1
|
Chen WX, Yan QX, Zhong RZ, Tang SX, Loor JJ, Tan ZL. A type 2 immune circuit and arachidonic acid metabolism role in anti-nematode infection: evidence from transcriptome and targeted metabolome data in goat. Animal 2024; 18:101338. [PMID: 39405961 DOI: 10.1016/j.animal.2024.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 11/18/2024] Open
Abstract
The gastrointestinal nematode infection poses a covert threat to both humans and domestic animals worldwide, eliciting a type 2 immune response within the small intestine. Intestinal tuft cells detect the nematode and activated group 2 innate lymphoid cells. Tuft cell-derived leukotrienes (one of the metabolites of arachidonic acid) were found to drive rapid anti-helminth immunity, but it is still poorly understood whether the tuft cell-mediated type 2 immune circuit and arachidonic acid metabolism modulate anti-parasitic immunity in the gastric epithelium. This study was designed to evaluate the immunological responses of goats inoculated with or without H. contortus. Results showed that H. contortus infection induced a systemic type 2 immune response, characterised by lymphocyte proliferation and greater eosinophils both in peripheral blood and abomasal mucosa, as well as increased type 2 cytokines IL-4, IL-5, and IL-13. Infection of H. contortus altered the transcriptome of the abomasum epithelium, especially tuft cell-mediated circuit-key genes. The infection also influenced the abomasal microbiota, arachidonic acid metabolism and related lipid metabolites, accompanying with great increases in the secretion of leukotrienes and prostaglandins. These findings demonstrate the role of tuft cells mediated circuit in sensing H. contortus infection and immune activation, reveal the candidate function of arachidonic acid involved in anti-helminth immunity, and suggest novel strategies for the control of parasitic diseases in livestock and humans.
Collapse
Affiliation(s)
- W X Chen
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Q X Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, PR China.
| | - R Z Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - S X Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - J J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Z L Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| |
Collapse
|
2
|
Thorne JW, Redden R, Bowdridge SA, Becker GM, Khilji SF, Xie S, Bentley KL, Murdoch BM. Reducing fecal egg count through selective breeding alters dorper lamb response to Haemonchus contortus in an artificial challenge trial. Vet Parasitol 2024; 328:110177. [PMID: 38583271 DOI: 10.1016/j.vetpar.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Infection by gastrointestinal nematodes (GIN), particularly Haemonchus contortus, can be detrimental to sheep health and performance. Genetic susceptibility to GIN varies between breeds, with those lacking high levels of natural resistance often requiring frequent anthelmintic treatment when facing parasitic challenge. Genetic technology can serve as a tool to decrease GIN susceptibility via selection for sheep with reduced fecal egg count (FEC) estimated breeding values (EBVs). However, the physiological changes that result from implementation of this strategy are not well described. Additionally, there is a need for comparison of animals from recent selective breeding against breeds with inherent GIN resistance. In this study we administered a challenge of H. contortus to Dorper x White Dorper (DWD; n = 92) lambs that have been genetically selected for either low (DWD-) or high (DWD+) FEC EBVs and Barbados Blackbelly x Mouflon (BBM; n = 19) lambs from a genetically resistant breed backgrounds. Lamb FEC, packed-cell volume (PCV) and serum IgG were measured at intermittent levels over 5 weeks. At day 21 and day 35, the selectively bred DWD- had a lower mean FEC compared to DWD+, but were higher than BBM. Reductions in both PCV and serum IgG from initial day 0 levels were observed in DWD lambs, but not in BBM. Furthermore, from a subset of lambs (n = 24) harvested at day 21, DWD- only tended (p = 0.056) to have lower mean worm counts than DWD+, with BBM having the lowest mean worm count. Differentially expressed genes (DEGs) identified via RNA-sequencing of abomasal tissue at day 21 indicate a more pronounced Th2 immune response and more rapid worm expulsion occurred in iBBM than iDWD- and iDWD+ lambs. However, gene expression in DWD- suggests an association between reduced FEC EBV and gastric acid secretion and the ability to limit worm fecundity. Ultimately, selection of Dorper sheep for low FEC EBV can reduce susceptibility to GIN, but it will likely require multiple generations with this trait as a breeding priority before presenting a similar resistance level to Caribbean breeds.
Collapse
Affiliation(s)
- Jacob W Thorne
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, USA; Texas A&M AgriLife Research and Extension, San Angelo, TX, USA
| | - Reid Redden
- Texas A&M AgriLife Research and Extension, San Angelo, TX, USA
| | - Scott A Bowdridge
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Gabrielle M Becker
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Sarem F Khilji
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Shangqian Xie
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Kelsey L Bentley
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
3
|
Niciura SCM, Cardoso TF, Ibelli AMG, Okino CH, Andrade BG, Benavides MV, Chagas ACDS, Esteves SN, Minho AP, Regitano LCDA, Gondro C. Multi-omics data elucidate parasite-host-microbiota interactions and resistance to Haemonchus contortus in sheep. Parasit Vectors 2024; 17:102. [PMID: 38429820 PMCID: PMC10908167 DOI: 10.1186/s13071-024-06205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep.
Collapse
|
4
|
Stafuzza NB, Freitas ACD, Mioto MB, Silva RMDO, Fragomeni BDO, Pedrosa VB, Costa RLDD, Paz CCPD. Weighted single-step genome-wide association study and functional enrichment analyses for gastrointestinal nematode resistance traits in Santa Ines sheep. Vet Parasitol 2023; 323:110047. [PMID: 37857178 DOI: 10.1016/j.vetpar.2023.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
This study aimed to identify genomic regions, pathways, and putative candidate genes associated with resistance to gastrointestinal nematode in Santa Ines sheep. The phenotypic information comprised 5529 records from 1703 naturally infected animals. After genomic data quality control, 37,511 SNPs from 589 animals were available. The weighted single-step approach for genome-wide association study was performed to estimate the SNP effects and variances accounted by 10-SNP sliding windows. Confirming the polygenic nature of the studied traits, 20, 22, 21, and 19 genomic windows that explained more than 0.5% of the additive genetic variance were identified for fecal egg counts (FEC), Famacha© (FAM), packed cell volume (PCV), and total plasma protein (TPP), respectively. A total of 81, 122, 106, and 101 protein-coding genes were found in windows associated with FEC, FAM, PCV, and TPP, respectively. Several protein-coding genes related to the immune system and inflammatory response functions were identified within those genomic regions, such as ADCY9, ADRB2, BRAF, CADM1, CCL20, CD70, CREBBP, FNBP1, HTR4, IL16, IL22, IL26, MAPK8, NDFIP1, NLRC3, PAK5, PLCB1, PLCB4, ROCK1, TEK, TNFRSF12A, and VAV1. Functional enrichment analysis by DAVID tool also revealed many significant (P < 0.05) pathways and Gene Ontology terms that could be related to resistance to gastrointestinal nematode in Santa Ines sheep, such as chemokine signaling pathway (oas04062), cAMP signaling pathway (oas04024), cGMP-PKG signaling pathway (Oas04022), platelet activation (Oas04611), Rap1 signaling pathway (oas04015), and oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen (GO:0016705). These results contribute to improving the knowledge of the genetic architecture of resistance to gastrointestinal nematode in Santa Ines sheep.
Collapse
Affiliation(s)
- Nedenia Bonvino Stafuzza
- Sustainable Livestock Research Center, Animal Science Institute, 15130-000 São José do Rio Preto, SP, Brazil.
| | - Ana Claudia de Freitas
- São Paulo Agency of Agribusiness and Technology, Animal Science Institute, 13380-011 Nova Odessa, SP, Brazil; Agricultural Research Agency of the State of Minas Gerais, 38709-899 Patos de Minas, MG, Brazil
| | - Marina B Mioto
- Sustainable Livestock Research Center, Animal Science Institute, 15130-000 São José do Rio Preto, SP, Brazil
| | | | | | - Victor Breno Pedrosa
- Department of Animal Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Ricardo Lopes Dias da Costa
- São Paulo Agency of Agribusiness and Technology, Animal Science Institute, 13380-011 Nova Odessa, SP, Brazil
| | | |
Collapse
|
5
|
Pérez-Hernández T, Hernández JN, Machín C, McNeilly TN, Nisbet AJ, Matthews JB, Burgess STG, González JF. Exploring the transcriptomic changes underlying recombinant vaccine efficacy against Teladorsagia circumcincta in 3-month-old lambs. Vet Parasitol 2023; 320:109960. [PMID: 37269732 DOI: 10.1016/j.vetpar.2023.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Teladorsagia circumcincta is an abomasal parasitic nematode that can cause serious issues in small ruminant production, which are aggravated by drug resistance. Vaccines have been suggested as a feasible, long-lasting alternative for control since adaptation to the host's immune mechanisms by helminths develops at a much slower pace than anthelmintic resistance. Recently, a T. circumcincta recombinant subunit vaccine yielded over a 60% reduction in egg excretion and worm burden and induced strong humoral and cellular anti-helminth responses in vaccinated 3-month-old Canaria Hair Breed (CHB) lambs, but Canaria Sheep (CS) of a similar age were not protected by the vaccine. Here, we compared the transcriptomic profiles in the abomasal lymph nodes of such 3-month-old CHB and CS vaccinates 40 days after infection with T. circumcincta to understand differences in responsiveness at the molecular level. In the CS, differentially expressed genes (DEG) identified were related to general immunity processes such as antigen presentation or antimicrobial proteins and down-regulation of inflammation and immune response through regulatory T cell-associated genes. However, upregulated genes in CHB vaccinates were associated with type-2 oriented immune responses, i.e., immunoglobulin production, activation of eosinophils, as well as tissue structure and wound repair-related genes and protein metabolism pathways such as DNA and RNA processing. These results highlight potentially more optimal timing and orientation of immune responses in CHB sheep compared to CS associated with vaccine-induced protection. The data obtained in this study thus deepens our understanding of variations in responsiveness to vaccination in young lamb and provides insights for vaccine refinement strategies.
Collapse
Affiliation(s)
- Tara Pérez-Hernández
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain
| | - Julia N Hernández
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain.
| | - Cynthia Machín
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain
| | | | | | | | | | - Jorge F González
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain
| |
Collapse
|
6
|
Farmers' Views and Tools Compared with Laboratory Evaluations of Parasites of Meat Goats in French West Indies. Animals (Basel) 2023; 13:ani13030422. [PMID: 36766311 PMCID: PMC9913335 DOI: 10.3390/ani13030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Gastrointestinal nematodes (GINs) are a major health problem in tropical goat husbandry. The control of GIN has been nearly exclusively reliant on the use of anthelmintic treatments. Their wide use has provoked the appearance and diffusion of anthelmintic resistance. Therefore, there is a need to use anthelmintics only when they are really needed. This strategy of targeted selective treatment (TST) has been recommended. The selection of animals to be treated has been based either on the objective measures of GIN intensity (fecal nematode egg counts) performed in the laboratory or on indirect assessment such as anemia (FAMACHA©), diarrhea score or weight gains, particularly in sheep. The roughness of hair has also been proposed in goats. These indicators can be handled by the farmer. Their opinion on the importance of GINs, and the indicators that they are ready to accept and use have very rarely been studied. Goat for meat production is important in the French West Indies (especially in Guadeloupe) and GIN infection may significantly alter this production. Eighteen farmers participated in semi-directive interviews in order to appreciate their relation to goat GIN infection and the solutions they considered. Seventeen farms were investigated for fecal nematode egg counts, FAMACHA©, body score, and roughness of hair. The average infection by GINs was high (average fecal egg count 1562 and standard deviation 2028) with a wide range from one farm to another (from 0 to 25,000 eggs of GIN per gram of feces). The Haemonchus genera was predominant (54%), followed by Trichostrongylus (37%) and Oesophagostomum (9%). Young goats were less infected than adult goats since they were not yet grazing; males were more infected than females; and the Creole breed was more infected than the other breeds. Among the farming types, the professional ones were less infected compared with the traditional or mixed agriculture and husbandry farms. Those using targeted selective treatment did not have a significantly higher GIN infection than those treating the whole herd. Most of the characteristics were related and multivariate analysis could not match the intensity of GIN infection with any parameter. The frequency of anthelmintic treatments was negatively related to the use of body score, FAMACHA©, and hair roughness. The use of semi-directive interviews provided a wider understanding of the strategies and problems of farmers. The farmers valued their animals very much and diseases, in general, were a preoccupation, whereas parasites were not a major issue for traditional farmers. This is due to the important use of indicators and the belief in their value that gives comfort to the farmers that the parasites are being controlled. The extension services have well diffused the practice of indicators to the goat farmers of Guadeloupe, with some depending less on anthelmintics to control the gastrointestinal nematodes by using targeted selective treatments.
Collapse
|
7
|
Variability in the Response against Teladorsagia circumcincta in Lambs of Two Canarian Sheep Breeds. Int J Mol Sci 2022; 24:ijms24010029. [PMID: 36613497 PMCID: PMC9820046 DOI: 10.3390/ijms24010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The increasing resistance to anthelmintics has necessitated the exploration of alternative control strategies of gastrointestinal nematode (GIN) infections. A sustainable option is genetic selection based on differences in susceptibility to GIN infection between and within breeds of sheep. Here, three-month-old Canaria Hair breed (GIN-resistant) and Canaria Sheep breed (GIN-susceptible) showed no significant between-breed differences after trickle infection with Teladorsagia circumcincta, whereas considerable individual variability was found in both breeds. Next, data from lambs of both breeds were used to explore the relationships between parasitological variables and T. circumcincta-specific IgA levels, local immune cell populations, and abomasal lymph node gene expression to understand the possible mechanisms underlying resistance. Mucosal IgA levels as well as numbers of globular leukocytes and MHC-II+ cells were associated with protection. Analysis of lymph node gene expression revealed the associations between lower parasite numbers and cumulative fecal egg counts and several immune pathways, such as leukocyte cell adhesion, activation and differentiation of T cells, in particular CD4+ and IL-4 production. The data obtained here may inform on the relationship between phenotypic resistance variability and protective responses at the humoral, cellular, and transcriptomic levels, thus contributing to identifying immune responses in young lambs that could be used as markers for selection.
Collapse
|
8
|
The amino acid profile of Camelina sativa seeds correlates with the strongest immune response in dairy ewes. Animal 2022; 16:100621. [DOI: 10.1016/j.animal.2022.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
|
9
|
Wen Z, Zhang Z, Aimulajiang K, Aleem MT, Feng J, Liang M, Lu M, Xu L, Song X, Li X, Yan R. Histidine acid phosphatase domain-containing protein from Haemonchus contortus is a stimulatory antigen for the Th1 immune response of goat PBMCs. Parasit Vectors 2022; 15:282. [PMID: 35933400 PMCID: PMC9356432 DOI: 10.1186/s13071-022-05411-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Histidine acid phosphatase (HAP), a member of the histidine phosphatase superfamily, is widely found in parasites and is also a potential vaccine antigen or drug target. However, the biological function of HAP in Haemonchus contortus is still unclear. Methods We cloned the HAP gene from H. contortus (Hc-HAP) and expressed the purified recombinant Hc-HAP (rHc-HAP) protein. The transcription of the Hc-HAP gene in the eggs, infective third-stage larvae (L3s), exsheathed third-stage larvae (xL3s) and adults (females/males) was analyzed by quantitative real-time-PCR (qPCR). An immunofluorescence assay was also used to detect the localization of Hc-HAP expression in adult worms. The effect of rHc-HAP on the function of peripheral blood mononuclear cells (PBMCs) was observed by co-culture of rHc-HAP protein with goat PBMCs. Results The qPCR results revealed that the Hc-HAP gene was transcribed at a higher level in the L3 and xL3 stages that there were gender differences in transcription at the adult stage, with females exhibiting higher transcription than males. Moreover, Hc-HAP was mainly expressed in adult intestinal microvilli. Additionally, western blot results revealed that rHc-HAP could be detected in goat sera artificially infected with H. contortus. In the experiments, rHc-HAP bound to goat PBMCs and released nitric oxide. The rHc-HAP also induced the expression of interferon gamma (IFN-γ) and the phosphorylated STAT 1 transcription factor, while inhibiting interleukin-4 expression. Conclusions The results shows that rHc-HAP stimulated the IFN-γ/STAT1 signaling pathway and enabled polarization of PBMCs toward T-helper 1 immune responses. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05411-7.
Collapse
Affiliation(s)
- Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhaoying Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiajun Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Aboshady HM, Félicité Y, Hira J, Barbier C, Bambou JC. Early Transcriptome Differences Between Pre-Infected and Naïve Kid Goats Infected With Haemonchus contortus. Front Vet Sci 2022; 9:873467. [PMID: 35873680 PMCID: PMC9305704 DOI: 10.3389/fvets.2022.873467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
In small ruminant production, gastrointestinal nematode (GIN) infection is one of the major causes of economic losses. The aim of this study was to compare the abomasal mucosa transcriptome of naïve and pre-infected goats at early time points after Haemonchus contortus infection, in order to identify different pathways and upstream regulators involved in the host immune response. Naïve and pre-infected Creole kids were orally infected with 10,000 H. contortus infective larvae (L3), and abomasal mucosa was sampled at 0, 4, and 6 days post-infection (dpi). At 6 dpi, all the animals were slaughtered to perform parasite burden counts. The mean number of L4 recovered in naïve kids was more than twice as high as that recovered in the pre-infected ones (5,860 and 2,474 respectively, p < 0.001). RNA-seq analysis showed a number of differentially expressed genes (DEGs) very low for both naïve and pre-infected animals when comparing day 0 vs. day 4 post-infection. A total of 2,237 and 3,206 DEGs were identified comparing 0 vs. 6 dpi in naïve and pre-infected animals, respectively. Interestingly, only 18 DEGs were found for the comparison of pre-infected vs. naïve animals at 6 dpi. Ingenuity pathway analysis (IPA) showed that several immune responses were activated in pre-infected compared with naïve animals at 0 and 4 dpi such as Th2 and Th1 pathways, natural killer cell, B cell receptor, IL-2, and IL-15 signaling. On the other hand, both naïve and pre-infected animals showed activation for those pathways comparing 6 vs. 0 dpi, with no difference between them. A similar pattern was recorded for upstream regulator genes which were related to immunity like TNF, IL-1β, IL-2, IL-5, TGFβ1, IFNγ, TCR, IL-18, IL-6, and IL-4. Our results showed that at 0 and 4 dpi the immune response was activated toward Th1 and Th2 pathways in pre-infected kids compared to the naïve ones, however, the same immune response was developed in naïve kids as earlier as 6 dpi. We conclude that repeated H. contortus infection in kid goats induced a concomitant early activation of a Th1 and Th2 immune response resulting in the regulation of worm establishment.
Collapse
Affiliation(s)
- Hadeer M. Aboshady
- INRAE, ASSET, Petit-Bourg, France
- Department of Animal Production, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | | | | | - Claude Barbier
- INRAE, Plateforme Tropicale d'Expérimentation sur l'Animal, Petit-Bourg, France
| | - Jean-Christophe Bambou
- INRAE, ASSET, Petit-Bourg, France
- Department of Animal Production, Faculty of Agriculture, Cairo University, Cairo, Egypt
- *Correspondence: Jean-Christophe Bambou
| |
Collapse
|
11
|
Liu W, McNeilly TN, Mitchell M, Burgess STG, Nisbet AJ, Matthews JB, Babayan SA. Vaccine-induced time- and age-dependent mucosal immunity to gastrointestinal parasite infection. NPJ Vaccines 2022; 7:78. [PMID: 35798788 PMCID: PMC9262902 DOI: 10.1038/s41541-022-00501-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Individuals vary broadly in their response to vaccination and subsequent challenge infection, with poor vaccine responders causing persistence of both infection and transmission in populations. Yet despite having substantial economic and societal impact, the immune mechanisms that underlie such variability, especially in infected tissues, remain poorly understood. Here, to characterise how antihelminthic immunity at the mucosal site of infection developed in vaccinated lambs, we inserted gastric cannulae into the abomasa of three-month- and six-month-old lambs and longitudinally analysed their local immune response during subsequent challenge infection. The vaccine induced broad changes in pre-challenge abomasal immune profiles and reduced parasite burden and egg output post-challenge, regardless of age. However, age affected how vaccinated lambs responded to infection across multiple immune pathways: adaptive immune pathways were typically age-dependent. Identification of age-dependent and age-independent protective immune pathways may help refine the formulation of vaccines, and indicate specificities of pathogen-specific immunity more generally.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Tom N McNeilly
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK.
| | - Mairi Mitchell
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK
| | - Stewart T G Burgess
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK
| | - Alasdair J Nisbet
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK
| | - Jacqueline B Matthews
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK.,Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Easter Bush, Scotland, EH25 9RG, UK
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK. .,The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK.
| |
Collapse
|
12
|
Differences in the protection elicited by a recombinant Teladorsagia circumcincta vaccine in weaned lambs of two Canarian sheep breeds. Vet Parasitol 2022; 306:109722. [DOI: 10.1016/j.vetpar.2022.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
|
13
|
Shrivastava K, Singh AP, Jadav K, Shukla S, Tiwari SP. Caprine haemonchosis: optimism of breeding for disease resistance in developing countries. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2056465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kush Shrivastava
- Animal Biotechnology Centre, Nanaji Deshmukh Veterinary Science University, Jabalpur, India
| | - Ajit Pratap Singh
- Animal Biotechnology Centre, Nanaji Deshmukh Veterinary Science University, Jabalpur, India
| | - Kajal Jadav
- Animal Biotechnology Centre, Nanaji Deshmukh Veterinary Science University, Jabalpur, India
| | - Sanjay Shukla
- Animal Biotechnology Centre, Nanaji Deshmukh Veterinary Science University, Jabalpur, India
| | | |
Collapse
|
14
|
Ortega L, Quesada J, Ruiz A, Conde-Felipe MM, Ferrer O, Rodríguez F, Molina JM. Local immune response of Canarian Majorera goats infected with Teladorsagia circumcincta. Parasit Vectors 2022; 15:25. [PMID: 35033166 PMCID: PMC8760786 DOI: 10.1186/s13071-021-05145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to increased anthelmintic resistance, alternative methods to drugs are necessary to control gastrointestinal nematodes (GINs). Some of the most promising alternatives are based on the immune response of the host, such as the selection of genetically resistant breeds or the use of vaccines against these parasites. Given the limited information available on the immune response against GINs in goats, this study investigated the local immune response of goat kids of an indigenous Canary Islands breed (Majorera breed) experimentally infected with Teladorsagia circumcincta, one of the most pathogenic and prevalent GIN species. METHODS For this purpose, the relationship between different parasitological (number of mature and immature worms, worm length, and number of intrauterine eggs) and immunological parameters at the local level (related to both the humoral and cellular immune response) was analyzed at early (1 week post-infection [wpi]) and late (8 wpi) stages of infection. RESULTS Primary infection of goat kids with T. circumcincta infective larvae (L3) generated a complex immune response that could be defined as Th2 type, characterized by increased infiltration in abomasal tissues of several effector cells as well as a progressive presence of specific antibodies against parasitic antigens in the gastric mucus. Cellular responses were evidenced from 1 wpi onward, showing an increase in antigen-presenting cells and various lymphocyte subsets in the gastric mucosa. CONCLUSIONS The complexity of the host response was evidenced by statistically significant changes in the number of all these subpopulations (MHCII+, CD4+, CD8+, γδ+, CD45R+, IgA+, and IgG+), as well as in the evolution of the relative cytokine gene expression. From a functional point of view, negative associations were observed between the number of most of the immune cells (CD4, IgA, IgG, and CD45R cells) and parameters that could be related to the fecundity of worms, a phenomenon that was especially evident when the number of IgG and CD45R cells or the specific IgA levels of the gastric mucus were compared with parasitological parameters such as the female worm length or fecal egg counts at 8 wpi.
Collapse
Affiliation(s)
- Leire Ortega
- Parasitology Unit. Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Jessica Quesada
- Parasitology Unit. Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Antonio Ruiz
- Parasitology Unit. Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - María Magnolia Conde-Felipe
- Parasitology Unit. Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Otilia Ferrer
- Parasitology Unit. Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Francisco Rodríguez
- Department of Anatomy and Compared Anatomy Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - José Manuel Molina
- Parasitology Unit. Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Gran Canaria, Spain.
| |
Collapse
|
15
|
Casu S, Usai MG, Sechi T, Salaris SL, Miari S, Mulas G, Tamponi C, Varcasia A, Scala A, Carta A. Association analysis and functional annotation of imputed sequence data within genomic regions influencing resistance to gastro-intestinal parasites detected by an LDLA approach in a nucleus flock of Sarda dairy sheep. Genet Sel Evol 2022; 54:2. [PMID: 34979909 PMCID: PMC8722200 DOI: 10.1186/s12711-021-00690-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background Gastroinestinal nematodes (GIN) are one of the major health problem in grazing sheep. Although genetic variability of the resistance to GIN has been documented, traditional selection is hampered by the difficulty of recording phenotypes, usually fecal egg count (FEC). To identify causative mutations or markers in linkage disequilibrium (LD) to be used for selection, the detection of quantitative trait loci (QTL) for FEC based on linkage disequilibrium-linkage analysis (LDLA) was performed on 4097 ewes (from 181 sires) all genotyped with the OvineSNP50 Beadchip. Identified QTL regions (QTLR) were imputed from whole-genome sequences of 56 target animals of the population. An association analysis and a functional annotation of imputed polymorphisms in the identified QTLR were performed to pinpoint functional variants with potential impact on candidate genes identified from ontological classification or differentially expressed in previous studies. Results After clustering close significant locations, ten QTLR were defined on nine Ovis aries chromosomes (OAR) by LDLA. The ratio between the ANOVA estimators of the QTL variance and the total phenotypic variance ranged from 0.0087 to 0.0176. QTL on OAR4, 12, 19, and 20 were the most significant. The combination of association analysis and functional annotation of sequence data did not highlight any putative causative mutations. None of the most significant SNPs showed a functional effect on genes’ transcript. However, in the most significant QTLR, we identified genes that contained polymorphisms with a high or moderate impact, were differentially expressed in previous studies, contributed to enrich the most represented GO process (regulation of immune system process, defense response). Among these, the most likely candidate genes were: TNFRSF1B and SELE on OAR12, IL5RA on OAR19, IL17A, IL17F, TRIM26, TRIM38, TNFRSF21, LOC101118999, VEGFA, and TNF on OAR20. Conclusions This study performed on a large experimental population provides a list of candidate genes and polymorphisms which could be used in further validation studies. The expected advancements in the quality of the annotation of the ovine genome and the use of experimental designs based on sequence data and phenotypes from multiple breeds that show different LD extents and gametic phases may help to identify causative mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00690-7.
Collapse
Affiliation(s)
- Sara Casu
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | | | - Tiziana Sechi
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | | | - Sabrina Miari
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | - Giuliana Mulas
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | - Claudia Tamponi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio Varcasia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio Scala
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
16
|
Wen Z, Xie X, Aleem MT, Aimulajiang K, Chen C, Liang M, Song X, Xu L, Li X, Yan R. In vitro characterization of Haemonchus contortus trehalose-6-phosphate phosphatase and its immunomodulatory effects on peripheral blood mononuclear cells (PBMCs). Parasit Vectors 2021; 14:611. [PMID: 34930417 PMCID: PMC8685816 DOI: 10.1186/s13071-021-05115-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Trehalose-6-phosphate phosphatase (TPP6) is a key enzyme in the trehalose biosynthesis pathway. The accumulation of TPP6 inside the body is harmful to the pathogen, but almost nothing is currently known about the function of TPP6 from Haemonchus contortus (CRE-GOB-1). Methods The H. contortus CRE-GOB-1 (HcGOB) gene was cloned and recombinant protein of GOB (rHcGOB) was expressed; transcription of the HcGOB gene at different developmental stages of H. contortus was then studied. The spatial expression pattern of the HcGOB gene in adult female and male worms was determined by both quantitative real-time PCR (qPCR) and immunofluorescence. The binding of the rHcGOB protein to goat PBMCs was assessed by immunofluorescence assay. The immunomodulatory impacts of rHcGOB on cell proliferation, nitric oxide generation and cytokine secretion were assessed by co-culture of rHcGOB protein with goat PBMCs. Results The HcGOB protein was transcribed in eggs, infective third-stage larvae (iL3s) and adults of H. contortus, with the highest transcript levels found in the egg stage. The transcript levels were significantly elevated in iL3s after manual desheathing. HcGOB was widely distributed in adult worms where it was mainly localized in the gut and gonads. rHcGOB was observed to bind to PBMCs and also to be recognized by sera collected from a goat infected with H. contortus. rHcGOB significantly activated the interleukin-10/transforming growth factor β/signal transducer and activator of transcription 3 (IL-10/TGF-β/STAT3) pathway in PBMCs while suppressing the transcription and expression of IL-4 and IL-17. Conclusions These results suggest that the HcGOB gene plays an important role in the development, parasitism and reproduction of H. contortus. The rHcGOB protein affected the immunomodulatory function of PBMCs in the in vitro study, suggesting that this protein would be a promising vaccine target. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05115-4.
Collapse
Affiliation(s)
- ZhaoHai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XinRan Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
A journey through 50 years of research relevant to the control of gastrointestinal nematodes in ruminant livestock and thoughts on future directions. Int J Parasitol 2021; 51:1133-1151. [PMID: 34774857 DOI: 10.1016/j.ijpara.2021.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
This review article provides an historical perspective on some of the major research advances of relevance to ruminant livestock gastrointestinal nematode control over the last 50 years. Over this period, gastrointestinal nematode control has been dominated by the use of broad-spectrum anthelmintic drugs. Whilst this has provided unprecedented levels of successful control for many years, this approach has been gradually breaking down for more than two decades and is increasingly unsustainable which is due, at least in part, to the emergence of anthelmintic drug resistance and a number of other factors discussed in this article. We first cover the remarkable success story of the discovery and development of broad-spectrum anthelmintic drugs, the changing face of anthelmintic drug discovery research and the emergence of anthelmintic resistance. This is followed by a review of some of the major advances in the increasingly important area of non-pharmaceutical gastrointestinal nematode control including immunology and vaccine development, epidemiological modelling and some of the alternative control strategies such as breeding for host resistance, refugia-based methods and biological control. The last 50 years have witnessed remarkable innovation and success in research aiming to improve ruminant livestock gastrointestinal nematode control, particularly given the relatively small size of the research community and limited funding. In spite of this, the growing global demand for livestock products, together with the need to maximise production efficiencies, reduce environmental impacts and safeguard animal welfare - as well as specific challenges such as anthelmintic drug resistance and climate change- mean that gastrointestinal nematode researchers will need to be as innovative in the next 50 years as in the last.
Collapse
|
18
|
Liu J, Tan M, Xu X, Shen T, Zhou Z, Hunt PW, Zhang R. From innate to adaptive immunity: Abomasal transcriptomic responses of merino sheep to Haemonchus contortus infection. Mol Biochem Parasitol 2021; 246:111424. [PMID: 34626695 DOI: 10.1016/j.molbiopara.2021.111424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
Although many important mediators and critical pathways are found to be involved in host immune responses to Haemonchus contortus infection, the initial responses to infection in the naïve and in the previously exposed state have not been compared at the transcriptional level. To further understand the development of adaptive immunity to H. contortus infection, we compared the early abomasal gene expression patterns between a primary and a tertiary challenge for four lines of sheep to discover differentially expressed genes (DEGs). The sheep were from the resistant (R) and susceptible (S) lines of two flocks of sheep selected for divergent responses to gastro-intestinal parasites (HSF and TSF). The flocks have separate origins and were initiated using two different strains of Merino sheep. One of the DEGs, mast cell proteinase 1, had significantly lower expression in tertiary compared to primary infections for all four lines of sheep. This gene was not identified in previous studies where resistant and susceptible sheep samples were compared within infection time points. Comparing the differentially expressed genes (DEGs) for the two R lines reveals that responses differed very little between the primary and tertiary challenges for HSFR and only two genes were identified, in contrast to the TSFR where there were 134 genes identified including the two identified using the HSFR animals. Similarly, comparing the primary and tertiary challenges for HSFS identified 15 DEGs, whilst for TSFS there were 128 DEGs identified. It is surprising that so few genes respond similarly between the two challenge regimes across the four lines of sheep, and suggests significant differences in immune mechanisms between the two flocks (across the lines) and also between the lines within flocks. Our results offer a quantitative snapshot comparing the transcriptome in the ovine abomasum between primary and tertiary infections with H. contortus in both genetically resistant and susceptible sheep.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| | - Min Tan
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| | - Xiangdong Xu
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| | - Tingbo Shen
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| | - Zihao Zhou
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| | - Peter W Hunt
- CSIRO Agriculture and Food, Armidale, NSW, Australia.
| | - Runfeng Zhang
- College of Life Science, Hubei Normal University, Huangshi, Hubei, 435002, China.
| |
Collapse
|
19
|
Machín C, Corripio-Miyar Y, Hernández JN, Pérez-Hernández T, Hayward AD, Wright HW, Price DRG, Matthews JB, McNeilly TN, Nisbet AJ, González JF. Cellular and humoral immune responses associated with protection in sheep vaccinated against Teladorsagia circumcincta. Vet Res 2021; 52:89. [PMID: 34134748 PMCID: PMC8207578 DOI: 10.1186/s13567-021-00960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Due to increased anthelmintic resistance, complementary methods to drugs are necessary to control gastrointestinal nematodes (GIN). Vaccines are an environmentally-friendly and promising option. In a previous study, a Teladorsagia circumcincta recombinant sub-unit vaccine was administered to two sheep breeds with different levels of resistance against GIN. In the susceptible Canaria Sheep (CS) breed, vaccinates harboured smaller worms with fewer eggs in utero than the control group. Here, we extend this work, by investigating the cellular and humoral immune responses of these two sheep breeds following vaccination and experimental infection with T. circumcincta. In the vaccinated CS group, negative associations between antigen-specific IgA, IgG2 and Globule Leukocytes (GLs) with several parasitological parameters were established as well as a higher CD4+/CD8+ ratio than in control CS animals, suggesting a key role in the protection induced by the vaccine. In the more resistant Canaria Hair Breed (CHB) sheep the vaccine did not significantly impact on the parasitological parameters studied and none of these humoral associations were observed in vaccinated CHB lambs, although CHB had higher proportions of CD4+ and CD8+ T cells within the abomasal lymph nodes, suggesting higher mucosal T cell activation. Each of the component proteins in the vaccine induced an increase in immunoglobulin levels in vaccinated groups of each breed. However, levels of immunoglobulins to only three of the antigens (Tci-MEP-1, Tci-SAA-1, Tci-ASP-1) were negatively correlated with parasitological parameters in the CS breed and they may be, at least partially, responsible for the protective effect of the vaccine in this breed. These data could be useful for improving the current vaccine prototype.
Collapse
Affiliation(s)
- Cynthia Machín
- Facultad de Veterinaria, Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | | | - Julia N Hernández
- Facultad de Veterinaria, Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Universidad de Las Palmas de Gran Canaria, Arucas, Spain.
| | - Tara Pérez-Hernández
- Facultad de Veterinaria, Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | | | | | | | | | | | | | - Jorge F González
- Facultad de Veterinaria, Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| |
Collapse
|
20
|
Genomic variants from RNA-seq for goats resistant or susceptible to gastrointestinal nematode infection. PLoS One 2021; 16:e0248405. [PMID: 33720948 PMCID: PMC7959398 DOI: 10.1371/journal.pone.0248405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal nematodes (GIN) are an important constraint in small ruminant production. Genetic selection for resistant animals is a potential sustainable control strategy. Advances in molecular genetics have led to the identification of several molecular genetic markers associated with genes affecting economic relevant traits. In this study, the variants in the genome of Creole goats resistant or susceptible to GIN were discovered from RNA-sequencing. We identified SNPs, insertions and deletions that distinguish the two genotypes, resistant and susceptible and we characterized these variants through functional analysis. The T cell receptor signalling pathway was one of the top significant pathways that distinguish the resistant from the susceptible genotype with 78% of the genes involved in this pathway showing genomic variants. These genomic variants are expected to provide useful resources especially for molecular breeding for GIN resistance in goats.
Collapse
|