLPs) as subunit vaccines has gained importance because of their immunogenic properties and safety. We evaluated the production of FMD VLPs, via Agrobacterium-mediated transient expression, and the immunogenicity of these structures in mice. Leaves were infiltrated with pEAQ-HT and pRIC 3.0 vectors encoding the capsid precursor P1-2A and the protease 3C. The recombinant protein yield was 3-4 mg/kg of fresh leaf tissue. Both groups of mice immunized with purified VLPs and mice immunized with the crude leaf extract elicited a specific humoral response with similar antibody titers. Thus, minimally processed plant material containing transiently expressed FMD VLPs could be a scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.
Collapse
Affiliation(s)
- Vanesa Ruiz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Andrés Wigdorovitz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
20
|
Liao TYA, Lau A, Sunil J, Hytönen V, Hmama Z. Expression of Exogenous Antigens in the Mycobacterium bovis BCG Vaccine via Non-genetic Surface Decoration with the Avidin-biotin System. J Vis Exp 2018. [PMID: 29443102 DOI: 10.3791/56421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tuberculosis (TB) is a serious infectious disease and the only available vaccine M. bovis bacillus Calmette-Guérin (BCG) is safe and effective for protection against children's severe TB meningitis and some forms of disseminated TB, but fails to protect against pulmonary TB, which is the most prevalent form of the disease. Promising strategies to improve BCG currently rely either on its transformation with genes encoding immunodominant M. tuberculosis (Mtb)-specific antigens and/or complementation with genes encoding co-factors that would stimulate antigen presenting cells. Major limitations to these approaches include low efficiency, low stability, and the uncertain level of safety of expression vectors. In this study, we present an alternative approach to vaccine improvement, which consists of BCG complementation with exogenous proteins of interest on the surface of bacteria, rather than transformation with plasmids encoding corresponding genes. First, proteins of interest are expressed in fusion with monomeric avidin in standard E. coli expression systems and then used to decorate the surface of biotinylated BCG. Animal experiments using BCG surface decorated with surrogate ovalbumin antigen demonstrate that the modified bacterium is fully immunogenic and capable of inducing specific T cell responses. Altogether, the data presented here strongly support a novel and efficient method for reshaping the current BCG vaccine that replaces the laborious conventional approach of complementation with exogenous nucleic acids.
Collapse
Affiliation(s)
- Ting-Yu Angela Liao
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia
| | - Alice Lau
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia
| | - Joseph Sunil
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia
| | - Vesa Hytönen
- Institute of Biomedical Technology, University of Tampere
| | - Zakaria Hmama
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia;
| |
Collapse
|
21
|
Bartley K, Turnbull F, Wright HW, Huntley JF, Palarea-Albaladejo J, Nath M, Nisbet AJ. Field evaluation of poultry red mite (Dermanyssus gallinae) native and recombinant prototype vaccines. Vet Parasitol 2017; 244:25-34. [PMID: 28917313 PMCID: PMC5613835 DOI: 10.1016/j.vetpar.2017.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 11/10/2022]
Abstract
Field trial testing of a native and recombinant poultry red mite vaccines. Vaccination with a soluble mite extract (SME) resulted in a 78% reduction in mite numbers. Poor antibody persistence may relate to lack of effect of a recombinant cocktail vaccine. A semi-protective naturally acquired immunity may develop.
Vaccination is a desirable emerging strategy to combat poultry red mite (PRM), Dermanyssus gallinae. We performed trials, in laying hens in a commercial-style cage facility, to test the vaccine efficacy of a native preparation of soluble mite extract (SME) and of a recombinant antigen cocktail vaccine containing bacterially-expressed versions of the immunogenic SME proteins Deg-SRP-1, Deg-VIT-1 and Deg-PUF-1. Hens (n = 384 per group) were injected with either vaccine or adjuvant only (control group) at 12 and 17 weeks of age and then challenged with PRM 10 days later. PRM counts were monitored and, at the termination of the challenge period (17 weeks post challenge), average PRM counts in cages containing birds vaccinated with SME were reduced by 78% (p < 0.001), compared with those in the adjuvant-only control group. When the trial was repeated using the recombinant antigen cocktail vaccine, no statistically significant differences in mean PRM numbers were observed in cages containing vaccinated or adjuvant-only immunised birds. The roles of antigen-specific antibody levels and duration in providing vaccine-induced and exposure-related protective immunity are discussed.
Collapse
Affiliation(s)
- Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom.
| | - Frank Turnbull
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Harry W Wright
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - John F Huntley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Javier Palarea-Albaladejo
- Biomathematics and Statistics Scotland, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Mintu Nath
- Biomathematics and Statistics Scotland, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| |
Collapse
|
22
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Tschofen M, Knopp D, Hood E, Stöger E. Plant Molecular Farming: Much More than Medicines. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:271-94. [PMID: 27049632 DOI: 10.1146/annurev-anchem-071015-041706] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.
Collapse
Affiliation(s)
- Marc Tschofen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Dietmar Knopp
- Institute of Hydrochemistry, Chair for Analytical Chemistry, Technische Universität München, 80333 Munich, Germany
| | - Elizabeth Hood
- Arkansas State University Biosciences Institute, Jonesboro, Arkansas 72467
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
24
|
The case for plant-made veterinary immunotherapeutics. Biotechnol Adv 2016; 34:597-604. [PMID: 26875776 DOI: 10.1016/j.biotechadv.2016.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
The excessive use of antibiotics in food animal production has contributed to resistance in pathogenic bacteria, thereby triggering regulations and consumer demands to limit their use. Alternatives for disease control are therefore required that are cost-effective and compatible with intensive production. While vaccines are widely used and effective, they are available against a minority of animal diseases, and development of novel vaccines and other immunotherapeutics is therefore needed. Production of such proteins recombinantly in plants can provide products that are effective and safe, can be orally administered with minimal processing, and are easily scalable with a relatively low capital investment. The present report thus advocates the use of plants for producing vaccines and antibodies to protect farm animals from diseases that have thus far been managed with antibiotics; and highlights recent advances in product efficacy, competitiveness, and regulatory approval.
Collapse
|
25
|
Chen L, Yang X, Luo D, Yu W. Efficient Production of a Bioactive Bevacizumab Monoclonal Antibody Using the 2A Self-cleavage Peptide in Transgenic Rice Callus. FRONTIERS IN PLANT SCIENCE 2016; 7:1156. [PMID: 27555853 PMCID: PMC4977302 DOI: 10.3389/fpls.2016.01156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/19/2016] [Indexed: 05/18/2023]
Abstract
Bevacizumab, a humanized monoclonal antibody (mAb) targeting to the vascular endothelial growth factor (VEGF), has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC) and Bevacizumab heavy chain (BHC) genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme-linked immunosorbent assay (ELISA) analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7-242.8 mg/Kg) in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target human VEGF (hVEGF) antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin) were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
- Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Xiaoyu Yang
- College of Life Sciences, Shenzhen UniversityShenzhen, China
| | - Da Luo
- School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Weichang Yu
- College of Life Sciences, Shenzhen UniversityShenzhen, China
- *Correspondence: Weichang Yu,
| |
Collapse
|
26
|
Liao TYA, Lau A, Joseph S, Hytönen V, Hmama Z. Improving the Immunogenicity of the Mycobacterium bovis BCG Vaccine by Non-Genetic Bacterial Surface Decoration Using the Avidin-Biotin System. PLoS One 2015; 10:e0145833. [PMID: 26716832 PMCID: PMC4696857 DOI: 10.1371/journal.pone.0145833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb) antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.
Collapse
Affiliation(s)
- Ting-Yu Angela Liao
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Alice Lau
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sunil Joseph
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vesa Hytönen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Zakaria Hmama
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
27
|
Łojewska E, Kowalczyk T, Olejniczak S, Sakowicz T. Extraction and purification methods in downstream processing of plant-based recombinant proteins. Protein Expr Purif 2015; 120:110-7. [PMID: 26742898 DOI: 10.1016/j.pep.2015.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 01/02/2023]
Abstract
During the last two decades, the production of recombinant proteins in plant systems has been receiving increased attention. Currently, proteins are considered as the most important biopharmaceuticals. However, high costs and problems with scaling up the purification and isolation processes make the production of plant-based recombinant proteins a challenging task. This paper presents a summary of the information regarding the downstream processing in plant systems and provides a comprehensible overview of its key steps, such as extraction and purification. To highlight the recent progress, mainly new developments in the downstream technology have been chosen. Furthermore, besides most popular techniques, alternative methods have been described.
Collapse
Affiliation(s)
- Ewelina Łojewska
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland.
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Szymon Olejniczak
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Tomasz Sakowicz
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| |
Collapse
|
28
|
Takeyama N, Kiyono H, Yuki Y. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:139-54. [PMID: 26668752 DOI: 10.1177/2051013615613272] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials.
Collapse
Affiliation(s)
- Natsumi Takeyama
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
29
|
MacDonald J, Doshi K, Dussault M, Hall JC, Holbrook L, Jones G, Kaldis A, Klima CL, Macdonald P, McAllister T, McLean MD, Potter A, Richman A, Shearer H, Yarosh O, Yoo HS, Topp E, Menassa R. Bringing plant-based veterinary vaccines to market: Managing regulatory and commercial hurdles. Biotechnol Adv 2015; 33:1572-81. [PMID: 26232717 DOI: 10.1016/j.biotechadv.2015.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
The production of recombinant vaccines in plants may help to reduce the burden of veterinary diseases, which cause major economic losses and in some cases can affect human health. While there is abundant research in this area, a knowledge gap exists between the ability to create and evaluate plant-based products in the laboratory, and the ability to take these products on a path to commercialization. The current report, arising from a workshop sponsored by an Organisation for Economic Co-operation and Development (OECD) Co-operative Research Programme, addresses this gap by providing guidance in planning for the commercialization of plant-made vaccines for animal use. It includes relevant information on developing business plans, assessing market opportunities, manufacturing scale-up, financing, protecting and using intellectual property, and regulatory approval with a focus on Canadian regulations.
Collapse
Affiliation(s)
- Jacqueline MacDonald
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Ketan Doshi
- Prairie Plant Systems Inc., 1 Plant Technology Road, Box 19A, RR#5, Saskatoon, Saskatchewan S7K 3J8, Canada
| | | | - J Christopher Hall
- PlantForm Corp., 120 Research Lane, Suite 200, Guelph, Ontario N1G 0B4, Canada; School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2 W1, Canada
| | - Larry Holbrook
- Prairie Plant Systems Inc., 1 Plant Technology Road, Box 19A, RR#5, Saskatoon, Saskatchewan S7K 3J8, Canada
| | - Ginny Jones
- Elanco Canada Ltd., 797 Victoria Road, Route 116, Victoria, Prince Edward Island C0A 2G0, Canada
| | - Angelo Kaldis
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Cassidy L Klima
- Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, Alberta T1J 4B1, Canada
| | - Phil Macdonald
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario K1A 0Y9, Canada
| | - Tim McAllister
- Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, Alberta T1J 4B1, Canada
| | - Michael D McLean
- PlantForm Corp., 120 Research Lane, Suite 200, Guelph, Ontario N1G 0B4, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Alex Richman
- Agriculture and Agri-Food Canada, 174 Stone Road West, Guelph, Ontario N1G 4S9, Canada
| | - Heather Shearer
- Canadian Food Inspection Agency, 59 Camelot Drive, Ottawa, Ontario K1A 0Y9, Canada
| | - Oksana Yarosh
- Canadian Food Inspection Agency, 59 Camelot Drive, Ottawa, Ontario K1A 0Y9, Canada
| | - Han Sang Yoo
- College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Edward Topp
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada.
| |
Collapse
|
30
|
Duwadi K, Chen L, Menassa R, Dhaubhadel S. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production. PLoS One 2015; 10:e0130556. [PMID: 26148064 PMCID: PMC4493103 DOI: 10.1371/journal.pone.0130556] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022] Open
Abstract
Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL)-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP) in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10) were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER), suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves.
Collapse
Affiliation(s)
- Kishor Duwadi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Ling Chen
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada
| | - Rima Menassa
- Department of Biology, University of Western Ontario, London, ON, Canada
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, London, ON, Canada
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada
| |
Collapse
|
31
|
Buyel JF, Twyman RM, Fischer R. Extraction and downstream processing of plant-derived recombinant proteins. Biotechnol Adv 2015; 33:902-13. [PMID: 25922318 DOI: 10.1016/j.biotechadv.2015.04.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
Plants offer the tantalizing prospect of low-cost automated manufacturing processes for biopharmaceutical proteins, but several challenges must be addressed before such goals are realized and the most significant hurdles are found during downstream processing (DSP). In contrast to the standardized microbial and mammalian cell platforms embraced by the biopharmaceutical industry, there are many different plant-based expression systems vying for attention, and those with the greatest potential to provide inexpensive biopharmaceuticals are also the ones with the most significant drawbacks in terms of DSP. This is because the most scalable plant systems are based on the expression of intracellular proteins in whole plants. The plant tissue must therefore be disrupted to extract the product, challenging the initial DSP steps with an unusually high load of both particulate and soluble contaminants. DSP platform technologies can accelerate and simplify process development, including centrifugation, filtration, flocculation, and integrated methods that combine solid-liquid separation, purification and concentration, such as aqueous two-phase separation systems. Protein tags can also facilitate these DSP steps, but they are difficult to transfer to a commercial environment and more generic, flexible and scalable strategies to separate target and host cell proteins are preferable, such as membrane technologies and heat/pH precipitation. In this context, clarified plant extracts behave similarly to the feed stream from microbes or mammalian cells and the corresponding purification methods can be applied, as long as they are adapted for plant-specific soluble contaminants such as the superabundant protein RuBisCO. Plant-derived pharmaceutical proteins cannot yet compete directly with established platforms but they are beginning to penetrate niche markets that allow the beneficial properties of plants to be exploited, such as the ability to produce 'biobetters' with tailored glycans, the ability to scale up production rapidly for emergency responses and the ability to produce commodity recombinant proteins on an agricultural scale.
Collapse
Affiliation(s)
- J F Buyel
- Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| | - R M Twyman
- TRM Ltd, PO Box 463, York, United Kingdom.
| | - R Fischer
- Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| |
Collapse
|
32
|
Miletic S, Simpson DJ, Szymanski CM, Deyholos MK, Menassa R. A Plant-Produced Bacteriophage Tailspike Protein for the Control of Salmonella. FRONTIERS IN PLANT SCIENCE 2015; 6:1221. [PMID: 26779243 PMCID: PMC4705272 DOI: 10.3389/fpls.2015.01221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/18/2015] [Indexed: 05/07/2023]
Abstract
The receptor binding domain of the tailspike protein Gp9 from the P22 bacteriophage was recently shown to reduce Salmonella colonization in the chicken gut. In this study, we transiently expressed the receptor binding domain of the Gp9 tailspike protein in Nicotiana benthamiana, and targeted it to the endoplasmic reticulum (ER) or to the chloroplasts. Gp9 was also fused to either an elastin-like polypeptide (ELP) or hydrophobin I tag, which were previously described to improve accumulation levels of recombinant proteins. The highest levels of recombinant protein accumulation occurred when unfused Gp9 was targeted to the ER. Lower levels of chloroplast-targeted Gp9 were also detected. ELP-fused Gp9 was purified and demonstrated to bind to Salmonella enterica serovar Typhimurium in vitro. Upon oral administration of lyophilized leaves expressing Gp9-ELP to newly hatched chickens, we found that this tailspike protein has the potential to be used as a therapeutic to control Salmonella contamination in chickens.
Collapse
Affiliation(s)
- Sean Miletic
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, LondonON, Canada
- Department of Biology, University of Western Ontario, LondonON, Canada
| | - David J. Simpson
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, EdmontonAB, Canada
| | - Christine M. Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, EdmontonAB, Canada
| | | | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, LondonON, Canada
- Department of Biology, University of Western Ontario, LondonON, Canada
- *Correspondence: Rima Menassa,
| |
Collapse
|
33
|
Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|