1
|
Lohova E, Pilmane M, Šerstņova K, Melderis I, Gontar Ł, Kochański M, Drutowska A, Maróti G, Prieto-Simón B. Analysis of Inflammatory and Regulatory Cytokines in the Milk of Dairy Cows with Mastitis: A Comparative Study with Healthy Animals. Immunol Invest 2024; 53:1397-1421. [PMID: 39287131 DOI: 10.1080/08820139.2024.2404623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Bovine mastitis remains a major problem in the global dairy cattle industry. The acute invasion of udder by pathogens induces innate immune response as the first defence mechanism in subclinical and clinical mastitis. The aim of the study was to determine inflammatory and regulatory cytokines IL-2, IL-4, TGF-β1, IL-17A, beta-defensin 3 and IL-10 and their potential changes in milk of dairy cows with subclinical and clinical mastitis, and to compare the findings with healthy animals. Milk samples from 15 holstein Friesian breed cows were used in the study. Cows were divided into three groups based on their health status (5 healthy, 5 subclinical and 5 clinical animals). All samples were tested using immunohistochemistry to evaluate IL-2, IL-4, IL-10, IL17A, TGF-β1 and β-Def 3 proteins. Expression of all proteins was detected in all milk samples. High expression of IL-2, IL-4, IL17A, TGF-β1 was detected in healthy cows' milk and in milk of cows with subclinical and clinical mastitis. However, expression of IL-10 and β-Def 3 in milk samples of healthy cows was significantly higher compared to the milk of cows with subclinical and clinical mastitis (p < .001). IL-10 and β-Def 3 can be considered as informative biomarkers in diagnosis of subclinical and clinical mastitis.
Collapse
Affiliation(s)
- Elizabeta Lohova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Mara Pilmane
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Ksenija Šerstņova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Ivars Melderis
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Łukasz Gontar
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Maksymilian Kochański
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Andzelika Drutowska
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Gergely Maróti
- Seqomics Biotechnology Ltd., Morahalom, Hungary
- Biological Research Center, Plant Biology Institute, Szeged, Hungary
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
2
|
Zhao X, Zhang Y, Rahman A, Chen M, Li N, Wu T, Qi Y, Zheng N, Zhao S, Wang J. Rumen microbiota succession throughout the perinatal period and its association with postpartum production traits in dairy cows: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:17-26. [PMID: 39022774 PMCID: PMC11253274 DOI: 10.1016/j.aninu.2024.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
The transition period for dairy cows usually refers to the 3 weeks pre-calving to the 3 weeks post-calving. During this period, dairy cows undergo metabolic and physiological adaptations because of their susceptibility to metabolic and infectious diseases. Poor feeding management under these circumstances may adversely affect the health and subsequent production performance of the cows. Owing to long-term adaptation and evolution, the rumen has become a unique ecosystem inhabited by a complex microbial community closely associated with its natural host. Dietary components are metabolized by the rumen microbiota, and volatile fatty acids and microbial protein products can be used as precursor substances for synthesizing meat and milk components. The successful transition of perinatal dairy cows includes changes in diet, physiology, and the rumen microbiota. Rumen microbial profiles have been confirmed to be heritable and repairable; however, adverse circumstances affect rumen microbial composition, host digestion and metabolism, as well as postpartum production traits of dairy cows for a certain period. Preliminary evidence indicates a close relationship between the rumen microbiota and animal performance. Therefore, changes in rumen microbes during the transition period and the intrinsic links between the microbiota and host postpartum phenotypic traits need to be better understood to optimize production performance in ruminants.
Collapse
Affiliation(s)
- Xiaowei Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Xinjiang Agricultural University, Urumqi 830052, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ashikur Rahman
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meiqing Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Wu
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yunxia Qi
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Dean CJ, Deng Y, Wehri TC, Pena-Mosca F, Ray T, Crooker BA, Godden SM, Caixeta LS, Noyes NR. The impact of kit, environment, and sampling contamination on the observed microbiome of bovine milk. mSystems 2024; 9:e0115823. [PMID: 38785438 PMCID: PMC11237780 DOI: 10.1128/msystems.01158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In low-microbial biomass samples such as bovine milk, contaminants can outnumber endogenous bacteria. Because of this, milk microbiome research suffers from a critical knowledge gap, namely, does non-mastitis bovine milk contain a native microbiome? In this study, we sampled external and internal mammary epithelia and stripped and cisternal milk and used numerous negative controls, including air and sampling controls and extraction and library preparation blanks, to identify the potential sources of contamination. Two algorithms were used to mathematically remove contaminants and track the potential movement of microbes among samples. Results suggest that the majority (i.e., >75%) of sequence data generated from bovine milk and mammary epithelium samples represents contaminating DNA. Contaminants in milk samples were primarily sourced from DNA extraction kits and the internal and external skin of the teat, while teat canal and apex samples were mainly contaminated during the sampling process. After decontamination, the milk microbiome displayed a more dispersed, less diverse, and compositionally distinct bacterial profile compared with epithelial samples. Similar microbial compositions were observed between cisternal and stripped milk samples, as well as between teat apex and canal samples. Staphylococcus and Acinetobacter were the predominant genera detected in milk sample sequences, and bacterial culture showed growth of Staphylococcus and Corynebacterium spp. in 50% (7/14) of stripped milk samples and growth of Staphylococcus spp. in 7% (1/14) of cisternal milk samples. Our study suggests that microbiome data generated from milk samples obtained from clinically healthy bovine udders may be heavily biased by contaminants that enter the sample during sample collection and processing workflows.IMPORTANCEObtaining a non-contaminated sample of bovine milk is challenging due to the nature of the sampling environment and the route by which milk is typically extracted from the mammary gland. Furthermore, the very low bacterial biomass of bovine milk exacerbates the impacts of contaminant sequences in downstream analyses, which can lead to severe biases. Our finding showed that bovine milk contains very low bacterial biomass and each contamination event (including sampling procedure and DNA extraction process) introduces bacteria and/or DNA fragments that easily outnumber the native bacterial cells. This finding has important implications for our ability to draw robust conclusions from milk microbiome data, especially if the data have not been subjected to rigorous decontamination procedures. Based on these findings, we strongly urge researchers to include numerous negative controls into their sampling and sample processing workflows and to utilize several complementary methods for identifying potential contaminants within the resulting sequence data. These measures will improve the accuracy, reliability, reproducibility, and interpretability of milk microbiome data and research.
Collapse
Affiliation(s)
- C. J. Dean
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Y. Deng
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - T. C. Wehri
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - F. Pena-Mosca
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - T. Ray
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - B. A. Crooker
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - S. M. Godden
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - L. S. Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - N. R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
4
|
Guo W, Liu S, Khan MZ, Wang J, Chen T, Alugongo GM, Li S, Cao Z. Bovine milk microbiota: Key players, origins, and potential contributions to early-life gut development. J Adv Res 2024; 59:49-64. [PMID: 37423549 PMCID: PMC11081965 DOI: 10.1016/j.jare.2023.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Bovine milk is a significant substitute for human breast milk and holds great importance in infant nutrition and health. Apart from essential nutrients, bovine milk also contains bioactive compounds, including a microbiota derived from milk itself rather than external sources of contamination. AIM OF REVIEW Recognizing the profound impact of bovine milk microorganisms on future generations, our review focuses on exploring their composition, origins, functions, and applications. KEY SCIENTIFIC CONCEPTS OF REVIEW Some of the primary microorganisms found in bovine milk are also present in human milk. These microorganisms are likely transferred to the mammary gland through two pathways: the entero-mammary pathway and the rumen-mammary pathway. We also elucidated potential mechanisms by which milk microbiota contribute to infant intestinal development. The mechanisms include the enhancing of the intestinal microecological niche, promoting the maturation of immune system, strengthening the intestinal epithelial barrier function, and interacting with milk components (e.g., oligosaccharides) via cross-feeding effect. However, given the limited understanding of bovine milk microbiota, further studies are necessary to validate hypotheses regarding their origins and to explore their functions and potential applications in early intestinal development.
Collapse
Affiliation(s)
- Wenli Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Z Khan
- Faculty of Veterinary and Animal Sciences, Department of Animal Breeding and Genetics, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gibson M Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Dean CJ, Peña-Mosca F, Ray T, Wehri TJ, Sharpe K, Antunes, Jr. AM, Doster E, Fernandes L, Calles VF, Bauman C, Godden S, Heins B, Pinedo P, Machado VS, Caixeta LS, Noyes NR. Exploring associations between the teat apex metagenome and Staphylococcus aureus intramammary infections in primiparous cows under organic directives. Appl Environ Microbiol 2024; 90:e0223423. [PMID: 38497641 PMCID: PMC11022539 DOI: 10.1128/aem.02234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/04/2024] [Indexed: 03/19/2024] Open
Abstract
The primary objective of this study was to identify associations between the prepartum teat apex microbiome and the presence of Staphylococcus aureus intramammary infections (IMI) in primiparous cows during the first 5 weeks after calving. We performed a case-control study using shotgun metagenomics of the teat apex and culture-based milk data collected longitudinally from 710 primiparous cows on five organic dairy farms. Cases had higher odds of having S. aureus metagenomic DNA on the teat apex prior to parturition compared to controls (OR = 38.9, 95% CI: 14.84-102.21). Differential abundance analysis confirmed this association, with cases having a 23.8 higher log fold change (LFC) in the abundance of S. aureus in their samples compared to controls. Of the most prevalent microorganisms in controls, those associated with a lower risk of post-calving S. aureus IMI included Microbacterium phage Min 1 (OR = 0.37, 95% CI: 0.25-0.53), Corynebacterium efficiens (OR = 0.53, 95% CI: 0.30-0.94), Kocuria polaris (OR = 0.54, 95% CI: 0.35-0.82), Micrococcus terreus (OR = 0.64, 95% CI: 0.44-0.93), and Dietzia alimentaria (OR = 0.45, 95% CI: 0.26-0.75). Genes encoding for Microcin B17 AMPs were the most prevalent on the teat apex of cases and controls (99.7% in both groups). The predicted abundance of genes encoding for Microcin B17 was also higher in cases compared to controls (LFC 0.26). IMPORTANCE Intramammary infections (IMI) caused by Staphylococcus aureus remain an important problem for the dairy industry. The microbiome on the external skin of the teat apex may play a role in mitigating S. aureus IMI risk, in particular the production of antimicrobial peptides (AMPs) by commensal microbes. However, current studies of the teat apex microbiome utilize a 16S approach, which precludes the detection of genomic features such as genes that encode for AMPs. Therefore, further research using a shotgun metagenomic approach is needed to understand what role prepartum teat apex microbiome dynamics play in IMI risk.
Collapse
Affiliation(s)
- C. J. Dean
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - F. Peña-Mosca
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - T. Ray
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - T. J. Wehri
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - K. Sharpe
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - A. M. Antunes, Jr.
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - E. Doster
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - L. Fernandes
- Department of Veterinary Sciences, Texas Tech University, Lubbock, Texas, USA
| | - V. F. Calles
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - C. Bauman
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - S. Godden
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - B. Heins
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - P. Pinedo
- Department of Animal Science, Colorado State University, Fort Collins, Colorado, USA
| | - V. S. Machado
- Department of Veterinary Sciences, Texas Tech University, Lubbock, Texas, USA
| | - L. S. Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - N. R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
6
|
Pan N, Xiu L, Xu Y, Bao X, Liang Y, Zhang H, Liu B, Feng Y, Guo H, Wu J, Li H, Ma C, Sheng S, Wang T, Wang X. Mammary γδ T cells promote IL-17A-mediated immunity against Staphylococcus aureus-induced mastitis in a microbiota-dependent manner. iScience 2023; 26:108453. [PMID: 38034361 PMCID: PMC10687336 DOI: 10.1016/j.isci.2023.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
Mastitis, a common disease for female during lactation period that could cause a health risk for human or huge economic losses for animals, is mainly caused by S. aureus invasion. Here, we found that neutrophil recruitment via IL-17A-mediated signaling was required for host defense against S. aureus-induced mastitis in a mouse model. The rapid accumulation and activation of Vγ4+ γδ T cells in the early stage of infection triggered the IL-17A-mediated immune response. Interestingly, the accumulation and influence of γδT17 cells in host defense against S. aureus-induced mastitis in a commensal microbiota-dependent manner. Overall, this study, focusing on γδT17 cells, clarified innate immune response mechanisms against S. aureus-induced mastitis, and provided a specific response to target for future immunotherapies. Meanwhile, a link between commensal microbiota community and host defense to S. aureus mammary gland infection may unveil potential therapeutic strategies to combat these intractable infections.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Lei Xiu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Xu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Yuanyu Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Huibo Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Jing Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Cheng Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Ting Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
- Hohhot Inspection and Testing Center, Hohhot 010070, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| |
Collapse
|
7
|
Luo Y, Kong Z, Yang B, He F, Huan C, Li J, Yi K. Relationship between Microflora Changes and Mammary Lipid Metabolism in Dairy Cows with Mastitis. Animals (Basel) 2023; 13:2773. [PMID: 37685037 PMCID: PMC10486416 DOI: 10.3390/ani13172773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Dairy mastitis is an inflammatory reaction caused by mechanical injury and stress within the mammary gland, during which microbial changes and abnormal lipid metabolism occur. However, the underlying mechanism is still unclear. The present study used a combination of 16S rDNA sequencing technology and lipidomics techniques to reveal the effects of mastitis on lactic microbiota and metabolites in the milk of dairy cows. Twenty multiparous Holstein dairy cows (2-3 parities) with an average body weight of 580 ± 30 kg were selected for this study. The dairy cows were allocated to control group (<5 × 104 cells /mL)) and mastitis group (>5 × 106 cells /mL) based on the somatic cell count. The results showed that mastitis caused a decrease trend in milk production (p = 0.058). The results of the 16 s sequencing indicated a significant decrease (p < 0.05) in the number of Proteobacteria, Tenericutes colonized in mastitis milk, and the number of Firmicutes, Bacteroidetes and Actinobacteria communities increased significantly (p < 0.05). The lipidomics results revealed that the changes in lipid content in mastitis milk were correlated with arachidonic acid metabolism, α -linolenic acid metabolism and glycerol phospholipid metabolism. The results showed that mastitis may cause abnormal lipid metabolism in milk by regulating the diversity of milk microflora, and ultimately affect the milk quality.
Collapse
Affiliation(s)
- Yang Luo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Zhiwei Kong
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Bin Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (F.H.); (C.H.); (J.L.); (K.Y.)
| | - Cheng Huan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (F.H.); (C.H.); (J.L.); (K.Y.)
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (F.H.); (C.H.); (J.L.); (K.Y.)
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (F.H.); (C.H.); (J.L.); (K.Y.)
| |
Collapse
|
8
|
Long MM, Needs SH, Edwards AD. Dilution Reduces Sample Matrix Effects for Rapid, Direct, and Miniaturised Phenotypic Antibiotic Susceptibility Tests for Bovine Mastitis. Antibiotics (Basel) 2023; 12:1363. [PMID: 37760660 PMCID: PMC10525283 DOI: 10.3390/antibiotics12091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
The time-consuming nature of current methods for detecting antimicrobial resistance (AMR) to guide mastitis treatment and for surveillance, drives innovation towards faster, easier, and more portable technology. Rapid on-farm testing could guide antibiotic selection, reducing misuse that contributes to resistance. We identify challenges that arise when developing miniaturized antibiotic susceptibility tests (AST) for rapid on-farm use directly in milk. We experimentally studied three factors: sample matrix (specifically milk or spoiled milk); the commensal bacteria found in fresh bovine milk; and result time on the performance of miniaturised AST. Microfluidic "dip-and-test" devices made from microcapillary film (MCF) were able to monitor Gram-negative bacterial growth colourimetrically even in the presence of milk and yoghurt (used to simulate spoiled milk samples), as long as this sample matrix was diluted 1:5 or more in growth medium. Growth detection kinetics using resazurin was not changed by milk at final concentrations of 20% or lower, but a significant delay was seen with yoghurt above 10%. The minimum inhibitory concentration (MIC) for ciprofloxacin and gentamicin was increased in the presence of higher concentrations of milk and yoghurt. When diluted to 1% all observed MIC were within range, indicating dilution may be sufficient to avoid milk matrix interfering with microfluidic AST. We found a median commensal cell count of 6 × 105 CFU/mL across 40 healthy milk samples and tested if these bacteria could alter microfluidic AST. We found that false susceptibility may be observed at early endpoint times if testing some pathogen and commensal mixtures. However, such errors are only expected to occur when a susceptible commensal organism is present at higher cell density relative to the resistant pathogen, and this can be avoided by reading at later endpoints, leading to a trade-off between accuracy and time-to-result. We conclude that with further optimisation, and additional studies of Gram-positive organisms, it should be possible to obtain rapid results for microfluidic AST, but a trade-off is needed between time-to-result, sample dilution, and accuracy.
Collapse
Affiliation(s)
- Matthew Michael Long
- School of Pharmacy, University of Reading, Reading RG6 6DX, UK; (M.M.L.); (S.H.N.)
| | - Sarah Helen Needs
- School of Pharmacy, University of Reading, Reading RG6 6DX, UK; (M.M.L.); (S.H.N.)
| | - Alexander Daniel Edwards
- School of Pharmacy, University of Reading, Reading RG6 6DX, UK; (M.M.L.); (S.H.N.)
- Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
9
|
Mariadassou M, Nouvel LX, Constant F, Morgavi DP, Rault L, Barbey S, Helloin E, Rué O, Schbath S, Launay F, Sandra O, Lefebvre R, Le Loir Y, Germon P, Citti C, Even S. Microbiota members from body sites of dairy cows are largely shared within individual hosts throughout lactation but sharing is limited in the herd. Anim Microbiome 2023; 5:32. [PMID: 37308970 DOI: 10.1186/s42523-023-00252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Host-associated microbes are major determinants of the host phenotypes. In the present study, we used dairy cows with different scores of susceptibility to mastitis with the aim to explore the relationships between microbiota composition and different factors in various body sites throughout lactation as well as the intra- and inter-animal microbial sharing. RESULTS Microbiotas from the mouth, nose, vagina and milk of 45 lactating dairy cows were characterized by metataxonomics at four time points during the first lactation, from 1-week pre-partum to 7 months post-partum. Each site harbored a specific community that changed with time, likely reflecting physiological changes in the transition period and changes in diet and housing. Importantly, we found a significant number of microbes shared among different anatomical sites within each animal. This was between nearby anatomic sites, with up to 32% of the total number of Amplicon Sequence Variants (ASVs) of the oral microbiota shared with the nasal microbiota but also between distant ones (e.g. milk with nasal and vaginal microbiotas). In contrast, the share of microbes between animals was limited (< 7% of ASVs shared by more than 50% of the herd for a given site and time point). The latter widely shared ASVs were mainly found in the oral and nasal microbiotas. These results thus indicate that despite a common environment and diet, each animal hosted a specific set of bacteria, supporting a tight interplay between each animal and its microbiota. The score of susceptibility to mastitis was slightly but significantly related to the microbiota associated to milk suggesting a link between host genetics and microbiota. CONCLUSIONS This work highlights an important sharing of microbes between relevant microbiotas involved in health and production at the animal level, whereas the presence of common microbes was limited between animals of the herd. This suggests a host regulation of body-associated microbiotas that seems to be differently expressed depending on the body site, as suggested by changes in the milk microbiota that were associated to genotypes of susceptibility to mastitis.
Collapse
Affiliation(s)
| | | | - Fabienne Constant
- Ecole Nationale Vétérinaire d'Alfort, Université Paris-Saclay, UVSQ, INRAE, BREED, Maisons-Alfort, France
| | - Diego P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| | - Lucie Rault
- INRAE, Institut Agro, UMR1253 STLO, Rennes, France
| | - Sarah Barbey
- INRAE, UE326 Unité Expérimentale du Pin, Gouffern en Auge, France
| | | | - Olivier Rué
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France
| | - Sophie Schbath
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Frederic Launay
- INRAE, UE326 Unité Expérimentale du Pin, Gouffern en Auge, France
| | - Olivier Sandra
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Rachel Lefebvre
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Yves Le Loir
- INRAE, Institut Agro, UMR1253 STLO, Rennes, France
| | - Pierre Germon
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | | | - Sergine Even
- INRAE, Institut Agro, UMR1253 STLO, Rennes, France.
| |
Collapse
|
10
|
Dahlberg J, Johnzon CF, Sun L, Pejler G, Östensson K, Dicksved J. Absence of changes in the milk microbiota during Escherichia coli endotoxin induced experimental bovine mastitis. Vet Res 2023; 54:46. [PMID: 37291624 DOI: 10.1186/s13567-023-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Changes in the milk microbiota during the course of mastitis are due to the nature of a sporadic occurring disease difficult to study. In this study we experimentally induced mastitis by infusion of Escherichia coli endotoxins in one udder quarter each of nine healthy lactating dairy cows and assessed the bacteriological dynamics and the milk microbiota at four time points before and eight time points after infusion. As control, saline was infused in one udder quarter each of additionally nine healthy cows that followed the same sampling protocol. The milk microbiota was assessed by sequencing of the 16 S rRNA gene and a range of positive and negative controls were included for methodological evaluation. Two different data filtration models were used to identify and cure data from contaminating taxa. Endotoxin infused quarters responded with transient clinical signs of inflammation and increased SCC while no response was observed in the control cows. In the milk microbiota data no response to inflammation was identified. The data analysis of the milk microbiota was largely hampered by laboratory and reagent contamination. Application of the filtration models caused a marked reduction in data but did not reveal any associations with the inflammatory reaction. Our results indicate that the microbiota in milk from healthy cows is unaffected by inflammation.
Collapse
Affiliation(s)
- Josef Dahlberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden.
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Carl-Fredrik Johnzon
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Li Sun
- Department of Molecular Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Östensson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Rötzer V, Wenderlein J, Wiesinger A, Versen F, Rauch E, Straubinger RK, Zeiler E. Bovine Udder Health: From Standard Diagnostic Methods to New Approaches-A Practical Investigation of Various Udder Health Parameters in Combination with 16S rRNA Sequencing. Microorganisms 2023; 11:1311. [PMID: 37317285 DOI: 10.3390/microorganisms11051311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Bovine udder health is an important factor for animal wellbeing and the dairy farm economy. Thus, researchers aim to understand factors causing mastitis. The gold standard for diagnosing mastitis in cows is the conventional culturing of milk samples. However, during the last few years, the use of molecular methods has increased. These methods, especially sequencing, provide a deeper insight into the diversity of the bacterial community. Yet, inconsistent results regarding the mammary microbiome have been published. This study aimed to evaluate the udder health of eight dairy cows at seven days postpartum with the standard methods in veterinary practice. Additionally, swabs from the teat canal and milk samples were analyzed using 16S rRNA gene amplicon sequencing. The sensitive low-biomass milk samples displayed only a few contaminations even though they were sampled in a field environment. In healthy udders, no bacterial communities were detected by the bacterial culture nor the 16S rRNA gene amplicons. The results from the standard examination of the cows, the cell count, and the bacteriological examination were comparable with the results from 16S rRNA gene amplicon sequencing when cows displayed subclinical or latent mastitis. Besides the pathogen detected in bacterial culturing, a second bacterial strain with low but significant abundance was detected by sequencing, which might aid in the understanding of mastitis incidence. In general, molecular biological approaches might lead to promising insights into pathological events in the udder and might help to understand the pathomechanism and infection source via epidemiological analyses.
Collapse
Affiliation(s)
- Verena Rötzer
- Faculty of Sustainable Agriculture and Energy Systems, University of Applied Science Weihenstephan-Triesdorf, 85354 Freising, Germany
- Chair of Animal Welfare, Ethology, Animal Hygiene and Animal Husbandry, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Jasmin Wenderlein
- Chair of Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Anna Wiesinger
- Chair of Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Felix Versen
- Faculty of Sustainable Agriculture and Energy Systems, University of Applied Science Weihenstephan-Triesdorf, 85354 Freising, Germany
| | - Elke Rauch
- Chair of Animal Welfare, Ethology, Animal Hygiene and Animal Husbandry, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Reinhard K Straubinger
- Chair of Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Eva Zeiler
- Faculty of Sustainable Agriculture and Energy Systems, University of Applied Science Weihenstephan-Triesdorf, 85354 Freising, Germany
| |
Collapse
|
12
|
Gutiérrez-Reinoso MA, Aponte PM, García-Herreros M. Genomic and Phenotypic Udder Evaluation for Dairy Cattle Selection: A Review. Animals (Basel) 2023; 13:ani13101588. [PMID: 37238017 DOI: 10.3390/ani13101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The traditional point of view regarding dairy cattle selection has been challenged by recent genomic studies indicating that livestock productivity prediction can be redefined based on the evaluation of genomic and phenotypic data. Several studies that included different genomic-derived traits only indicated that interactions among them or even with conventional phenotypic evaluation criteria require further elucidation. Unfortunately, certain genomic and phenotypic-derived traits have been shown to be secondary factors influencing dairy production. Thus, these factors, as well as evaluation criteria, need to be defined. Owing to the variety of genomic and phenotypic udder-derived traits which may affect the modern dairy cow functionality and conformation, a definition of currently important traits in the broad sense is indicated. This is essential for cattle productivity and dairy sustainability. The main objective of the present review is to elucidate the possible relationships among genomic and phenotypic udder evaluation characteristics to define the most relevant traits related to selection for function and conformation in dairy cattle. This review aims to examine the potential impact of various udder-related evaluation criteria on dairy cattle productivity and explore how to mitigate the adverse effects of compromised udder conformation and functionality. Specifically, we will consider the implications for udder health, welfare, longevity, and production-derived traits. Subsequently, we will address several concerns covering the application of genomic and phenotypic evaluation criteria with emphasis on udder-related traits in dairy cattle selection as well as its evolution from origins to the present and future prospects.
Collapse
Affiliation(s)
- Miguel A Gutiérrez-Reinoso
- Carrera de Medicina Veterinaria, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad Técnica de Cotopaxi (UTC), Latacunga 0501491, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Pedro M Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
- Campus Cumbayá, Instituto de Investigaciones en Biomedicina "One-Health", Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Manuel García-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
13
|
Winther AR, da Silva Duarte V, Porcellato D. Metataxonomic analysis and host proteome response in dairy cows with high and low somatic cell count: a quarter level investigation. Vet Res 2023; 54:32. [PMID: 37016420 PMCID: PMC10074679 DOI: 10.1186/s13567-023-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway.
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| |
Collapse
|
14
|
Campolina JP, Coelho SG, Belli AL, Neves LFM, Machado FS, Pereira LGR, Tomich TR, Carvalho WA, Daibert RMP, Reis DRL, Costa SF, Voorsluys AL, Jacob DV, Campos MM. Potential benefits of a blend of essential oils on metabolism, digestibility, organ development and gene expression of dairy calves. Sci Rep 2023; 13:3378. [PMID: 36854876 PMCID: PMC9974966 DOI: 10.1038/s41598-023-30088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
The objective of this study was to evaluate blood cells and metabolites, insulin-like growth factor-1 (IGF-1), digestibility, internal organs weight and histology, gene expression, and spleen cell proliferation of pre-weaned bull calves supplemented with a blend of essential oils in milk replacer (MR). Sixteen newborn Holstein × Gyr crossbred dairy bull calves, with body weight at birth of 33.3 ± 3.7 kg, were housed in individual sand bedded pens, blocked by genetic composition, and randomly assigned to 1 of 2 treatments in a randomized complete block design: Control (CON, n = 8) and blend of essential oils supplementation (BEO, n = 8, 1 g/day/calf, Apex Calf, Adisseo, China). The commercial blend was composed by plant extracts derived from anise, cinnamon, garlic, rosemary, and thyme. Animals were fed 5 L of MR/day reconstituted at 15% (dry matter basis), divided into two equal meals. Water and starter were provided ad libitum. ß-hydroxybutyrate, urea, and glucose were evaluated weekly, IGF-1 was evaluated biweekly, and total blood cell count was performed every four weeks until the end of the trial at eight weeks of age. Feed samples were collected three times a week and polled for weekly analysis. Apparent total nutrient digestibility was determined from d 56 to 60 of age. On d 60 ± 1, animals were euthanized for organ weight, histology, spleen cell proliferation, and intestinal gene expression analysis. Data were analyzed independently using linear mixed models using the REML method in the nlme package in R for continuous outcomes. A non-parametric test was used for ordered categorical outcomes using the Artools package in R. There were no differences between groups for blood evaluations, digestibility, gene expression, and a spleen cell proliferation assay. However, BEO calves presented a heavier pancreas, heavier intestines, bigger ileum villi, and higher cecum butyrate levels (P < 0.05), demonstrating that the EO supplementation helped intestinal development and symbiotic bacteria. It was also observed in CON animals' heavier respiratory tract and a higher eosinophil count (P < 0.05). Therefore, the organs where eosinophils are more active had a better response for BEO animals. No differences were found in the intestinal gene expression in the immune context. These results demonstrate that supplementing essential oils in MR could contribute to gut development and immune function. However, more research is needed to understand its impact on body development and define the best dosage and route of administration.
Collapse
Affiliation(s)
- Joana P. Campolina
- grid.8430.f0000 0001 2181 4888Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970 Brazil
| | - Sandra Gesteira Coelho
- grid.8430.f0000 0001 2181 4888Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970 Brazil
| | - Anna Luiza Belli
- grid.8430.f0000 0001 2181 4888Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970 Brazil
| | - Luiz F. Martins Neves
- grid.8430.f0000 0001 2181 4888Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970 Brazil
| | - Fernanda S. Machado
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Luiz G. R. Pereira
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Thierry R. Tomich
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Wanessa A. Carvalho
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Raquel M. P. Daibert
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Daniele R. L. Reis
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Suely F. Costa
- grid.411269.90000 0000 8816 9513Departmento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais Brazil
| | | | | | - Mariana M. Campos
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| |
Collapse
|
15
|
Park S, Jung D, Altshuler I, Kurban D, Dufour S, Ronholm J. A longitudinal census of the bacterial community in raw milk correlated with Staphylococcus aureus clinical mastitis infections in dairy cattle. Anim Microbiome 2022; 4:59. [PMID: 36434660 PMCID: PMC9701008 DOI: 10.1186/s42523-022-00211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a common cause of clinical mastitis (CM) in dairy cattle. Optimizing the bovine mammary gland microbiota to resist S. aureus colonization is a growing area of research. However, the details of the interbacterial interactions between S. aureus and commensal bacteria, which would be required to manipulate the microbiome to resist infection, are still unknown. This study aims to characterize changes in the bovine milk bacterial community before, during, and after S. aureus CM and to compare bacterial communities present in milk between infected and healthy quarters. METHODS We collected quarter-level milk samples from 698 Holstein dairy cows over an entire lactation. A total of 11 quarters from 10 cows were affected by S. aureus CM and milk samples from these 10 cows (n = 583) regardless of health status were analyzed by performing 16S rRNA gene amplicon sequencing. RESULTS The milk microbiota of healthy quarters was distinguishable from that of S. aureus CM quarters two weeks before CM diagnosis via visual inspection. Microbial network analysis showed that 11 OTUs had negative associations with OTU0001 (Staphylococcus). A low diversity or dysbiotic milk microbiome did not necessarily correlate with increased inflammation. Specifically, Staphylococcus xylosus, Staphylococcus epidermidis, and Aerococcus urinaeequi were each abundant in milk from the quarters with low levels of inflammation. CONCLUSION Our results show that the udder microbiome is highly dynamic, yet a change in the abundance in certain bacteria can be a potential indicator of future S. aureus CM. This study has identified potential prophylactic bacterial species that could act as a barrier against S. aureus colonization and prevent future instances of S. aureus CM.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Ianina Altshuler
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Daryna Kurban
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada.
- Mastitis Network, Saint-Hyacinthe, QC, Canada.
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
16
|
Tröscher-Mußotter J, Deusch S, Borda-Molina D, Frahm J, Dänicke S, Camarinha-Silva A, Huber K, Seifert J. Cow's microbiome from antepartum to postpartum: A long-term study covering two physiological challenges. Front Microbiol 2022; 13:1000750. [PMID: 36466656 PMCID: PMC9709127 DOI: 10.3389/fmicb.2022.1000750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 10/02/2023] Open
Abstract
Little is known about the interplay between the ruminant microbiome and the host during challenging events. This long-term study investigated the ruminal and duodenal microbiome and metabolites during calving as an individual challenge and a lipopolysaccharide-induced systemic inflammation as a standardized challenge. Strong inter- and intra-individual microbiome changes were noted during the entire trial period of 168 days and between the 12 sampling time points. Bifidobacterium increased significantly at 3 days after calving. Both challenges increased the intestinal abundance of fiber-associated taxa, e.g., Butyrivibrio and unclassified Ruminococcaceae. NMR analyses of rumen and duodenum samples identified up to 60 metabolites out of which fatty and amino acids, amines, and urea varied in concentrations triggered by the two challenges. Correlation analyses between these parameters indicated a close connection and dependency of the microbiome with its host. It turns out that the combination of phylogenetic with metabolite information supports the understanding of the true scenario in the forestomach system. The individual stages of the production cycle in dairy cows reveal specific criteria for the interaction pattern between microbial functions and host responses.
Collapse
Affiliation(s)
- Johanna Tröscher-Mußotter
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Simon Deusch
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Amélia Camarinha-Silva
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Korinna Huber
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
17
|
Zhao C, Bao L, Qiu M, Wu K, Zhao Y, Feng L, Xiang K, Zhang N, Hu X, Fu Y. Commensal cow Roseburia reduces gut-dysbiosis-induced mastitis through inhibiting bacterial translocation by producing butyrate in mice. Cell Rep 2022; 41:111681. [DOI: 10.1016/j.celrep.2022.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/17/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
|
18
|
Zemanova M, Langova L, Novotná I, Dvorakova P, Vrtkova I, Havlicek Z. Immune mechanisms, resistance genes, and their roles in the prevention of mastitis in dairy cows. Arch Anim Breed 2022; 65:371-384. [PMID: 36415759 PMCID: PMC9673033 DOI: 10.5194/aab-65-371-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is one of the most important diseases of the mammary gland. The increased incidence of this disease in cows is due to the breeding of dairy cattle for higher yields, which is accompanied by an increased susceptibility to mastitis. Therefore, the difficulty involved with preventing this disease has increased. An integral part of current research is the elimination of mastitis in order to reduce the consumption of antibiotic drugs, thereby reducing the resistance of microorganisms and decreasing companies' economic losses due to mastitis (i.e. decreased milk yield, increased drug costs, and reduced milk supply). Susceptibility to mastitis is based on dairy cows' immunity, health, nutrition, and welfare. Thus, it is important to understand the immune processes in the body in order to increase the resistance of animals. Recently, various studies have focused on the selection of mastitis resistance genes. An important point is also the prevention of mastitis. This publication aims to describe the physiology of the mammary gland along with its immune mechanisms and to approximate their connection with potential mastitis resistance genes. This work describes various options for mastitis elimination and focuses on genetic selection and a closer specification of resistance genes to mastitis. Among the most promising resistance genes for mastitis, we consider CD14, CXCR1, lactoferrin, and lactoglobulin.
Collapse
|
19
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
20
|
Goncalves JL, Young J, Leite RDF, Fidelis CE, Trevisoli PA, Coutinho LL, Silva NCC, Cue RI, Rall VLM, dos Santos MV. The Impact of Selective Dry Cow Therapy Adopted in a Brazilian Farm on Bacterial Diversity and the Abundance of Quarter Milk. Vet Sci 2022; 9:vetsci9100550. [PMID: 36288163 PMCID: PMC9606860 DOI: 10.3390/vetsci9100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The current study sought to assess the impact of selective dry cow therapy (SDCT) (protocol 1: antibiotics combined with internal teat sealant (ITS); vs. protocol 2: ITS alone) on bacterial diversity and the abundance of quarter milk. Based on the results of bacteriological culturing, the quarters (n = 313) were categorized as healthy, cured, persistent, and new intramammary infection. The bacterial diversity was similar when comparing both healthy and cured quarters submitted to both drying-off protocols. Although healthy cows that were treated at drying-off using only teat sealant showed no alteration in the alpha and beta diversity of bacteria, they showed a higher abundance of bacterial groups that may be beneficial to or commensals of the mammary gland, which implies that antibiotic therapy should be reserved for mammary quarters with a history of mastitis. Abstract We aimed to evaluate the impact of selective dry cow therapy (SDCT) (protocol 1: antimicrobial combined with internal teat sealant (ITS); vs. protocol 2: ITS alone) on bacterial diversity and the abundance of quarter milk. Eighty high production cows (parity ≤ 3 and an average milk yield of 36.5 kg/cow/day) from the largest Brazilian dairy herd available were randomly selected; milk quarter samples were collected for microbiological culture (MC) on the day of drying-off (n = 313) and on day 7 post-calving (n = 313). Based on the results of the MC before and after calving, 240 quarters out of 313 were considered healthy, 38 were cured, 29 showed new infections and 6 had persistent infections. Mammary quarters were randomly selected based on intramammary information status and SDCT protocols for bacterial diversity analyses. The bacterial diversity was similar when comparing both healthy and cured quarters submitted to both drying-off protocols. Despite healthy cows that were treated at dry-off using only teat sealant showing no alteration in the alpha and beta bacterial diversity, they did show a higher abundance of bacterial groups that may be beneficial to or commensals of the mammary gland, which implies that antibiotic therapy should be reserved for mammary quarters with a history of mastitis.
Collapse
Affiliation(s)
- Juliano L. Goncalves
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Pirassununga, São Paulo 13635-900, Brazil
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University (MSU), East Lansing, MI 48864, USA
- Correspondence:
| | - Juliana Young
- Department of Bacteriology, University of Wisconsin-Madison (UW), Madison, WI 53706, USA
| | - Renata de F. Leite
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Pirassununga, São Paulo 13635-900, Brazil
| | - Carlos E. Fidelis
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Pirassununga, São Paulo 13635-900, Brazil
| | - Priscila A. Trevisoli
- Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo 13418-900, Brazil
| | - Luiz L. Coutinho
- Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo 13418-900, Brazil
| | - Nathália C. C. Silva
- Department of Food Science and nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Roger I. Cue
- Department of Animal Science, Macdonald Campus, McGill University, Quebec, QC H9X 3V9, Canada
| | - Vera Lucia Mores Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Marcos V. dos Santos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Pirassununga, São Paulo 13635-900, Brazil
| |
Collapse
|
21
|
Zhang H, Wang Z, Yao H, Jiang L, Tong J. Intramammary infusion of matrine-chitosan hydrogels for treating subclinical bovine mastitis -effects on milk microbiome and metabolites. Front Microbiol 2022; 13:950231. [PMID: 36204605 PMCID: PMC9530655 DOI: 10.3389/fmicb.2022.950231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bovine metabolism undergoes significant changes during subclinical mastitis, but the relevant molecular mechanisms have not been elucidated. In this study we investigated the changes in milk microbiota and metabolites after intramammary infusion of matrine-chitosan hydrogels (MCHs) in cows with subclinical mastitis. Methods Infusions were continued for 7 days, and milk samples were collected on days 1 and 7 for microbiome analysis by 16S rRNA gene sequencing and metabolite profiling by liquid chromatography-mass spectrometry. Results MCHs significantly decreased the somatic cell count on day 7 compared to day 1, and the Simpson index indicated that microbial diversity was significantly lower on day 7. The relative abundance of Aerococcus, Corynebacterium_1, Staphylococcus and Firmicutes was significantly decreased on day 7, while Proteobacteria increased. In the milk samples, we identified 74 differentially expressed metabolites. The MCHs infusion group had the most significantly upregulated metabolites including sphingolipids, glycerophospholipids, flavonoids and fatty acyls. The mammary gland metabolic pathways identified after MCHs treatment were consistent with the known antimicrobial and anti-inflammatory properties of matrine that are associated with glycerophospholipid metabolism and the sphingolipid metabolic signaling pathways. Conclusion These insights into the immunoregulatory mechanisms and the corresponding biological responses to matrine demonstrate its potential activity in mitigating the harmful effects of bovine mastitis.
Collapse
Affiliation(s)
| | | | | | - Linshu Jiang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
22
|
Mtshali K, Khumalo ZTH, Kwenda S, Arshad I, Thekisoe OMM. Exploration and comparison of bacterial communities present in bovine faeces, milk and blood using 16S rRNA metagenomic sequencing. PLoS One 2022; 17:e0273799. [PMID: 36044481 PMCID: PMC9432762 DOI: 10.1371/journal.pone.0273799] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Cattle by-products like faeces, milk and blood have many uses among rural communities; aiding to facilitate everyday household activities and occasional rituals. Ecologically, the body sites from which they are derived consist of distinct microbial communities forming a complex ecosystem of niches. We aimed to explore and compare the faecal, milk and blood microbiota of cows through 16S rRNA sequencing. All downstream analyses were performed using applications in R Studio (v3.6.1). Alpha-diversity metrics showed significant differences between faeces and blood; faeces and milk; but non-significant between blood and milk using Kruskal-Wallis test, P < 0,05. The beta-diversity metrics on Principal Coordinate Analysis and Non-Metric Dimensional Scaling significantly clustered samples by type (PERMANOVA test, P < 0,05). The overall analysis revealed a total of 30 phyla, 74 classes, 156 orders, 243 families and 408 genera. Firmicutes, Bacteroidota and Proteobacteria were the most abundant phyla overall. A total of 58 genus-level taxa occurred concurrently between the body sites. The important taxa could be categorized into four potentially pathogenic clusters i.e. arthropod-borne; food-borne and zoonotic; mastitogenic; and metritic and abortigenic. A number of taxa were significantly differentially abundant (DA) between sites based on the Wald test implemented in DESeq2 package. Majority of the DA taxa (i.e. Romboutsia, Paeniclostridium, Monoglobus, Akkermansia, Turicibacter, Bacteroides, Candidatus_Saccharimonas, UCG-005 and Prevotellaceae_UCG-004) were significantly enriched in faeces in comparison to milk and blood, except for Anaplasma which was greatly enriched in blood and was in turn the largest microbial genus in the entire analysis. This study provides insights into the microbial community composition of the sampled body sites and its extent of overlapping. It further highlights the potential risk of disease occurrence and transmission between the animals and the community of Waaihoek in KwaZulu-Natal, Republic of South Africa pertaining to their unsanitary practices associated with the use of cattle by-products.
Collapse
Affiliation(s)
- Khethiwe Mtshali
- Biomedical Sciences Department, Tshwane University of Technology, Pretoria, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- * E-mail: ,
| | - Zamantungwa Thobeka Happiness Khumalo
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
- Study Management, ClinVet International, Bainsvlei, Bloemfontein, South Africa
| | - Stanford Kwenda
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Ismail Arshad
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Science, Department of Biochemistry and Microbiology, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | | |
Collapse
|
23
|
Steinberg RS, Silva E Silva LC, de Souza MR, Reis RB, da Silva PCL, Lacorte GA, Nicoli JR, Neumann E, Nunes ÁC. Changes in bovine milk bacterial microbiome from healthy and subclinical mastitis affected animals of the Girolando, Gyr, Guzera, and Holstein breeds. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:803-815. [PMID: 35838927 DOI: 10.1007/s10123-022-00267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Raw milk samples were collected from 200 dairy cows belonging to Girolando 1/2, Gyr, Guzera, and Holstein breeds, and the bacterial diversity was explored using 16S rRNA amplicon sequencing. SCC analysis showed that 69 animals were classified as affected with subclinical mastitis. The milk bacterial microbiome was dominated by Firmicutes, Proteobacteria, and Actinobacteria, with an increase of Firmicutes in animals with subclinical mastitis and Proteobacteria in healthy animals. At the family and genus level, the milk bacterial microbiome was dominated by Staphylococcus, Acinetobacter, Pseudomonas, members of the family Enterobacteriaceae, Lactococcus, Aerococcus, members of the family Rhizobiaceae, Anaerobacillus, Streptococcus, members of the family Intrasporangiaceae, members of the family Planococcaceae, Corynebacterium, Nocardioides, and Chryseobacterium. Significant differences in alpha and beta diversity analysis suggest an effect of udder health status and breed on the composition of raw bovine milk microbiota. LEfSe analysis showed 45 and 51 discriminative taxonomic biomarkers associated with udder health status and with one of the four breeds respectively, suggesting an effect of subclinical mastitis and breed on the microbiota of milk in cattle.
Collapse
Affiliation(s)
- Raphael S Steinberg
- Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais, Campus Bambuí, Rodovia Bambuí/Medeiros - km 05, Caixa Postal 05, Bambuí, MG, 38900-000, Brazil.
| | - Lilian C Silva E Silva
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo R de Souza
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Universidade Federal de Minas Gerais, MG, Belo Horizonte, Brazil
| | - Ronaldo B Reis
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, MG, Belo Horizonte, Brazil
| | - Patrícia C L da Silva
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo A Lacorte
- Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais, Campus Bambuí, Rodovia Bambuí/Medeiros - km 05, Caixa Postal 05, Bambuí, MG, 38900-000, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Álvaro C Nunes
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
24
|
Utilizing the Gastrointestinal Microbiota to Modulate Cattle Health through the Microbiome-Gut-Organ Axes. Microorganisms 2022; 10:microorganisms10071391. [PMID: 35889109 PMCID: PMC9324549 DOI: 10.3390/microorganisms10071391] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
The microorganisms inhabiting the gastrointestinal tract (GIT) of ruminants have a mutualistic relationship with the host that influences the efficiency and health of the ruminants. The GIT microbiota interacts with the host immune system to influence not only the GIT, but other organs in the body as well. The objective of this review is to highlight the importance of the role the gastrointestinal microbiota plays in modulating the health of a host through communication with different organs in the body through the microbiome-gut-organ axes. Among other things, the GIT microbiota produces metabolites for the host and prevents the colonization of pathogens. In order to prevent dysbiosis of the GIT microbiota, gut microbial therapies can be utilized to re-introduce beneficial bacteria and regain homeostasis within the rumen environment and promote gastrointestinal health. Additionally, controlling GIT dysbiosis can aid the immune system in preventing disfunction in other organ systems in the body through the microbiome-gut-brain axis, the microbiome-gut-lung axis, the microbiome-gut-mammary axis, and the microbiome-gut-reproductive axis.
Collapse
|
25
|
Chen L, Liu X, Li Z, Wang J, Tian R, Zhang H. Integrated Analysis of Transcriptome mRNA and miRNA Profiles Reveals Self-Protective Mechanism of Bovine MECs Induced by LPS. Front Vet Sci 2022; 9:890043. [PMID: 35812870 PMCID: PMC9260119 DOI: 10.3389/fvets.2022.890043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022] Open
Abstract
Many studies have investigated the molecular crosstalk between mastitis-pathogens and cows by either miRNA or mRNA profiles. Here, we employed both miRNA and mRNA profiles to understand the mechanisms of the response of bovine mammary epithelial cells (bMECs) to lipopolysaccharide (LPS) by RNA-Seq. The total expression level of miRNAs increased while mRNAs reduced after LPS treatment. About 41 differentially expressed mRNAs and 45 differentially expressed miRNAs involved in inflammation were screened out. We found the NFκB-dependent chemokine, CXCL1, CXCL3, CXCL6, IL8, and CX3CL1 to be strongly induced. The anti-apoptosis was active because BCL2A1 and BIRC3 significantly increased with a higher expression. The effects of anti-microbe and inflammation were weakly activated because TNF, IL1, CCL20, CFB, S100A, MMP9, and NOS2A significantly increased but with a low expression, IL6 and β-defensin decreased. These activities were supervised by the NFKBIA to avoid excessive damage to bMECs. The bta-let-7a-5p, bta-miR-30a-5p, bta-miR-125b, and bta-miR-100 were essential to regulate infection process in bMECs after LPS induction. Moreover, the lactation potential of bMECs was undermined due to significantly downregulated SOSTDC1, WNT7B, MSX1, and bta-miR-2425-5p. In summary, bMECs may not be good at going head-to-head with the pathogens; they seem to be mainly charged with sending out signals for help and anti-apoptosis for maintaining lives after LPS induction.
Collapse
Affiliation(s)
- Ling Chen
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- *Correspondence: Xiaolin Liu
| | - Zhixiong Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Jian Wang
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Rongfu Tian
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Huilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
26
|
Winther AR, Narvhus JA, Smistad M, da Silva Duarte V, Bombelli A, Porcellato D. Longitudinal dynamics of the bovine udder microbiota. Anim Microbiome 2022; 4:26. [PMID: 35395785 PMCID: PMC8994269 DOI: 10.1186/s42523-022-00177-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the number of studies concerning microbiota of the intramammary environment has increased rapidly due to the development of high-throughput sequencing technologies that allow mapping of microbiota without culturing. This has revealed that an environment previously thought to be sterile in fact harbours a microbial community. Since this discovery, many studies have investigated the microbiota of different parts of the udder in various conditions. However, few studies have followed the changes that occur in the udder microbiota over time. In this study, the temporal dynamics of the udder microbiota of 10 cows, five with a low somatic cell count (SCC, SCC < 100,000 cells/mL) and five with a high SCC (SCC > 100,000 cells/mL), were followed over 5 months to gather insights into this knowledge gap. RESULTS Analysis of the temporal changes in the microbial composition of milk from udders with a low SCC revealed a dynamic and diverse microbiota. When an imbalance due to one dominating genus was recorded, the dominant genus quickly vanished, and the high diversity was restored. The genera dominating in the samples with a high SCC remained the dominant genera throughout the whole sampling period. These cows generally displayed a heightened SCC or an intramammary infection in at least one quarter though-out the sampling period. CONCLUSION Our results show that the bovine udder has a diverse microbiota, and that the composition and diversity of this community affects udder health with regards to SCC. Understanding what influences the composition and stability of this community has important implications for the understanding, control, and treatment of mastitis.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway.
| | - Judith A Narvhus
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Marit Smistad
- Norwegian Veterinary Institute, Oslo, Norway.,TINE SA, Oslo, Norway
| | - Vinicius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Alberto Bombelli
- Department of Agrotechnology and Food Science, Wageningen University and Research, Wageningen, Netherlands
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
27
|
Ruegg PL. The bovine milk microbiome - an evolving science. Domest Anim Endocrinol 2022; 79:106708. [PMID: 35038617 DOI: 10.1016/j.domaniend.2021.106708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
Improved access to genome based, culture independent methods has generated great interest in defining the bovine milk microbiome. Several comprehensive reviews of this subject have recently been published and the purpose of this short review is to consolidate current understanding of the relevance and biological significance of this emerging topic. In contrast to mucosal organs that contain rich and well-characterized culturable and nonculturable microbial communities, milk obtained from the healthy bovine mammary gland usually contains few or no viable bacteria. The low bacterial biomass of milk has created methodological challenges that have resulted in considerable variability in results of studies that have used genomic methods to define the microbiota of milk obtained from healthy or diseased mammary glands. While genomes from several bacterial genera are routinely identified from samples of milk, teat skin and the teat canal, the viability, origin, and function of these organisms is uncertain as environmental factors have been shown to strongly influence the composition of these bacterial populations. Possible sources of microbial DNA include bacteria introduced from skin or the environment, bacteria trapped in teat canal keratin or bacteria engulfed by phagocytes. Researchers have not achieved consensus about key concepts such as the presence of a core commensal milk microbiome or dysbiosis as part of a causal pathway disrupting udder health. Understanding of the bovine milk microbiome has been greatly impeded by a lack of standardized methods used to collect, process, and assess bovine milk samples. Sample collection is a critical first step that will determine the validity of results. To minimize contamination with external sources of bacterial DNA, teat sanitation methods used for collection of milk samples that will be subjected to extraction and amplification of bacteria DNA should far exceed aseptic techniques used for collection of milk samples that will be submitted for microbiological culture. A number of laboratory issues have yet to be resolved. Contamination of low biomass samples with bacterial DNA from laboratory reagents is a well-known issue that has affected results of studies using bovine milk samples and results of sequencing of negative controls should always be reported. Replication of experiments has rarely been performed and consistency in results are lacking. While progress has been made, standardization of methods and replication using samples originating from differing farm conditions are critically needed to solidify knowledge of this emerging topic.
Collapse
Affiliation(s)
- Pamela L Ruegg
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, E. Lansing, MI 48824, USA.
| |
Collapse
|
28
|
Amat S, Holman DB, Schmidt K, McCarthy KL, Dorsam ST, Ward AK, Borowicz PP, Reynolds LP, Caton JS, Sedivec KK, Dahlen CR. Characterization of the Microbiota Associated With 12-Week-Old Bovine Fetuses Exposed to Divergent in utero Nutrition. Front Microbiol 2022; 12:771832. [PMID: 35126326 PMCID: PMC8811194 DOI: 10.3389/fmicb.2021.771832] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
A recent study reported the existence of a diverse microbiota in 5-to-7-month-old calf fetuses, suggesting that colonization of the bovine gut with so-called “pioneer” microbiota may begin during mid-gestation. In the present study, we investigated 1) the presence of microbiota in bovine fetuses at early gestation (12 weeks), and 2) whether the fetal microbiota is influenced by the maternal rate of gain or dietary supplementation with vitamins and minerals (VTM) during early gestation. Amniotic and allantoic fluids, and intestinal and placental (cotyledon) tissue samples obtained from fetuses (n = 33) on day 83 of gestation were processed for the assessment of fetal microbiota using 16S rRNA gene sequencing. The sequencing results revealed that a diverse and complex microbial community was present in each of these fetal compartments evaluated. Allantoic and amniotic fluids, and fetal intestinal and placenta microbiota each had distinctly different (0.047 ≥ R2 ≥ 0.019, P ≤ 0.031) microbial community structures. Allantoic fluid had a greater (P < 0.05) microbial richness (number of OTUs) (Mean 122) compared to amniotic fluid (84), intestine (63), and placenta (66). Microbial diversity (Shannon index) was similar for the intestinal and placental samples, and both were less diverse compared with fetal fluid microbiota (P < 0.05). Thirty-nine different archaeal and bacterial phyla were detected across all fetal samples, with Proteobacteria (55%), Firmicutes (16.2%), Acidobacteriota (13.6%), and Bacteroidota (5%) predominating. Among the 20 most relatively abundant bacterial genera, Acidovorax, Acinetobacter, Brucella, Corynebacterium, Enterococcus, Exiguobacterium, and Stenotrophomonas differed by fetal sample type (P < 0.05). A total of 55 taxa were shared among the four different microbial communities. qPCR of bacteria in the intestine and placenta samples as well as scanning electron microscopy imaging of fetal fluids provided additional evidence for the presence of a microbiota in these samples. Minor effects of maternal rate of gain and VTM supplementation, and their interactions on microbial richness and composition were detected. Overall, the results of this study indicate that colonization with pioneer microbiota may occur during early gestation in bovine fetuses, and that the maternal nutritional regime during gestation may influence the early fetal microbiota.
Collapse
Affiliation(s)
- Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
- *Correspondence: Samat Amat,
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Kacie L. McCarthy
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Sheri T. Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Alison K. Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Pawel P. Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
29
|
Qiu M, Feng L, Yu Z, Zhao C, Gao S, Bao L, Zhang N, Fu Y, Hu X. Probiotic Enterococcus mundtii H81 inhibits the NF-κB signaling pathway to ameliorate Staphylococcus aureus-induced mastitis in mice. Microb Pathog 2022; 164:105414. [DOI: 10.1016/j.micpath.2022.105414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
30
|
Vasquez A, Nydam D, Foditsch C, Warnick L, Wolfe C, Doster E, Morley PS. Characterization and comparison of the microbiomes and resistomes of colostrum from selectively treated dry cows. J Dairy Sci 2021; 105:637-653. [PMID: 34763917 DOI: 10.3168/jds.2021-20675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Professionals in animal agriculture promote prudent use of antimicrobials to address public and animal health concerns, such as reduction of antimicrobial residues and antimicrobial resistance (AMR) in products. Few studies evaluate the effect of selective dry-cow therapy on preservation of the milk microbiome or the profile of AMR genes (the resistome) present at freshening. Our objectives were to characterize and compare the microbiomes and resistomes in the colostrum of cows with low somatic cell count that were treated or not treated with intramammary cephapirin benzathine at dry-off. From a larger parent study, cows on a New York dairy farm eligible for dry-off and with histories of somatic cell counts ≤200,000 cells/mL were enrolled to this study (n = 307). Cows were randomly assigned to receive an intramammary antimicrobial and external teat sealant (ABXTS) or sealant only (TS) at dry-off. Composite colostrum samples taken within 4 h of freshening, and quarter milk samples taken at 1 to 7 d in milk were subjected to aerobic culture. The DNA extraction was performed on colostrum from cows with culture-negative samples (ABXTS = 43; TS = 33). The DNA from cows of the same treatment group and parity were pooled (26 pools; ABXTS = 12; TS = 14) for 16S rRNA metagenomic sequencing. Separately, the resistome was captured using a custom RNA bait library for target-enriched sequencing. Sequencing reads were aligned to taxonomic and AMR databases to characterize the microbiome and resistome, respectively. The R statistical program was used to tabulate abundances and to analyze differences in diversity measures and in composition between treatment groups. In the microbiome, the most abundant phyla were Firmicutes (68%), Proteobacteria (23%), Actinobacteria (4%), and Bacteroidetes (3%). Shannon and richness diversity means were 0.93 and 14.7 for ABXTS and 0.94 and 13.1 for TS, respectively. Using analysis of similarities (ANOSIM), overall microbiome composition was found to be similar between treatment groups at the phylum (ANOSIM R = 0.005), class (ANOSIM R = 0.04), and order (ANOSIM R = -0.04) levels. In the resistome, we identified AMR gene accessions associated with 14 unique mechanisms of resistance across 9 different drug classes in 14 samples (TS = 9, ABXTS = 5). The majority of reads aligned to gene accessions that confer resistance to aminoglycoside (TS = ABXTS each 35% abundance), tetracycline (TS = 22%, ABXTS = 54%), and β-lactam classes (TS = 15%, ABXTS = 12%). Shannon diversity means for AMR class and mechanism, respectively, were 0.66 and 0.69 for TS and 0.19 and 0.19 for ABXTS. Resistome richness diversity means for class and mechanism were 3.1 and 3.4 for TS and 1.4 and 1.4 for ABXTS. Finally, resistome composition was similar between groups at the class (ANOSIM R = -0.20) and mechanism levels (ANOSIM R = 0.01). Although no critical differences were found between treatment groups regarding their microbiome or resistome composition in this study, a larger sample size, deeper sequencing, and additional methodology is needed to identify more subtle differences, such as between lower-abundance features.
Collapse
Affiliation(s)
- Amy Vasquez
- Department of Population Medicine, Cornell College of Veterinary Medicine, Ithaca, NY 14853.
| | - Daryl Nydam
- Department of Population Medicine, Cornell College of Veterinary Medicine, Ithaca, NY 14853
| | - Carla Foditsch
- Department of Population Medicine, Cornell College of Veterinary Medicine, Ithaca, NY 14853
| | - Lorin Warnick
- Department of Population Medicine, Cornell College of Veterinary Medicine, Ithaca, NY 14853
| | - Cory Wolfe
- Veterinary Education, Research, and Outreach Program, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon 79015
| | - Enrique Doster
- Veterinary Education, Research, and Outreach Program, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon 79015; Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80521
| | - Paul S Morley
- Veterinary Education, Research, and Outreach Program, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon 79015
| |
Collapse
|
31
|
Beuckelaere L, De Visscher A, Souza FN, Meyer E, Haesebrouck F, Piepers S, De Vliegher S. Colonization and local host response following intramammary Staphylococcus chromogenes challenge in dry cows. Vet Res 2021; 52:137. [PMID: 34711282 PMCID: PMC8554945 DOI: 10.1186/s13567-021-01007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Although extensive research has been performed on bovine non-aureus staphylococci (NAS), several aspects such as bacteria-host interaction remain largely unstudied. Moreover, only a few mastitis pathogen challenge studies in cows have been conducted in the dry period, an important period that allows intramammary infection (IMI) to cure and new IMI to occur. We challenged 16 quarters of 4 Holstein Friesian cows at dry off with 100; 100 000 or 10 000 000 CFU of the udder-adapted S. chromogenes IM strain. Four quarters from one cow served as negative controls. Internally sealed quarters remained untouched, whereas non-sealed quarters were sampled 3 times during the dry period. After parturition, colostrum and daily milk samples were taken during the first week of lactation of all quarters. In total, 8 quarters appeared to be colonized, since S. chromogenes IM was recovered at least once during the experiment, as substantiated using Multilocus Sequence Typing. S. chromogenes IM shedding was highest in dry quarters inoculated with 10 000 000 CFU. Colonized quarters had the highest quarter somatic cell count (qSCC) in early lactation. Inoculated quarters (both colonized and non-colonized) had lower IL-6 and IL-10 concentrations in the dry period, whilst IFN-γ levels tended to be higher in colonized quarters compared to non-inoculated quarters. Also, IgG2 levels were higher in inoculated compared to non-inoculated quarters and the IgG2/IgG1 ratio was on average above 1. To conclude, we showed that dry quarters can be colonized with S. chromogenes IM, resulting in a shift towards a Th1 response in late gestation and early lactation characterised by an increased IgG2 concentration. However, further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Lisa Beuckelaere
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Anneleen De Visscher
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science, Burgemeester Van Gansberghelaan 115 bus 1, 9820, Merelbeke, Belgium
| | - Fernando Nogueira Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo, 05508-270, Brazil.,Programa de Pós-Graduação Em Ciência Animal, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, 58397-000, Brazil
| | - Evelyne Meyer
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sofie Piepers
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sarne De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
32
|
Jing-Wei Z, Yi-Yuan S, Xin L, Hua Z, Hui N, Luo-Yun F, Ben-Hai X, Jin-Jin T, Lin-Shu J. Microbiome and Metabolic Changes of Milk in Response to Dietary Supplementation With Bamboo Leaf Extract in Dairy Cows. Front Nutr 2021; 8:723446. [PMID: 34595199 PMCID: PMC8476867 DOI: 10.3389/fnut.2021.723446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 01/11/2023] Open
Abstract
Bamboo leaf extracts, with high content of flavonoids and diverse biological activities, are used in animal husbandry. Increasing evidence has suggested an association between the bovine physiology and the udder microbiome, yet whether the microbiota and the metabolites of milk affect the mammary gland health or the milk quality remains unknown. In this study, we provide a potential mechanism for the effects of bamboo leaf extracts on milk microbiota and metabolites of dairy cows. Twelve multiparous lactating Chinese Holstein dairy cows were randomly separated into two groups: basal diet as the control group (CON, n = 6) and a diet supplemented with 30 g/d bamboo leaf extract per head as antioxidants of bamboo leaf (AOB) group (AOB, n = 6) for 7 weeks (2-week adaptation, 5-week treatment). Milk samples were collected at the end of the trial (week 7) for microbiome and associated metabolic analysis by 16S ribosomal RNA (rRNA) gene sequencing and liquid chromatography-mass spectrometry (LC-MS). The results showed that the milk protein was increased (p < 0.0001) and somatic cell count (SCC) showed a tendency to decrease (p = 0.09) with AOB supplementation. The relative abundance of Firmicutes was significantly decreased (p = 0.04) while a higher relative abundance of Probacteria (p = 0.01) was seen in the group receiving AOB compared to the CON group. The AOB group had a significantly lower relative abundance of Corynebacterium_1 (p = 0.01), Aerococcus (p = 0.01), and Staphylococcus (p = 0.02). There were 64 different types of metabolites significantly upregulated, namely, glycerophospholipids and fatty acyls, and 15 significantly downregulated metabolites, such as moracetin, sphinganine, and lactulose in the AOB group. Metabolic pathway analysis of the different metabolites revealed that the sphingolipid signaling pathway was significantly enriched, together with glycerophospholipid metabolism, sphingolipid metabolism, and necroptosis in response to AOB supplementation. Several typical metabolites were highly correlated with specific ruminal bacteria, demonstrating a functional correlation between the milk microbiome and the associated metabolites. These insights into the complex mechanism and corresponding biological responses highlight the potential function of AOB, warranting further investigation into the regulatory role of specific pathways in the metabolism.
Collapse
Affiliation(s)
- Zhan Jing-Wei
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Shen Yi-Yuan
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Li Xin
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Zhang Hua
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Niu Hui
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Fang Luo-Yun
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Xiong Ben-Hai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tong Jin-Jin
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Jiang Lin-Shu
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
33
|
Toquet M, Gómez-Martín Á, Bataller E. Review of the bacterial composition of healthy milk, mastitis milk and colostrum in small ruminants. Res Vet Sci 2021; 140:1-5. [PMID: 34358776 DOI: 10.1016/j.rvsc.2021.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 11/18/2022]
Abstract
Bacterial infections are the cause of many reproductive disorders of economic importance, such as mastitis, in livestock. Unfortunately, very little is known about the microbiota and the changes occurring during an infection state in small ruminants. The sequencing of regions of the 16S rRNA gene, is the useful tool to describe the whole dairy microbiome. Using this technique, studies have identified various phyla such as Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Fusobacteria and Cyanobacteria; and also several genera from raw milk of small ruminants. Nevertheless, there does not seem to be a consensus on the predominant genera nor phyla, even within the same breed. There is a lack of information about the mammary microflora in meat-oriented breeds, and about the microflora of colostrum and mastitis milk. Further studies comparing the microbiota between artificial and natural lactations and between healthy and mastitis milk are necessary. Considering the concerns arising from the use overuse of antibiotic therapy in Veterinary Medicine, it would be interesting to develop alternative strategies for the control of mastitis. Probiotics, such as lactic acid bacteria (LAB), have proven to be an interesting antibiotic-free strategy. Therefore, their presence in the dairy microflora of small ruminants and their interactions with other bacteria, such as mastitis-causing pathogens, should be scrutinized, given that the efficacy of probiotics increase when the bacterial strains used are specific to their host.
Collapse
Affiliation(s)
- Marion Toquet
- Grupo de investigación Agentes Microbiológicos Asociados a la Reproduccion (ProVaginBIO), Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Ángel Gómez-Martín
- Grupo de investigación Agentes Microbiológicos Asociados a la Reproduccion (ProVaginBIO), Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Esther Bataller
- Grupo de investigación Agentes Microbiológicos Asociados a la Reproduccion (ProVaginBIO), Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
34
|
Ma T, Shen L, Wen Q, Lv R, Hou Q, Kwok LY, Sun Z, Zhang H. PacBio sequencing revealed variation in the microbiota diversity, species richness and composition between milk collected from healthy and mastitis cows. MICROBIOLOGY-SGM 2021; 167. [PMID: 34292863 DOI: 10.1099/mic.0.000968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mastitis is the economically most important disease of dairy cows. This study used PacBio single-molecule real-time sequencing technology to sequence the full-length 16S rRNAs from 27 milk samples (18 from mastitis and nine from healthy cows; the cows were at different stages of lactation). We observed that healthy or late stage milk microbiota had significantly higher microbial diversity and richness. The community composition of the microbiota of different groups also varied greatly. The healthy cow milk microbiota was predominantly comprised of Lactococcus lactis, Acinetobacter johnsonii, and Bacteroides dorei, while the milk from mastitis cows was predominantly comprised of Bacillus cereus. The prevalence of L. lactis and B. cereus in the milk samples was confirmed by digital droplets PCR. Differences in the milk microbiota diversity and composition could suggest an important role for some these microbes in protecting the host from mastitis while others associated with mastitis. The results of our research serve as useful references for designing strategies to prevent and treat mastitis.
Collapse
Affiliation(s)
- Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Lingling Shen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Qiannan Wen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Ruirui Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Lai Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| |
Collapse
|
35
|
Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, Pathak M, Karthik K, Khurana SK, Singh R, Puvvala B, Amarpal, Singh R, Singh KP, Chaicumpa W. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet Q 2021; 41:107-136. [PMID: 33509059 PMCID: PMC7906113 DOI: 10.1080/01652176.2021.1882713] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mastitis (intramammary inflammation) caused by infectious pathogens is still considered a devastating condition of dairy animals affecting animal welfare as well as economically incurring huge losses to the dairy industry by means of decreased production performance and increased culling rates. Bovine mastitis is the inflammation of the mammary glands/udder of bovines, caused by bacterial pathogens, in most cases. Routine diagnosis is based on clinical and subclinical forms of the disease. This underlines the significance of early and rapid identification/detection of etiological agents at the farm level, for which several diagnostic techniques have been developed. Therapeutic regimens such as antibiotics, immunotherapy, bacteriocins, bacteriophages, antimicrobial peptides, probiotics, stem cell therapy, native secretory factors, nutritional, dry cow and lactation therapy, genetic selection, herbs, and nanoparticle technology-based therapy have been evaluated for their efficacy in the treatment of mastitis. Even though several strategies have been developed over the years for the purpose of managing both clinical and subclinical forms of mastitis, all of them lacked the efficacy to eliminate the associated etiological agent when used as a monotherapy. Further, research has to be directed towards the development of new therapeutic agents/techniques that can both replace conventional techniques and also solve the problem of emerging antibiotic resistance. The objective of the present review is to describe the etiological agents, pathogenesis, and diagnosis in brief along with an extensive discussion on the advances in the treatment and management of mastitis, which would help safeguard the health of dairy animals.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | | | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Bhavani Puvvala
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Barlow J. Letter to the Editor: Comments on “Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective” by Maity and Ambatipudi. FEMS Microbiol Ecol 2021; 97:6294905. [PMID: 34100913 DOI: 10.1093/femsec/fiab078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- John Barlow
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT. United States
| |
Collapse
|
37
|
Rainard P. Letter to the Editor: Comments on “Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective” by Maity and Ambatipudi. FEMS Microbiol Ecol 2021; 97:6294903. [PMID: 34100928 DOI: 10.1093/femsec/fiab077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 01/29/2023] Open
Affiliation(s)
- Pascal Rainard
- INRAE, Université de Tours, UMR ISP, F-37380, Nouzilly, France
| |
Collapse
|
38
|
Potential factors involved in the early pathogenesis of Streptococcus uberis mastitis: a review. Folia Microbiol (Praha) 2021; 66:509-523. [PMID: 34085166 DOI: 10.1007/s12223-021-00879-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Bovine mastitis is an inflammation of the mammary gland, which could be the result of allergy, physical trauma, or invasion by pathogens as Streptococcus uberis. This pathogen is an environmental pathogen associated with subclinical and clinical intramammary infection (IMI) in both lactating and non-lactating cows, which can persist in the udder and cause a chronic infection in the mammary gland. In spite of the important economic losses and increased prevalence caused by S. uberis mastitis, virulence factors involved in bacterial colonization of mammary glands and the pathogenic mechanisms are not yet clear. In the last 30 years, several studies have defined adherence and internalization of S. uberis as the early stages in IMI. S. uberis adheres to and invades into mammary gland cells, and this ability has been observed in in vitro assays. Until now, these abilities have not been determined in vivo challenges since they have been difficult to study. Bacterial surface proteins are able to bind to extracellular matrix protein components such as fibronectin, collagen and laminin, as well as proteins in milk. These proteins play a role in adhesion to host cells and have been denominated microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). This article aims to summarize our current knowledge on the most relevant properties of the potential factors involved in the early pathogenesis of S. uberis mastitis.
Collapse
|
39
|
Schrag NFD, Godden SM, Apley MD, Singer RS, Lubbers BV. Antimicrobial use quantification in adult dairy cows - Part 3 - Use measured by standardized regimens and grams on 29 dairies in the United States. Zoonoses Public Health 2021; 67 Suppl 1:82-93. [PMID: 33201606 DOI: 10.1111/zph.12773] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
This study describes antimicrobial use in terms of standardized regimens per cow year (REG/CY) and grams per cow year (GMS/CY) for 29 dairies in the United States during the years 2016 and 2017. To explore potential priorities for antimicrobial stewardship programs, these measures were stratified by both disease syndrome and antimicrobial class. Potential confounders of use measurements are discussed and challenges for measure interpretation are identified. When measured as REG/CY, the results indicate that mastitis is the disease syndrome with the greatest contribution to overall antimicrobial use. However, when GMS/CY is measured, metritis, lameness and unknown disease syndromes are also significant contributors. When use is stratified by antimicrobial class, measures of REG/CY indicate the greatest magnitude of use is the cephalosporin class. However, when measures of GMS/CY are stratified by drug class, use within the penicillin class contributes more than any other single class. These differences highlight the need for a more complete understanding of the relationship between antimicrobial use measures and their relationship to antimicrobial resistance selection pressure.
Collapse
Affiliation(s)
- Nora F D Schrag
- College of Veterinary Medicine, Department of Clinical Sciences Kansas State University, Manhattan, KS, USA
| | - Sandra M Godden
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Michael D Apley
- College of Veterinary Medicine, Department of Clinical Sciences Kansas State University, Manhattan, KS, USA
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA.,Mindwalk Consulting Group, Falcon Heights, MN, USA
| | - Brian V Lubbers
- College of Veterinary Medicine, Department of Clinical Sciences Kansas State University, Manhattan, KS, USA
| |
Collapse
|
40
|
Pirard B, Crèvecoeur S, Fall PA, Lausberg P, Taminiau B, Daube G. Potential resident bacterial microbiota in udder tissues of culled cows sampled in abattoir. Res Vet Sci 2021; 136:369-372. [PMID: 33774534 DOI: 10.1016/j.rvsc.2021.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
While mammary gland tissues (MGTs) are difficult to sample without risks for cow's health or milk production, milk analysis are used in routine to assess dairy cow udder's health. This study aimed to identify, quantify, compare the milk and MGTs microbiota of macroscopically healthy dairy bovine mammary glands (MG) in order to evaluate their degree of similarity. We harvested 13 couples of milk and MGTs samples, originated from the same quarter at culling. 16S rDNA Amplicon Sequencing was performed, showing Corynebacterium as the main bacterial genus in both types of samples but generally found in the milk in higher proportions than in tissues. Species evenness was higher in MGTs while species richness was higher in milk samples. Beta diversity was significantly different between both matrices suggesting the presence of a resident microbiota in MGTs of dairy cows at time of culling partially reflected by the milk microbiota from the same quarter.
Collapse
Affiliation(s)
- Barbara Pirard
- Fundamental and Applied Research for Animals & Health (FARAH), Faculté de Médecine Vétérinaire, Département des Sciences des Denrées Alimentaires, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Sébastien Crèvecoeur
- Fundamental and Applied Research for Animals & Health (FARAH), Faculté de Médecine Vétérinaire, Département des Sciences des Denrées Alimentaires, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| | | | | | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Faculté de Médecine Vétérinaire, Département des Sciences des Denrées Alimentaires, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Faculté de Médecine Vétérinaire, Département des Sciences des Denrées Alimentaires, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| |
Collapse
|
41
|
Zigo F, Vasil' M, Ondrašovičová S, Výrostková J, Bujok J, Pecka-Kielb E. Maintaining Optimal Mammary Gland Health and Prevention of Mastitis. Front Vet Sci 2021; 8:607311. [PMID: 33681324 PMCID: PMC7927899 DOI: 10.3389/fvets.2021.607311] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In dairy industry, quality of produced milk must be more important than quantity without a high somatic cells count (SCC) or pathogens causing mastitis of dairy cows and consumer diseases. Preserving the good health of dairy cows is a daily challenge for all involved in primary milk production. Despite the increasing level of technological support and veterinary measures, inflammation of the mammary gland–mastitis, is still one of the main health problems and reasons for economic losses faced by cow farmers. The mammary gland of high-yielding dairy cows requires making the right decisions and enforcing the proper measures aimed at minimizing external and internal factors that increase the risk of intramammary infection. Due to the polyfactorial nature of mastitis related to its reduction, the effectiveness of commonly used antimastitis methods tends to be limited and therefore it is necessary to find the areas of risk in udder health programs and monitoring systems. Only by implementing of complete udder health programs should be accompanied by research efforts to further development these complete udder health control. The present review analyses the current knowledge dealing with damping and prevention of mastitis include SCC control, proper nutrition, housing and management, milking and drying as practiced in dairy farming conditions. This information may help to improve the health of the mammary gland and the welfare of the dairy cows as well as the production of safe milk for consumers.
Collapse
Affiliation(s)
- František Zigo
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Milan Vasil'
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Silvia Ondrašovičová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Jana Výrostková
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Jolanta Bujok
- Department of Animal Physiology and Biostructure, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Ewa Pecka-Kielb
- Department of Animal Physiology and Biostructure, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
42
|
A core microbiota dominates a rich microbial diversity in the bovine udder and may indicate presence of dysbiosis. Sci Rep 2020; 10:21608. [PMID: 33303769 PMCID: PMC7729973 DOI: 10.1038/s41598-020-77054-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
The importance of the microbiome for bovine udder health is not well explored and most of the knowledge originates from research on mastitis. Better understanding of the microbial diversity inside the healthy udder of lactating cows might help to reduce mastitis, use of antibiotics and improve animal welfare. In this study, we investigated the microbial diversity of over 400 quarter milk samples from 60 cows sampled from two farms and on two different occasions during the same lactation period. Microbiota analysis was performed using amplicon sequencing of the 16S rRNA gene and over 1000 isolates were identified using MALDI-TOF MS. We detected a high abundance of two bacterial families, Corynebacteriaceae and Staphylococcaceae, which accounted for almost 50% of the udder microbiota of healthy cows and were detected in all the cow udders and in more than 98% of quarter milk samples. A strong negative correlation between these bacterial families was detected indicating a possible competition. The overall composition of the udder microbiota was highly diverse and significantly different between cows and between quarter milk samples from the same cow. Furthermore, we introduced a novel definition of a dysbiotic quarter at individual cow level, by analyzing the milk microbiota, and a high frequency of dysbiotic quarter samples were detected distributed among the farms and the samples. These results emphasize the importance of deepening the studies of the bovine udder microbiome to elucidate its role in udder health.
Collapse
|
43
|
Abstract
AbstractWe have learned a lot about infections of the mammary gland of dairy cows from experimental investigations of the pathogenesis of the various diseases. The understanding gained has contributed to huge successes in reducing the prevalence of infection in properly managed dairy herds. Now descriptive studies using DNA technologies reject previous concepts of mammary gland sterility by default. Bacteria, at least markers of genes, of many genera are reported even from absolutely healthy mammary glands. This may be a technological artefact. No direct evidence exists because experimental studies of infection are no longer fashionable. A regeneration of the lost arts in the pathogenesis of infection is essential to separate truth from conjecture and deal with coming challenges from rapidly changing farm systems and the reduction in access to antimicrobial drugs. In this Opinion Paper I argue for a return to experimental approaches that construct hypotheses, and then test them, in intramammary disease research.
Collapse
|
44
|
|
45
|
Dahlberg J, Williams JE, McGuire MA, Peterson HK, Östensson K, Agenäs S, Dicksved J, Waller KP. Microbiota of bovine milk, teat skin, and teat canal: Similarity and variation due to sampling technique and milk fraction. J Dairy Sci 2020; 103:7322-7330. [PMID: 32534929 DOI: 10.3168/jds.2019-17783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/07/2020] [Indexed: 01/13/2023]
Abstract
The aim of this study was to evaluate the effect of sampling technique and milk fraction on bovine milk microbiota data and to compare the microbiota in milk to microbiota on the teat end and in the teat canal. Representative milk samples are highly important for assessment of bacteriological findings and microbiota in milk. Samples were obtained from 5 healthy lactating dairy cows at udder quarter level during 1 milking. Swab samples from the teat end and teat canal, and milk samples collected using different techniques and in different milk fractions were included. Milk was collected by hand stripping and through a teat canal cannula before and after machine milking, through a trans-teat wall needle aspirate after milking, and from udder quarter composite milk. The microbiota of the samples was analyzed with sequencing of the V1-V3 region of the 16S rRNA gene. In addition, somatic cell counts and bacterial cultivability were analyzed in the milk samples. Microbiota data were analyzed using multivariate methods, and differences between samples were tested using analysis of similarity (ANOSIM). Differences between samples were further explored via individual studies of the 10 most abundant genera. The microbiota on the teat end, in the teat canal, and in udder quarter composite milk, collected using a milking machine, differed in composition from the microbiota in milk collected directly from the udder quarter. No differences in milk microbiota composition were detected between hand-stripped milk samples, milk samples taken through a teat canal cannula, or milk samples taken as a trans-teat wall needle aspirate before or after milking. We conclude that for aseptic milk samples collected directly from the lactating udder quarter, sampling technique or milk fraction has minor effect on the microbiota composition.
Collapse
Affiliation(s)
- J Dahlberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - J E Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844
| | - M A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844
| | - H K Peterson
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844
| | - K Östensson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - S Agenäs
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - J Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - K Persson Waller
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 75189 Uppsala, Sweden
| |
Collapse
|
46
|
Maity S, Das D, Ambatipudi K. Quantitative alterations in bovine milk proteome from healthy, subclinical and clinical mastitis during S. aureus infection. J Proteomics 2020; 223:103815. [PMID: 32423885 DOI: 10.1016/j.jprot.2020.103815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Bovine mastitis, caused by Staphylococcus aureus, is a major impediment to milk production and lacks markers to indicate disease progression in cows and buffaloes. Thus, the focus of this study was to identify proteins marking the transition from subclinical to clinical mastitis. Whey proteins were isolated from 6 group's i.e. healthy, subclinical and clinical mastitis of Holstein Friesian cow and Murrah buffalo. Mass spectrometry and statistical analysis (ANOVA and t-tests) were performed on 12 biological samples each from cow and buffalo (4 per healthy, subclinical and clinical mastitis) resulting in a total of 24 proteome datasets. Collectively, 1479 proteins were identified of which significant proteins were shortlisted by a combination of fold change (≤ 0.5 or ≥ 2) and q < 0.05. Of these proteins, 128 and 163 indicated disease progression in cow and buffalo, respectively. Change in expression of haptoglobin and fibronectin from Holstein Friesian while spermadhesin and osteopontin from Murrah correlated with disease progression. Similarly, angiogenin and cofilin-1 were upregulated while ubiquitin family members were downregulated during disease transition. Subsequently, selected proteins (e.g. osteopontin and fibrinogen-α) were validated by Western blots. The results of this study provide deeper insights into whey proteome dynamics and signature patterns indicative of disease progression. BIOLOGICAL SIGNIFICANCE: Bovine mastitis is the most lethal infectious disease causing a huge economic loss in the dairy industry. In an attempt, to understand the dynamics of whey proteome in response to S. aureus infection, whey protein collected from healthy, subclinical and clinical mastitic HF and Mu were investigated. A total of 1479 proteins were identified, of which 128 and 163 had signature pattern in each stage indicative of the progression of the disease. The results of the present study provide a foundation to better understand the complexity of mastitis that will ultimately help facilitate early therapeutic and husbandry-based intervention to improve animal health and milk quality.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Debiprasanna Das
- Department of Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
47
|
Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. Composition and co-occurrence patterns of the microbiota of different niches of the bovine mammary gland: potential associations with mastitis susceptibility, udder inflammation, and teat-end hyperkeratosis. Anim Microbiome 2020; 2:11. [PMID: 33499931 PMCID: PMC7807822 DOI: 10.1186/s42523-020-00028-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Background Within complex microbial ecosystems, microbe-microbe interrelationships play crucial roles in determining functional properties such as metabolic potential, stability and colonization resistance. In dairy cows, microbes inhabiting different ecological niches of the udder may have the potential to interact with mastitis pathogens and therefore modulate susceptibility to intramammary infection. In the present study, we investigated the co-occurrence patterns of bacterial communities within and between different niches of the bovine mammary gland (teat canal vs. milk) in order to identify key bacterial taxa and evaluate their associations with udder health parameters and mastitis susceptibility. Results Overall, teat canal microbiota was more diverse, phylogenetically less dispersed, and compositionally distinct from milk microbiota. This, coupled with identification of a large number of bacterial taxa that were exclusive to the teat canal microbiota suggested that the intramammary ecosystem, represented by the milk microbiota, acts as a selective medium that disfavors the growth of certain environmental bacterial lineages. We further observed that the diversity of milk microbiota was negatively correlated with udder inflammation. By performing correlation network analysis, we identified two groups of phylogenetically distinct hub species that were either positively (unclassified Bacteroidaceae and Phascolarctobacterium) or negatively (Sphingobacterium) correlated with biodiversity metrics of the mammary gland (MG). The latter group of bacteria also showed positive associations with the future incidence of clinical mastitis. Conclusions Our results provide novel insights into the composition and structure of bacterial communities inhabiting different niches of the bovine MG. In particular, we identified hub species and candidate foundation taxa that were associated with the inflammatory status of the MG and/or future incidences of clinical mastitis. Further in vitro and in vivo interrogations of MG microbiota can shed light on different mechanisms by which commensal microbiota interact with mastitis pathogens and modulate udder homeostasis.
Collapse
Affiliation(s)
- Hooman Derakhshani
- Present Address: McMaster University, Faculty of Medicine, Hamilton, ON, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada. .,Present Address: Cargill, Animal Nutrition and Health Division, Cargill Health Technologies, Diamond V brand, Cedar Rapids, IA, USA.
| |
Collapse
|
48
|
Polveiro RC, Vidigal PMP, Mendes TADO, Yamatogi RS, Lima MC, Moreira MAS. Effects of enrofloxacin treatment on the bacterial microbiota of milk from goats with persistent mastitis. Sci Rep 2020; 10:4421. [PMID: 32157153 PMCID: PMC7064484 DOI: 10.1038/s41598-020-61407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance has become a major concern for human and animal health. As fluoroquinolones have been extensively used in human and veterinary medicine, there has also been the rapid emergence and spread of antimicrobial resistance around the world. Here, we analysed the microbiome of goat milk using samples from healthy goats and those diagnosed with persistent mastitis and treated using the antibiotic enrofloxacin with 16S rRNA amplicon sequencing. We selected a group of 11 goats and 22 samples of milk that did not respond clinically to enrofloxacin treatment. Milk samples were evaluated before and after treatment to verify changes of the microbiota; the three first lactating goats were selected from the healthy control group. The milk samples from the healthy control animals presented a larger abundance of different species of bacteria of the Staphylococcus genus, but a smaller number of different genera, which indicated a more specific niche of resident bacteria. The Firmicutes phylum was predominantly different between the studied groups. Samples from before-treatment animals had a higher number of new species than those from the control group, and after being treated again. These microbiota received new bacteria, increasing the differences in bacteria even more in relation to the control group. Genotypes such as Trueperella and Mannheimia, between other genera, had a high abundance in the samples from animals with persistent mastitis. The dysbiosis in this study, with marked evidence of a complex microbiota in activity in cases of the failure of antimicrobial treatment for persistent chronic mastitis, demonstrates a need to improve the accuracy of pathogen identification and increases concern regarding antibiotic treatments in milk production herds.
Collapse
Affiliation(s)
- Richard Costa Polveiro
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Center of Biological Sciences, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | - Ricardo Seiti Yamatogi
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Magna Coroa Lima
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Maria Aparecida Scatamburlo Moreira
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Federal University of Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
49
|
Wuytack A, De Visscher A, Piepers S, Haesebrouck F, De Vliegher S. Fecal non-aureus Staphylococci are a potential cause of bovine intramammary infection. Vet Res 2020; 51:32. [PMID: 32122405 PMCID: PMC7052973 DOI: 10.1186/s13567-020-00761-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/18/2020] [Indexed: 11/10/2022] Open
Abstract
The presence of non-aureus staphylococci (NAS) in bovine rectal feces has recently been described. Similar to other mastitis causing pathogens, shedding of NAS in the environment could result in intramammary infection. The objective of this study was to investigate whether NAS strains present in feces can cause intramammary infection, likely via teat apex colonization. During a cross-sectional study in 5 dairy herds, samples were collected from the habitats quarter milk, teat apices, and rectal feces from 25%, 10%, and 25% of the lactating cows, respectively, with a cow serving as the source of one type of sample only. Samples from clinical mastitis cases were continuously collected during the 1-year study period as well. The 6 most prevalent NAS species, Staphylococcus (S.) chromogenes, S. cohnii, S. devriesei, S. equorum, S. haemolyticus, and S. hominis, were further subtyped by random amplification of polymorphic deoxyribonucleic acid polymerase chain reaction (RAPD-PCR), when the same NAS species was present in the same herd in the three habitats. For S. chromogenes, S. cohnii, S. devriesei, and S. haemolyticus, the same RAPD type was found in rectal feces, teat apices, and quarter milk, indicating that fecal NAS can infect the mammary gland. For S. hominis and S. equorum, we were unable to confirm the presence of the same RAPD types in the three habitats.
Collapse
Affiliation(s)
- Ameline Wuytack
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Anneleen De Visscher
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science, Agricultural Engineering, Burg. Van Gansberghelaan 115 Bus 1, 9820, Merelbeke, Belgium
| | - Sofie Piepers
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Sarne De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
50
|
|