1
|
Gilbert J, Paris L, Dubuffet A, Texier C, Delbac F, Diogon M. Nosema ceranae infection reduces the fat body lipid reserves in the honeybee Apis mellifera. J Invertebr Pathol 2024; 207:108218. [PMID: 39393624 DOI: 10.1016/j.jip.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Nosema ceranae is an intestinal parasite frequently found in Apis mellifera colonies. This parasite belongs to Microsporidia, a group of obligate intracellular parasites known to be strongly dependent on their host for energy and resources. Previous studies have shown that N. ceranae could alter several metabolic pathways, including those involved in the nutrient storage. To explore the impact of N. ceranae on the fat body reserves, newly emerged summer bees were experimentally infected, and we measured (1) the lipid percentage of the abdominal fat body at 2-, 7- and 14-days post-inoculation (p.i.) using diethyl ether lipid extraction, (2) the triglyceride and protein concentrations by spectrophotometric assay methods, and (3) the amount of intracellular lipid droplets in trophocytes at 14- and 21-days p.i. using Nile Red staining. Comparing the three methods used to evaluate lipid stores, our data revealed that Nile Red staining seemed to be the simplest, fastest and reliable method. Our results first revealed that the percentage of fat body lipids significantly decreased in infected bees at D14 p.i. The protein stores did not seem to be affected by the infection, while triglyceride concentration was reduced by 30% and lipid droplet amount by 50% at D14 p.i. Finally, a similar decrease in lipid droplet reserves in response to N. ceranae infection was observed in bees collected in fall.
Collapse
Affiliation(s)
- Juliette Gilbert
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Laurianne Paris
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Aurore Dubuffet
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Catherine Texier
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
2
|
Guo S, Zang H, Liu X, Jing X, Liu Z, Zhang W, Wang M, Zheng Y, Li Z, Qiu J, Chen D, Yan T, Guo R. Full-Length Transcriptome Construction and Systematic Characterization of Virulence Factor-Associated Isoforms in Vairimorpha ( Nosema) Ceranae. Genes (Basel) 2024; 15:1111. [PMID: 39336702 PMCID: PMC11431495 DOI: 10.3390/genes15091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Vairimorpha (Nosema) ceranae is a single-cellular fungus that obligately infects the midgut epithelial cells of adult honeybees, causing bee microsporidiosis and jeopardizing bee health and production. This work aims to construct the full-length transcriptome of V. ceranae and conduct a relevant investigation using PacBio single-molecule real-time (SMRT) sequencing technology. Following PacBio SMRT sequencing, 41,950 circular consensus (CCS) were generated, and 25,068 full-length non-chimeric (FLNC) reads were then detected. After polishing, 4387 high-quality, full-length transcripts were gained. There are 778, 2083, 1202, 1559, 1457, 1232, 1702, and 3896 full-length transcripts that could be annotated to COG, GO, KEGG, KOG, Pfam, Swiss-Prot, eggNOG, and Nr databases, respectively. Additionally, 11 alternative splicing (AS) events occurred in 6 genes were identified, including 1 alternative 5' splice-site and 10 intron retention. The structures of 225 annotated genes in the V. ceranae reference genome were optimized, of which 29 genes were extended at both 5' UTR and 3' UTR, while 90 and 106 genes were, respectively, extended at the 5' UTR as well as 3' UTR. Furthermore, a total of 29 high-confidence lncRNAs were obtained, including 12 sense-lncRNAs, 10 lincRNAs, and 7 antisense-lncRNAs. Taken together, the high-quality, full-length transcriptome of V. ceranae was constructed and annotated, the structures of annotated genes in the V. ceranae reference genome were improved, and abundant new genes, transcripts, and lncRNAs were discovered. Findings from this current work offer a valuable resource and a crucial foundation for molecular and omics research on V. ceranae.
Collapse
Affiliation(s)
- Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Wende Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Mengyi Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Yidi Zheng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Zhengyuan Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Tizhen Yan
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Institute of Reproduction and Genetics, Dongguan Maternal and Children Health Hospital, Dongguan 510110, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
3
|
Zufriategui C, Porrini MP, Eguaras MJ, Garrido PM. Detrimental effects of amitraz exposure in honey bees (Apis mellifera) infected with Nosema ceranae. Parasitol Res 2024; 123:204. [PMID: 38709330 DOI: 10.1007/s00436-024-08225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In recent years, there has been growing concern on the potential weakening of honey bees and their increased susceptibility to pathogens due to chronic exposure to xenobiotics. The present work aimed to study the effects on bees undergoing an infection by Nosema ceranae and being exposed to a frequently used in-hive acaricide, amitraz. To achieve this, newly emerged bees were individually infected with N. ceranae spores and/or received a sublethal concentration of amitraz in their diets under laboratory conditions. Mortality, food intake, total volume excrement, body appearance, and parasite development were registered. Bees exposed to both stressors jointly had higher mortality rates compared to bees exposed separately, with no difference in the parasite development. An increase in sugar syrup consumption was observed for all treated bees while infected bees fed with amitraz also showed a diminishment in pollen intake. These results coupled with an increase in the total number of excretion events, alterations in behavior and body surface on individuals that received amitraz could evidence the detrimental action of this molecule. To corroborate these findings under semi-field conditions, worker bees were artificially infected, marked, and released into colonies. Then, they were exposed to a commercial amitraz-based product by contact. The recovered bees showed no differences in the parasite development due to amitraz exposure. This study provides evidence to which extent a honey bee infected with N. ceranae could potentially be weakened by chronic exposure to amitraz treatment.
Collapse
Affiliation(s)
- Camila Zufriategui
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM)-CONICET-UNMdP; Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Martín Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM)-CONICET-UNMdP; Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Martín Javier Eguaras
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM)-CONICET-UNMdP; Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM)-CONICET-UNMdP; Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina.
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
4
|
Sukkar D, Laval-Gilly P, Kanso A, Azoury S, Bonnefoy A, Falla-Angel J. A potential trade-off between offense and defense in honeybee innate immunity: Reduced phagocytosis in honeybee hemocytes correlates with a protective response after exposure to imidacloprid and amitraz. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105772. [PMID: 38458665 DOI: 10.1016/j.pestbp.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
Phagocytosis "offense" is a crucial process to protect the organism from diseases and the effects of foreign particles. Insects rely on the innate immune system and thus any hindrance to phagocytosis may greatly affect their resistance to diseases and response to pathogens. The European honeybee, a valuable species due to its economic and environmental contribution, is being challenged by colony collapse disorder leading to its decline. Exposure to multiple factors including pesticides like imidacloprid and amitraz may negatively alter their immune response and ultimately make them more susceptible to diseases. In this study, we compare the effect of different concentrations and mixtures of imidacloprid and amitraz with different concentrations of the immune stimulant, zymosan A. Results show that imidacloprid and amitraz have a synergistic negative effect on phagocytosis. The lowered phagocytosis induces significantly higher hemocyte viability suggesting a negatively correlated protective mechanism "defense" from pesticide-associated damage but may not be protective from pathogens.
Collapse
Affiliation(s)
- Dani Sukkar
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France; Lebanese University, Biology Department, Faculty of Sciences I, Hadath, Lebanon.
| | | | - Ali Kanso
- Lebanese University, Biology Department, Faculty of Sciences I, Hadath, Lebanon
| | - Sabine Azoury
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Lebanese University, Biology Department, Faculty of Sciences I, Hadath, Lebanon
| | - Antoine Bonnefoy
- Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France
| | | |
Collapse
|
5
|
Garrido PM, Porrini MP, Alberoni D, Baffoni L, Scott D, Mifsud D, Eguaras MJ, Di Gioia D. Beneficial Bacteria and Plant Extracts Promote Honey Bee Health and Reduce Nosema ceranae Infection. Probiotics Antimicrob Proteins 2024; 16:259-274. [PMID: 36637793 PMCID: PMC10850026 DOI: 10.1007/s12602-022-10025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 01/14/2023]
Abstract
The research aims to give new insights on the effect of administering selected bacterial strains, isolated from honey bee gut, and/or a commercial plant extract blend (HiveAlive®) on Nosema ceranae. Analyses were first performed under laboratory conditions such as different infective doses of N. ceranae, the effect of single strains and their mixture and the influence of pollen administration. Daily survival and feed consumption rate were recorded and pathogen development was analysed using qPCR and microscope counts. Biomarkers of immunity and physiological status were also evaluated for the different treatments tested using one bacterial strain, a mixture of all the bacteria and/or a plant extract blend as treatments. The results showed an increase of abaecin transcript levels in the midgut of the honey bees treated with the bacterial mixture and an increased expression of the protein vitellogenin in the haemolymph of honey bees treated with two separate bacterial strains (Bifidobacterium coryneforme and Apilactobacillus kunkeei). A significant effectiveness in reducing N. ceranae was shown by the bacterial mixture and the plant extract blend regardless of the composition of the diet. This bioactivity was seasonally linked. Quantitative PCR and microscope counts showed the reduction of N. ceranae under different experimental conditions. The antiparasitic efficacy of the treatments at field conditions was studied using a semi-field approach which was adapted from research on insecticides for the first time, to analyse antiparasitic activity against N. ceranae. The approach proved to be reliable and effective in validating data obtained in the laboratory. Both the mixture of beneficial bacteria and its association with Hive Alive® are effective in controlling the natural infection of N. ceranae in honey bee colonies.
Collapse
Affiliation(s)
- Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET, UNMdP, Centro Asoc. Simple CIC PBA, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Martín Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET, UNMdP, Centro Asoc. Simple CIC PBA, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Daniele Alberoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, 40127, Italy.
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, 40127, Italy
| | - Dara Scott
- ADVANCE SCIENCE Ltd, Knocknacarra Rd, Galway, H91 XV84, Ireland
| | - David Mifsud
- Institute of Earth Systems, L-Università ta' Malta, University Ring Rd, Msida, MSD2080, Malta
| | - Matín Javier Eguaras
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET, UNMdP, Centro Asoc. Simple CIC PBA, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, 40127, Italy
| |
Collapse
|
6
|
Sbaghdi T, Garneau JR, Yersin S, Chaucheyras-Durand F, Bocquet M, Moné A, El Alaoui H, Bulet P, Blot N, Delbac F. The Response of the Honey Bee Gut Microbiota to Nosema ceranae Is Modulated by the Probiotic Pediococcus acidilactici and the Neonicotinoid Thiamethoxam. Microorganisms 2024; 12:192. [PMID: 38258019 PMCID: PMC10819737 DOI: 10.3390/microorganisms12010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The honey bee Apis mellifera is exposed to a variety of biotic and abiotic stressors, such as the highly prevalent microsporidian parasite Nosema (Vairimorpha) ceranae and neonicotinoid insecticides. Both can affect honey bee physiology and microbial gut communities, eventually reducing its lifespan. They can also have a combined effect on the insect's survival. The use of bacterial probiotics has been proposed to improve honey bee health, but their beneficial effect remains an open question. In the present study, western honey bees were experimentally infected with N. ceranae spores, chronically exposed to the neonicotinoid thiamethoxam, and/or supplied daily with the homofermentative bacterium Pediococcus acidilactici MA18/5M thought to improve the honey bees' tolerance to the parasite. Deep shotgun metagenomic sequencing allowed the response of the gut microbiota to be investigated with a taxonomic resolution at the species level. All treatments induced significant changes in honey bee gut bacterial communities. Nosema ceranae infection increased the abundance of Proteus mirabilis, Frischella perrara, and Gilliamella apicola and reduced the abundance of Bifidobacterium asteroides, Fructobacillus fructosus, and Lactobacillus spp. Supplementation with P. acidilactici overturned some of these alterations, bringing back the abundance of some altered species close to the relative abundance found in the controls. Surprisingly, the exposure to thiamethoxam also restored the relative abundance of some species modulated by N. ceranae. This study shows that stressors and probiotics may have an antagonistic impact on honey bee gut bacterial communities and that P. acidilactici may have a protective effect against the dysbiosis induced by an infection with N. ceranae.
Collapse
Affiliation(s)
- Thania Sbaghdi
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Julian R. Garneau
- Department of Fundamental Microbiology, University of Lausanne, Campus UNIL-Sorge, 1015 Lausanne, Switzerland; (J.R.G.); (S.Y.)
| | - Simon Yersin
- Department of Fundamental Microbiology, University of Lausanne, Campus UNIL-Sorge, 1015 Lausanne, Switzerland; (J.R.G.); (S.Y.)
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France;
- Microbiologie Environnement Digestif et Santé, INRAE, Université Clermont Auvergne, F-63122 Saint-Genès Champanelle, France
| | | | - Anne Moné
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Hicham El Alaoui
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Philippe Bulet
- Institute for Advanced Biosciences, CR Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, F-38000 Grenoble, France;
- Platform BioPark Archamps, ArchParc, F-74160 Archamps, France
| | - Nicolas Blot
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Frédéric Delbac
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| |
Collapse
|
7
|
Wu T, Gao J, Choi YS, Kim DW, Han B, Yang S, Lu Y, Kang Y, Du H, Diao Q, Dai P. Interaction of chlorothalonil and Varroa destructor on immature honey bees rearing in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166302. [PMID: 37595923 DOI: 10.1016/j.scitotenv.2023.166302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Under realistic environmental conditions, bees are often exposed to multiple stressors, especially Varroa destructor and pesticides. In this study, the effects of exposure to NOAEC of chlorothalonil during the larval stage, in the presence or absence of V. destructor, was examined in terms of survival, morphological and transcriptional changes. The interaction between chlorothalonil and V. destructor on the survival of honey bee was additive. V. destructor are the dominant factor in the interaction for survival and transcriptome alternation. The downregulation of the genes related to tissue growth and caste differentiation may directly link to the mortality of honey bees. Either chlorothalonil or V. destructor induces the irregular morphology of trophocytes and oenocytes in the fat body. In addition to irregular shapes, oenocytes in V. destructor alone and double-stressor treatment group showed altered nuclei and vacuoles in the cytoplasm. The interaction of V. destructor and chlorothalonil at the larval stage have potential adverse effects on the subsequent adult bees, with up-regulation of genes involved in lipid metabolism and detoxification/defense in fat body tissue. Our findings provide a comprehensive understanding of combinatorial effects between biotic and abiotic stressors on one of the most important pollinators, honey bees.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yong Soo Choi
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Dong Won Kim
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Lu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Yuxin Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hanchao Du
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyun Diao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Al Naggar Y, Estrella-Maldonado H, Paxton RJ, Solís T, Quezada-Euán JJG. The Insecticide Imidacloprid Decreases Nannotrigona Stingless Bee Survival and Food Consumption and Modulates the Expression of Detoxification and Immune-Related Genes. INSECTS 2022; 13:972. [PMID: 36354796 PMCID: PMC9699362 DOI: 10.3390/insects13110972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 05/04/2023]
Abstract
Stingless bees are ecologically and economically important species in the tropics and subtropics, but there has been little research on the characterization of detoxification systems and immune responses within them. This is critical for understanding their responses to, and defenses against, a variety of environmental stresses, including agrochemicals. Therefore, we studied the detoxification and immune responses of a stingless bee, Nanotrigona perilampoides, which is an important stingless bee that is widely distributed throughout Mexico, including urban areas, and has the potential to be used in commercial pollination. We first determined the LC50 of the neonicotinoid insecticide imidacloprid for foragers of N. perilampoides, then chronically exposed bees for 10 days to imidacloprid at two field-realistic concentrations, LC10 (0.45 ng/µL) or LC20 (0.74 ng/µL), which are respectively 2.7 and 1.3-fold lower than the residues of imidacloprid that have been found in honey (6 ng/g) in central Mexico. We found that exposing N. perilampoides stingless bees to imidacloprid at these concentrations markedly reduced bee survival and food consumption, revealing the great sensitivity of this stingless bee to the insecticide in comparison to honey bees. The expression of detoxification (GSTD1) and immune-related genes (abaecin, defensin1, and hymenopteacin) in N. perilampoides also changed over time in response to imidacloprid. Gene expression was always lower in bees after 8 days of exposure to imidacloprid (LC10 or LC20) than it was after 4 days. Our results demonstrate that N. perilampoides stingless bees are extremely sensitive to imidacloprid, even at low concentrations, and provide greater insight into how stingless bees respond to pesticide toxicity. This is the first study of its kind to look at detoxification systems and immune responses in Mexican stingless bees, an ecologically and economically important taxon.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Humberto Estrella-Maldonado
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida CP 97100, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Tlapacoyan CP 93600, Mexico
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Teresita Solís
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida CP 97100, Mexico
| | - J. Javier G. Quezada-Euán
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida CP 97100, Mexico
| |
Collapse
|
9
|
Trytek M, Buczek K, Zdybicka-Barabas A, Wojda I, Borsuk G, Cytryńska M, Lipke A, Gryko D. Effect of amide protoporphyrin derivatives on immune response in Apis mellifera. Sci Rep 2022; 12:14406. [PMID: 36002552 PMCID: PMC9402574 DOI: 10.1038/s41598-022-18534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/16/2022] [Indexed: 12/29/2022] Open
Abstract
The intracellular microsporidian parasite Nosema ceranae is known to compromise bee health by induction of energetic stress and downregulation of the immune system. Porphyrins are candidate therapeutic agents for controlling Nosema infection without adverse effects on honeybees. In the present work, the impact of two protoporphyrin IX derivatives, i.e. PP[Asp]2 and PP[Lys]2, on Apis mellifera humoral immune response has been investigated in laboratory conditions in non-infected and N. ceranae-infected honeybees. Fluorescence spectroscopy analysis of hemolymph showed for the first time that porphyrin molecules penetrate into the hemocoel of honeybees. Phenoloxidase (PO) activity and the expression of genes encoding antimicrobial peptides (AMPs: abaecin, defensin, and hymenoptaecin) were assessed. Porphyrins significantly increased the phenoloxidase activity in healthy honeybees but did not increase the expression of AMP genes. Compared with the control bees, the hemolymph of non-infected bees treated with porphyrins had an 11.3- and 6.1-fold higher level of PO activity after the 24- and 48-h porphyrin administration, respectively. Notably, there was a significant inverse correlation between the PO activity and the AMP gene expression level (r = - 0.61696, p = 0.0143). The PO activity profile in the infected bees was completely opposite to that in the healthy bees (r = - 0.5118, p = 0.000), which was related to the changing load of N. ceranae spores in the porphyrin treated-bees. On day 12 post-infection, the spore loads in the infected porphyrin-fed individuals significantly decreased by 74%, compared with the control bees. Our findings show involvement of the honeybee immune system in the porphyrin-based control of Nosema infection. This allows the infected bees to improve their lifespan considerably by choosing an optimal PO activity/AMP expression variant to cope with the varying level of N. ceranae infection.
Collapse
Affiliation(s)
- Mariusz Trytek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Buczek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Grzegorz Borsuk
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Lipke
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie Skłodowska Sq. 2, 20-031, Lublin, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
10
|
Snow JW. Nosema apis and N. ceranae Infection in Honey bees: A Model for Host-Pathogen Interactions in Insects. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:153-177. [PMID: 35544003 DOI: 10.1007/978-3-030-93306-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been increased focus on the role of microbial attack as a potential cause of recent declines in the health of the western honey bee, Apis mellifera. The Nosema species, N. apis and N. ceranae, are microsporidian parasites that are pathogenic to honey bees, and infection by these species has been implicated as a key factor in honey bee losses. Honey bees infected with both Nosema spp. display significant changes in their biology at the cellular, tissue, and organismal levels impacting host metabolism, immune function, physiology, and behavior. Infected individuals lead to colony dysfunction and can contribute to colony disease in some circumstances. The means through which parasite growth and tissue pathology in the midgut lead to the dramatic physiological and behavioral changes at the organismal level are only partially understood. In addition, we possess only a limited appreciation of the elements of the host environment that impact pathogen growth and development. Critical for answering these questions is a mechanistic understanding of the host and pathogen machinery responsible for host-pathogen interactions. A number of approaches are already being used to elucidate these mechanisms, and promising new tools may allow for gain- and loss-of-function experiments to accelerate future progress.
Collapse
|
11
|
Reproductive Potential Impacts Body Maintenance Parameters and Global DNA Methylation in Honeybee Workers ( Apis mellifera L.). INSECTS 2021; 12:insects12111021. [PMID: 34821822 PMCID: PMC8617817 DOI: 10.3390/insects12111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The queens and sterile workers arise from genetically identical eggs but as imagoes, they differ in their life span, DNA methylation, and their functions. In the absence of the queen, the larvae develop into rebels, i.e., workers with increased reproductive potential. We assumed that since rebels are similar to the queen in many anatomical and behavioral features, they live longer and have lower levels of global DNA methylation, even when infected, e.g., by Nosema spp. Rebels always lived longer in comparison in normal workers and unexpectedly extended longevity of normal workers when they were together, similarly as the presence of a queen did. Rebels became infected more easily but tolerated the infection better. They also had lower level of global DNA methylation than normal workers. These features expand possibilities of the use of honeybees as a model for studies on senescence, nosemosis, eusocial evolution, and epigenetics. Abstract The widely accepted hypothesis in life history evolution about the trade-off between fecundity and longevity is not confirmed by long-living and highly fecund queens in eusocial insects. The fact that the queens and facultatively sterile workers usually arise from genetically identical eggs but differ in DNA methylation makes them a good model for studies on senescence, eusocial evolution, and epigenetics. Therefore, honeybees seem to be especially useful here because of long living rebel-workers (RW) with high reproductive potential recently described. Longevity, ovariole number, nosema tolerance, and global DNA methylation have been assayed in normal workers (NW) versus RW in hives and cages. RW always lived longer than NW and unexpectedly extended longevity of NW when they were together, similarly as the presence of a queen did. RW lived longer despite the fact that they had higher Nosema spore load; surprisingly they became infected more easily but tolerated the infection better. Global DNA methylation increased with age, being lower in RW than in NW. Therefore, RW are queen-like considering global DNA methylation and the link between fecundity, longevity, and body maintenance. Presented features of RW expands possibilities of the use of honeybees as a model for studies on senescence, nosemosis, eusocial evolution, and epigenetics.
Collapse
|
12
|
Morfin N, Anguiano-Baez R, Guzman-Novoa E. Honey Bee (Apis mellifera) Immunity. Vet Clin North Am Food Anim Pract 2021; 37:521-533. [PMID: 34689918 DOI: 10.1016/j.cvfa.2021.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
At the individual level, honey bees (Apis mellifera) rely on innate immunity, which operates through cellular and humoral mechanisms, to defend themselves against infectious agents and parasites. At the colony level, honey bees have developed collective defense mechanisms against pathogens and pests, such as hygienic and grooming behaviors. An understanding of the immune responses of honey bees is critical to implement strategies to reduce mortality and increase colony productivity. The major components and mechanisms of individual and social immunity of honey bees are discussed in this review.
Collapse
Affiliation(s)
- Nuria Morfin
- Research Associate, University of Guelph, School of Environmental Sciences, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada.
| | - Ricardo Anguiano-Baez
- Adjunct Professor, National Autonomous University of Mexico, Av. Universidad #3000, CU, Coyoacán, 04510, Mexico City, Mexico. https://twitter.com/richybat
| | - Ernesto Guzman-Novoa
- Professor and Head of the Honey Bee Research Centre, University of Guelph, School of Environmental Sciences, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Xing W, Zhou D, Long Q, Sun M, Guo R, Wang L. Immune Response of Eastern Honeybee Worker to Nosema ceranae Infection Revealed by Transcriptomic Investigation. INSECTS 2021; 12:insects12080728. [PMID: 34442293 PMCID: PMC8396959 DOI: 10.3390/insects12080728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Currently, knowledge regarding Apis cerana–Nosema ceranae interaction is very limited, though A. cerana is the original host of N. ceranae. Apis cerana cerana is a subspecies of A. cerana and a major bee species used in the beekeeping industry in China and other countries. Here, the effective infection of A. c. cerana workers by N. ceranae was verified, followed by transcriptomic investigation of host responses. Furthermore, immune responses between A. c. cerana and Apis mellifera ligustica were deeply compared and discussed. In total, 1127 and 957 N. ceranae-responsive genes were identified in the infected midguts at 7 d post-inoculation (dpi) and 10 dpi, respectively. Additionally, DEGs in workers’ midguts at both 7 dpi and 10 dpi were associated with six cellular immune pathways and three humoral immune pathways. Noticeably, one up-regulated gene was enriched in the NF-κB signaling pathway in the midgut at 10 dpi. Further analysis indicated that different cellular and humoral immune responses were employed by A. c. cerana and A. m. ligustica workers to combat N. ceranae. Our findings provide a foundation for clarifying the mechanisms regulating the immune response of A. c. cerana workers to N. ceranae invasion and developing new approaches to control bee microsporidiosis. Abstract Here, a comparative transcriptome investigation was conducted based on high-quality deep sequencing data from the midguts of Apis cerana cerana workers at 7 d post-inoculation (dpi) and 10 dpi with Nosema ceranae and corresponding un-inoculated midguts. PCR identification and microscopic observation of paraffin sections confirmed the effective infection of A. c. cerana worker by N. ceranae. In total, 1127 and 957 N. ceranae-responsive genes were identified in the infected midguts at 7 dpi and 10 dpi, respectively. RT-qPCR results validated the reliability of our transcriptome data. GO categorization indicated the differentially expressed genes (DEGs) were respectively engaged in 34 and 33 functional terms associated with biological processes, cellular components, and molecular functions. Additionally, KEGG pathway enrichment analysis showed that DEGs at 7 dpi and 10 dpi could be enriched in 231 and 226 pathways, respectively. Moreover, DEGs in workers’ midguts at both 7 dpi and 10 dpi were involved in six cellular immune pathways such as autophagy and phagosome and three humoral immune pathways such as the Toll/Imd signaling pathway and Jak-STAT signaling pathway. In addition, one up-regulated gene (XM_017055397.1) was enriched in the NF-κB signaling pathway in the workers’ midgut at 10 dpi. Further investigation suggested the majority of these DEGs were engaged in only one immune pathway, while a small number of DEGs were simultaneously involved in two immune pathways. These results together demonstrated that the overall gene expression profile in host midgut was altered by N. ceranae infection and some of the host immune pathways were induced to activation during fungal infection, whereas some others were suppressed via host–pathogen interaction. Our findings offer a basis for clarification of the mechanism underlying the immune response of A. c. cerana workers to N. ceranae infection, but also provide novel insights into eastern honeybee-microsporodian interaction.
Collapse
Affiliation(s)
- Wenhao Xing
- College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Minghui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel./Fax: +86-0591-8764-0197
| | - Limei Wang
- Dongying Vocational Institute, Dongying 257000, China;
| |
Collapse
|
14
|
Lourenço AP, Guidugli-Lazzarini KR, de Freitas NHA, Message D, Bitondi MMG, Simões ZLP, Teixeira ÉW. Immunity and physiological changes in adult honey bees (Apis mellifera) infected with Nosema ceranae: The natural colony environment. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104237. [PMID: 33831437 DOI: 10.1016/j.jinsphys.2021.104237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Nosema ceranae is a microsporidium that infects Apis mellifera, causing diverse physiological and behavioral alterations. Given the existence of individual and social mechanisms to reduce infection and fungal spread in the colony, bees may respond differently to infection depending on their rearing conditions. In this study, we investigated the effect of N. ceranae in honey bee foragers naturally infected with different fungal loads in a tropical region. In addition, we explored the effects of N. ceranae artificially infected young bees placed in a healthy colony under field conditions. Honey bees naturally infected with higher loads of N. ceranae showed downregulation of genes from Toll and IMD immune pathways and antimicrobial peptide (AMP) genes, but hemolymph total protein amount and Vitellogenin (Vg) titers were not affected. Artificially infected bees spread N. ceranae to the controls in the colony, but fungal loads were generally lower than those observed in cages, probably because of social immunity. Although no significant changes in mRNA levels of AMP-encoding were observed, N. ceranae artificially infected bees showed downregulation of miR-989 (an immune-related microRNA), lower vitellogenin gene expression, and decreased hemolymph Vg titers. Our results demonstrate for the first time that natural infection by N. ceranae suppresses the immune system of honey bee foragers in the field. This parasite is detrimental to the immune system of young and old bees, and disease spread, mitigation and containment will depend on the colony environment.
Collapse
Affiliation(s)
- Anete P Lourenço
- Departamento de Ciências Biológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
| | - Karina R Guidugli-Lazzarini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nayara H A de Freitas
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Dejair Message
- Laboratório Especializado de Sanidade Apícola (LASA), Instituto Biológico, APTA, SAA-SP, Pindamonhangaba, SP, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Érica W Teixeira
- Laboratório Especializado de Sanidade Apícola (LASA), Instituto Biológico, APTA, SAA-SP, Pindamonhangaba, SP, Brazil
| |
Collapse
|
15
|
Bird G, Wilson AE, Williams GR, Hardy NB. Parasites and pesticides act antagonistically on honey bee health. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gwendolyn Bird
- Department of Entomology and Plant Pathology Auburn University Auburn AL USA
| | - Alan E. Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences Auburn University Auburn AL USA
| | | | - Nate B. Hardy
- Department of Entomology and Plant Pathology Auburn University Auburn AL USA
| |
Collapse
|
16
|
Ortiz-Lemus JF, Campoy S, Cañedo LM, Liras P, Martín JF. Purification and Chemical Characterization of a Potent Acaricide and a Closely Related Inactive Metabolite Produced by Eurotium rubrum C47. Antibiotics (Basel) 2020; 9:antibiotics9120881. [PMID: 33316875 PMCID: PMC7763031 DOI: 10.3390/antibiotics9120881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 11/24/2022] Open
Abstract
Mites are arthropods and some of them infest dry meat cured products and produce allergic reactions. Some mites, such as Tyrolichus casei, Tyrophagus putrescentiae, or Tyrophagus longior feed on filamentous fungi that grow during the meat curing process. Removal of mite infestation of meat products is extremely difficult and there are no adequate miticidal compounds. The filamentous fungus Eurotium rubrum growing on the surface of ham is able to exert a biocontrol of the population of mites due to the production of miticidal compound(s). We have purified two compounds by silica gel chromatography, gel filtration, semipreparative and analytical HPLC and determined their miticidal activity against T. casei using a mite feeding assay. Mass spectrometry and NMR analysis showed that these two compounds are prenylated salicilyl aldehydes with a C-7 alkyl chain differing in a double bond in the C-7 alkyl chain. Structures correspond to those of flavoglaucin and aspergin. Pure flavoglaucin has a miticidal activity resulting in more than 90% mite mortality whereas aspergin does not affect the mites. Both compounds were formed simultaneously by E. rubrum C47 cultures in different media suggesting that they are synthesized by the same pathway. Production of both compounds was higher in solid culture media and the products were associated with abundant formation of cleistothecia. In liquid cultures both compounds remained mainly cell-associated and only about 10% of the total compounds was released to the culture broth. This miticidal compound may be used to combat efficiently mite infestation in different habitats. These results, will promote further advances on the utilization of flavoglaucin in food preservation and in human health since this compound has antitumor activity.
Collapse
Affiliation(s)
- José F. Ortiz-Lemus
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain; (J.F.O.-L.); (S.C.); (P.L.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
- Departamento de Microbiología, Universidad de Pamplona, Pamplona 543050, Colombia
| | - Sonia Campoy
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain; (J.F.O.-L.); (S.C.); (P.L.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Librada M. Cañedo
- Research and Development Department, PharmaMar S.A., 28770 Madrid, Spain;
| | - Paloma Liras
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain; (J.F.O.-L.); (S.C.); (P.L.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Juan F. Martín
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain; (J.F.O.-L.); (S.C.); (P.L.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
- Correspondence:
| |
Collapse
|
17
|
Effects of Synthetic Acaricides and Nosema ceranae (Microsporidia: Nosematidae) on Molecules Associated with Chemical Communication and Recognition in Honey Bees. Vet Sci 2020; 7:vetsci7040199. [PMID: 33302502 PMCID: PMC7768465 DOI: 10.3390/vetsci7040199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/02/2022] Open
Abstract
Acaricides and the gut parasite Nosema ceranae are commonly present in most productive hives. Those stressors could be affecting key semiochemicals, which act as homeostasis regulators in Apis mellifera colonies, such as cuticular hydrocarbons (CHC) involved in social recognition and ethyl oleate (EO) which plays a role as primer pheromone in honey bees. Here we test the effect of amitraz, coumaphos, tau-fluvalinate and flumethrin, commonly applied to treat varroosis, on honey bee survival time, rate of food consumption, CHC profiles and EO production on N. ceranae-infected and non-infected honey bees. Different sublethal concentrations of amitraz, coumaphos, tau-fluvalinate and flumethrin were administered chronically in a syrup-based diet. After treatment, purified hole-body extracts were analyzed by gas chromatography coupled to mass spectrometry. While N. ceranae infection was also shown to decrease EO production affecting survival rates, acaricides showed no significant effect on this pheromone. As for the CHC, we found no changes in relation to the health status or consumption of acaricides. This absence of alteration in EO or CHC as response to acaricides ingestion or in combination with N. ceranae, suggests that worker honey bees exposed to those highly ubiquitous drugs are hardly differentiated by nest-mates. Having determined a synergic effect on mortality in worker bees exposed to coumaphos and Nosema infection but also, alterations in EO production as a response to N. ceranae infection it is an interesting clue to deeper understand the effects of parasite-host-pesticide interaction on colony functioning.
Collapse
|
18
|
Rossini C, Rodrigo F, Davyt B, Umpiérrez ML, González A, Garrido PM, Cuniolo A, Porrini LP, Eguaras MJ, Porrini MP. Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. PLoS One 2020; 15:e0241666. [PMID: 33147299 PMCID: PMC7641371 DOI: 10.1371/journal.pone.0241666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
When developing new products to be used in honeybee colonies, further than acute toxicity, it is imperative to perform an assessment of risks, including various sublethal effects. The long-term sublethal effects of xenobiotics on honeybees, more specifically of acaricides used in honeybee hives, have been scarcely studied, particularly so in the case of essential oils and their components. In this work, chronic effects of the ingestion of Eupatorium buniifolium (Asteraceae) essential oil were studied on nurse honeybees using laboratory assays. Survival, food consumption, and the effect on the composition of cuticular hydrocarbons (CHC) were assessed. CHC were chosen due to their key role as pheromones involved in honeybee social recognition. While food consumption and survival were not affected by the consumption of the essential oil, CHC amounts and profiles showed dose-dependent changes. All groups of CHC (linear and branched alkanes, alkenes and alkadienes) were altered when honeybees were fed with the highest essential oil dose tested (6000 ppm). The compounds that significantly varied include n-docosane, n-tricosane, n-tetracosane, n-triacontane, n-tritriacontane, 9-tricosene, 7-pentacosene, 9-pentacosene, 9-heptacosene, tritriacontene, pentacosadiene, hentriacontadiene, tritriacontadiene and all methyl alkanes. All of them but pentacosadiene were up-regulated. On the other hand, CHC profiles were similar in healthy and Nosema-infected honeybees when diets included the essential oil at 300 and 3000 ppm. Our results show that the ingestion of an essential oil can impact CHC and that the effect is dose-dependent. Changes in CHC could affect the signaling process mediated by these pheromonal compounds. To our knowledge this is the first report of changes in honeybee cuticular hydrocarbons as a result of essential oil ingestion.
Collapse
Affiliation(s)
- Carmen Rossini
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- * E-mail:
| | - Federico Rodrigo
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
| | - Belén Davyt
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - María Laura Umpiérrez
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Andrés González
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Antonella Cuniolo
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Leonardo P. Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Martín Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Martín P. Porrini
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
19
|
Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Sci Rep 2020; 10:17021. [PMID: 33046792 PMCID: PMC7550335 DOI: 10.1038/s41598-020-74209-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
The microsporidian parasite Nosema ceranae and neonicotinoid insecticides affect the health of honey bees (Apis mellifera). However, there is limited information about the effect of these stressors on other pollinators such as stingless bees (Hymenoptera: Meliponini). We examined the separate and combined effects of N. ceranae and the neonicotinoid thiamethoxam at field-exposure levels on the survivorship and cellular immunity (hemocyte concentration) of the stingless bee Melipona colimana. Newly-emerged bees were subjected to four treatments provided in sucrose syrup: N. ceranae spores, thiamethoxam, thiamethoxam and N. ceranae, and control (bees receiving only syrup). N. ceranae developed infections of > 467,000 spores/bee in the group treated with spores only. However, in the bees subjected to both stressors, infections were < 143,000 spores/bee, likely due to an inhibitory effect of thiamethoxam on the microsporidium. N. ceranae infections did not affect bee survivorship, but thiamethoxam plus N. ceranae significantly increased mortality. Hemocyte counts were significantly lower in N. ceranae infected-bees than in the other treatments. These results suggest that N. ceranae may infect, proliferate and cause cellular immunosuppression in stingless bees, that exposure to sublethal thiamethoxam concentrations is toxic to M. colimana when infected with N. ceranae, and that thiamethoxam restrains N. ceranae proliferation. These findings have implications on pollinators' conservation.
Collapse
|
20
|
Transcriptomic analysis to elucidate the response of honeybees (Hymenoptera: Apidae) to amitraz treatment. PLoS One 2020; 15:e0228933. [PMID: 32143212 PMCID: PMC7060074 DOI: 10.1371/journal.pone.0228933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/01/2022] Open
Abstract
Amitraz is an acaricide that is widely used in apiculture. Several studies have reported that in honeybees (Apis mellifera Linnaeus; Hymenoptera: Apidae), amitraz affects learning, memory, behavior, immunity, and various other physiological processes. Despite this, few studies have explored the molecular mechanisms underlying the action of amitraz on honeybees. Here, we investigated the transcriptome of honeybees after exposure to 9.4 mg/L amitraz for 10 d, a subchronic dose. Overall, 279 differentially expressed genes (DEGs) were identified (237 upregulated, 42 downregulated). Several, including Pla2, LOC725381, LOC413324, LOC724386, LOC100577456, LOC551785, and P4504c3, were validated by quantitative PCR. According to gene ontology, DEGs were mainly involved in metabolism, biosynthesis, and translation. Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that amitraz treatment affected the relaxin signaling pathway, platelet activation, and protein digestion and absorption.
Collapse
|
21
|
Negri P, Villalobos E, Szawarski N, Damiani N, Gende L, Garrido M, Maggi M, Quintana S, Lamattina L, Eguaras M. Towards Precision Nutrition: A Novel Concept Linking Phytochemicals, Immune Response and Honey Bee Health. INSECTS 2019; 10:E401. [PMID: 31726686 PMCID: PMC6920938 DOI: 10.3390/insects10110401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
The high annual losses of managed honey bees (Apis mellifera) has attracted intensive attention, and scientists have dedicated much effort trying to identify the stresses affecting bees. There are, however, no simple answers; rather, research suggests multifactorial effects. Several works have been reported highlighting the relationship between bees' immunosuppression and the effects of malnutrition, parasites, pathogens, agrochemical and beekeeping pesticides exposure, forage dearth and cold stress. Here we analyze a possible connection between immunity-related signaling pathways that could be involved in the response to the stress resulted from Varroa-virus association and cold stress during winter. The analysis was made understanding the honey bee as a superorganism, where individuals are integrated and interacting within the colony, going from social to individual immune responses. We propose the term "Precision Nutrition" as a way to think and study bees' nutrition in the search for key molecules which would be able to strengthen colonies' responses to any or all of those stresses combined.
Collapse
Affiliation(s)
- Pedro Negri
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Ethel Villalobos
- Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA;
| | - Nicolás Szawarski
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Natalia Damiani
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Liesel Gende
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Silvina Quintana
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
- Instituto de Investigaciones Biológicas (IIB-CONICET), UNMdP, Dean Funes 3350, Mar del Plata CP 7600, Argentina
| | - Martin Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| |
Collapse
|
22
|
Rouzé R, Moné A, Delbac F, Belzunces L, Blot N. The Honeybee Gut Microbiota Is Altered after Chronic Exposure to Different Families of Insecticides and Infection by Nosema ceranae. Microbes Environ 2019; 34:226-233. [PMID: 31378758 PMCID: PMC6759349 DOI: 10.1264/jsme2.me18169] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The gut of the European honeybee Apis mellifera is the site of exposure to multiple stressors, such as pathogens and ingested chemicals. Therefore, the gut microbiota, which contributes to host homeostasis, may be altered by these stressors. The abundance of major bacterial taxa in the gut was evaluated in response to infection with the intestinal parasite Nosema ceranae or chronic exposure to low doses of the neurotoxic insecticides coumaphos, fipronil, thiamethoxam, and imidacloprid. Experiments were performed under laboratory conditions on adult workers collected from hives in February (winter bees) and July (summer bees) and revealed season-dependent changes in the bacterial community composition. N. ceranae and a lethal fipronil treatment increased the relative abundance of both Gilliamella apicola and Snodgrassella alvi in surviving winter honeybees. The parasite and a sublethal exposure to all insecticides decreased the abundance of Bifidobacterium spp. and Lactobacillus spp. regardless of the season. The similar effects induced by insecticides belonging to distinct molecular families suggested a shared and indirect mode of action on the gut microbiota, possibly through aspecific alterations in gut homeostasis. These results demonstrate that infection and chronic exposure to low concentrations of insecticides may affect the honeybee holobiont.
Collapse
Affiliation(s)
- Régis Rouzé
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | - Anne Moné
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | | | - Nicolas Blot
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| |
Collapse
|
23
|
Martín-Hernández R, Bartolomé C, Chejanovsky N, Le Conte Y, Dalmon A, Dussaubat C, García-Palencia P, Meana A, Pinto MA, Soroker V, Higes M. Nosema ceranaeinApis mellifera: a 12 years postdetectionperspective. Environ Microbiol 2018; 20:1302-1329. [DOI: 10.1111/1462-2920.14103] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha; Spain
| | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela. Xenómica Comparada de Parásitos Humanos, IDIS, 15782 Santiago de Compostela; Galicia Spain
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | - Anne Dalmon
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | | | | | - Aranzazu Meana
- Facultad de Veterinaria, Universidad Complutense de Madrid; Spain
| | - M. Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança; 5300-253 Bragança Portugal
| | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Mariano Higes
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
| |
Collapse
|
24
|
Fisher A, Colman C, Hoffmann C, Fritz B, Rangel J. The Effects of the Insect Growth Regulators Methoxyfenozide and Pyriproxyfen and the Acaricide Bifenazate on Honey Bee (Hymenoptera: Apidae) Forager Survival. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:510-516. [PMID: 29361013 DOI: 10.1093/jee/tox347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 05/14/2023]
Abstract
The honey bee (Apis mellifera L. (Hymenoptera: Apidae)) contributes an essential role in the U.S. economy by pollinating major agricultural crops including almond, which depends entirely on honey bee pollination for successful nut set. Almond orchards are often treated with pesticides to control a variety of pests and pathogens, particularly during bloom. While the effects to honey bee health of some insecticides, particularly neonicotinoids, have received attention recently, the impact of other types of insecticides on honey bee health is less clear. In this study, we examined the effects to honey bee forager survival of three non-neonicotinoid pesticides widely used during the 2014 California almond bloom. We collected foragers from a local apiary and exposed them to three pesticides at the label dose, or at doses ranging from 0.5 to 3 times the label dose rate. The selected pesticides included the insect growth regulators methoxyfenozide and pyriproxyfen, and the acaricide bifenazate. We simulated field exposure of honey bees to these pesticides during aerial application in almond orchards by using a wind tunnel and atomizer set up with a wind speed of 2.9 m/s. Experimental groups consisting of 30-40 foragers each were exposed to either untreated controls or pesticide-laden treatments and were monitored every 24 hr over a 10-d period. Our results revealed a significant negative effect of all pesticides tested on forager survival. Therefore, we suggest increased caution in the application of these pesticides in almond orchards or any agricultural crop during bloom to avoid colony health problems.
Collapse
Affiliation(s)
- Adrian Fisher
- Department of Entomology, Texas A&M University, TAMU, College Station, TX
| | - Chet Colman
- United States Department of Agriculture, Agricultural Research Service, Aerial Application Technology Research Unit, College Station, TX
| | - Clint Hoffmann
- United States Department of Agriculture, Agricultural Research Service, Aerial Application Technology Research Unit, College Station, TX
| | - Brad Fritz
- United States Department of Agriculture, Agricultural Research Service, Aerial Application Technology Research Unit, College Station, TX
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, TAMU, College Station, TX
| |
Collapse
|
25
|
Traver BE, Feazel-Orr HK, Catalfamo KM, Brewster CC, Fell RD. Seasonal Effects and the Impact of In-Hive Pesticide Treatments on Parasite, Pathogens, and Health of Honey Bees. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:517-527. [PMID: 29471479 DOI: 10.1093/jee/toy026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Honey bee, Apis mellifera (L.; Hymenoptera: Apidae), populations are in decline and their losses pose a serious threat for crop pollination and food production. The specific causes of these losses are believed to be multifactorial. Pesticides, parasites and pathogens, and nutritional deficiencies have been implicated in the losses due to their ability to exert energetic stress on bees. While our understanding of the role of these factors in honey bee colony losses has improved, there is still a lack of knowledge of how they impact the immune system of the honey bee. In this study, honey bee colonies were exposed to Fumagilin-B, Apistan (tau-fluvalinate), and chlorothalonil at field realistic levels. No significant effects of the antibiotic and two pesticides were observed on the levels of varroa mite, Nosema ceranae (Fries; Microsporidia: Nosematidae), black queen cell virus, deformed wing virus, or immunity as measured by phenoloxidase and glucose oxidase activity. Any effects on the parasites, pathogens, and immunity we observed appear to be due mainly to seasonal changes within the honey bee colonies. The results suggest that Fumagilin-B, Apistan, and chlorothalonil do not significantly impact the health of honey bee colonies, based on the factors analyzed and the concentration of chemicals tested.
Collapse
Affiliation(s)
- Brenna E Traver
- Department of Biology, Penn State Schuylkill, Schuylkill Haven, PA
| | | | | | | | | |
Collapse
|
26
|
Paris L, El Alaoui H, Delbac F, Diogon M. Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior. CURRENT OPINION IN INSECT SCIENCE 2018; 26:149-154. [PMID: 29764655 DOI: 10.1016/j.cois.2018.02.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/16/2018] [Indexed: 05/27/2023]
Abstract
The common and widespread parasite Nosema ceranae is considered a major threat to the Western honey bee at both the individual and colony levels. Several studies demonstrated that infection by this parasite may affect physiology, behavior, and survival of honey bees. N. ceranae infection impairs midgut integrity and alters the energy demand in honey bees. The infection can also significantly suppress the bee immune response and modify pheromone production in worker and queen honey bees leading to precocious foraging. However, the presence of N. ceranae is not systematically associated with colony weakening and honey bee mortality. This variability depends upon parasite or host genetics, nutrition, climate or interactions with other stressors such as environmental contaminants or other parasites.
Collapse
Affiliation(s)
- Laurianne Paris
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Hicham El Alaoui
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France.
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| |
Collapse
|
27
|
Sinpoo C, Paxton RJ, Disayathanoowat T, Krongdang S, Chantawannakul P. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response. JOURNAL OF INSECT PHYSIOLOGY 2018; 105:1-8. [PMID: 29289505 DOI: 10.1016/j.jinsphys.2017.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera.
Collapse
Affiliation(s)
- Chainarong Sinpoo
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand; Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Robert J Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Terd Disayathanoowat
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand
| | - Sasiprapa Krongdang
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand; Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panuwan Chantawannakul
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand; Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; International College of Digital Innovation, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
28
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Candiani D, Verdonck F, Beltrán-Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): infestation with Varroa spp. (varroosis). EFSA J 2017; 15:e04997. [PMID: 32625294 PMCID: PMC7009930 DOI: 10.2903/j.efsa.2017.4997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infestation with Varroa spp. (varroosis) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of varroosis to be listed, Article 9 for the categorisation of varroosis according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to varroosis. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, it is inconclusive whether varroosis can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no full consensus on the criterion 5 A(v). Consequently, the assessment on compliance of varroosis with the criteria as in Annex IV to the AHL, for the application of the disease prevention and control rules referred to in Article 9(1), and which animal species can be considered to be listed for varroosis according to Article 8(3) are also inconclusive.
Collapse
|