1
|
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies-Novel Tools to Study and Treat Allergies. Int J Mol Sci 2024; 25:7602. [PMID: 39062843 PMCID: PMC11277559 DOI: 10.3390/ijms25147602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
IgE-mediated allergies represent a major health problem in the modern world. Apart from allergen-specific immunotherapy (AIT), the only disease-modifying treatment, researchers focus on biologics that target different key molecules such as allergens, IgE, or type 2 cytokines to ameliorate allergic symptoms. Single-domain antibodies, or nanobodies, are the newcomers in biotherapeutics, and their huge potential is being investigated in various research fields since their discovery 30 years ago. While they are dominantly applied for theranostics of cancer and treatment of infectious diseases, nanobodies have become increasingly substantial in allergology over the last decade. In this review, we discuss the prerequisites that we consider to be important for generating useful nanobody-based drug candidates for treating allergies. We further summarize the available research data on nanobodies used as allergen monitoring and detection probes and for therapeutic approaches. We reflect on the limitations that have to be addressed during the development process, such as in vivo half-life and immunogenicity. Finally, we speculate about novel application formats for allergy treatment that might be available in the future.
Collapse
Affiliation(s)
- Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Kollárová
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Marglous S, Brown CE, Padler-Karavani V, Cummings RD, Gildersleeve JC. Serum antibody screening using glycan arrays. Chem Soc Rev 2024; 53:2603-2642. [PMID: 38305761 PMCID: PMC7616341 DOI: 10.1039/d3cs00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Humans and other animals produce a diverse collection of antibodies, many of which bind to carbohydrate chains, referred to as glycans. These anti-glycan antibodies are a critical part of our immune systems' defenses. Whether induced by vaccination or natural exposure to a pathogen, anti-glycan antibodies can provide protection against infections and cancers. Alternatively, when an immune response goes awry, antibodies that recognize self-glycans can mediate autoimmune diseases. In any case, serum anti-glycan antibodies provide a rich source of information about a patient's overall health, vaccination history, and disease status. Glycan microarrays provide a high-throughput platform to rapidly interrogate serum anti-glycan antibodies and identify new biomarkers for a variety of conditions. In addition, glycan microarrays enable detailed analysis of the immune system's response to vaccines and other treatments. Herein we review applications of glycan microarray technology for serum anti-glycan antibody profiling.
Collapse
Affiliation(s)
- Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
3
|
Wemlinger SM, Cambier JC. Therapeutic tactics for targeting B lymphocytes in autoimmunity and cancer. Eur J Immunol 2024; 54:e2249947. [PMID: 37816494 DOI: 10.1002/eji.202249947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
B lymphocytes have become a very popular therapeutic target in a number of autoimmune indications due to their newly appreciated roles, and approachability, in these diseases. Many of the therapies now applied in autoimmunity were initially developed to deplete malignant B cells. These strategies have also been found to benefit patients suffering from such autoimmune diseases as multiple sclerosis, type I diabetes, systemic lupus erythematosus, and rheumatoid arthritis, to name a few. These observations have supported the expansion of research addressing the mechanistic contributions of B cells in these diseases, as well as blossoming of therapeutics that target them. This review seeks to summarize cutting-edge modalities for targeting B cells, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor-T cells, and small molecule inhibitors. Efforts to refine B-cell targeted therapy to eliminate only pathogenic autoreactive cells will be addressed as well as the potential for future B-cell-based cellular therapeutics. Finally, we also address approaches that seek to silence B-cell function without depletion.
Collapse
Affiliation(s)
- Scott M Wemlinger
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
4
|
Recto K, Kachroo P, Huan T, Van Den Berg D, Lee GY, Bui H, Lee DH, Gereige J, Yao C, Hwang SJ, Joehanes R, Weiss ST, O'Connor GT, Levy D, DeMeo DL. Epigenome-wide DNA methylation association study of circulating IgE levels identifies novel targets for asthma. EBioMedicine 2023; 95:104758. [PMID: 37598461 PMCID: PMC10462855 DOI: 10.1016/j.ebiom.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Identifying novel epigenetic signatures associated with serum immunoglobulin E (IgE) may improve our understanding of molecular mechanisms underlying asthma and IgE-mediated diseases. METHODS We performed an epigenome-wide association study using whole blood from Framingham Heart Study (FHS; n = 3,471, 46% females) participants and validated results using the Childhood Asthma Management Program (CAMP; n = 674, 39% females) and the Genetic Epidemiology of Asthma in Costa Rica Study (CRA; n = 787, 41% females). Using the closest gene to each IgE-associated CpG, we highlighted biologically plausible pathways underlying IgE regulation and analyzed the transcription patterns linked to IgE-associated CpGs (expression quantitative trait methylation loci; eQTMs). Using prior UK Biobank summary data from genome-wide association studies of asthma and allergy, we performed Mendelian randomization (MR) for causal inference testing using the IgE-associated CpGs from FHS with methylation quantitative trait loci (mQTLs) as instrumental variables. FINDINGS We identified 490 statistically significant differentially methylated CpGs associated with IgE in FHS, of which 193 (39.3%) replicated in CAMP and CRA (FDR < 0.05). Gene ontology analysis revealed enrichment in pathways related to transcription factor binding, asthma, and other immunological processes. eQTM analysis identified 124 cis-eQTMs for 106 expressed genes (FDR < 0.05). MR in combination with drug-target analysis revealed CTSB and USP20 as putatively causal regulators of IgE levels (Bonferroni adjusted P < 7.94E-04) that can be explored as potential therapeutic targets. INTERPRETATION By integrating eQTM and MR analyses in general and clinical asthma populations, our findings provide a deeper understanding of the multidimensional inter-relations of DNA methylation, gene expression, and IgE levels. FUNDING US NIH/NHLBI grants: P01HL132825, K99HL159234. N01-HC-25195 and HHSN268201500001I.
Collapse
Affiliation(s)
- Kathryn Recto
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Priyadarshini Kachroo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - David Van Den Berg
- University of Southern California Methylation Characterization Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Gha Young Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Helena Bui
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Dong Heon Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Jessica Gereige
- Boston University School of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | - Chen Yao
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Shih-Jen Hwang
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Roby Joehanes
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Scott T Weiss
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA
| | - George T O'Connor
- The Framingham Heart Study, Framingham, MA 01702, USA; Boston University School of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA.
| | - Dawn L DeMeo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Ling XJ, Wei JF, Zhu Y. Aiming to IgE: Drug development in allergic diseases. Int Immunopharmacol 2023; 121:110495. [PMID: 37348229 DOI: 10.1016/j.intimp.2023.110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The incidence of allergic disease significantly increases in recent decades, causing it become a major public health problem all over the world. The common allergic diseases such as allergic dermatitis, allergy rhinitis, allergic asthma and food allergy are mediated, at least in part, by immunoglobulin E (IgE), and so IgE acts as a central role in allergic diseases. IgE can interact with its high-affinity receptor (FcεRⅠ) which is primarily expressed on tissue-resident mast cells and circulating basophils, initiating intracellular signal transduction and then causing the activation and degranulation of mast cells and basophils. On the other hand, IgE interaction with its low-affinity receptor (CD23), can regulate various IgE-mediated immune responses including IgE-allergen complex presentation, IgE synthesis, the growth and differentiation of both B and T cells, and the secretion of pro-inflammatory mediators. With the deeper mechanism research for allergic diseases, new therapeutic strategies for interfering IgE are developed and receive a great attention. In this review, we summarize a current profile of therapeutic strategies for interfering IgE in allergic diseases. Besides, we suggest that targeting memory B cells (including long-lived plasma cells and (or) IgE+ memory B cells) may help to completely control allergic diseases, and highlight that the development of drugs synergistically aiming to multiple targets can be a better choice for improving treatment efficacy which results from allergic diseases as the systemic disorders caused by an impaired immune system.
Collapse
Affiliation(s)
- Xiao-Jing Ling
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Ying Zhu
- Department of Blood Transfusion, Ganzhou Key Laboratory of Anesthesiology, Anesthesia and Surgery Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
6
|
Mutarelli A, Giavina-Bianchi B, Arasi S, Cafarotti A, Fiocchi A. Biologicals in IgE-mediated food allergy. Curr Opin Allergy Clin Immunol 2023; 23:205-209. [PMID: 37185824 DOI: 10.1097/aci.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW A better understanding of the most recent scientific literature in the use of biological therapy in the treatment of patients with IgE-mediated food allergy. RECENT FINDINGS A systematic review and meta-analysis demonstrated safety and effectiveness of omalizumab in the treatment of food allergy. The findings support the potential use of omalizumab as a monotherapy or as an adjunct to oral immunotherapy in IgE-mediated cow's milk allergy. The potential use of other biologics in the management of food allergy is subject of speculation. SUMMARY Different biological therapies are under evaluation for food allergic patients. The advance in literature will guide for a personalized treatment in the near future. However, additional research is needed to better understand the best candidate for each treatment, the optimal dose and timing.
Collapse
Affiliation(s)
| | | | - Stefania Arasi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Arianna Cafarotti
- Federal University of Minas Gerais, Belo Horizonte, MG
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandro Fiocchi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
7
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
8
|
Recto KA, Huan T, Lee DH, Lee GY, Gereige J, Yao C, Hwang SJ, Joehanes R, Kelly RS, Lasky-Su J, O’Connor G, Levy D. Transcriptome-wide association study of circulating IgE levels identifies novel targets for asthma and allergic diseases. Front Immunol 2023; 14:1080071. [PMID: 36793728 PMCID: PMC9922991 DOI: 10.3389/fimmu.2023.1080071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Measurement of circulating immunoglobulin E (IgE) concentration is helpful for diagnosing and treating asthma and allergic diseases. Identifying gene expression signatures associated with IgE might elucidate novel pathways for IgE regulation. To this end, we performed a discovery transcriptome-wide association study to identify differentially expressed genes associated with circulating IgE levels in whole-blood derived RNA from 5,345 participants in the Framingham Heart Study across 17,873 mRNA gene-level transcripts. We identified 216 significant transcripts at a false discovery rate <0.05. We conducted replication using the meta-analysis of two independent external studies: the Childhood Asthma Management Program (n=610) and the Genetic Epidemiology of Asthma in Costa Rica Study (n=326); we then reversed the discovery and replication cohorts, which revealed 59 significant genes that replicated in both directions. Gene ontology analysis revealed that many of these genes were implicated in immune function pathways, including defense response, inflammatory response, and cytokine production. Mendelian randomization (MR) analysis revealed four genes (CLC, CCDC21, S100A13, and GCNT1) as putatively causal (p<0.05) regulators of IgE levels. GCNT1 (beta=1.5, p=0.01)-which is a top result in the MR analysis of expression in relation to asthma and allergic diseases-plays a role in regulating T helper type 1 cell homing, lymphocyte trafficking, and B cell differentiation. Our findings build upon prior knowledge of IgE regulation and provide a deeper understanding of underlying molecular mechanisms. The IgE-associated genes that we identified-particularly those implicated in MR analysis-can be explored as promising therapeutic targets for asthma and IgE-related diseases.
Collapse
Affiliation(s)
- Kathryn A. Recto
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Dong Heon Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Gha Young Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Jessica Gereige
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States
| | - Chen Yao
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Shih-Jen Hwang
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Roby Joehanes
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Rachel S. Kelly
- Brigham and Women’s Hospital, Channing Division of Network Medicine, Boston, MA, United States
| | - Jessica Lasky-Su
- Brigham and Women’s Hospital, Channing Division of Network Medicine, Boston, MA, United States
| | - George O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States
| | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| |
Collapse
|
9
|
Atluri K, Manne S, Nalamothu V, Mantel A, Sharma PK, Babu RJ. Advances in Current Drugs and Formulations for the Management of Atopic Dermatitis. Crit Rev Ther Drug Carrier Syst 2023; 40:1-87. [PMID: 37585309 DOI: 10.1615/critrevtherdrugcarriersyst.2023042979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with a complex pathophysiology. Treatment of AD remains challenging owing to the presence of a wide spectrum of clinical phenotypes and limited response to existing therapies. However, recent genetic, immunological, and pathophysiological insights into the disease mechanism resulted in the invention of novel therapeutic drug candidates. This review provides a comprehensive overview of current therapies and assesses various novel drug delivery strategies currently under clinical investigation. Further, this review majorly emphasizes on various topical treatments including emollient therapies, barrier repair agents, topical corticosteroids (TCS), phosphodiesterase 4 (PDE4) inhibitors, calcineurin inhibitors, and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway inhibitors. It also discusses biological and systemic therapies, upcoming treatments based on ongoing clinical trials. Additionally, this review scrutinized the use of pharmaceutical inactive ingredients in the approved topical dosage forms for AD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
10
|
Daramola AK, Akinrinmade OA, Fajemisin EA, Naran K, Mthembu N, Hadebe S, Brombacher F, Huysamen AM, Fadeyi OE, Hunter R, Barth S. A recombinant Der p 1-specific allergen-toxin demonstrates superior killing of allergen-reactive IgG + hybridomas in comparison to its recombinant allergen-drug conjugate. IMMUNOTHERAPY ADVANCES 2022; 3:ltac023. [PMID: 36789295 PMCID: PMC9912260 DOI: 10.1093/immadv/ltac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Current treatments for asthma help to alleviate clinical symptoms but do not cure the disease. In this study, we explored a novel therapeutic approach for the treatment of house dust mite allergen Der p 1induced asthma by aiming to eliminate specific population of B-cells involved in memory IgE response to Der p 1. Materials and Methods To achieve this aim, we developed and evaluated two different proDer p 1-based fusion proteins; an allergen-toxin (proDer p 1-ETA) and an allergen-drug conjugate (ADC) (proDer p 1-SNAP-AURIF) against Der p 1 reactive hybridomas as an in vitro model for Der p 1 reactive human B-cells. The strategy involved the use of proDer p 1 allergen as a cell-specific ligand to selectively deliver the bacterial protein toxin Pseudomonas exotoxin A (ETA) or the synthetic small molecule toxin Auristatin F (AURIF) into the cytosol of Der p 1 reactive cells for highly efficient cell killing. Results As such, we demonstrated recombinant proDer p 1 fusion proteins were selectively bound by Der p 1 reactive hybridomas as well as primary IgG1+ B-cells from HDM-sensitized mice. The therapeutic potential of proDer p 1-ETA' and proDer p 1-SNAP-AURIF was confirmed by their selective cytotoxic activities on Der p 1 reactive hybridoma cells. The allergen-toxin demonstrated superior cytotoxic activity, with IC50 values in the single digit nanomolar value, compared to the ADC. Discussions Altogether, the proof-of-concept experiments in this study provide a promising approach for the treatment of patients with house dust mite-driven allergic asthma.
Collapse
Affiliation(s)
- A K Daramola
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - O A Akinrinmade
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - E A Fajemisin
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - K Naran
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - N Mthembu
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - S Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - F Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Faculty of Health Sciences, University of Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, South Africa
| | - A M Huysamen
- Department of Chemistry, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - O E Fadeyi
- Department of Chemistry, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - R Hunter
- Department of Chemistry, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - S Barth
- Correspondence: Stefan Barth, South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Barnard Fuller Building, Anzio Rd, Observatory, Cape Town, 7935 South Africa.
| |
Collapse
|
11
|
Abstract
Mast cells originate from the CD34+/CD117+ hematopoietic progenitors in the bone marrow, migrate into circulation, and ultimately mature and reside in peripheral tissues. Microbiota/metabolites and certain immune cells (e.g., Treg cells) play a key role in maintaining immune tolerance. Cross-linking of allergen-specific IgE on mast cells activates the high-affinity membrane-bound receptor FcεRI, thereby initiating an intracellular signal cascade, leading to degranulation and release of pro-inflammatory mediators. The intracellular signal transduction is intricately regulated by various kinases, transcription factors, and cytokines. Importantly, multiple signal components in the FcεRI-mast cell–mediated allergic cascade can be targeted for therapeutic purposes. Pharmacological interventions that include therapeutic antibodies against IgE, FcεRI, and cytokines as well as inhibitors/activators of several key intracellular signaling molecues have been used to inhibit allergic reactions. Other factors that are not part of the signal pathway but can enhance an individual’s susceptibility to allergen stimulation are referred to as cofactors. Herein, we provide a mechanistic overview of the FcεRI-mast cell–mediated allergic signaling. This will broaden our scope and visions on specific preventive and therapeutic strategies for the clinical management of mast cell–associated hypersensitivity reactions.
Collapse
|
12
|
Wang H, Li XB, Chu XJ, Cao NW, Wu H, Huang RG, Li BZ, Ye DQ. Ambient air pollutants increase the risk of immunoglobulin E-mediated allergic diseases: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49534-49552. [PMID: 35595897 PMCID: PMC9122555 DOI: 10.1007/s11356-022-20447-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/21/2022] [Indexed: 05/06/2023]
Abstract
Immunoglobulin E (IgE)-mediated allergic diseases, including eczema, atopic dermatitis (AD), and allergic rhinitis (AR), have increased prevalence in recent decades. Recent studies have proved that environmental pollution might have correlations with IgE-mediated allergic diseases, but existing research findings were controversial. Thus, we performed a comprehensive meta-analysis from published observational studies to evaluate the risk of long-term and short-term exposure to air pollutants on eczema, AD, and AR in the population (per 10-μg/m3 increase in PM2.5 and PM10; per 1-ppb increase in SO2, NO2, CO, and O3). PubMed, Embase, and Web of Science were searched to identify qualified literatures. The Cochran Q test was used to assess heterogeneity and quantified with the I2 statistic. Pooled effects and the 95% confidence intervals (CIs) were used to evaluate outcome effects. A total of 55 articles were included in the study. The results showed that long-term and short-term exposure to PM10 increased the risk of eczema (PM10, RRlong = 1.583, 95% CI: 1.328, 1.888; RRshort = 1.006, 95% CI: 1.003-1.008) and short-term exposure to NO2 (RRshort = 1.009, 95% CI: 1.008-1.011) was associated with eczema. Short-term exposure to SO2 (RRshort: 1.008, 95% CI: 1.001-1.015) was associated with the risk of AD. For AR, PM2.5 (RRlong = 1.058, 95% CI: 1.014-1.222) was harmful in the long term, and short-term exposure to PM10 (RRshort: 1.028, 95% CI: 1.008-1.049) and NO2 (RRshort: 1.018, 95% CI: 1.007-1.029) were risk factors. The findings indicated that exposure to air pollutants might increase the risk of IgE-mediated allergic diseases. Further studies are warranted to illustrate the potential mechanism for air pollutants and allergic diseases.
Collapse
Affiliation(s)
- Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
13
|
Alharbi AS, Yousef AA, Alharbi SA, Almaghamsi TM, Al Qwaiee MM, Al-Somali FM, Alahmadi TS, Alhaider SA, Alotaibi WH, Albalawi MA, Alotaibi FN, Alenizi AS, Alsaadi MM, Said YS. Severe asthma in children: An official statement from Saudi Pediatric Pulmonology Association. Saudi Med J 2022; 43:329-340. [PMID: 35414610 PMCID: PMC9998054 DOI: 10.15537/smj.2022.4.43.20210756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
In Saudi Arabia, the prevalence of pediatric asthma ranges between 8% and 25%. However, there are no sufficient data regarding severe asthma in childhood in Saudi Arabia. Therefore, a task force has been formed by the Saudi Pediatric Pulmonology Association which is a subsidiary group of the Saudi Thoracic Society and consists of Saudi experts with well-respected academic and clinical backgrounds in the fields of pediatric asthma as well as other respiratory diseases to write a consensus on definitions, phenotypes, and pathophysiology, evaluation, and management. To achieve this, the subject was divided into various sections, each of which was assigned to at least 2 experts. Without a central literature review, the authors searched the literature using their own strategies. To reach an agreement, the entire panel reviewed and voted on proposed findings and recommendations.
Collapse
Affiliation(s)
- Adel S. Alharbi
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Abdullah A. Yousef
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Saleh A. Alharbi
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Talal M. Almaghamsi
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Mansour M. Al Qwaiee
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Faisal M. Al-Somali
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Turki S. Alahmadi
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Sami A. Alhaider
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Wadha H. Alotaibi
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Mona A. Albalawi
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Faisal N. Alotaibi
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Ahmed S. Alenizi
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Muslim M. Alsaadi
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Yazan S. Said
- From the Department of Pediatrics (A. Alharbi, Alotaibi), Pediatric Pulmonology Division and Pediatric Sleep Center, from the Department of Pediatrics (Al-Somali), Pediatric Pulmonary Division, Prince Sultan Military City, from the Departments of Pediatric Pulmonology & Sleep Medicine (Albalawi), King Fahad Medical City, from the Pediatric Pulmonology And Sleep Medicine Department (Alenizi), Children’s Hospital, King Saud Medical City, from the Department of Pediatrics (Alenizi), College of Medicine and King Khalid University Hospital, King Saud University, From the Pediatric Department (Said), Security Forces Hospital, Riyadh; from the Department of Pediatrics (Yousef), Imam Abdulrahman Bin Faisal University, College of Medicine; from the Department of Pediatrics (Almaghamsi, Alhaider), King Fahad Specialist Hospital, Dammam; King Fahd Hospital of the University (Yousef), from the Department of Pediatrics (Alahmadi), Dr. Sulaiman Al Habib Hospital, Al-Khobar; Department of Pediatrics (S. Alharbi), Faculty of Medicine, Umm Alqura University, Mecca; from the Department of Pediatrics (S. Alharbi), Dr. Soliman Fakeeh Hospital; from the Pediatric Department (Al Qwaiee), King Faisal specialist hospital & Research Center, from the Department of Pediatrics (Alotaibi), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
14
|
Olivera-Ardid S, Bello-Gil D, Tuzikov A, Araujo RN, Ferrero-Alves Y, García Figueroa BE, Labrador-Horrillo M, García-Pérez AL, Bovin N, Mañez R. Poly-L-Lysine-Based αGal-Glycoconjugates for Treating Anti-αGal IgE-Mediated Diseases. Front Immunol 2022; 13:873019. [PMID: 35432370 PMCID: PMC9009260 DOI: 10.3389/fimmu.2022.873019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
Anti-αGal IgE antibodies mediate a spreading allergic condition known as αGal-syndrome (AGS). People exposed to hard tick bites are sensitized to αGal, producing elevated levels of anti-αGal IgE, which are responsible for AGS. This work presents an immunotherapy based on polymeric αGal-glycoconjugates for potentially treating allergic disorders by selectively inhibiting anti-αGal IgE antibodies. We synthesized a set of αGal-glycoconjugates, based on poly-L-lysine of different degrees of polymerization (DP1000, DP600, and DP100), to specifically inhibit in vitro the anti-αGal IgE antibodies in the serum of αGal-sensitized patients (n=13). Moreover, an animal model for αGal sensitization in GalT-KO mice was developed by intradermal administration of hard tick' salivary gland extract, mimicking the sensitization mechanism postulated in humans. The in vitro exposure to all polymeric glycoconjugates (5-10-20-50-100 µg/mL) mainly inhibited anti-αGal IgE and IgM isotypes, with a lower inhibition effect on the IgA and IgG, respectively. We demonstrated a differential anti-αGal isotype inhibition as a function of the length of the poly-L-lysine and the number of αGal residues exposed in the glycoconjugates. These results defined a minimum of 27 αGal residues to inhibit most of the induced anti-αGal IgE in vitro. Furthermore, the αGal-glycoconjugate DP1000-RA0118 (10 mg/kg sc.) showed a high capacity to remove the anti-αGal IgE antibodies (≥75% on average) induced in GalT-KO mice, together with similar inhibition for circulating anti-αGal IgG and IgM. Our study suggests the potential clinical use of poly-L-lysine-based αGal-glycoconjugates for treating allergic disorders mediated by anti-αGal IgE antibodies.
Collapse
Affiliation(s)
- Sara Olivera-Ardid
- RemAb Therapeutics, Mòdul de Recerca B, UAB Bellaterra, Barcelona, Spain
| | - Daniel Bello-Gil
- RemAb Therapeutics, Mòdul de Recerca B, UAB Bellaterra, Barcelona, Spain
| | - Alexander Tuzikov
- Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ricardo N. Araujo
- Laboratório de Artrópodes Hematófagos, Departamento de Parasitologia, ICB/UFMG, Belo Horizonte, Brazil
| | - Yara Ferrero-Alves
- RemAb Therapeutics, Mòdul de Recerca B, UAB Bellaterra, Barcelona, Spain
| | - Blanca Esther García Figueroa
- MEGA: Asthma Inception and Progression Mechanisms, Complejo Hospitalario de Navarra (CHN), Pamplona, Spain
- Instituto de investigación sanitaria de Navarra (IdiSNA), Pamplona, Spain
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Moisés Labrador-Horrillo
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Immunomediated Diseases and Innovative Therapies, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Ana L. García-Pérez
- Departamento de Sanidad Animal, Instituto Vasco de Investigación de Desarrollo Agrario (NEIKER), Derio, Spain
| | - Nicolai Bovin
- Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Rafael Mañez
- RemAb Therapeutics, Mòdul de Recerca B, UAB Bellaterra, Barcelona, Spain
- Hospital Universitari de Bellvitge, Servicio de Medicina Intensiva, Hospitalet de Llobregat, Barcelona, Spain
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Grupo Inmunidad Innata y Patología del Paciente Crítico, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
15
|
Effects of divalent cations on the physical, conformational and immunological properties of bovine allergen β-lactoglobulin aggregates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Wigton EJ, Mikami Y, McMonigle RJ, Castellanos CA, Wade-Vallance AK, Zhou SK, Kageyama R, Litterman A, Roy S, Kitamura D, Dykhuizen EC, Allen CD, Hu H, O’Shea JJ, Ansel KM. MicroRNA-directed pathway discovery elucidates an miR-221/222-mediated regulatory circuit in class switch recombination. J Exp Med 2021; 218:e20201422. [PMID: 34586363 PMCID: PMC8485858 DOI: 10.1084/jem.20201422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/12/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) regulate cell fate decisions by post-transcriptionally tuning networks of mRNA targets. We used miRNA-directed pathway discovery to reveal a regulatory circuit that influences Ig class switch recombination (CSR). We developed a system to deplete mature, activated B cells of miRNAs, and performed a rescue screen that identified the miR-221/222 family as a positive regulator of CSR. Endogenous miR-221/222 regulated B cell CSR to IgE and IgG1 in vitro, and miR-221/222-deficient mice exhibited defective IgE production in allergic airway challenge and polyclonal B cell activation models in vivo. We combined comparative Ago2-HITS-CLIP and gene expression analyses to identify mRNAs bound and regulated by miR-221/222 in primary B cells. Interrogation of these putative direct targets uncovered functionally relevant downstream genes. Genetic depletion or pharmacological inhibition of Foxp1 and Arid1a confirmed their roles as key modulators of CSR to IgE and IgG1.
Collapse
Affiliation(s)
- Eric J. Wigton
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Yohei Mikami
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Rockville, MD
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ryan J. McMonigle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Carlos A. Castellanos
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Adam K. Wade-Vallance
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Simon K. Zhou
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Robin Kageyama
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Adam Litterman
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Suparna Roy
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Dermatology, University of California, San Francisco, San Francisco, CA
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN
| | - Christopher D.C. Allen
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Hui Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Rockville, MD
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
17
|
Arasi S, Mennini M, Cafarotti A, Fiocchi A. Omalizumab as monotherapy for food allergy. Curr Opin Allergy Clin Immunol 2021; 21:286-291. [PMID: 33769312 DOI: 10.1097/aci.0000000000000744] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW To familiarize the reader with the most recent insights in the use of Omalizumab (monoclonal anti-immunoglobulin E) monotherapy in the treatment of patients with severe food allergy. RECENT FINDINGS The current data from early stage clinical trials show that Omalizumab may be safe and effective by itself in providing desensitization to one or several foods without requiring allergen exposure. SUMMARY In the near future, advances in knowledge will guide the adoption and implementation of any new therapy for food allergy and allow the development of a personalized treatment tailored on the specific patient's profile.
Collapse
Affiliation(s)
- Stefania Arasi
- Allergy Unit - Area of Translational Research in Pediatric Specialities, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | |
Collapse
|
18
|
Effect of nocturnal Temperature-controlled Laminar Airflow on the reduction of severe exacerbations in patients with severe allergic asthma: a meta-analysis. Eur Clin Respir J 2021; 8:1894658. [PMID: 33763190 PMCID: PMC7952059 DOI: 10.1080/20018525.2021.1894658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Allergen avoidance is important in allergic asthma management. Nocturnal treatment with Temperature-controlled Laminar Airflow (TLA) has been shown to provide a significant reduction in the exposure to allergens in the breathing zone, leading to a long-term reduction in airway inflammation and improvement in Quality of life (QoL). Allergic asthma patients symptomatic on Global Initiative for Asthma (GINA) step 4/5 were found to benefit the most as measured by Asthma Quality of Life Questionnaire (AQLQ). However, the effect of TLA on severe asthma exacerbations is uncertain and therefore a meta-analysis was performed. Methods: Patients with severe allergic asthma (GINA 4/5) were extracted from two 1-year randomised, double-blind, placebo-controlled trials conducted with TLA. A meta-analysis of the effect on severe exacerbations was performed by negative binomial regression in a sequential manner, defined by baseline markers of asthma control (symptoms and QoL scores). Results: The pooled dataset included 364patients. Patients with more symptoms at baseline (ACT<18 or ACQ7>3; N=179), had a significant mean 41% reduction in severe exacerbations (RR=0.59 (0.38-0.90); p=0.015) in favour of TLA. Higher ACQ7 cut-points of 3.5-4.5 resulted in significant reductions of 48-59%.More uncontrolled patients based on AQLQ total and symptom domains ≤3.0 at baseline also showed a significant reduction in severe exacerbations for TLA vs. placebo ((47% (p=0.037) and 53% (p=0.011), respectively). The meta-analysis also confirmed a significant difference in AQLQ-responders ((Minimal Clinically Important Difference)≥0.5; 74% vs. 43%, p=0.04). Conclusion: This meta-analysis of individual patient data shows a beneficial effect on severe exacerbations and quality of life for TLA over placebo in more symptomatic patients with severe allergic asthma. These outcomes support the national management recommendations for patients with symptomatic severe allergic asthma. The actual effect of TLA on severe exacerbations should be confirmed in a prospective study with larger numbers of patients.
Collapse
|
19
|
Ghosh S, Das S, Mondal R, Abdullah S, Sultana S, Singh S, Sehgal A, Behl T. A review on the effect of COVID-19 in type 2 asthma and its management. Int Immunopharmacol 2020; 91:107309. [PMID: 33385710 PMCID: PMC7772091 DOI: 10.1016/j.intimp.2020.107309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
Background COVID-19 is considered the most critical health pandemic of 21st century. Due to extremely high transmission rate, people are more susceptible to viral infection. COVID-19 patients having chronic type-2 asthma prevails a major risk as it may aggravate the disease and morbidities. Objective The present review mainly focuses on correlating the influence of COVID-19 in type-2 asthmatic patients. Besides, it delineates the treatment measures and drugs that can be used to manage mild, moderate, and severe symptoms of COVID-19 in asthmatic patients, thus preventing any exacerbation. Methods An in-depth research was carried out from different peer-reviewed articles till September 2020 from several renowned databases like PubMed, Frontier, MEDLINE, and related websites like WHO, CDC, MOHFW, and the information was analysed and written in a simplified manner. Results The progressive results were quite conflicting as severe cases of COVID-19 shows an increase in the level of several cytokines that can augment inflammation to the bronchial tracts, worsening the asthma attacks. Contradicting to this, certain findings reveal the decrease in the severity of COVID-19 due to the elevation of T-cells in type-2 asthmatic patients, as prominent reduction of T-cell is seen in most of the COVID-19 positive patients. This helps to counteract the balance of immune responses and hence ameliorate the disease progression. Conclusion Asthmatic patients must remain cautious during the COVID-19 pandemic by maintaining all the precautions to stay safe due to limited research data. Future strategies should include a better understanding of asthmatic exacerbation and its relation to COVID-19.
Collapse
Affiliation(s)
- Srijit Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Sodepur, Kolkata 700114, West Bengal, India
| | - Srijita Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Rupsa Mondal
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Sodepur, Kolkata 700114, West Bengal, India
| | - Salik Abdullah
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Sodepur, Kolkata 700114, West Bengal, India
| | - Shirin Sultana
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Sodepur, Kolkata 700114, West Bengal, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India.
| |
Collapse
|
20
|
Wu D, Li S, Liu X, Xu J, Jiang A, Zhang Y, Liu Z, Wang J, Zhou E, Wei Z, Yang Z, Guo C. Alpinetin prevents inflammatory responses in OVA-induced allergic asthma through modulating PI3K/AKT/NF-κB and HO-1 signaling pathways in mice. Int Immunopharmacol 2020; 89:107073. [PMID: 33039967 DOI: 10.1016/j.intimp.2020.107073] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Allergic asthma is the most common type of asthma which characterized by inflammatory responses of the airways. Alpinetin, a flavonoid compound derived from the ginger family of medicinal herbs, possesses various biological properties including anti-inflammatory, anti-oxidant and other medical effects. In this study, we aimed to evaluate the effects of alpinetin on OVA-induced allergic asthma, and further to examine its molecular mechanisms underlying these processes in vivo and in vitro. Mice were sensitized and challenged with OVA to build allergic asthma model in vivo. Bronchoalveolar lavage fluid (BALF) was collected for inflammatory cells analysis and lung tissues were examined for histopathological examination. The levels of IL-5, IL-13, IL-4, IgE, TNF-α, IL-6 and IL-1β were determined by the respective ELISA kits. The PI3K/AKT/NF-κB and HO-1 signaling pathways were examined by western blot analysis. The results showed that alpinetin significantly ameliorated OVA-induced pathologic changes of lungs, such as decreasing massive inflammatory cell infiltration and mucus hypersecretion, and reduced the number of inflammatory cells in BALF. Alpinetin also decreased the OVA-induced levels of IL-4, IL-5, IL-13 and IgE. Furthermore, alpinetin inhibited OVA-induced phosphorylation of p65, IκB, PI3K and AKT, and the activity of HO-1 in vivo. More importantly, these anti-inflammatory effects and molecular mechanisms of alpinetin has also been confirmed in LPS-stimulated RAW 264.7 macrophages in vitro. In conclusion, above results indicate that alpinetin exhibites a potent anti-inflammatory activity in allergic asthma through modulating PI3K/AKT/NF-κB and HO-1 signaling pathways, which would be used as a promising therapy agent for allergic asthma.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Shuangqiu Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Xiao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Aimin Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Yong Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Ziyi Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China; College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| | - Changmin Guo
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China.
| |
Collapse
|
21
|
Lázaro-Gorines R, López-Rodríguez JC, Benedé S, González M, Mayorga C, Vogel L, Martínez-Del-Pozo Á, Lacadena J, Villalba M. Der p 1-based immunotoxin as potential tool for the treatment of dust mite respiratory allergy. Sci Rep 2020; 10:12255. [PMID: 32703972 PMCID: PMC7378242 DOI: 10.1038/s41598-020-69166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 11/25/2022] Open
Abstract
Immunotoxins appear as promising therapeutic molecules, alternative to allergen-specific-immunotherapy. In this work, we achieved the development of a protein chimera able to promote specific cell death on effector cells involved in the allergic reaction. Der p 1 allergen was chosen as cell-targeting domain and the powerful ribotoxin α-sarcin as the toxic moiety. The resultant construction, named proDerp1αS, was produced and purified from the yeast Pichia pastoris. Der p 1-protease activity and α-sarcin ribonucleolytic action were effectively conserved in proDerp1αS. Immunotoxin impact was assayed by using effector cells sensitized with house dust mite-allergic sera. Cell degranulation and death, triggered by proDerp1αS, was exclusively observed on Der p 1 sera sensitized-humRBL-2H3 cells, but not when treated with non-allergic sera. Most notably, equivalent IgE-binding and degranulation were observed with both proDerp1αS construct and native Der p 1 when using purified basophils from sensitized patients. However, proDerp1αS did not cause any cytotoxic effect on these cells, apparently due to its lack of internalization after their surface IgE-binding, showing the complex in vivo panorama governing allergic reactions. In conclusion, herein we present proDerp1αS as a proof of concept for a potential and alternative new designs of therapeutic tools for allergies. Development of new, and more specific, second-generation of immunotoxins following proDerp1αS, is further discussed.
Collapse
Affiliation(s)
- Rodrigo Lázaro-Gorines
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Juan Carlos López-Rodríguez
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Sara Benedé
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Miguel González
- Allergy Research Laboratory, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Laboratory, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain.,U.G.C. Allergy, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - Lothar Vogel
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Álvaro Martínez-Del-Pozo
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Javier Lacadena
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain.
| | - Mayte Villalba
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Chinn AM, Insel PA. Cyclic AMP in dendritic cells: A novel potential target for disease-modifying agents in asthma and other allergic disorders. Br J Pharmacol 2020; 177:3363-3377. [PMID: 32372523 DOI: 10.1111/bph.15095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are immune disorders that are a global health problem, affecting a large portion of the world's population. Allergic asthma is a heterogeneous disease that alters the biology of the airway. A substantial portion of patients with asthma do not respond to conventional therapies; thus, new and effective therapeutics are needed. Dendritic cells (DCs), antigen presenting cells that regulate helper T cell differentiation, are key drivers of allergic inflammation but are not the target of current therapies. Here we review the role of dendritic cells in allergic conditions and propose a disease-modifying strategy for treating allergic asthma: cAMP-mediated inhibition of dendritic cells to blunt allergic inflammation. This approach contrasts with current treatments that focus on treating clinical manifestations of airway inflammation. Disease-modifying agents that target cAMP and its signalling pathway in dendritic cells may provide a novel means to treat asthma and other allergic diseases.
Collapse
Affiliation(s)
- Amy M Chinn
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
23
|
Hou YB, Zhang LN, Wang HN, Zhao ZF, Sun YT, Ji K, Chen JJ. The antipsychotic drug pimozide inhibits IgE-mediated mast cell degranulation and migration. Int Immunopharmacol 2020; 84:106500. [PMID: 32311669 DOI: 10.1016/j.intimp.2020.106500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Mast cells (MCs) mediate a key role in allergic diseases. Detailed studies of how the neuroleptic drug pimozide affects MC activity are lacking. The aim of this study was to investigate pimozide inhibition of immunoglobulin E (IgE)-mediated MC activation and MC-mediated allergic responses. METHOD MCs were stimulated with anti-dinitrophenyl (DNP) IgE antibodies and DNP-horse serum albumin (HSA) antigen (Ag), and anti-allergic pimozide effects were detected by measuring β-hexosaminidase levels. Morphological changes were observed histologically. In vivo pimozide effects were assessed in passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-sensitized active systemic anaphylaxis mouse (ASA) model experiments. Levels of phosphorylated (p-) SYK (spleen tyrosine kinase) and MAPKs (mitogen-activated protein kinases) were detected in western blots. RESULTS We found that pimozide inhibited MC degranulation, reduced MC release of β-hexosaminidase dose-dependently in activated RBL-2H3 (IC50: 13.52 μM) and bone marrow derived MC (BMMC) (IC50: 42.42 μM), and reduced MC morphological changes. The IgE/Ag-induced migration effect was suppressed by pimozide treatment dose-dependently. Pimozide down-regulated IgE/Ag-induced phosphorylation of SYK and MAPKs in activated MCs. Moreover, pimozide attenuated allergic reactions in PCA and ASA model mice, and decreased MC populations among splenic cells. CONCLUSIONS The antipsychotic drug pimozide can suppress IgE-mediated MC activation in vitro and in vivo and should be considered for repurposing to suppress MC-mediated diseases.
Collapse
Affiliation(s)
- Yi-Bo Hou
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Yue-Tong Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
24
|
Zhang LN, Ji K, Sun YT, Hou YB, Chen JJ. Aurora kinase inhibitor tozasertib suppresses mast cell activation in vitro and in vivo. Br J Pharmacol 2020; 177:2848-2859. [PMID: 32017040 DOI: 10.1111/bph.15012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/15/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Mast cells are important in allergic reactions. Here, we assessed the anti-allergic effects of the anti-cancer drug tozasertib specifically regarding regulatory effects on mast cell activation. EXPERIMENTAL APPROACH Tozasertib effects on mast cell degranulation were determined by measuring β-hexosaminidase and histamine release and by assessing morphological changes in RBL-2H3 and mouse bone marrow-derived mast cells (BMMCs) stimulated with mouse anti-dinitrophenyl (DNP)-IgE/DNP-human serum albumin or human LAD2 cells activated with phorbol-12-myristate 13-acetate plus calcium ionophore (PMACI). Western blots were performed to detect the expression of molecules involved in NF-κB, MAPK, and Aurora kinase signalling. in vivo anti-allergic effects of tozasertib were determined in the murine IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) models. KEY RESULTS Tozasertib treatment decreased high-affinity IgE receptor (FcεRI) or PMACI-mediated degranulation in RBL-2H3 cells and in BMMCs or LAD2 cells as shown by β-hexosaminidase or histamine levels. Similarly, tozasertib prevented morphological changes in mast cells, such as particle release and F-actin reorganization. In addition, tozasertib markedly decreased expression of phosphorylated (p)-NF-κB p65, p-Erk1/2, p-p38, and p-Aurora A/B, indicating that tozasertib can inhibit the signalling pathway mediating mast cell activation. Tozasertib attenuated IgE/Ag-induced PCA dose-dependently, as shown by reduced Evans blue staining. Similarly, tozasertib reduced body temperature levels and serum histamine levels in OVA-challenged ASA mice. CONCLUSION AND IMPLICATIONS The Aurora kinase inhibitor tozasertib suppressed mast cell activation in vitro and in vivo. Tozasertib may be a potential drug, targeting mast cell activation, to treat allergic diseases or mastocytosis.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Yue-Tong Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Yi-Bo Hou
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
25
|
Hu J, Chen Y, Zhu J, Gao M, Li J, Song Z, Xu H, Wang Z. Anti-degranulation response of herbal formula in RBL-2H3 cells. Micron 2020; 130:102819. [PMID: 31896517 DOI: 10.1016/j.micron.2019.102819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023]
Abstract
Allergic diseases not only bring serious economic burden to the patients, but also consume a lot of substantial resources of social medical systems. Thus, the prevention and treatment of allergic diseases are imperative. In this study, the anti-degranulation activity of herbal formula was evaluated using the rat basophil leukemia cells (RBL-2H3) as in vitro model. The morphological and biophysical properties of RBL-2H3 cells before and after treatment with herbal formula were also determined. Notably, the herbal formula exhibits clearly inhibited degranulation by RBL-2H3 cells in a concentration-dependent manner without cytotoxic effect. Therefore, this herbal formula can be used as an alternative and promising therapeutic agent to ameliorate allergic diseases.
Collapse
Affiliation(s)
- Jing Hu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Yujuan Chen
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; School of Life Sciences, Changchun University of Science and Technology, Changchun 130022, China.
| | - Jiajing Zhu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Mingyan Gao
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiani Li
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhengxun Song
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Hongmei Xu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK.
| |
Collapse
|
26
|
Eigenmann PA, Akdis C, Bousquet J, Grattan CE, Hoffmann-Sommergruber K, Jutel M. Food and drug allergy, and anaphylaxis in EAACI journals (2018). Pediatr Allergy Immunol 2019; 30:785-794. [PMID: 31539176 DOI: 10.1111/pai.13125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
The European Academy of Allergy and Clinical Immunology (EAACI) supports three journals: "Allergy," "Pediatric Allergy and Immunology (PAI)," and "Clinical and Translational Allergy (CTA)." One of the major goals of EAACI is to support health promotion in which prevention of allergy and asthma plays a critical role and to disseminate the knowledge of allergy to all stakeholders including the EAACI junior members. This paper summarizes the achievements of 2018 in anaphylaxis, and food and drug allergy. Main topics that have been focused are anaphylaxis, mechanisms of food allergy (FA), epidemiology of FA, food allergens, diagnosis of FA, prevention and control of FA, FA immunotherapy, drug allergy, and political agenda.
Collapse
Affiliation(s)
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Jean Bousquet
- MACVIA-France, Fondation partenariale FMC VIA-LR, Montpellier, France.,INSERM U 1168, VIMA: Ageing and Chronic Diseases - Epidemiological and Public Health Approaches, Villejuif, France.,UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, Montigny le Bretonneux, France.,Euforea, Brussels, Belgium
| | | | | | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wrocław, Poland.,ALL-MED Medical Research Institute, Wrocław, Poland
| |
Collapse
|
27
|
Bousquet J, Akdis CA, Grattan C, Eigenmann PA, Hoffmann‐Sommergruber K, Agache I, Jutel M. Highlights and recent developments in airway diseases in EAACI journals (2018). Allergy 2019; 74:2329-2341. [PMID: 31573676 DOI: 10.1111/all.14068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
The European Academy of Allergy and Clinical Immunology (EAACI) supports three journals: Allergy, Pediatric Allergy and Immunology, and Clinical and Translational Allergy. EAACI's major goals include supporting the promotion of health, in which the prevention of allergy and asthma plays a critical role, and disseminating the knowledge of allergic disease to all stakeholders. In 2018, the remarkable progress in the identification of basic mechanisms of allergic and respiratory diseases as well as the translation of these findings into clinical practice were observed. Last year's highlights include publication of EAACI guidelines for allergen immunotherapy, many EAACI Position Papers covering important aspects for the specialty, better understanding of molecular and cellular mechanisms, identification of biomarkers for disease prediction and progress monitoring, novel prevention and intervention studies, elucidation of mechanisms of multimorbidities, introduction of new drugs to the clinics, recently completed phase three clinical studies, and publication of a large number of allergen immunotherapy studies and meta-analyses.
Collapse
Affiliation(s)
- Jean Bousquet
- Fondation partenariale FMC VIA‐LR MACVIA‐France Montpellier France
- INSERM U 1168 VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches Villejuif France
- UMR‐S 1168 Université Versailles St‐Quentin‐en‐Yvelines Montigny le Bretonneux France
- EUFOREA Brussels Belgium
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Clive Grattan
- St John's Institute of Dermatology Guy's Hospital London UK
| | | | | | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University Brasov Brasov Romania
| | - Marek Jutel
- Department of Clinical Immunology ALL‐MED Medical Research Institute Wroclaw Medical University Wrocław Poland
| |
Collapse
|
28
|
Azmeh R, Greydanus DE, Agana MG, Dickson CA, Patel DR, Ischander MM, Lloyd RD. Update in Pediatric Asthma: Selected Issues. Dis Mon 2019; 66:100886. [PMID: 31570159 DOI: 10.1016/j.disamonth.2019.100886] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a complex condition that affects 14% of the world's children and the approach to management includes both pharmacologic as well as non-pharmacologic strategies including attention to complex socioeconomic status phenomena. After an historical consideration of asthma, allergic and immunologic aspects of asthma in children and adolescents are presented. Concepts of socioeconomic aspects of asthma are considered along with environmental features and complications of asthma disparities. Also reviewed are links of asthma with mental health disorders, sleep disturbances and other comorbidities. A stepwise approach to asthma management is discussed that includes pharmacologic and non-pharmacologic strategies in the pediatric population. The role of immunotherapy and use of various immunomodulators are considered as well.
Collapse
Affiliation(s)
- Roua Azmeh
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Donald E Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States.
| | - Marisha G Agana
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Cheryl A Dickson
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States; Health Equity and Community Affairs, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, United States
| | - Dilip R Patel
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Mariam M Ischander
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Robert D Lloyd
- Pacific Northwest University of Health Sciences College of Osteopathic Medicine, Yakima, Washington, United States
| |
Collapse
|
29
|
Tracing IgE-Producing Cells in Allergic Patients. Cells 2019; 8:cells8090994. [PMID: 31466324 PMCID: PMC6769703 DOI: 10.3390/cells8090994] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Immunoglobulin E (IgE) is the key immunoglobulin in the pathogenesis of IgE associated allergic diseases affecting 30% of the world population. Recent data suggest that allergen-specific IgE levels in serum of allergic patients are sustained by two different mechanisms: inducible IgE production through allergen exposure, and continuous IgE production occurring even in the absence of allergen stimulus that maintains IgE levels. This assumption is supported by two observations. First, allergen exposure induces transient increases of systemic IgE production. Second, reduction in IgE levels upon depletion of IgE from the blood of allergic patients using immunoapheresis is only temporary and IgE levels quickly return to pre-treatment levels even in the absence of allergen exposure. Though IgE production has been observed in the peripheral blood and locally in various human tissues (e.g., nose, lung, spleen, bone marrow), the origin and main sites of IgE production in humans remain unknown. Furthermore, IgE-producing cells in humans have yet to be fully characterized. Capturing IgE-producing cells is challenging not only because current staining technologies are inadequate, but also because the cells are rare, they are difficult to discriminate from cells bearing IgE bound to IgE-receptors, and plasma cells express little IgE on their surface. However, due to the central role in mediating both the early and late phases of allergy, free IgE, IgE-bearing effector cells and IgE-producing cells are important therapeutic targets. Here, we discuss current knowledge and unanswered questions regarding IgE production in allergic patients as well as possible therapeutic approaches targeting IgE.
Collapse
|
30
|
Hou YB, Ji K, Sun YT, Zhang LN, Chen JJ. CDK4/6 inhibitor palbociclib suppresses IgE-mediated mast cell activation. J Transl Med 2019; 17:276. [PMID: 31429774 PMCID: PMC6702723 DOI: 10.1186/s12967-019-2026-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mast cell activation causes degranulation and release of cytokines, thereby promoting inflammation. The aim of this study was to investigate the inhibitory effect of CDK4/6 inhibition on mast cell activation in vitro and in vivo. METHODS RBL-2H3 rat basophilic leukemia cells (BLCs) and mouse bone marrow-derived mast cells (BMMCs) were sensitized with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated with DNP-human serum albumin (HSA) antigens, and treated with the CDK4/6 inhibitor palbociclib. Histological stains were applied to reveal cytomorphological changes. Murine IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) models were used to examine palbociclib effects on allergic reactions in vivo. Western blots were performed to detect the expression of cell signaling molecules associated with mast cell activation. RESULTS Activated BLCs and BMMCs released copious granule-related mediators (histamine and β-hexosaminidase), which was reduced by palbociclib in a concentration-dependent manner. Palbociclib inhibited expression of the mast cell activation marker CD63 in activated BLCs and inhibited granule release (visualized with toluidine blue staining) while preventing morphological changes, (elongated shape maintained) and filamentous actin (F-actin) reorganization. Palbociclib suppressed molecular Lyn and/or mitogen-activated protein kinase (MAPK) signaling associated with mast cell activation in stimulated BLCs and attenuated allergic reactions in PCA mice dose dependently. Palbociclib attenuated body temperature reduction and diminished serum histamine levels in ovalbumin OVA-challenged ASA mice. CONCLUSION Palbociclib suppresses IgE-mediated mast cell activation in vitro and in vivo, suggesting that it may be developed into a therapy for mast cell-mediated allergic diseases via inhibition of mast cell degranulation.
Collapse
Affiliation(s)
- Yi-Bo Hou
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yue-Tong Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
31
|
van de Veen W, Akdis M. The use of biologics for immune modulation in allergic disease. J Clin Invest 2019; 129:1452-1462. [PMID: 30882368 DOI: 10.1172/jci124607] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The rising prevalence of allergies represents an increasing socioeconomic burden. A detailed understanding of the immunological mechanisms that underlie the development of allergic disease, as well as the processes that drive immune tolerance to allergens, will be instrumental in designing therapeutic strategies to treat and prevent allergic disease. Improved characterization of individual patients through the use of specific biomarkers and improved definitions of disease endotypes are paving the way for the use of targeted therapeutic approaches for personalized treatment. Allergen-specific immunotherapy and biologic therapies that target key molecules driving the Th2 response are already used in the clinic, and a wave of novel drug candidates are under development. In-depth analysis of the cells and tissues of patients treated with such targeted interventions provides a wealth of information on the mechanisms that drive allergies and tolerance to allergens. Here, we aim to deliver an overview of the current state of specific inhibitors used in the treatment of allergy, with a particular focus on asthma and atopic dermatitis, and provide insights into the roles of these molecules in immunological mechanisms of allergic disease.
Collapse
Affiliation(s)
- Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
32
|
MARSHALL GAILEND. IDENTIFYING INDIVIDUAL STRESS SUSCEPTIBILITY USING GENOMIC AND IMMUNE BIOMARKERS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2019; 130:235-245. [PMID: 31516188 PMCID: PMC6735999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Significant adverse impact of various forms of psychological stress on susceptibility to infection, altered wound healing, increased prevalence and severity of hypersensitivity diseases, and even increased mortality in cancer patients has been well described. Yet these observations are limited by often unpredictable individual responses to various stressful situations. These associations are further clouded by natural variability among diverse forms of and responses to chronic life stressors and associated comorbid conditions. This is particularly true for inflammatory diseases where gene/external environmental interactions are well-described. What is much less understood is gene-internal environmental (i.e., psychological) interactions that commonly affect disease activity and possible susceptibility. We have used selected single nucleotide polymorphisms of stress hormone and regulatory cytokine receptors to categorize both baseline and stress-associated immune parameters for the a priori classification of individuals with the most stress susceptible immune systems to identify those most responsive to a stress reduction/management-based intervention.
Collapse
MESH Headings
- Disease Susceptibility
- Genetic Predisposition to Disease
- Humans
- Hypersensitivity/genetics
- Hypersensitivity/immunology
- Hypersensitivity/psychology
- Polymorphism, Single Nucleotide
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/immunology
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/immunology
- Stress, Psychological/genetics
- Stress, Psychological/immunology
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- GAILEN D. MARSHALL
- Correspondence and reprint requests: Gailen D. Marshall, Jr., MD, PhD, Division of Allergy, Asthma and Clinical Immunology, Department of Medicine, The University of Mississippi Medical Center,
2500 North State Street, N416, Jackson, Mississippi 39216601-815-5527
| |
Collapse
|