1
|
Liu Z, Wang Y, Guo S, Liu J, Zhu P. Preparation and characterization of bacterial cellulose synthesized by kombucha from vinegar residue. Int J Biol Macromol 2024; 258:128939. [PMID: 38143062 DOI: 10.1016/j.ijbiomac.2023.128939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Bacterial cellulose (BC) has been widely applied in various fields due to its excellent physicochemical properties, but its high production cost remains a challenge. Herein, the present study aimed to utilize the hydrolysate of vinegar residue (VR) as the only medium to realize the cost-effective production of BC. The BC production was optimized by the single-factor test. The treatment of 6 % VR concentration with 3 % acid concentration at 100 °C for 1.5 h and 96 U/mL of cellulase for 4 h at 50 °C obtained a maximum reducing sugar concentration of about 32 g/L. Additionally, the VR hydrolysate treated with 3 % active carbon (AC) at 40 °C for 0.5 h achieved a total phenol removal ratio of 86 %. The yield of BC reached 2.1 g/L under the optimum conditions, which was twice compared to the standard medium. The produced BC was characterized by SEM, FT-IR, XRD, and TGA analyses, and the results indicated that the BC prepared by AC-treated VR hydrolysate had higher fiber density, higher crystallinity, and good thermal stability. Furthermore, the regenerated BC (RBC) fibers with a tensile stress of 400 MPa were prepared successfully using AmimCl solution as a solvent by dry-wet-spinning method. Overall, the VR waste could be used as an alternative carbon source for the sustainable production of BC, which could be further applied to RBC fibers preparation.
Collapse
Affiliation(s)
- Zhanna Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Yingying Wang
- Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Shengnan Guo
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Jie Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Haima Carpet Group Co., Ltd, Weihai, Shandong 264200, China.
| | - Ping Zhu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
2
|
Tanisha, Venkategowda S, Majumdar M. Response surface methodology based development of an optimized polyherbal formulation and evaluation of its anti-diabetic and anti-obesity potential in high-fat diet-induced obese mice. J Tradit Complement Med 2024; 14:70-81. [PMID: 38223811 PMCID: PMC10785265 DOI: 10.1016/j.jtcme.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/06/2023] [Accepted: 07/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background and aim The seeds of Nelumbo nucifera, Chenopodium quinoa and Salvia hispanica are known as super foods due to their various therapeutic properties. The present study aimed to develop an optimized polyherbal formulation from edible seeds aqueous extract and to evaluate its anti-diabetic and lipase inhibitory effect on diet-induced obese diabetic mice. Experimental procedure Response surface methodology based various formulations were evaluated for their potent anti-diabetic, lipase-inhibitory and antioxidant activities. Acute toxicity of the best optimized formulation was conducted. The mice were fed a high fat diet for 10 weeks resulting in hyperglycemia and obesity. Oral tolerance tests (sucrose, starch and lipid) of the formulation were performed. The mice were supplemented with different doses (125, 250 and 500 mg/kg) of the formulation for 6 weeks. The body weight and blood glucose level were monitored on a weekly basis. Finally, histological alterations and lipid profiles were analysed. Results and conclusion The formulation containing equal concentration (1.5 mg/ml) of each seed extract showed maximum bioactivities. The formulation was found to be safe during toxicity assay. The tolerance tests supported the anti-diabetic and anti-obesity effect. Higher dose (500 mg/kg) of the formulation significantly (p < 0.01) lowered elevated fasting blood glucose, lipid indices and ameliorated the histological alterations in liver, kidney and pancreas caused by high fat diet. We demonstrated for the first time that the developed aqueous extract optimized formulation possess anti-diabetic and anti-obesity potential and thus could be used as adjuvant therapy for holistic management of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tanisha
- School of Sciences, Jain (Deemed-to-be University), #18/3, Jayanagar 3rd Block, Bangalore, 560 011, India
| | - Sunil Venkategowda
- School of Sciences, Jain (Deemed-to-be University), #18/3, Jayanagar 3rd Block, Bangalore, 560 011, India
| | - Mala Majumdar
- School of Sciences, Jain (Deemed-to-be University), #18/3, Jayanagar 3rd Block, Bangalore, 560 011, India
| |
Collapse
|
3
|
Zhu Z, Zhang S, Song C, Wang L, Cai F, Chen C, Liu G. Influences of organic loading, feed-to-inoculum ratio, and different pretreatment strategies on the methane production performance of eggplant stalk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85433-85443. [PMID: 35794328 DOI: 10.1007/s11356-022-20940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
A large amount of eggplant stalk (ES) is incinerated after harvesting of eggplant every year, which aggravates environmental pollution and waste of resources. Converting ES into methane through anaerobic digestion (AD) technology may be a potential treatment method, considering the low environmental impact and high energy recovery. Firstly, this study explored the effects of organic loading (OL) and feed to inoculum ratio (F/I ratio) on the AD of ES by response surface methodology (RSM). In order to achieve higher AD efficiency, various pretreatments (acid, alkali, alkaline hydrogen peroxide (AHP), microwave, and ultrasound) were introduced and comprehensively assessed with regard to methane production, organic matter destruction, and kinetic parameters. Results showed that OL had a more significant impact on AD process compared to F/I ratio and methane production was enhanced remarkably when the OL and F/I ratio were 35.0 g VS/L and 3.0, respectively. XRD, FTIR, and SEM analyses of pretreated ES showed that alkali and AHP pretreatments performed better in delignification. Under optimal conditions, the ES pretreated with 1.5% AHP (adjusted by KOH) performed the maximum methane production of 262.2 mL/g VS with a biodegradability of 95.0%, which increased by 334.1% compared to untreated ES. This paper not only provides the theoretical data about methane production performance of ES but also gives practical guidance for efficient utilization of similar vegetable stalk biowastes, which is also promising for large-scale industrial applications in the future.
Collapse
Affiliation(s)
- Zhe Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Si Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Ligong Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Fanfan Cai
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China.
| |
Collapse
|
4
|
Wang K, Yu Y, Liu S, Zhu Y, Liu P, Yu Z, Wang Y. A Review of the Current State and Future Prospects in Resource Recovery of Chinese Cereal Vinegar Residue. Foods 2022. [PMCID: PMC9602330 DOI: 10.3390/foods11203256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vinegar residue (VR) is a typical organic solid waste in Chinese cereal vinegar production. It is characterized by high yield, high moisture and low pH and is rich in lignocellulose and other organic matter. To avoid the environmental pollution caused by VR, it should be properly treated. The industry’s existing treatment processes, landfills and incineration, cause secondary pollution and waste of resources. Therefore, there is an urgent demand for environmentally friendly and cost-effective resource recovery technologies for VR. To date, a considerable amount of research has been performed in the area of resource recovery technologies for VR. This review summarizes the reported resource recovery technologies, mainly anaerobic digestion, feed production, fertilizer production, high-value product production and soil/water remediation. The principles, advantages and challenges of these technologies are highlighted. Finally, as a future perspective, a cascade and full utilization model for VR is proposed by considering the inherent drawbacks and economic-environmental feasibility of these technologies.
Collapse
Affiliation(s)
- Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Correspondence:
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
5
|
Rawindran H, Leong WH, Suparmaniam U, Liew CS, Raksasat R, Kiatkittipong W, Mohamad M, Ghani NA, Abdelfattah EA, Lam MK, Lim JW. Residual palm kernel expeller as the support material and alimentation provider in enhancing attached microalgal growth for quality biodiesel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115225. [PMID: 35550962 DOI: 10.1016/j.jenvman.2022.115225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Albeit the biodiesel production from suspended microalgal system has gained immense interests in recent years, the domineering limitation of being economically infeasible has hindered this technology from partaking into a large-scale operation. To curtail this issue, attached growth system had been introduced by various studies; however, those were still unable to alleviate the socio-economic challenges faced in commercializing the microalgal biomass production. Thus, this study had developed a novel approach in cultivating-cum-harvesting attached Chlorella vulgaris sp. microalgae, whilst using solid organic waste of palm kernel expeller (PKE) as the supporting and alimentation material for microalgal biofilm formation. The effects of three variables, namely, PKE dosage, light intensity, and photoperiod, were initially modelled and later optimized using Response Surface Methodology tool. The derived statistical models could predict the growth performances of attached microalgal biomass and lipid productivity. The optimum growing condition was attained at PKE dosage of 5.67 g/L, light intensity of 197 μmol/m2 s and photoperiod of 8 light and 16 dark hours/cycle, achieving the microalgal density and lipid content of 9.87 ± 0.05 g/g and 3.39 ± 0.28 g/g, respectively, with lipid productivity of 29.6 mg/L day. This optimum condition had led to the intensification of biodiesel quality with a high percentage of monounsaturated fatty acid, i.e., oleic acid (C18:1), encompassing 81.86% of total fatty acid methyl ester components. Given that the positive acquisition of PKE as an excellent supporting material in enhancing the microalgal density and lipid productivity that had resulted in the commercially viable biodiesel quality, this study served as a novel revolution in augmenting the microalgae and solid waste utilities for sustainable energy generation.
Collapse
Affiliation(s)
- Hemamalini Rawindran
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Wai Hong Leong
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Uganeeswary Suparmaniam
- Department of Chemical Engineering, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chin Seng Liew
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Ratchaprapa Raksasat
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Noraini A Ghani
- Centre of Research in Ionic Liquids, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Eman Alaaeldin Abdelfattah
- Lecturer of Biochemistry and Molecular Science, Entomology Department, Faculty of Science, Cairo University, Egypt
| | - Man Kee Lam
- Department of Chemical Engineering, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
6
|
Ma C, Xu H, Zhong W, Wang W, Zhang H. Experimental study on fluidization characteristics of vinegar residue in a vibrated fluidized bed. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Wong YY, Rawindran H, Lim JW, Tiong ZW, Liew CS, Lam MK, Kiatkittipong W, Abdelfattah EA, Oh WD, Ho YC. Attached microalgae converting spent coffee ground into lipid for biodiesel production and sequestering atmospheric CO2 simultaneously. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Kong X, Defemur Z, Li M, Zhang Q, Li H, Yue X. Effects of combined ultrasonic and grinding pre-treatments on anaerobic digestion of vinegar residue: organic solubilization, hydrolysis, and CH 4 production. ENVIRONMENTAL TECHNOLOGY 2022; 43:2207-2217. [PMID: 33378256 DOI: 10.1080/09593330.2020.1870572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
ABSTRACTThe high lignocellulose content of vinegar residues (VR) limits their biochemical methane potential (BMP) in anaerobic digestion (AD). However, unlike reported high cellulosic materials such as straw and grass, single pre-treatment with ultrasonication or grinding only slightly improved VR AD, due to the high protein and carbohydrate contents of VR. This study used statistical analysis to show that the methane yield, protein and polysaccharide release, and hydrolysis performance during VR AD were significantly enhanced with a combined grinding-ultrasound pre-treatment. Specifically, at 60 min of ultrasonic, the group with the combined pre-treatment (60 min + RS) showed the highest VR BMP (∼307.1 mLCH4/gVS), 68.7% greater than that in the control group. This group also exhibited optimal conditions for dissolution of polysaccharide and protein, with accumulated amounts of ∼500 and 1600 mg/L, respectively. The highest volatile fatty acid (VFA) concentration in the 60 min + RS group was 61.5% higher than that in the control group. Both dissolution and hydrolysis experiments suggested that ultrasound accelerated protein release from VR, particularly after the particle size was reduced, and that the grinding pre-treatment had a positive effect on polysaccharide release.
Collapse
Affiliation(s)
- Xin Kong
- College of Environmental & Resource Science, Shanxi University, Taiyuan, People's Republic of China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
- Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Zafiry Defemur
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
| | - Mingkai Li
- College of Environmental & Resource Science, Shanxi University, Taiyuan, People's Republic of China
| | - Qiang Zhang
- Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Hua Li
- College of Environmental & Resource Science, Shanxi University, Taiyuan, People's Republic of China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
| |
Collapse
|
9
|
Chen L, Meng X, Zhou G, Zhou Z, Zheng T, Bai Y, Yuan H, Huhe T. Effects of organic loading rates on the anaerobic co-digestion of fresh vinegar residue and pig manure: Focus on the performance and microbial communities. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Paul Choudhury S, Kalamdhad AS. Optimization of electrokinetic pretreatment for enhanced methane production and toxicity reduction from petroleum refinery sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113469. [PMID: 34399372 DOI: 10.1016/j.jenvman.2021.113469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
This study examined the effect of electrokinetic pretreatment on petroleum sludge (PS) released from the wastewater treatment plants of petrochemical industries for enhanced biodegradation and contaminant removal. The application of electric field on PS through direct current is optimized with the combined variation of applied voltage (40-80 V), exposure duration (20-120 min) and distance between graphite electrodes (8-16 cm) using central composite design-response surface methodology (CCD-RSM). The optimization study revealed significant interaction among the response variables to obtain an optimum condition (60 V, 83.5 min, 11.6 spacing) for maximization of solubilization in terms of soluble chemical oxygen demand (230% increment against untreated) and volatile fatty acids (172% increment against untreated) concentrations for accelerated hydrolysis of complex PS. BMP batch assays were performed at different inoculum and sludge ratios (0.3, 0.4, 0.5 and 0.7) based on volatile solids content after pretreatment at the optimized condition which resulted in accumulated methane ranging from 5.16 to 6.61 L/gVSadded (untreated - 3.9 L/gVSadded). The mixing ratio of 0.4 showed the maximum methane enhancement of 69.2% compared to untreated. The maximum removal of organic content (62.8%), oil and grease (71.74%), and total petroleum hydrocarbon (52.9%) were also observed for the mixing ratio of 0.4. The FTIR study showed the efficacy in hydrocarbon dissociation and decomposition after pretreatment of PS. The net energy gain (3508 kJ) and phytotoxicity reduction of batch digestate after the anaerobic digestion suggest the economic feasibility and decontamination efficiency of the electrokinetic pretreatment technique respectively. Further research could be performed to evaluate the viability of this pretreatment for enhanced methane recovery at field-scale levels to relate to these lab-scale postulations.
Collapse
Affiliation(s)
- Shinjini Paul Choudhury
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
11
|
Aminzadeh M, Bardi MJ, Aminirad H. A new approach to enhance the conventional two-phase anaerobic co-digestion of food waste and sewage sludge. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:295-306. [PMID: 34150236 PMCID: PMC8172668 DOI: 10.1007/s40201-020-00603-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Two-phase anaerobic co-digestion (TAcoD) is a versatile technology for the simultaneous treatment of organic materials and biogas production. However, the produced digestate and supernatant of the system contain heavy metals and organic substances that need to be treated prior to discharge or land application. Therefore, in this study, an innovative TAcoD for organic fertilizer and high supernatant quality achievement was proposed. METHODS In the conventional TAcoD, mixed sewage sludge (SS) and food waste (FW) were first hydrolyzed in the acidogenic reactor, and then the hydrolyzate substrate was subjected to the methanogenic reactor (TAcoD 1). In the modified TAcoD (TAcoD 2), only FW was fed into the acidogenic reactor, and the produced hydrolyzed solid was directly converted to the organic fertilizer, while the supernatant with high soluble chemical demand (SCOD) concentration was further co-digested with SS in the methanogenic reactor. RESULTS Although TAcoD 1 produced bio-methane yield and potential energy of 56.18% and 1.6-fold higher than TAcoD 2, the economical valorization of TAcoD 2 was 9-fold of that from TAcoD 1. The supernatant quality of TAcoD 2 was far better than TAcoD 1, since the SCOD, total nitrogen (TN), and total phosphor (TP) removal in TAcoD 2 and TAcoD 1 were 94.3%, 79.4%, 90.7%, and 68.9%, 28%, 46%, respectively. In terms of solid waste management, the modified TAcoD converted FW to organic fertilizer and achieved a solid reduction of 43.62% higher than that of conventional TAcoD. CONCLUSIONS This new modification in two-phase anaerobic co-digestion of food waste and sewage sludge provides a potentially feasible practice for simultaneous bio-methane, organic fertilizer, and high supernatant quality achievement. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-020-00603-8.
Collapse
Affiliation(s)
- Mohammad Aminzadeh
- Faculty of Civil Engineering, Division of Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mohammad Javad Bardi
- Faculty of Civil Engineering, Division of Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Hassan Aminirad
- Faculty of Civil Engineering, Division of Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
12
|
Zhang L, Yan J, Xiao Z, Tang S, Chen Y, Sun G, Wang W, Yu Y. Using Vinegar Residue-Based Carrier Materials to Improve the Biodegradation of Phenanthrene in Aqueous Solution. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3134-3147. [PMID: 33653489 DOI: 10.1166/jnn.2021.19123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A large amount of vinegar residue (VR) is generated every year in China, causing serious environmental pollutions. Meanwhile, as a kind of persistent organic pollutants, polycyclic aromatic hydrocarbons (PAHs) ubiquitously exist in environments. With a goal of reusing VR and reducing PAHs pollutions, we herein isolated one B. subtilis strain, ZL09-26, which can degrade phenanthrene and produce biosurfactants. Subsequently, raw VR was dried under different temperatures (50 °C, 80 °C, 100 °C and 120 °C) or pyrolyzed under 350 °C and 700 °C, respectively. After being characterized by various approaches, the treated VR were mixed with ZL09-26 as carriers to degrade phenanthrene. We found that VR dried at 50 °C (VR50) was the best in promoting the growth of ZL09-26 and the degradation of phenanthrene. This result may be attributed to the residual nutrients, suitable porosity and small surface charge of VR50. Our results demonstrate the potential of VR in the biodegradation of phenanthrene, which may be meaningful for developing new VR-based approaches to remove PAHs in aqueous environments.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jinyuan Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Susu Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yunliang Chen
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Gangzheng Sun
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257067, People's Republic of China
| | - Weidong Wang
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257067, People's Republic of China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| |
Collapse
|
13
|
Lee KH, Lee SK, Lee J, Kim S, Park C, Kim SW, Yoo HY. Improvement of Enzymatic Glucose Conversion from Chestnut Shells through Optimization of KOH Pretreatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3772. [PMID: 33916606 PMCID: PMC8038493 DOI: 10.3390/ijerph18073772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Worldwide, about one-third of food produced for human consumption is wasted, which includes byproducts from food processing, with a significant portion of the waste still being landfilled. The aim of this study is to convert chestnut shells (CNSs) from food processing into a valuable resource through bioprocesses. Currently, one of the highest barriers to bioprocess commercialization is low conversion of sugar from biomass, and KOH pretreatment was suggested to improve enzymatic digestibility (ED) of CNS. KOH concentration of 3% (w/w) was determined as a suitable pretreatment solution by a fundamental experiment. The reaction factors including temperature, time and solid/liquid (S/L) ratio were optimized (77.1 g/L CNS loading at 75 °C for 2.8 h) by response surface methodology (RSM). In the statistical model, temperature and time showed a relatively significant effect on the glucan content (GC) and ED, but S/L ratio was not. GC and ED of the untreated CNS were 45.1% and 12.7%, respectively. On the other hand, GC and ED of pretreated CNS were 83.2% and 48.4%, respectively, and which were significantly improved by about 1.8-fold and 3.8-fold compared to the control group. The improved ED through the optimization is expected to contribute to increasing the value of byproducts generated in food processing.
Collapse
Affiliation(s)
- Kang Hyun Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun, 2-Gil, Jongno-Gu, Seoul 03016, Korea; (K.H.L.); (J.L.); (S.K.)
| | - Soo Kweon Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
| | - Jeongho Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun, 2-Gil, Jongno-Gu, Seoul 03016, Korea; (K.H.L.); (J.L.); (S.K.)
| | - Seunghee Kim
- Department of Biotechnology, Sangmyung University, 20, Hongjimun, 2-Gil, Jongno-Gu, Seoul 03016, Korea; (K.H.L.); (J.L.); (S.K.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun, 2-Gil, Jongno-Gu, Seoul 03016, Korea; (K.H.L.); (J.L.); (S.K.)
| |
Collapse
|
14
|
Mesophilic Anaerobic Digestion of Hydrothermally Pretreated Lignocellulosic Biomass (Norway Spruce (Picea abies)). Processes (Basel) 2021. [DOI: 10.3390/pr9020190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hot water extraction (HWE) removes hemicellulose from woody biomass to give improved end products while producing a sugar-rich by-product stream, which requires proper treatment before disposal. Hot water extracted Norway spruce (Picea abies) at two different pretreatment conditions (140 °C for 300 min (H140) and 170 °C for 90 min (H170)) generated hydrolysate as a by-product, which was used in mesophilic anaerobic digestion (AD) as substrate. H140 gave a higher methane yield (210 NmL/g COD—chemical oxygen demand) than H170 (148 NmL/g COD) despite having a lower concentration of sugars, suggesting that different levels of inhibitors (furans and soluble lignin) and recalcitrant compounds (soluble lignin) affected the methane yield significantly. Organic loads (OLs) had a negative effect on the methane yield, as observed during AD of H170, while such an effect was not observed in the case of H140. This suggests that the decrease in methane yield (32%) of H170 compared to H140 is primarily due to inhibitors, while the decrease in methane yield (19%) of H140 compared to the synthetic hydrolysate is primarily due to recalcitrant substances. Therefore, both OL and pretreatment conditions must be considered for efficient anaerobic digestion from hydrolysate for enhanced methane production.
Collapse
|
15
|
Zhang H, Wang L, Dai Z, Zhang R, Chen C, Liu G. Effect of organic loading, feed-to-inoculum ratio, and pretreatment on the anaerobic digestion of tobacco stalks. BIORESOURCE TECHNOLOGY 2020; 298:122474. [PMID: 31865253 DOI: 10.1016/j.biortech.2019.122474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
This work firstly investigated the suitable organic loading (OL) and feed to inoculum (F/I) ratio of three kinds of tobacco stalks (TS116, TS99, and TS85) during anaerobic digestion (AD) via response surface methodology (RSM). The highest experimental methane yield (EMY) of 148.1 mL/g VS was achieved from TS116 at OL of 20.2 g VS/L and F/I ratio of 1.1. To further increase EMY, various pretreatments including alkaline hydrogen peroxide (AHP), NaOH, KOH, Ca(OH)2, HCl, and oxalic acid (H2C2O4) were implemented on TS116. Results showed that AHP was most effective, and the maximal EMY of 350.7 mL/g VS and biodegradability (Bd) of 81.4% were obtained from 7% AHP pretreated TS116, which increased by 105.6% than untreated. XRD, FTIR, and SEM analyses evidenced that the structure of AHP pretreated TS116 was strongly disrupted. This study lays the foundation for applying this waste into AD in future applications.
Collapse
Affiliation(s)
- Hongyan Zhang
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ligong Wang
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuangqiang Dai
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Chang Chen
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Pei G, Zhu Y, Wen J, Pei Y, Li H. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113407. [PMID: 31672374 DOI: 10.1016/j.envpol.2019.113407] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 05/22/2023]
Abstract
A composite material comprising of nanoscale zero-valent iron (nZVI) supported on vinegar residue (nZVI@VR) was prepared and applied for remediation of soils contaminated by hexavalent chromium (Cr(VI)). Sedimentation test results revealed that the nZVI@VR displayed enhanced stability in comparison to the bare-nZVI. Remediation experiments exhibited the immobilization efficiency of Cr(VI) and Crtotal was 98.68% and 92.09%, respectively, when using 10 g nZVI@VR (nZVI 5%) per 200 g Cr-contaminated soil (198.20 mg kg-1 Cr(VI), 387.24 mg kg-1 Crtotal) after two weeks of incubation. Further analyses demonstrated that almost all the exchangeable Cr was transformed into Fe-Mn oxide bound and organic matter bound. Moreover, the application of nZVI@VR enhanced soil organic carbon content and reduced redox potential. After granulation, the immobilization efficiency of Cr(VI) and Crtotal achieved 100% and 91.83% at a dosage of 10% granular nZVI@VR. Granular nZVI@VR also accelerated the transform of more available Cr (exchangeable and bound to carbonates) into less available fractions (Fe-Mn oxide bound and organic matter bound), thus resulting in a remarkable reduction in the Cr bioavailability. These results prove that nZVI@VR can be an effective remediation reagent for soils contaminated by Cr(VI).
Collapse
Affiliation(s)
- Guangpeng Pei
- School of Environment Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China; Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yuen Zhu
- School of Environment Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Junguo Wen
- School of Environment Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hua Li
- School of Environment Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
17
|
Wen H, Wachemo AC, Zhang L, Zuo X, Yuan H, Li X. A novel strategy for efficient anaerobic co-digestion based on the pretreatment of corn stover with fresh vinegar residue. BIORESOURCE TECHNOLOGY 2019; 288:121412. [PMID: 31200345 DOI: 10.1016/j.biortech.2019.121412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
A novel method was advanced for efficient anaerobic co-digestion by using fresh vinegar residue (FVR) as acidifier for pretreating corn stover (CS). FVR acted as one substrate as well as an acidifier by the acids contained in FVR. It was found that the organic acids in FVR could efficiently enhance the hydrolysis of lignocellulose in CS. The biomethane production from co-digestion of FVR and CS pretreated reached 140.48 L/kg VS, which was 35.7% higher than that of unpretreated mixture substrates. The highest biomethane production was obtained when pretreatment was conducted at 150 °C. The increase of biomethane production was contributed to the improved hydrolysis of CS due to the acidic pretreatment. Pretreatment and co-digestion could improve the asynchronism and generate synergistic effect. The study provides one novel method for efficient biomethane conversion from FVR and CS.
Collapse
Affiliation(s)
- HongLiang Wen
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Akiber Chufo Wachemo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China; Department of Water Supply and Environmental Engineering, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia
| | - Liang Zhang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - XiaoYu Zuo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - HaiRong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - XiuJin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
18
|
Khalid H, Cai F, Zhang J, Zhang R, Wang W, Liu G, Chen C. Optimizing key factors for biomethane production from KOH-pretreated switchgrass by response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25084-25091. [PMID: 31254197 DOI: 10.1007/s11356-019-05615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic digestion (AD) is one of the best technologies for producing methane from biomass wastes with limited environmental impacts. Most AD plants need a continuous and stable supply of feedstock for their sustained operation for which lignocellulosic biomass can be effectively utilized. Switchgrass (SG), also known as Panicum virgatum, is a tall-growing grass which exists throughout the year in areas with warm climate and has the potential to produce biomethane. The present work investigated anaerobic digestion performance of SG while focusing on enhancing the methane yield by employing central composite design of response surface methodology (RSM). The aim of this research was to find out the best level of factors including feed-to-inoculum (F/I) ratio, organic loading (OL), and pH for optimizing the desired output of biomethane production from 3% KOH-pretreated SG. Results revealed that the highest value of experimental methane yield was 288.4 mL/gVS at the optimal F/I ratio, pH, and OL of 1, 6.96, and 24 gVS/L, respectively. Moreover, 3% KOH pretreatment improved the biodegradability of SG significantly from 14.23 to 85.53%. This study forms the basis for future application of SG for enhanced methane production.
Collapse
Affiliation(s)
- Habiba Khalid
- Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Fanfan Cai
- Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Jiyu Zhang
- Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, USA
| | - Wen Wang
- Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Guangqing Liu
- Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China.
| | - Chang Chen
- Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China.
| |
Collapse
|
19
|
Khan YM, Munir H, Anwar Z. Optimization of process variables for enhanced production of urease by indigenous Aspergillus niger strains through response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Li L, Wang R, Jiang Z, Li W, Liu G, Chen C. Anaerobic digestion of tobacco stalk: biomethane production performance and kinetic analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14250-14258. [PMID: 30864037 DOI: 10.1007/s11356-019-04677-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Tobacco stalk, a common agricultural waste derived from the harvest of tobacco, caused serious environmental pollution in China. In this study, the performance of biomethane production and characteristics of four varieties of tobacco stalk were investigated for the first time. The results showed that the highest cumulative methane yield of 130.2 mL/g-VS was obtained from Nicotiana tabacum L., Yunyan114, which had lower lignin content than other varieties of tobacco stalk. Moreover, different kinetic models were used to describe the biomethane production process, and it was found that the modified Gompertz model was more suitable to simulate the anaerobic digestion (AD) of tobacco stalk. The findings of this study not only showed a feasible method for minimizing the pollution issues of tobacco stalk waste but also gave fundamental information for future AD application.
Collapse
Affiliation(s)
- Lyu Li
- College of Chemical Engineering, Beijing University of Chemical Technology, 505A Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Ruolin Wang
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenlai Jiang
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wanwu Li
- College of Chemical Engineering, Beijing University of Chemical Technology, 505A Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, 505A Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, 505A Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China.
| |
Collapse
|
21
|
Liu C, Zhang L, Yang J, Zhang W, Wang Q, Zhang J, Xin J, Chen S. Study on the nutritional value and ruminal degradation characteristics of fermented waste vinegar residue by N. sitophila. Trop Anim Health Prod 2019; 51:1449-1454. [PMID: 30719611 DOI: 10.1007/s11250-019-01822-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/21/2019] [Indexed: 11/29/2022]
Abstract
Chemical composition and rumen degradability of waste vinegar residue (WVR) as roughage feed used for mutton sheep were evaluated in this work. Compared with the unfermented WVR, the WVR fermented by N. sitophila had more (P < 0.01) ash, crude protein (CP), and true protein (TP), less (P < 0.01) ether extract (EE), and significantly more carotenoid by about 27 times. But the contents of dry matter (DM), crude fiber (CF), neutral detergent fiber (NDF), and acid detergent fiber (ADF) had no obvious differences (P > 0.05) between unfermented and fermented WVR. The results suggested that the nutritional value of fermented WVR was higher for mutton sheep as roughage feed than that of unfermented WVR. The effective degradability (ED) of DM was higher (P < 0.05) in sheep with fermented WVR-based diet. The ED of CP and NDF of fermented WVR was reduced (P < 0.01) compared with the unfermented WVR. The results further suggested that the fermentation improved the degradability of WVR, and the rumen degradability of protein by ruminal flora decreased in fermented WVR, saving more protein for the sheep post-ruminal digestion and absorption. Furthermore, the results presented here clearly indicated the potential of fermented WVR by N. sitophila as an unconventional and functional feedstuff with rich carotenoid for ruminants, which could reduce WVR discharge in vinegar brewing industry and improve ruminant production. This work laid a foundation for the development of ruminant carotenoid functional feed.
Collapse
Affiliation(s)
- Ci Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, People's Republic of China
| | - Lin Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, People's Republic of China
| | - Jiye Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, People's Republic of China.,Shanxi Animal Genetic and Breeding Center, 030027, Taiyuan, People's Republic of China
| | - Wenjia Zhang
- Animal Husbandry Bureau of Youyu County, 037200, Youyu, People's Republic of China
| | - Qianqian Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, People's Republic of China
| | - Jianxin Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, People's Republic of China
| | - Jiaying Xin
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, 150076, Harbin, People's Republic of China
| | - Shuming Chen
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, People's Republic of China.
| |
Collapse
|
22
|
Murugesan P, Narayanan S, Matheswaran M. Photocatalytic performance and antibacterial activity of visible light driven silver iodide anchored on Graphitic-C3N4 binary composite. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere. PLoS One 2018; 13:e0206497. [PMID: 30427885 PMCID: PMC6241123 DOI: 10.1371/journal.pone.0206497] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022] Open
Abstract
Streptomyces species 1-14 isolated from cassava rhizosphere soil were evaluated for their antibacterial efficacy against Fusarium oxysporum f.sp. cubense race 4 (FOC4). Of the 63 strains tested, thirteen exhibited potent antibacterial properties and were further screened against eight fungal pathogens. The strain that showed maximum inhibition against all of the test pathogens was identified by 16S rDNA sequencing as Streptomyces sp. 1-14, was selected for further studies. Through the propagation of Streptomyces sp. 1-14 in soil under simulated conditions, we found that FOC4 did not significantly influence the multiplication and survival of Streptomyces sp. 1-14, while indigenous microorganisms in the soil did significantly influence Streptomyces sp. 1-14 populations. To achieve maximum metabolite production, the growth of Streptomyces 1-14 was optimized through response surface methodology employing Plackett-Burman design, path of steepest ascent determinations and Box-Behnken design. The final optimized fermentation conditions (g/L) included: glucose, 38.877; CaCl2•2H2O, 0.161; temperature, 29.97°C; and inoculation amount, 8.93%. This optimization resulted in an antibacterial activity of 56.13% against FOC4, which was 12.33% higher than that before optimization (43.80%). The results obtained using response surface methodology to optimize the fermentation medium had a significant effect on the production of bioactive metabolites by Streptomyces sp. 1-14. Moreover, during fermentation and storage, pH, light, storage temperature, etc., must be closely monitored to reduce the formation of fermentation products with reduced antibacterial activity. This method is useful for further investigations of the production of anti-FOC4 substances, and could be used to develop bio-control agents to suppress or control banana fusarium wilt.
Collapse
|
24
|
Zhang H, Ning Z, Khalid H, Zhang R, Liu G, Chen C. Enhancement of methane production from Cotton Stalk using different pretreatment techniques. Sci Rep 2018; 8:3463. [PMID: 29472551 PMCID: PMC5823884 DOI: 10.1038/s41598-018-21413-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/18/2017] [Indexed: 11/29/2022] Open
Abstract
China produces large amount of cotton stalk (CS) residues as agricultural biomass, which are incinerated on-site, causing air pollution. The high organic content of CS could be utilized for biogas production, but the direct digestion without pretreatment always leads to a low methane yield and biodegradability, due to the complicated structure of lignocellulose. In order to search best fitting pretreatment methods in effective anaerobic digestion (AD) of CS, effects of various pretreatments including KOH, NaOH, Ca(OH)2, alkali hydrogen peroxide (AHP), H2SO4, H3PO4 and steam explosion (SE) were studied. It was seen that all treatments resulted in varying methane yields. Among all the pretreatments, acid pretreatment is not suitable for AD of CS. The results showed that the highest cumulative methane yield (CMY) of 192.4 mL·gVS−1 was obtained after 3% AHP pretreatment of CS, and the methane yield improved by 254.3% than the untreated CS. Therefore, AHP treatment was proven to be an efficient pretreatment technique. XRD and FTIR analyses had shown that pretreated CS had favorable structural changes. This research is beneficial in developing environment friendly and cost-effective pretreatment technologies to utilize CS for methane production in future application.
Collapse
Affiliation(s)
- Han Zhang
- Biomass Energy and Environmental Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhifang Ning
- Biomass Energy and Environmental Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Habiba Khalid
- Biomass Energy and Environmental Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruihong Zhang
- Biomass Energy and Environmental Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, United States
| | - Guangqing Liu
- Biomass Energy and Environmental Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chang Chen
- Biomass Energy and Environmental Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|