1
|
Islam A, Munro S, Hassan MM, Epstein JH, Klaassen M. The role of vaccination and environmental factors on outbreaks of high pathogenicity avian influenza H5N1 in Bangladesh. One Health 2023; 17:100655. [PMID: 38116452 PMCID: PMC10728328 DOI: 10.1016/j.onehlt.2023.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
High Pathogenicity Avian Influenza (HPAI) H5N1 outbreaks continue to wreak havoc on the global poultry industry and threaten the health of wild bird populations, with sporadic spillover in humans and other mammals, resulting in widespread calls to vaccinate poultry. Bangladesh has been vaccinating poultry since 2012, presenting a prime opportunity to study the effects of vaccination on HPAI H5N1circulation in both poultry and wild birds. We investigated the efficacy of vaccinating commercial poultry against HPAI H5N1 along with climatic and socio-economic factors considered potential drivers of HPAI H5N1 outbreak risk in Bangladesh. Using a multivariate modeling approach, we estimated that the rate of outbreaks was 18 times higher before compared to after vaccination, with winter months having a three times higher chance of outbreaks than summer months. Variables resulting in small but significant increases in outbreak rate were relatively low ambient temperatures for the time of year, literacy rate, chicken and duck density, crop density, and presence of highways; this may be attributable to low temperatures supporting viral survival outside the host, higher literacy driving reporting rate, density of the host reservoir, and spread of the virus through increased connectivity. Despite the substantial impact of vaccination on outbreaks, we note that HPAI H5N1 is still enzootic in Bangladesh; vaccinated poultry flocks have high rates of H5N1 prevalence, and spillover to wild birds has increased. Vaccination in Bangladesh thus bears the risk of supporting "silent spread," where the vaccine only provides protection against disease and not also infection. Our findings underscore that poultry vaccination can be part of holistic HPAI mitigation strategies when accompanied by monitoring to avoid silent spread.
Collapse
Affiliation(s)
- Ariful Islam
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, Australia
- EcoHealth Alliance, New York, NY 10018, USA
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | | | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Smith WJ, Jezierski MT, Dunn JC, Clegg SM. Parasite exchange and hybridisation at a wild-feral-domestic interface. Int J Parasitol 2023; 53:797-808. [PMID: 37474096 DOI: 10.1016/j.ijpara.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023]
Abstract
Interactions between wild, feral, and domestic animals are of economic and conservation significance. The pigeon Columba livia is a synanthropic species in a feral form, but it also includes the rare Rock Dove. Columba livia is an important player at the wild-domestic interface, acting as a carrier of avian diseases, and the feral form threatens Rock Doves with extinction via hybridisation. Despite its abundance, little is known about drivers of disease prevalence in C. livia, or how disease and hybridisation represent synergistic threats to Rock Doves. We focused on infection by the parasite Trichomonas, first collating prevalence estimates in domestic and free-living populations from relevant studies of C. livia. Second, we characterised variation in the diversity and prevalence of Trichomonas among three C. livia populations in the United Kingdom: a feral, a Rock Dove, and a feral-wild hybrid population. Across multiple continents, free-living pigeons had lower Trichomonas infection than captive conspecifics, but the effect was weak. Environmental factors which could impact Trichomonas infection status did not explain variation in infection among populations. Among the British populations, strain diversity varied, and there was lower parasite prevalence in Rock Doves than feral pigeons. Individual infection status was not explained by the available covariates, including hybrid score and site. The drivers of Trichomonas prevalence are unclear, perhaps due to idiosyncratic local-scale drivers. However, given the population-level variation in both infection prevalence and introgressive hybridisation, the potential combined effects could accelerate the extinction of the Rock Dove. Further study of the synergistic effects of multiple types of biotic interactions at the wild-feral-domestic interface is warranted, especially where vagile, globally distributed and superabundant animals are involved.
Collapse
Affiliation(s)
- William J Smith
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, UK.
| | - Michał T Jezierski
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, UK
| | - Jenny C Dunn
- School of Life and Environmental Sciences, University of Lincoln, UK; School of Biology, University of Leeds, UK
| | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, UK
| |
Collapse
|
3
|
Gass JD, Hill NJ, Damodaran L, Naumova EN, Nutter FB, Runstadler JA. Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016-Early 2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6030. [PMID: 37297634 PMCID: PMC10252585 DOI: 10.3390/ijerph20116030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
H5Nx highly pathogenic avian influenza (HPAI) viruses of clade 2.3.4.4 have caused outbreaks in Europe among wild and domestic birds since 2016 and were introduced to North America via wild migratory birds in December 2021. We examined the spatiotemporal extent of HPAI viruses across continents and characterized ecological and environmental predictors of virus spread between geographic regions by constructing a Bayesian phylodynamic generalized linear model (phylodynamic-GLM). The findings demonstrate localized epidemics of H5Nx throughout Europe in the first several years of the epizootic, followed by a singular branching point where H5N1 viruses were introduced to North America, likely via stopover locations throughout the North Atlantic. Once in the United States (US), H5Nx viruses spread at a greater rate between US-based regions as compared to prior spread in Europe. We established that geographic proximity is a predictor of virus spread between regions, implying that intercontinental transport across the Atlantic Ocean is relatively rare. An increase in mean ambient temperature over time was predictive of reduced H5Nx virus spread, which may reflect the effect of climate change on declines in host species abundance, decreased persistence of the virus in the environment, or changes in migratory patterns due to ecological alterations. Our data provide new knowledge about the spread and directionality of H5Nx virus dispersal in Europe and the US during an actively evolving intercontinental outbreak, including predictors of virus movement between regions, which will contribute to surveillance and mitigation strategies as the outbreak unfolds, and in future instances of uncontained avian spread of HPAI viruses.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125, USA
| | | | - Elena N. Naumova
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02155, USA
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
4
|
Ruiz S, Galdames P, Baumberger C, Gonzalez MA, Rojas C, Oyarzun C, Orozco K, Mattar C, Freiden P, Sharp B, Schultz-Cherry S, Hamilton-West C, Jimenez-Bluhm P. Remote Sensing and Ecological Variables Related to Influenza A Prevalence and Subtype Diversity in Wild Birds in the Lluta Wetland of Northern Chile. Viruses 2023; 15:1241. [PMID: 37376541 DOI: 10.3390/v15061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The Lluta River is the northernmost coastal wetland in Chile, representing a unique ecosystem and an important source of water in the extremely arid Atacama Desert. During peak season, the wetland is home to more than 150 species of wild birds and is the first stopover point for many migratory species that arrive in the country along the Pacific migratory route, thereby representing a priority site for avian influenza virus (AIV) surveillance in Chile. The aim of this study was to determine the prevalence of influenza A virus (IAV) in the Lluta River wetland, identify subtype diversity, and evaluate ecological and environmental factors that drive the prevalence at the study site. The wetland was studied and sampled from September 2015 to October 2020. In each visit, fresh fecal samples of wild birds were collected for IAV detection by real-time RT-PCR. Furthermore, a count of wild birds present at the site was performed and environmental variables, such as temperature, rainfall, vegetation coverage (Normalized Difference Vegetation Index-NDVI), and water body size were determined. A generalized linear mixed model (GLMM) was built to assess the association between AIV prevalence and explanatory variables. Influenza positive samples were sequenced, and the host species was determined by barcoding. Of the 4349 samples screened during the study period, overall prevalence in the wetland was 2.07% (95% CI: 1.68 to 2.55) and monthly prevalence of AIV ranged widely from 0% to 8.6%. Several hemagglutinin (HA) and neuraminidase (NA) subtypes were identified, and 10 viruses were isolated and sequenced, including low pathogenic H5, H7, and H9 strains. In addition, several reservoir species were recognized (both migratory and resident birds), including the newly identified host Chilean flamingo (Phoenicopterus chilensis). Regarding environmental variables, prevalence of AIV was positively associated with NDVI (OR = 3.65, p < 0.05) and with the abundance of migratory birds (OR = 3.57, p < 0.05). These results emphasize the importance of the Lluta wetland as a gateway to Chile for viruses that come from the Northern Hemisphere and contribute to the understanding of AIV ecological drivers.
Collapse
Affiliation(s)
- Soledad Ruiz
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Facultad de Medicina, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile
| | - Pablo Galdames
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile
| | - Cecilia Baumberger
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile
| | - Maria Antonieta Gonzalez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile
| | - Camila Rojas
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile
| | - Cristobal Oyarzun
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile
| | - Katherinne Orozco
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile
| | - Cristian Mattar
- Laboratory for Analysis of the Biosphere (LAB), Universidad de Chile, Santiago 8330111, Chile
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bridgette Sharp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher Hamilton-West
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile
| | - Pedro Jimenez-Bluhm
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Facultad de Medicina, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
5
|
Wille M, Lisovski S, Roshier D, Ferenczi M, Hoye BJ, Leen T, Warner S, Fouchier RAM, Hurt AC, Holmes EC, Klaassen M. Strong host phylogenetic and ecological effects on host competency for avian influenza in Australian wild birds. Proc Biol Sci 2023; 290:20222237. [PMID: 36651046 PMCID: PMC9845974 DOI: 10.1098/rspb.2022.2237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Host susceptibility to parasites is mediated by intrinsic and external factors such as genetics, ecology, age and season. While waterfowl are considered central to the reservoir community for low pathogenic avian influenza A viruses (LPAIV), the role of host phylogeny has received limited formal attention. Herein, we analysed 12 339 oropharyngeal and cloacal swabs and 10 826 serum samples collected over 11 years from wild birds in Australia. As well as describing age and species-level differences in prevalence and seroprevalence, we reveal that host phylogeny is a key driver in host range. Seasonality effects appear less pronounced than in the Northern Hemisphere, while annual variations are potentially linked to El Niño-Southern Oscillation. Our study provides a uniquely detailed insight into the evolutionary ecology of LPAIV in its avian reservoir community, defining distinctive processes on the continent of Australia and expanding our understanding of LPAIV globally.
Collapse
Affiliation(s)
- Michelle Wille
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia,WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia,Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Simeon Lisovski
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - David Roshier
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - Marta Ferenczi
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - Bethany J. Hoye
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - Trent Leen
- Geelong Field and Game, Geelong, VIC 3340, Australia,Wetlands Environmental Taskforce, Field and Game Australia, Seymour, VIC 3660, Australia
| | - Simone Warner
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015GE, The Netherlands
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia,Victorian Wader Study Group, Thornbury, Victoria 3071, Australia,Australasian Wader Studies Group, Curtin, ACT 2605, Australia
| |
Collapse
|
6
|
Wille M, Grillo V, Ban de Gouvea Pedroso S, Burgess GW, Crawley A, Dickason C, Hansbro PM, Hoque MA, Horwood PF, Kirkland PD, Kung NYH, Lynch SE, Martin S, McArthur M, O’Riley K, Read AJ, Warner S, Hoye BJ, Lisovski S, Leen T, Hurt AC, Butler J, Broz I, Davies KR, Mileto P, Neave MJ, Stevens V, Breed AC, Lam TTY, Holmes EC, Klaassen M, Wong FYK. Australia as a global sink for the genetic diversity of avian influenza A virus. PLoS Pathog 2022; 18:e1010150. [PMID: 35536868 PMCID: PMC9089890 DOI: 10.1371/journal.ppat.1010150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/13/2022] [Indexed: 12/03/2022] Open
Abstract
Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | | | | | - Graham W. Burgess
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | | | | | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Md. Ahasanul Hoque
- Chattogram (previously Chittagong) Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Paul F. Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Peter D. Kirkland
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Nina Yu-Hsin Kung
- Animal Biosecurity & Welfare, Biosecurity Queensland, Department of Agriculture and Fisheries, Health Food Science Precinct, Coopers Plains, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Australia
| | - Sue Martin
- Department of Primary Industries, Parks, Water and Environment, Hobart, Australia
| | - Michaela McArthur
- Department of Primary Industries and Regional Development, Kensington, Australia
| | - Kim O’Riley
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Australia
| | - Andrew J. Read
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Simone Warner
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Australia
| | - Bethany J. Hoye
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Simeon Lisovski
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Trent Leen
- Geelong Field & Game, Geelong, Australia
- Wetlands Environmental Taskforce, Field & Game Australia, Seymour, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jeff Butler
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Ivano Broz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Kelly R. Davies
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Patrick Mileto
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Matthew J. Neave
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Vicky Stevens
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Andrew C. Breed
- Department of Agriculture, Water and the Environment, Canberra, Australia
- University of Queensland, St. Lucia, Australia
| | - Tommy T. Y. Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, PR China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Frank Y. K. Wong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| |
Collapse
|
7
|
Mellouli FE, Abouchoaib N, Zekhnini H, Khayli M, Fusaro A, Idrissi HR, Benhoussa A. Molecular Detection of Avian Influenza Virus in Wild Birds in Morocco, 2016–2019. Avian Dis 2021; 66:29-38. [DOI: 10.1637/aviandiseases-d-21-00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/22/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Fatiha El Mellouli
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, 10106 Rabat, Morocco
| | - Nabil Abouchoaib
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, 10106 Rabat, Morocco
| | - Hasnae Zekhnini
- Immunology and Biodiversity Laboratory, Faculty of Science Ain chock, Hassan II University of Casablanca, 20100 Casablanca, Morocco
| | - Mounir Khayli
- Epidemiology and Health Surveillance Unit (SEVS), Institut Agronomique et Vétérinaire Hassan II, Rabat-Instituts, 6472 Rabat, Morocco
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Hamid Rguibi Idrissi
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, 10106 Rabat, Morocco
| | - Abdelaziz Benhoussa
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, 10106 Rabat, Morocco
| |
Collapse
|
8
|
Abstract
Globally swine influenza is one of the most important diseases of the pig industry, with various subtypes of swine influenza virus co-circulating in the field. Swine influenza can not only cause large economic losses for the pig industry but can also lead to epidemics or pandemics in the human population. We provide an overview of the pathogenic characteristics of the disease, diagnosis, risk factors for the occurrence on pig farms, impact on pigs and humans and methods to control it. This review is designed to promote understanding of the epidemiology of swine influenza which will benefit the control of the disease in both pigs and humans.
Collapse
Affiliation(s)
- Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD Australia
| | - Ian Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
9
|
Ferenczi M, Beckmann C, Klaassen M. Rainfall driven and wild-bird mediated avian influenza virus outbreaks in Australian poultry. BMC Vet Res 2021; 17:306. [PMID: 34521392 PMCID: PMC8439068 DOI: 10.1186/s12917-021-03010-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, outbreaks of Avian Influenza Virus (AIV) in poultry continue to burden economies and endanger human, livestock and wildlife health. Wild waterbirds are often identified as possible sources for poultry infection. Therefore, it is important to understand the ecological and environmental factors that directly influence infection dynamics in wild birds, as these factors may thereby indirectly affect outbreaks in poultry. In Australia, where large parts of the country experience erratic rainfall patterns, intense rainfalls lead to wild waterfowl breeding events at temporary wetlands and increased proportions of immunologically naïve juvenile birds. It is hypothesized that after breeding, when the temporary wetlands dry, increasing densities of immunologically naïve waterbirds returning to permanent water bodies might strongly contribute to AIV prevalence in wild waterfowl in Australia. Since rainfall has been implicated as an important environmental driver in AIV dynamics in wild waterbirds in southeast Australia and wild waterbirds are identified globally to have a role in virus spillover into poultry, we hypothesise that rainfall events have an indirect effect on AIV outbreaks in poultry in southeast Australia. In this study we investigated this hypothesis by examining the correlation between the timing of AIV outbreaks in poultry in and near the Murray-Darling basin in relation to temporal patterns in regional rainfall since 1970. Our findings support our hypothesis and suggest that the risk of AIV outbreaks in poultry increases after a period of high rainfall, with peak AIV risk two years after the onset of the high-rainfall period. This is presumably triggered by increased rates of waterbird breeding and consequent higher proportions of immunologically naïve juvenile waterbirds entering the population directly after major rainfall events, which subsequently aggregate near permanent water bodies when the landscape dries out.
Collapse
Affiliation(s)
- Marta Ferenczi
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, 3216, Geelong, VIC, Australia
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, 3216, Geelong, VIC, Australia
- School of Science, Western Sydney University, Locked Bag 1797, 2751, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, 2751, Penrith, NSW, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, 3216, Geelong, VIC, Australia.
| |
Collapse
|
10
|
Patil SS, Shinduja R, Suresh KP, Phukan S, Kumar S, Sengupta PP, G Amachawadi R, Raut A, Roy P, Syed A, Marraiki N, Elgorban AM, Al-Harthi HF, Bahkali AH, Shivamallu C, Shiva Prasad K. A systematic review and meta-analysis on the prevalence of infectious diseases of Duck: A world perspective. Saudi J Biol Sci 2021; 28:5131-5144. [PMID: 34466091 PMCID: PMC8381006 DOI: 10.1016/j.sjbs.2021.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022] Open
Abstract
The Indian poultry industry is one of the fast-growing sectors of which duck farming plays an important role. Duck population in India is 33.51 million that is concentrated towards north-east and southern parts of the country who rears mainly for eggs and meat. Duck diseases are of great concern as they badly affect the financial status of the small, landless farmers. Databases such as Google Scholar, PubMed, J gate were used to search articles between 2000 and 2019 that showed the prevalence of viral, bacterial, and parasitic duck diseases. R open source software was used to derive forest plots by statistical analysis. Pooled prevalence estimates of duck diseases worldwide was found to be 20% (95%-CI:15–26). Also, continent-wise analysis of all duck diseases has revealed highest prevalence in North America, followed by Asia, Africa, Europe,Oceania and South America. This prevalence of data would be helpful to the policymakers to develop appropriate intervention strategies to prevent and control diseases in their respective locations.
Collapse
Affiliation(s)
- Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidem iology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, India
| | - Rajamani Shinduja
- ICAR-National Institute of Veterinary Epidem iology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, India
| | | | - Sulekha Phukan
- Department of Parasitology, College of Veterinary Science, Khanapara, Guwahati, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, IIT, Guwahati, Assam, India
| | - Pinaki Prasad Sengupta
- ICAR-National Institute of Veterinary Epidem iology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, India
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ashwin Raut
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Parimal Roy
- ICAR-National Institute of Veterinary Epidem iology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Helal F Al-Harthi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka 570 015, India
| | - Kollur Shiva Prasad
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka 570 026, India
| |
Collapse
|
11
|
A SYSTEMATIC REVIEW AND NARRATIVE SYNTHESIS OF THE USE OF ENVIRONMENTAL SAMPLES FOR THE SURVEILLANCE OF AVIAN INFLUENZA VIRUSES IN WILD WATERBIRDS. J Wildl Dis 2021; 57:1-18. [PMID: 33635994 DOI: 10.7589/jwd-d-20-00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2020] [Indexed: 11/20/2022]
Abstract
Wild waterbirds are reservoir hosts for avian influenza viruses (AIV), which can cause devastating outbreaks in multiple species, making them a focus for surveillance efforts. Traditional AIV surveillance involves direct sampling of live or dead birds, but environmental substrates present an alternative sample for surveillance. Environmental sampling analyzes AIV excreted by waterbirds into the environment and complements direct bird sampling by minimizing financial, logistic, permitting, and spatial-temporal constraints associated with traditional surveillance. Our objectives were to synthesize the literature on environmental AIV surveillance, to compare and contrast the different sample types, and to identify key themes and recommendations to aid in the implementation of AIV surveillance using environmental samples. The four main environmental substrates for AIV surveillance are feces, feathers, water, and sediment or soil. Feces were the most common environmental substrate collected. The laboratory analysis of water and sediment provided challenges, such as low AIV concentration, heterogenous AIV distribution, or presence of PCR inhibitors. There are a number of abiotic and biotic environmental factors, including temperature, pH, salinity, or presence of filter feeders, that can influence the presence and persistence of AIV in environmental substrates; however, the nature of this influence is poorly understood in field settings, and field data from southern, coastal, and tropical ecosystems are underrepresented. Similarly, there are few studies comparing the performance of environmental samples to each other and to samples collected in wild waterbirds, and environmental surveillance workflows have yet to be validated or optimized. Environmental samples, particularly when used in combination with new technology such as environmental DNA and next generation sequencing, provided information on trends in AIV detection rates and circulating subtypes that complemented traditional, direct waterbird sampling. The use of environmental samples for AIV surveillance also shows significant promise for programs whose goal is early warning of high-risk subtypes.
Collapse
|
12
|
Avian Influenza in Wild Birds and Poultry: Dissemination Pathways, Monitoring Methods, and Virus Ecology. Pathogens 2021; 10:pathogens10050630. [PMID: 34065291 PMCID: PMC8161317 DOI: 10.3390/pathogens10050630] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
Avian influenza is one of the largest known threats to domestic poultry. Influenza outbreaks on poultry farms typically lead to the complete slaughter of the entire domestic bird population, causing severe economic losses worldwide. Moreover, there are highly pathogenic avian influenza (HPAI) strains that are able to infect the swine or human population in addition to their primary avian host and, as such, have the potential of being a global zoonotic and pandemic threat. Migratory birds, especially waterfowl, are a natural reservoir of the avian influenza virus; they carry and exchange different virus strains along their migration routes, leading to antigenic drift and antigenic shift, which results in the emergence of novel HPAI viruses. This requires monitoring over time and in different locations to allow for the upkeep of relevant knowledge on avian influenza virus evolution and the prevention of novel epizootic and epidemic outbreaks. In this review, we assess the role of migratory birds in the spread and introduction of influenza strains on a global level, based on recent data. Our analysis sheds light on the details of viral dissemination linked to avian migration, the viral exchange between migratory waterfowl and domestic poultry, virus ecology in general, and viral evolution as a process tightly linked to bird migration. We also provide insight into methods used to detect and quantify avian influenza in the wild. This review may be beneficial for the influenza research community and may pave the way to novel strategies of avian influenza and HPAI zoonosis outbreak monitoring and prevention.
Collapse
|
13
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
14
|
Ruiz S, Jimenez-Bluhm P, Di Pillo F, Baumberger C, Galdames P, Marambio V, Salazar C, Mattar C, Sanhueza J, Schultz-Cherry S, Hamilton-West C. Temporal dynamics and the influence of environmental variables on the prevalence of avian influenza virus in main wetlands in central Chile. Transbound Emerg Dis 2020; 68:1601-1614. [PMID: 32931631 DOI: 10.1111/tbed.13831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 09/06/2020] [Indexed: 11/28/2022]
Abstract
Although wild birds are considered the main reservoir of the influenza A virus (IAV) in nature, empirical investigations exploring the interaction between the IAV prevalence in these populations and environmental drivers remain scarce. Chile has a coastline of more than 4000 kilometres with hundreds of wetlands, which are important habitats for both resident and inter-hemispheric migratory species. The aim of this study was to characterize the temporal dynamics of IAV in main wetlands in central Chile and to assess the influence of environmental variables on AIV prevalence. For that purpose, four wetlands were studied from September 2015 to June 2018. Fresh faecal samples of wild birds were collected for IAV detection by real-time RT-PCR. Furthermore, a count of wild birds present at the site was performed and environmental variables, such as temperature, rainfall, vegetation coverage (Normalized Difference Vegetation Index (NDVI)) and water body size, were determined. A generalized linear mixed model was built to assess the association between IAV prevalence and explanatory variables. An overall prevalence of 4.28% ± 0.28% was detected with important fluctuations among seasons, being greater during summer (OR = 4.87, 95% CI 2.11 to 11.21) and fall (OR = 2.59, 95% CI 1.12 to 5.97). Prevalence was positively associated with minimum temperature for the month of sampling and negatively associated with water body size measured two months before sampling, and NDVI measured three months before sampling. These results contribute to the understanding of IAV ecological drivers in Chilean wetlands providing important considerations for the global surveillance of IAV.
Collapse
Affiliation(s)
- Soledad Ruiz
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, Universidad de Chile, Santiago, Chile.,Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santiago, Chile.,Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Pedro Jimenez-Bluhm
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, Universidad de Chile, Santiago, Chile
| | - Francisca Di Pillo
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Cecilia Baumberger
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, Universidad de Chile, Santiago, Chile
| | - Pablo Galdames
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, Universidad de Chile, Santiago, Chile
| | - Victor Marambio
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, Universidad de Chile, Santiago, Chile
| | - Carla Salazar
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, Universidad de Chile, Santiago, Chile
| | - Cristian Mattar
- Laboratory for Analysis of the Biosphere (LAB), University of Chile, Santiago, Chile
| | - Juan Sanhueza
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher Hamilton-West
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Wille M, Lisovski S, Risely A, Ferenczi M, Roshier D, Wong FYK, Breed AC, Klaassen M, Hurt AC. Serologic Evidence of Exposure to Highly Pathogenic Avian Influenza H5 Viruses in Migratory Shorebirds, Australia. Emerg Infect Dis 2020; 25:1903-1910. [PMID: 31538564 PMCID: PMC6759277 DOI: 10.3201/eid2510.190699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5Nx viruses of the goose/Guangdong/96 lineage continue to cause outbreaks in poultry and wild birds globally. Shorebirds, known reservoirs of avian influenza viruses, migrate from Siberia to Australia along the East-Asian-Australasian Flyway. We examined whether migrating shorebirds spending nonbreeding seasons in Australia were exposed to HPAI H5 viruses. We compared those findings with those for a resident duck species. We screened >1,500 blood samples for nucleoprotein antibodies and tested positive samples for specific antibodies against 7 HPAI H5 virus antigens and 2 low pathogenicity avian influenza H5 virus antigens. We demonstrated the presence of hemagglutinin inhibitory antibodies against HPAI H5 virus clade 2.3.4.4 in the red-necked stint (Calidris ruficolis). We did not find hemagglutinin inhibitory antibodies in resident Pacific black ducks (Anas superciliosa). Our study highlights the potential role of long-distance migratory shorebirds in intercontinental spread of HPAI H5 viruses.
Collapse
|
16
|
An overview of avian influenza in the context of the Australian commercial poultry industry. One Health 2020; 10:100139. [PMID: 32490131 PMCID: PMC7256052 DOI: 10.1016/j.onehlt.2020.100139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
From 1976 Australia has experienced seven highly pathogenic avian influenza (HPAI) outbreaks in poultry farms and there have been a total of 16 confirmed low pathogenic avian influenza (LPAI) cases in poultry in Australia at the time of writing. This paper describes all past LPAI and HPAI detections in Australian poultry and reviews avian influenza risk in the Australian commercial chicken industry. The factors that influence this risk are also discussed; notably the nomadic nature of Australian waterfowl, the increasing demand of free range poultry egg and meat production in Australia, and biosecurity practices implemented across farms including farm separations. Australia has experienced seven highly pathogenic avian influenza (HPAI) outbreaks in poultry farms There have been 16 confirmed low pathogenic avian influenza (LPAI) cases in poultry in Australia at the time of writing Australian waterfowl are nomadic in nature There is increasing demand of free range poultry production in Australia Mathematical models for avian influenza risk in Australia have been reviewed
Collapse
|
17
|
Wille M, Shi M, Klaassen M, Hurt AC, Holmes EC. Virome heterogeneity and connectivity in waterfowl and shorebird communities. THE ISME JOURNAL 2019; 13:2603-2616. [PMID: 31239538 PMCID: PMC6775988 DOI: 10.1038/s41396-019-0458-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 05/27/2019] [Indexed: 11/09/2022]
Abstract
Models of host-microbe dynamics typically assume a single-host population infected by a single pathogen. In reality, many hosts form multi-species aggregations and may be infected with an assemblage of pathogens. We used a meta-transcriptomic approach to characterize the viromes of nine avian species in the Anseriformes (ducks) and Charadriiformes (shorebirds). This revealed the presence of 27 viral species, of which 24 were novel, including double-stranded RNA viruses (Picobirnaviridae and Reoviridae), single-stranded RNA viruses (Astroviridae, Caliciviridae, Picornaviridae), a retro-transcribing DNA virus (Hepadnaviridae), and a single-stranded DNA virus (Parvoviridae). These viruses comprise multi-host generalist viruses and those that are host-specific, indicative of both virome connectivity (host sharing) and heterogeneity (host specificity). Virome connectivity was apparent in two well described multi-host virus species -avian coronavirus and influenza A virus- and a novel Rotavirus species that were shared among some Anseriform species, while virome heterogeneity was reflected in the absence of viruses shared between Anseriformes and Charadriiformes, as well as differences in viral abundance and alpha diversity among species. Overall, we demonstrate complex virome structures across host species that co-exist in multi-species aggregations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.
| |
Collapse
|
18
|
Marcelino VR, Wille M, Hurt AC, González-Acuña D, Klaassen M, Schlub TE, Eden JS, Shi M, Iredell JR, Sorrell TC, Holmes EC. Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BMC Biol 2019; 17:31. [PMID: 30961590 PMCID: PMC6454771 DOI: 10.1186/s12915-019-0649-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Antibiotic resistance is rendering common bacterial infections untreatable. Wildlife can incorporate and disperse antibiotic-resistant bacteria in the environment, such as water systems, which in turn serve as reservoirs of resistance genes for human pathogens. Anthropogenic activity may contribute to the spread of bacterial resistance cycling through natural environments, including through the release of human waste, as sewage treatment only partially removes antibiotic-resistant bacteria. However, empirical data supporting these effects are currently limited. Here we used bulk RNA-sequencing (meta-transcriptomics) to assess the diversity and expression levels of functionally viable resistance genes in the gut microbiome of birds with aquatic habits in diverse locations. RESULTS We found antibiotic resistance genes in birds from all localities, from penguins in Antarctica to ducks in a wastewater treatment plant in Australia. Comparative analysis revealed that birds feeding at the wastewater treatment plant carried the greatest resistance gene burden, including genes typically associated with multidrug resistance plasmids as the aac(6)-Ib-cr gene. Differences in resistance gene burden also reflected aspects of bird ecology, taxonomy, and microbial function. Notably, ducks, which feed by dabbling, carried a higher abundance and diversity of resistance genes than turnstones, avocets, and penguins, which usually prey on more pristine waters. CONCLUSIONS These transcriptome data suggest that human waste, even if it undergoes treatment, might contribute to the spread of antibiotic resistance genes to the wild. Differences in microbiome functioning across different bird lineages may also play a role in the antibiotic resistance burden carried by wild birds. In summary, we reveal the complex factors explaining the distribution of resistance genes and their exchange routes between humans and wildlife, and show that meta-transcriptomics is a valuable tool to access functional resistance genes in whole microbial communities.
Collapse
Affiliation(s)
- Vanessa R Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia. .,Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia. .,School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, 3349001, Concepción, Chile
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Timothy E Schlub
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia.,School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jonathan R Iredell
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
19
|
Lau SYF, Wang X, Wang M, Liu S, Zee BCY, Han X, Yu Z, Sun R, Chong KC, Chen E. Identification of meteorological factors associated with human infection with avian influenza A H7N9 virus in Zhejiang Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:696-709. [PMID: 29990917 DOI: 10.1016/j.scitotenv.2018.06.390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Since the first reported human infection with an avian-origin influenza A (H7N9) virus in China in early 2013, there have been recurrent outbreaks of the virus in the country. Previous studies have shown that meteorological factors are associated with the risk of human infection with the virus; however, their possible nonlinear and lagged effects were not commonly taken into account. METHOD To quantify the effect of meteorological factors on the risk of human H7N9 infection, daily laboratory-confirmed cases of human H7N9 infection and meteorological factors including total rainfall, average wind speed, average temperature, average relative humidity, and sunshine duration of the 11 sub-provincial/prefecture cities in Zhejiang during the first four outbreaks (13 March 2013-30 June 2016) were analyzed. Separate models were built for the 6 sub-provincial/prefecture cities with the greatest number of reported cases using a combination of logistic generalized additive model and distributed lag nonlinear models, which were then pooled by a multivariate meta-regression model to determine their overall effects. RESULTS According to the meta-regression model, for rainfall, the log adjusted overall cumulative odds ratio was statistically significant when log of rainfall was >4.0, peaked at 5.3 with a value of 12.42 (95% confidence intervals (CI): [3.23, 21.62]). On the other hand, when wind speed was 2.1-3.0 m/s or 6.3-7.1 m/s, the log adjusted overall cumulative odds ratio was statistically significant, peaked at 7.1 m/s with a value of 6.75 (95% CI: [0.03, 13.47]). There were signs of nonlinearity and lag effects in their associations with the risk of infection. CONCLUSION As rainfall and wind speed were found to be associated with the risk of human H7N9 infection, weather conditions should be taken into account when it comes to disease surveillance, allowing prompt actions when an outbreak takes place.
Collapse
Affiliation(s)
- Steven Yuk-Fai Lau
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| | - Xiaoxiao Wang
- Zhejiang Province Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051, China.
| | - Maggie Wang
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, No.10, 2nd Yuexing Road, Nanshan District, Shenzhen, China.
| | - Shelan Liu
- Zhejiang Province Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051, China.
| | - Benny Chung-Ying Zee
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, No.10, 2nd Yuexing Road, Nanshan District, Shenzhen, China.
| | - Xiaoran Han
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | - Zhao Yu
- Zhejiang Province Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051, China.
| | - Riyang Sun
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| | - Ka Chun Chong
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, No.10, 2nd Yuexing Road, Nanshan District, Shenzhen, China.
| | - Enfu Chen
- Zhejiang Province Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051, China.
| |
Collapse
|
20
|
Wille M, Eden JS, Shi M, Klaassen M, Hurt AC, Holmes EC. Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Mol Ecol 2018; 27:5263-5278. [PMID: 30375075 PMCID: PMC6312746 DOI: 10.1111/mec.14918] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the factors that shape the ecology of RNA viruses in nature. Wild birds are an important case in point, as other than influenza A virus, avian samples are rarely tested for viruses, especially in the absence of overt disease. Using bulk RNA-sequencing ("meta-transcriptomics"), we revealed the viral diversity present in Australian wild birds through the lens of the ecological factors that may determine virome structure and abundance. A meta-transcriptomic analysis of four Anseriformes (waterfowl) and Charadriiformes (shorebird) species sampled in temperate and arid Australia revealed the presence of 27 RNA virus genomes, 18 of which represent newly described species. The viruses identified included a previously described gammacoronavirus and influenza A viruses. Additionally, we identified novel virus species from the families Astroviridae, Caliciviridae, Reoviridae, Rhabdoviridae, Picobirnaviridae and Picornaviridae. We noted differences in virome structure that reflected underlying differences in location and influenza A infection status. Red-necked Avocets (Recurvirostra novaehollandiae) from Australia's arid interior possessed the greatest viral diversity and abundance, markedly higher than individuals sampled in temperate Australia. In Ruddy Turnstones (Arenaria interpres) and dabbling ducks (Anas spp.), viral abundance and diversity were higher and more similar in hosts that were positive for influenza A infection compared to those that were negative for this virus, despite samples being collected on the same day and from the same location. This study highlights the extent and diversity of RNA viruses in wild birds and lays the foundation for understanding the factors that determine virome structure in wild populations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Centre for Virus Research, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Scott AB, Toribio JA, Singh M, Groves P, Barnes B, Glass K, Moloney B, Black A, Hernandez-Jover M. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms. Front Vet Sci 2018; 5:68. [PMID: 29755987 PMCID: PMC5932326 DOI: 10.3389/fvets.2018.00068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10-4; 5% and 95%, 5.7 × 10-4-0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10-4 and 1.6 × 10-4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10-4, 2.0 × 10-4, and 1.9 × 10-4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results highlight the importance of ensuring good biosecurity on farms to minimize the risk of exposure to AI virus and the importance of continuous surveillance of LPAI prevalence including subtypes in wild bird populations.
Collapse
Affiliation(s)
- Angela Bullanday Scott
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jenny-Ann Toribio
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Mini Singh
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Peter Groves
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Belinda Barnes
- Quantitative Sciences, Department of Agriculture and Water Resources, Canberra, ACT, Australia
| | - Kathryn Glass
- College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia
| | - Barbara Moloney
- New South Wales Department of Primary Industries, Orange, NSW, Australia
| | - Amanda Black
- New South Wales Department of Primary Industries, Orange, NSW, Australia
| | - Marta Hernandez-Jover
- Graham Centre for Agricultural Innovation, School of Animal and Veterinary Sciences, Charles Sturt University and New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia.,School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
22
|
Salaheldin AH, Kasbohm E, El-Naggar H, Ulrich R, Scheibner D, Gischke M, Hassan MK, Arafa ASA, Hassan WM, Abd El-Hamid HS, Hafez HM, Veits J, Mettenleiter TC, Abdelwhab EM. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt. Front Microbiol 2018; 9:528. [PMID: 29636730 PMCID: PMC5880882 DOI: 10.3389/fmicb.2018.00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed), biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered.
Collapse
Affiliation(s)
- Ahmed H Salaheldin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Institute of Poultry Diseases, Free University of Berlin, Berlin, Germany.,Department of Poultry Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Elisa Kasbohm
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Heba El-Naggar
- Veterinary Serum and Vaccine Research Institute, Cairo, Egypt
| | - Reiner Ulrich
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mohamed K Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Abdel-Satar A Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Wafaa M Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | | | - Hafez M Hafez
- Institute of Poultry Diseases, Free University of Berlin, Berlin, Germany
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
23
|
McEvoy JF, Ribot RFH, Wingfield JC, Bennett ATD. Heavy rainfall triggers increased nocturnal flight in desert populations of the Pacific black duck (Anas superciliosa). Sci Rep 2017; 7:17557. [PMID: 29242630 PMCID: PMC5730603 DOI: 10.1038/s41598-017-17859-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
Understanding of avian nocturnal flight comes mainly from northern hemisphere species in seasonal temperate ecosystems where nocturnal flight is often precisely timed and entrained by annual photoperiod. Here we investigate patterns of nocturnal flight in waterbirds of Australian desert ecosystems that fly considerable distances to find temporary water bodies formed from rainfall which is highly unpredictable seasonally and spatially, and when there is sufficient water, they then breed. How they perform these feats of navigation and physiology remain poorly known. Using GPS tracking of 38 satellite tagged Pacific black ducks (Anas superciliosa) in two contrasting ecosystems, before and after heavy rainfall we revealed a key role for facultative nocturnal flight in the movement ecology of this species. After large rainfall events, birds rapidly increased nocturnal flight activity in the arid aseasonal ecosystem, but not in the mesic seasonal one. Nocturnal flights occurred throughout the night in both ecosystems. Long range flights (>50 km in 2 hours) occurred almost exclusively at night; at night the distance flown was higher than during the day, birds visited more locations, and the locations were more widely dispersed. Our work reveals that heavy rainfall triggers increased nocturnal flight activity in desert populations of waterbirds.
Collapse
Affiliation(s)
- J F McEvoy
- Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA, 22630, USA.
- Centre for Integrative Ecology, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia.
| | - R F H Ribot
- Centre for Integrative Ecology, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - J C Wingfield
- Department of Neurobiology, Physiology and Behaviour, University of California One Shields Avenue, Davis, California, 95616, USA
| | - A T D Bennett
- Centre for Integrative Ecology, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
24
|
Influenza A H5N1 and H7N9 in China: A spatial risk analysis. PLoS One 2017; 12:e0174980. [PMID: 28376125 PMCID: PMC5380336 DOI: 10.1371/journal.pone.0174980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/19/2017] [Indexed: 11/19/2022] Open
Abstract
Background Zoonotic avian influenza poses a major risk to China, and other parts of the world. H5N1 has remained endemic in China and globally for nearly two decades, and in 2013, a novel zoonotic influenza A subtype H7N9 emerged in China. This study aimed to improve upon our current understanding of the spreading mechanisms of H7N9 and H5N1 by generating spatial risk profiles for each of the two virus subtypes across mainland China. Methods and findings In this study, we (i) developed a refined data set of H5N1 and H7N9 locations with consideration of animal/animal environment case data, as well as spatial accuracy and precision; (ii) used this data set along with environmental variables to build species distribution models (SDMs) for each virus subtype in high resolution spatial units of 1km2 cells using Maxent; (iii) developed a risk modelling framework which integrated the results from the SDMs with human and chicken population variables, which was done to quantify the risk of zoonotic transmission; and (iv) identified areas at high risk of H5N1 and H7N9 transmission. We produced high performing SDMs (6 of 8 models with AUC > 0.9) for both H5N1 and H7N9. In all our SDMs, H7N9 consistently showed higher AUC results compared to H5N1, suggesting H7N9 suitability could be better explained by environmental variables. For both subtypes, high risk areas were primarily located in south-eastern China, with H5N1 distributions found to be more diffuse and extending more inland compared to H7N9. Conclusions We provide projections of our risk models to public health policy makers so that specific high risk areas can be targeted for control measures. We recommend comparing H5N1 and H7N9 prevalence rates and survivability in the natural environment to better understand the role of animal and environmental transmission in human infections.
Collapse
|
25
|
Dalziel AE, Delean S, Heinrich S, Cassey P. Persistence of Low Pathogenic Influenza A Virus in Water: A Systematic Review and Quantitative Meta-Analysis. PLoS One 2016; 11:e0161929. [PMID: 27736884 PMCID: PMC5063340 DOI: 10.1371/journal.pone.0161929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/15/2016] [Indexed: 11/21/2022] Open
Abstract
Avian influenza viruses are able to persist in the environment, in-between the transmission of the virus among its natural hosts. Quantifying the environmental factors that affect the persistence of avian influenza virus is important for influencing our ability to predict future outbreaks and target surveillance and control methods. We conducted a systematic review and quantitative meta-analysis of the environmental factors that affect the decay of low pathogenic avian influenza virus (LPAIV) in water. Abiotic factors affecting the persistence of LPAIV have been investigated for nearly 40 years, yet published data was produced by only 26 quantitative studies. These studies have been conducted by a small number of principal authors (n = 17) and have investigated a narrow range of environmental conditions, all of which were based in laboratories with limited reflection of natural conditions. The use of quantitative meta-analytic techniques provided the opportunity to assess persistence across a greater range of conditions than each individual study can achieve, through the estimation of mean effect-sizes and relationships among multiple variables. Temperature was the most influential variable, for both the strength and magnitude of the effect-size. Moderator variables explained a large proportion of the heterogeneity among effect-sizes. Salinity and pH were important factors, although future work is required to broaden the range of abiotic factors examined, as well as including further diurnal variation and greater environmental realism generally. We were unable to extract a quantitative effect-size estimate for approximately half (50.4%) of the reported experimental outcomes and we strongly recommend a minimum set of quantitative reporting to be included in all studies, which will allow robust assimilation and analysis of future findings. In addition we suggest possible means of increasing the applicability of future studies to the natural environment, and evaluating the biological content of natural waterbodies.
Collapse
Affiliation(s)
- Antonia E. Dalziel
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia
| | - Steven Delean
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia
| | - Sarah Heinrich
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia
| | - Phillip Cassey
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia
- Centre for Conservation Science & Technology, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|