1
|
Zhang Y, Fan M, Zhang Y. Revolutionizing bone defect healing: the power of mesenchymal stem cells as seeds. Front Bioeng Biotechnol 2024; 12:1421674. [PMID: 39497791 PMCID: PMC11532096 DOI: 10.3389/fbioe.2024.1421674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Bone defects can arise from trauma or pathological factors, resulting in compromised bone integrity and the loss or absence of bone tissue. As we are all aware, repairing bone defects is a core problem in bone tissue engineering. While minor bone defects can self-repair if the periosteum remains intact and normal osteogenesis occurs, significant defects or conditions such as congenital osteogenesis imperfecta present substantial challenges to self-healing. As research on mesenchymal stem cell (MSC) advances, new fields of application have emerged; however, their application in orthopedics remains one of the most established and clinically valuable directions. This review aims to provide a comprehensive overview of the research progress regarding MSCs in the treatment of diverse bone defects. MSCs, as multipotent stem cells, offer significant advantages due to their immunomodulatory properties and ability to undergo osteogenic differentiation. The review will encompass the characteristics of MSCs within the osteogenic microenvironment and summarize the research progress of MSCs in different types of bone defects, ranging from their fundamental characteristics and animal studies to clinical applications.
Collapse
Affiliation(s)
- Yueyao Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Mengke Fan
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yingze Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| |
Collapse
|
2
|
Chow SKH, Gao Q, Pius A, Morita M, Ergul Y, Murayama M, Shinohara I, Cekuc MS, Ma C, Susuki Y, Goodman SB. The Advantages and Shortcomings of Stem Cell Therapy for Enhanced Bone Healing. Tissue Eng Part C Methods 2024; 30:415-430. [PMID: 39311464 DOI: 10.1089/ten.tec.2024.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
This review explores the regenerative potential of key progenitor cell types and therapeutic strategies to improve healing of complex fractures and bone defects. We define, summarize, and discuss the differentiation potential of totipotent, pluripotent, and multipotent stem cells, emphasizing the advantages and shortcomings of cell therapy for bone repair and regeneration. The fundamental role of mesenchymal stem cells is highlighted due to their multipotency to differentiate into the key lineage cells including osteoblasts, osteocytes, and chondrocytes, which are crucial for bone formation and remodeling. Hematopoietic stem cells (HSCs) also play a significant role; immune cells such as macrophages and T-cells modulate inflammation and tissue repair. Osteoclasts are multinucleated cells that are important to bone remodeling. Vascular progenitor (VP) cells are critical to oxygen and nutrient supply. The dynamic interplay among these lineages and their microenvironment is essential for effective bone restoration. Therapies involving cells that are more than "minimally manipulated" are controversial and include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs, derived from early-stage embryos, possess pluripotent capabilities and have shown promise in preclinical studies for bone healing. iPSCs, reprogrammed from somatic cells, offer personalized medicine applications and can differentiate into various tissue-specific cell lines. Minimally manipulative cell therapy approaches such as the use of bone marrow aspirate concentrate (BMAC), exosomes, and various biomaterials for local delivery are explored for their effectiveness in bone regeneration. BMAC, which contains mostly immune cells but few mesenchymal and VPs, probably improves bone healing by facilitating paracrine-mediated intercellular communication. Exosome isolation harnesses the biological signals and cellular by-products that are a primary source for cell crosstalk and activation. Safe, efficacious, and cost-effective strategies to enhance bone healing using novel cellular therapies are part of a changing paradigm to modulate the inflammatory, repair, and regenerative pathways to achieve earlier more robust tissue healing and improved physical function. Impact Statement Stem cell therapy holds immense potential for bone healing due to its ability to regenerate damaged tissue. Nonmanipulated bone marrow aspirate contains mesenchymal stem cells that promote bone repair and reduce healing time. Induced pluripotent stem cells offer the advantage of creating patient-specific cells that can differentiate into osteoblasts, aiding in bone regeneration. Other delivery methods, such as scaffold-based techniques, enhance stem cell integration and function. Collectively, these approaches can improve treatment outcomes, reduce recovery periods, and advance our understanding of bone healing mechanisms, making them pivotal in orthopedic research and regenerative medicine.
Collapse
Affiliation(s)
- Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Alexa Pius
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mayu Morita
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yasemin Ergul
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mehmet Sertac Cekuc
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Chao Ma
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Rafieezadeh D. Extracellular vesicles and their therapeutic applications: a review article (part 2). INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:81-88. [PMID: 39310738 PMCID: PMC11411249 DOI: 10.62347/aupq6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024]
Abstract
Extracellular vesicles (EVs) have emerged as a fascinating area of research in molecular biology, with diverse therapeutic applications. These small membrane-bound structures, released by cells into the extracellular space, play a crucial role in intercellular communication and hold great potential for advancing medical treatments. The aim of this study is to have a narrative review on the use and therapeutic applications of EVs. Their unique characteristics, including stability, biocompatibility, and the ability to traverse biological barriers, make them promising tools for targeted drug delivery. By engineering EVs to encapsulate specific cargo molecules, such as therapeutic proteins, small interfering RNA (siRNA), or anti-cancer drugs, researchers can enhance drug stability and improve targeted delivery to desired cells or tissues. This approach can minimize off-target effects and improve therapeutic efficacy. Based on our literature search, we found that EVs can be used as biomarkers to predict diseases. Although much progress has been made in understanding the biology and function of exosomes, there are still unanswered questions that require further research. This includes identifying appropriate and safe techniques for producing exosomes in large quantities, determining which types of cells are suitable for exosome donor cells for therapeutic purposes, and investigating the safety of exosomes in human studies. Overall, the use of exosomes in clinical therapeutic applications requires a strong understanding of molecular signaling cascades and exosome profiles, as well as the specificity and sensitivity of biomarker and drug delivery methods.
Collapse
Affiliation(s)
- Diana Rafieezadeh
- Department of Cellular and Molecular Biology, Razi University Kermanshah, Iran
| |
Collapse
|
4
|
Sharun K, Banu SA, Mamachan M, Subash A, Karikalan M, Vinodhkumar OR, Manjusha KM, Kumar R, Telang AG, Dhama K, Pawde AM, Maiti SK, Amarpal. Pluronic F127 composite hydrogel for the repair of contraction suppressed full-thickness skin wounds in a rabbit model. Curr Res Transl Med 2024; 72:103458. [PMID: 38943898 DOI: 10.1016/j.retram.2024.103458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Hydrogels are commonly used as carriers for cell delivery due to their similarities to the extracellular matrix. A contraction-suppressed full-thickness wound model was used to evaluate the therapeutic potential of Pluronic F127 (PF127) hydrogel loaded with adipose-derived stromal vascular fraction (AdSVF), mesenchymal stem cells (AdMSC), and conditioned media (AdMSC-CM) for the repair of wounds in a rabbit model. The experimental study was conducted on forty-eight healthy adult New Zealand white rabbits randomly divided into eight groups with six animals each and treated with AdSVF, AdMSC, and AdMSC-CM as an injectable or topical preparation. The healing potential of different adipose-derived cell-based and cell-free therapeutics was evaluated based on percentage wound healing, period of epithelialization, epidermal thickness, scar evaluation, histopathology analysis, histochemical evaluation, immunohistochemistry (collagen type I), and hydroxyproline assay by comparing with the positive and negative control. Collagen density analysis using different staining methods, immunohistochemistry, and hydroxyproline assay consistently showed that delivering AdMSC and AdMSC-CM in PF127 hydrogel enhanced epithelialization, collagen production, and organization, contributing to improved tissue strength and quality. Even though allogeneic AdSVF was found to promote wound healing in rabbits, it has a lower potential than AdMSC and AdMSC-CM. The wound healing potential of AdMSC and AdMSC-CM was enhanced when loaded in PF127 hydrogel and applied topically. Even though wounds treated with AdMSC outperformed AdMSC-CM, a significant difference in the healing quality was not observed in most instances, indicating almost similar therapeutic potential. The findings indicate that the wound healing potential of AdMSC and AdMSC-CM was enhanced when loaded in PF127 hydrogel and applied topically. These treatments promoted collagen production, tissue organization, and epidermal regeneration, ultimately improving overall healing outcomes.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Athira Subash
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mathesh Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Obli Rajendran Vinodhkumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - K M Manjusha
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A G Telang
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan 32003, Taiwan
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
5
|
Rogulska O, Vackova I, Prazak S, Turnovcova K, Kubinova S, Bacakova L, Jendelova P, Petrenko Y. Storage conditions affect the composition of the lyophilized secretome of multipotent mesenchymal stromal cells. Sci Rep 2024; 14:10243. [PMID: 38702388 PMCID: PMC11068735 DOI: 10.1038/s41598-024-60787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
The widespread use of multipotent mesenchymal stromal cell-derived secretome (MSC-sec) requires optimal preservation methods. Lyophilization offers benefits like concentrating the secretome, reducing the storage volume, and making storage conditions more flexible. This study evaluated the influence of storage duration and temperature on lyophilized MSC-sec. The conditioned medium from Wharton's jelly MSCs was stored at - 80 °C or lyophilized with or without trehalose. Lyophilized formulations were kept at - 80 °C, - 20 °C, 4 °C, or room temperature (RT) for 3 and 30 months. After storage and reconstitution, the levels of growth factors and cytokines were assessed using multiplex assay. The storage of lyophilized MSC-sec at - 80 °C ensured biomolecule preservation for 3 and 30 months. Following 3 month storage at 4 °C and RT, a notable decrease occurred in BDNF, bNGF, and sVCAM-1 levels. Prolonged 30 month storage at the same temperatures significantly reduced BDNF, bNGF, VEGF-A, IL-6, and sVCAM-1, while storage at - 20 °C decreased BDNF, bNGF, and VEGF- A levels. Trehalose supplementation of MSC-sec improved the outcome during storage at 4 °C and RT. Proper storage conditions were crucial for the preservation of lyophilized MSC-sec composition. Short-term storage at various temperatures maintained over 60% of the studied growth factors and cytokines; long-term preservation was only adequate at -80 °C.
Collapse
Affiliation(s)
- Olena Rogulska
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic
| | - Irena Vackova
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic.
| | - Simon Prazak
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic
| | - Karolina Turnovcova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic
| | - Sarka Kubinova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 18221, Prague, Czech Republic
| | - Lucie Bacakova
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic
| | - Pavla Jendelova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic
| | - Yuriy Petrenko
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic.
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic.
| |
Collapse
|
6
|
Esmailpour Z, Madadi S, Baazm M. The antiapoptotic effects of conditioned medium from bone marrow-derived mesenchymal stromal stem cells on cyclophosphamide-induced testicular damage in rat: An experimental study. Int J Reprod Biomed 2024; 22:89-100. [PMID: 38628779 PMCID: PMC11017209 DOI: 10.18502/ijrm.v22i2.15706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 01/10/2024] [Indexed: 04/19/2024] Open
Abstract
Background Cyclophosphamide (CP) has some negative effects on the reproductive system. Stem cells and their metabolites are being utilized to enhance fertility after chemotherapy. Objective This study aimed to investigate the impact of conditioned medium (CM) derived from bone marrow mesenchymal stromal stem cells (BM-MSCs) on the toxic effects of CP on testicles. Materials and Methods BM-MSCs were isolated, a CM was collected and 25-fold concentrated. 24 male Wistar rats (8 wk, 200-250 gr) were randomly divided into following groups: control, CP, CP+ Dulbecco's Modified Eagle Medium (DMEM), CP+CM. CP was given at a single dose of 100 mg/kg. 2 wk after the CP administration, CM was injected into the testicular efferent duct. Sperm parameters, testicular histopathology, and the level of testosterone were analyzed 2 months after treatment. The expression of B-cell lymphoma 2 (Bcl2) and Bcl2-associated X protein (Bax) genes were evaluated by real-time polymerase chain reaction. Results CP had a negative effect on testis histology (p < 0.001) and sperm quality (p < 0.001). It changed the expression of genes associated with apoptosis (p < 0.001). Treatment with CM reduced the expression of Bax (p < 0.001), while significantly increasing the expression of Bcl2 (p = 0.01). It improved sperm count (p = 0.03), viability (p < 0.001), motility (p < 0.001), spermatogonial count (p < 0.001), and epithelial thickness of testicular tubules (p = 0.02). Conclusion These findings suggest that CM produced from BM-MSCs may be valuable for therapeutic approaches in reproductive medicine and may lessen the side effects of CP.
Collapse
Affiliation(s)
- Zeynab Esmailpour
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Soheila Madadi
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
7
|
Shanbhag S, Al-Sharabi N, Kampleitner C, Mohamed-Ahmed S, Kristoffersen EK, Tangl S, Mustafa K, Gruber R, Sanz M. The use of mesenchymal stromal cell secretome to enhance guided bone regeneration in comparison with leukocyte and platelet-rich fibrin. Clin Oral Implants Res 2024; 35:141-154. [PMID: 37964421 DOI: 10.1111/clr.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVES Secretomes of mesenchymal stromal cells (MSC) represent a novel strategy for growth-factor delivery for tissue regeneration. The objective of this study was to compare the efficacy of adjunctive use of conditioned media of bone-marrow MSC (MSC-CM) with collagen barrier membranes vs. adjunctive use of conditioned media of leukocyte- and platelet-rich fibrin (PRF-CM), a current growth-factor therapy, for guided bone regeneration (GBR). METHODS MSC-CM and PRF-CM prepared from healthy human donors were subjected to proteomic analysis using mass spectrometry and multiplex immunoassay. Collagen membranes functionalized with MSC-CM or PRF-CM were applied on critical-size rat calvaria defects and new bone formation was assessed via three-dimensional (3D) micro-CT analysis of total defect volume (2 and 4 weeks) and 2D histomorphometric analysis of central defect regions (4 weeks). RESULTS While both MSC-CM and PRF-CM revealed several bone-related proteins, differentially expressed proteins, especially extracellular matrix components, were increased in MSC-CM. In rat calvaria defects, micro-CT revealed greater total bone coverage in the MSC-CM group after 2 and 4 weeks. Histologically, both groups showed a combination of regular new bone and 'hybrid' new bone, which was formed within the membrane compartment and characterized by incorporation of mineralized collagen fibers. Histomorphometry in central defect sections revealed greater hybrid bone area in the MSC-CM group, while the total new bone area was similar between groups. CONCLUSION Based on the in vitro and in vivo investigations herein, functionalization of membranes with MSC-CM represents a promising strategy to enhance GBR.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Einar K Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
8
|
Banlue A, Kaewmuangmoon J, Janebodin K, Tansriratanawong K. Induction of Migration and Collagen Synthesis in Human Gingival Fibroblasts Using Periodontal Ligament Stem Cell Conditioned Medium. Eur J Dent 2024; 18:219-227. [PMID: 37105221 PMCID: PMC10959630 DOI: 10.1055/s-0043-1764422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE This study aimed to examine the effect of periodontal ligament stem cell conditioned medium (PDLSC-CM) on human gingival fibroblast (HGF) migration and collagen synthesis. MATERIALS AND METHODS To assess cell viability, we extracted PDLSC-CM, and the total derived protein concentration was adjusted to 12.5 to 200 µg/mL, followed by treatment with HGFs. The viability of HGFs was observed for 24 hours using the MTT assay. Cell migration was monitored for 24 to 48 hours by wound healing and Boyden chamber assays. Collagen synthesis from HGFs was examined by picrosirius red dye and real-time polymerase chain reaction (PCR) to measure collagen type I and III gene expression for 7 to 10 days. A comparison among the groups was assessed using a one-way analysis of variance (ANOVA) and Bonferroni post hoc test, with the exception of the cell viability assay, which was subjected to Welch's test and Dunnett's T3 post hoc test. RESULTS HGF viability was significantly enhanced by 12.5, 25, and 50 µg/mL PDLSC-CM. The HGFs treated with 50 µg/mL PDLSC-CM promoted cell migration as shown by wound healing and Boyden chamber assays. At this concentration, collagen synthesis increased at 10 days. Collagen type I gene expression increased by 1.6-fold (p < 0.001) and 4.96-fold (p < 0.001) at 7 and 10 days, respectively. Collagen type III gene expression showed an increase of 1.76-fold (p < 0.001) and 6.67-fold (p < 0.001) at the same time points. CONCLUSION Our study suggested that a low concentration of PDLSC-CM at 50 µg/mL has given an amelioration of HGFs providing for periodontal wound healing and periodontal regeneration, particularly migration and collagen synthesis.
Collapse
Affiliation(s)
- Akkapol Banlue
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | | - Kallapat Tansriratanawong
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Al-Sharabi N, Gruber R, Sanz M, Mohamed-Ahmed S, Kristoffersen EK, Mustafa K, Shanbhag S. Proteomic Analysis of Mesenchymal Stromal Cells Secretome in Comparison to Leukocyte- and Platelet-Rich Fibrin. Int J Mol Sci 2023; 24:13057. [PMID: 37685865 PMCID: PMC10487446 DOI: 10.3390/ijms241713057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Secretomes of mesenchymal stromal cells (MSCs) are emerging as a novel growth factor (GF)-based strategy for periodontal and bone regeneration. The objective of this study was to compare the secretome of human bone marrow MSC (BMSC) to that of leukocyte- and platelet-rich fibrin (L-PRF), an established GF-based therapy, in the context of wound healing and regeneration. Conditioned media from human BMSCs (BMSC-CM) and L-PRF (LPRF-CM) were subjected to quantitative proteomic analysis using liquid chromatography with tandem mass spectrometry. Global profiles, gene ontology (GO) categories, differentially expressed proteins (DEPs), and gene set enrichment (GSEA) were identified using bioinformatic methods. Concentrations of selected proteins were determined using a multiplex immunoassay. Among the proteins identified in BMSC-CM (2157 proteins) and LPRF-CM (1420 proteins), 1283 proteins were common. GO analysis revealed similarities between the groups in terms of biological processes (cellular organization, protein metabolism) and molecular functions (cellular/protein-binding). Notably, more DEPs were identified in BMSC-CM (n = 550) compared to LPRF-CM (n = 118); these included several key GF, cytokines, and extracellular matrix (ECM) proteins involved in wound healing. GSEA revealed enrichment of ECM (especially bone ECM)-related processes in BMSC-CM and immune-related processes in LPRF-CM. Similar trends for intergroup differences in protein detection were observed in the multiplex analysis. Thus, the secretome of BMSC is enriched for proteins/processes relevant for periodontal and bone regeneration. The in vivo efficacy of this therapy should be evaluated in future studies.
Collapse
Affiliation(s)
- Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| |
Collapse
|
10
|
Shanbhag S, Kampleitner C, Al-Sharabi N, Mohamed-Ahmed S, Apaza Alccayhuaman KA, Heimel P, Tangl S, Beinlich A, Rana N, Sanz M, Kristoffersen EK, Mustafa K, Gruber R. Functionalizing Collagen Membranes with MSC-Conditioned Media Promotes Guided Bone Regeneration in Rat Calvarial Defects. Cells 2023; 12:cells12050767. [PMID: 36899904 PMCID: PMC10001262 DOI: 10.3390/cells12050767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Functionalizing biomaterials with conditioned media (CM) from mesenchymal stromal cells (MSC) is a promising strategy for enhancing the outcomes of guided bone regeneration (GBR). This study aimed to evaluate the bone regenerative potential of collagen membranes (MEM) functionalized with CM from human bone marrow MSC (MEM-CM) in critical size rat calvarial defects. MEM-CM prepared via soaking (CM-SOAK) or soaking followed by lyophilization (CM-LYO) were applied to critical size rat calvarial defects. Control treatments included native MEM, MEM with rat MSC (CEL) and no treatment. New bone formation was analyzed via micro-CT (2 and 4 weeks) and histology (4 weeks). Greater radiographic new bone formation occurred at 2 weeks in the CM-LYO group vs. all other groups. After 4 weeks, only the CM-LYO group was superior to the untreated control group, whereas the CM-SOAK, CEL and native MEM groups were similar. Histologically, the regenerated tissues showed a combination of regular new bone and hybrid new bone, which formed within the membrane compartment and was characterized by the incorporation of mineralized MEM fibers. Areas of new bone formation and MEM mineralization were greatest in the CM-LYO group. Proteomic analysis of lyophilized CM revealed the enrichment of several proteins and biological processes related to bone formation. In summary, lyophilized MEM-CM enhanced new bone formation in rat calvarial defects, thus representing a novel 'off-the-shelf' strategy for GBR.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (S.S.); (R.G.); Tel.: +47-55586059 (S.S.); +43-(0)69910718472 (R.G.)
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | | | - Patrick Heimel
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas Beinlich
- Department of Earth Science, Faculty of Mathematics and Natural Sciences, University of Bergen, 5009 Bergen, Norway
| | - Neha Rana
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Correspondence: (S.S.); (R.G.); Tel.: +47-55586059 (S.S.); +43-(0)69910718472 (R.G.)
| |
Collapse
|
11
|
Yamanaka K, Haraguchi Y, Takahashi H, Kawashima I, Shimizu T. Development of serum-free and grain-derived-nutrient-free medium using microalga-derived nutrients and mammalian cell-secreted growth factors for sustainable cultured meat production. Sci Rep 2023; 13:498. [PMID: 36627406 PMCID: PMC9832167 DOI: 10.1038/s41598-023-27629-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Considering the amount of global resources and energy consumed, and animal welfare issues associated with traditional meat production, cultured meat production has been proposed as a solution to these problems and is attracting worldwide attention. Cultured meat is produced by culturing/proliferating animal muscle cells in vitro. This process requires significant amounts of culture medium, which accounts to a major portion of the production cost. Furthermore, it is composed of nutrients derived from grains and heterotrophic microorganisms and fetal bovine serum (FBS), which will impact the sustainability of cultured meat in future. Here, we developed a novel medium containing nutrients extracted from microalga and cell-secreted growth factors. First, rat liver epithelial RL34 cells were cultured by adding Chlorella vulgaris extract (CVE) to inorganic salt solution. The supernatant, containing the RL34 cell-secreted growth factors, was used as the conditioned medium (CM). This CM, with CVE added as a nutrient source, was applied to primary bovine myoblast cultures. This serum-free and grain-derived-nutrient-free medium promoted the proliferation of bovine myoblasts, the main cell source for cultured beef. Our findings will allow us to take a major step toward reducing production costs and environmental impacts, leading to an expansion of the cultured meat market.
Collapse
Affiliation(s)
- Kumiko Yamanaka
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ikko Kawashima
- IntegriCulture Inc., The Advanced Technology Research Laboratory, Tokyo Women's Medical University, TWIns N101, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
12
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Shanbhag S, Al-Sharabi N, Mohamed-Ahmed S, Gruber R, Kristoffersen EK, Mustafa K. Brief communication: Effects of conditioned media from human platelet lysate cultured MSC on osteogenic cell differentiation in vitro. Front Bioeng Biotechnol 2022; 10:969275. [PMID: 36246352 PMCID: PMC9556861 DOI: 10.3389/fbioe.2022.969275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Culturing mesenchymal stromal cells (MSC) in human platelet lysate (HPL) supplemented media can enhance their osteogenic differentiation potential. The objective of this study was to test the hypothesis that conditioned media (CM) derived from HPL-cultured MSC also have pro-osteogenic effects. Pooled CM was prepared from HPL-cultured human bone marrow MSC (BMSC) of multiple donors and applied on BMSC of different donors (than those used for CM preparation), with or without additional supplementation [HPL, fetal bovine serum (FBS)] and osteogenic stimulation. At various time-points, cell proliferation, alkaline phosphatase (ALP) activity, osteogenic gene expression and in vitro mineralization were assessed. BMSC in standard unstimulated growth media served as controls. After 3–7 days, CM alone did not promote BMSC proliferation or ALP activity; supplementation of CM with HPL slightly improved these effects. After 2 and 7 days, CM alone, but not CM supplemented with HPL, promoted osteogenic gene expression. After 14 days, only CM supplemented with FBS and osteogenic stimulants supported in vitro BMSC mineralization; CM alone and CM supplemented with HPL did not support mineralization, regardless of osteogenic stimulation. In summary, CM from HPL-cultured BMSC promoted osteogenic gene expression but not in vitro mineralization in allogeneic BMSC even when supplemented with HPL and/or osteogenic stimulants. Future studies should investigate the role and relevance of supplementation and osteogenic induction in in vitro assays using CM from MSC.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- *Correspondence: Siddharth Shanbhag,
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Jeyaraman M, Muthu S, Shehabaz S, Jeyaraman N, Rajendran RL, Hong CM, Nallakumarasamy A, Packkyarathinam RP, Sharma S, Ranjan R, Khanna M, Ahn BC, Gangadaran P. Current understanding of MSC-derived exosomes in the management of knee osteoarthritis. Exp Cell Res 2022; 418:113274. [PMID: 35810774 DOI: 10.1016/j.yexcr.2022.113274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have been utilized as medicinal agents or as delivery vehicles in cartilage injuries and cartilage-based diseases. Given the ongoing emergence of evidence on the effector mechanisms and methods of the utility of the MSC-Exos in knee osteoarthritis, a comprehensive review of the current evidence is the need of the hour. Hence, in this article, we review the current understanding of the role of MSC-Exos in the management of knee osteoarthritis in view of their classification, characterization, biogenesis, mechanism of action, pathways involved in their therapeutic action, in-vitro evidence on cartilage regeneration, in-vivo evidence in OA knee models and recent advances in using MSC-Exos to better streamline future research from bench to bedside for OA knee.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine - Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600095, Tamil Nadu, India; Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Department of Orthopaedics, Government Medical College and Hospital, Dindigul, 624304, Tamil Nadu, India
| | - Syed Shehabaz
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India; Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli, 620002, Tamil Nadu, India.
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odissa, India
| | | | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow, 226401, Uttar Pradesh, India
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
15
|
Ojeda-Hernández DD, Hernández-Sapiéns MA, Reza-Zaldívar EE, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Mateos-Díaz JC, Gómez-Pinedo U, Sancho-Bielsa F. Exosomes and Biomaterials: In Search of a New Therapeutic Strategy for Multiple Sclerosis. Life (Basel) 2022; 12:1417. [PMID: 36143453 PMCID: PMC9504193 DOI: 10.3390/life12091417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 02/07/2023] Open
Abstract
Current efforts to find novel treatments that counteract multiple sclerosis (MS) have pointed toward immunomodulation and remyelination. Currently, cell therapy has shown promising potential to achieve this purpose. However, disadvantages such as poor survival, differentiation, and integration into the target tissue have limited its application. A series of recent studies have focused on the cell secretome, showing it to provide the most benefits of cell therapy. Exosomes are a key component of the cell secretome, participating in the transfer of bioactive molecules. These nano-sized vesicles offer many therapeutical advantages, such as the capacity to cross the blood-brain barrier, an enrichable cargo, and a customizable membrane. Moreover, integrating of biomaterials into exosome therapy could lead to new tissue-specific therapeutic strategies. In this work, the use of exosomes and their integration with biomaterials is presented as a novel strategy in the treatment of MS.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mercedes A. Hernández-Sapiéns
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Guadalajara 44270, Mexico
| | - Edwin E. Reza-Zaldívar
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico
| | - Alejandro Canales-Aguirre
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Guadalajara 44270, Mexico
| | - Jordi A. Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Sancho-Bielsa
- Área de Fisiología, Departamento de Ciencias Médicas, Facultad de Medicina de Ciudad Real, UCLM, 13071 Ciudad Real, Spain
| |
Collapse
|
16
|
Go YY, Lee CM, Chae SW, Song JJ. Osteogenic Efficacy of Human Trophoblasts-Derived Conditioned Medium on Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms231710196. [PMID: 36077594 PMCID: PMC9456271 DOI: 10.3390/ijms231710196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Trophoblasts play an important role in the regulation of the development and function of the placenta. Our recent study demonstrated the skin regeneration capacity of trophoblast-derived extracellular vesicles (EV). Here, we aimed to determine the potential of trophoblast-derived conditioned medium (TB-CM) in enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs). We found that TB-CM promoted the osteogenic differentiation of MSCs in a dose-dependent manner. Furthermore, it inhibited adipogenesis of MSCs. We also found that the primary trophoblast-derived conditioned medium (PTB-CM) significantly enhanced the proliferation and osteogenic differentiation of human MSCs. Our study demonstrated the regulatory mechanisms underlying the TB-CM-induced osteogenesis in MSCs. An upregulation of genes associated with cytokines/chemokines was observed. The treatment of MSCs with TB-CM stimulated osteogenesis by activating several biological processes, such as mitogen-activated protein kinase (MAPK) and bone morphogenetic protein 2 (BMP2) signaling. This study demonstrated the proliferative and osteogenic efficacies of the trophoblast-derived secretomes, suggesting their potential for use in clinical interventions for bone regeneration and treatment.
Collapse
Affiliation(s)
- Yoon-Young Go
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
| | - Chan-Mi Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
- Correspondence: ; Tel.: +82-2-2626-3191; Fax: +82-2-2626-0475
| |
Collapse
|
17
|
Abdel Aziz I, Maver L, Giannasi C, Niada S, Brini AT, Antognazza MR. Polythiophene-mediated light modulation of membrane potential and calcium signalling in human adipose-derived stem/stromal cells. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:9823-9833. [PMID: 36277082 PMCID: PMC9487879 DOI: 10.1039/d2tc01426b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/05/2022] [Indexed: 06/16/2023]
Abstract
Recent progress in the fields of regenerative medicine and tissue engineering has been strongly fostered both by the investigation of crucial cues, able to trigger the regeneration of damaged tissues, and by the development of ad hoc functional materials, capable of selectively (re-)activating relevant physiological pathways. In parallel to the successful realization of biochemical cues and the optimization of delivery protocols, the use of biophysical stimuli has been emerging as an alternative, highly effective strategy. Techniques based on electrical, magnetic and mechanical stimulation have been reported to efficiently direct differentiation of stem cells and modulate cell physiology at different developmental stages. In this framework, the use of optical stimulation represents a valuable approach, possibly overcoming current limitations of chemical cues, like limited spatial and temporal resolution and poor control over the extracellular environment. Surprisingly, the effects of light on the physiological properties (light toxicity, cell membrane potential, and cell ionic trafficking) of undifferentiated cells, as well as on their differentiation pathways, were investigated to a very limited extent and rarely quantified in a systematic way. In this work, we aim at clarifying the effects of optical excitation on the physiological behaviour of undifferentiated human adipose-derived stem cells (hASC), cultured on top of a light-sensitive conjugated polymer, region-regular poly-3-hexyl-thiophene (P3HT). Interestingly, we observe statistically significant modulation of the cell membrane potential, as well as noticeable effects on intracellular calcium signalling, triggered by P3HT excitation upon green light stimuli. Possible mechanisms involved in the signal transduction pathways are considered and critically discussed. The capability to modulate the physiological response of hASC upon photoexcitation, in a highly controlled and selective manner, provides a promptly available and non invasive diagnostic tool, thus contributing to the understanding of the complex machinery behind stem cells and material interfaces. Moreover, it may open the route to novel techniques to drive the differentiation path with unprecedented versatility and operational easiness.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3 20133 Milano Italy
- Politecnico di Milano, Dip.to di Fisica, P.zza L. da Vinci 32 20133 Milano Italy
| | - Leonardo Maver
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3 20133 Milano Italy
- Politecnico di Milano, Dip.to di Fisica, P.zza L. da Vinci 32 20133 Milano Italy
| | - Chiara Giannasi
- University of Milan, Department of Biomedical, Surgical and Dental Sciences, Via Vanvitelli 32 20129 Milano Italy
- IRCCS Istituto Ortopedico Galeazzi, Via Galeazzi 4 20161 Milano Italy
| | - Stefania Niada
- IRCCS Istituto Ortopedico Galeazzi, Via Galeazzi 4 20161 Milano Italy
| | - Anna T Brini
- University of Milan, Department of Biomedical, Surgical and Dental Sciences, Via Vanvitelli 32 20129 Milano Italy
- IRCCS Istituto Ortopedico Galeazzi, Via Galeazzi 4 20161 Milano Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3 20133 Milano Italy
| |
Collapse
|
18
|
Heidari N, Abbasi-Kenarsari H, Namaki S, Baghaei K, Zali MR, Mirsanei Z, Hashemi SM. Regulation of the Th17/Treg balance by human umbilical cord mesenchymal stem cell-derived exosomes protects against acute experimental colitis. Exp Cell Res 2022; 419:113296. [DOI: 10.1016/j.yexcr.2022.113296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
19
|
Li YE, Ajoolabady A, Dhanasekaran M, Ren J. Tissue repair strategies: What we have learned from COVID-19 in the application of MSCs therapy. Pharmacol Res 2022; 182:106334. [PMID: 35779816 PMCID: PMC9242686 DOI: 10.1016/j.phrs.2022.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) infection evokes severe proinflammatory storm and pulmonary infection with the number of confirmed cases (more than 200 million) and mortality (5 million) continue to surge globally. A number of vaccines (e.g., Moderna, Pfizer, Johnson/Janssen and AstraZeneca vaccines) have been developed over the past two years to restrain the rapid spread of COVID-19. However, without much of effective drug therapies, COVID-19 continues to cause multiple irreversible organ injuries and is drawing intensive attention for cell therapy in the management of organ damage in this devastating COVID-19 pandemic. For example, mesenchymal stem cells (MSCs) have exhibited promising results in COVID-19 patients. Preclinical and clinical findings have favored the utility of stem cells in the management of COVID-19-induced adverse outcomes via inhibition of cytokine storm and hyperinflammatory syndrome with coinstantaneous tissue regeneration capacity. In this review, we will discuss the existing data with regards to application of stem cells for COVID-19.
Collapse
Affiliation(s)
- Yiran E Li
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Putra A, Ibrahim S, Muhar AM, Kuntardjo N, Dirja BT, Pasongka Z, Tunru IS. Topical gel of mesenchymal stem cells-conditioned medium under TNF-α precondition accelerates wound closure healing in full-thickness skin defect animal model. J Med Life 2022; 15:214-221. [PMID: 35419097 PMCID: PMC8999092 DOI: 10.25122/jml-2019-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 09/13/2020] [Indexed: 02/02/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) under TNF-α stimulation (MSC-CM-T) can release numerous trophic and survival molecules that have a promising prospect in wound healing acceleration. However, the effective levels of MSC-CM-T in topical gel preparation to accelerate wound healing should be further explored. The aim of this study was to investigate the effects of MSC-CM-T in topical gel preparation in accelerating optimal wound healing through analyzing PDGF levels, wound closure rate percentages, and fibroblast density appearances. Twenty-four male Wistar rats were performed a full-thickness excision. The group studies were randomly assigned into four subgroups: control gel, control medium, and two treatment groups: MSC-CM-T topical gel at doses of 100 μL and 200 μL (T1 and T2, respectively). Wound closure rates were measured by standard caliper, platelet-derived growth factor (PDGF) levels were analyzed using ELISA on days 3 and 6, whereas the fibroblast density appearances were determined using hematoxylin-eosin staining. This study found a significant increase in PDGF levels in all treatment groups on days 3 and 6. These findings were in line with the increase of wound closure rates in all treatment groups on day 6, in which the high dose of MSC-CM-T was more effective in initiating the increase of wound closure rate. We also found the fibroblast density appearances on day 6 in the T2 group. We conclude that the topical gel of MSC-CM-T is more effective in accelerating wound closure healing through increasing PDGF levels and wound closure percentages and fibroblast density appearances in the skin defect animal models.
Collapse
Affiliation(s)
- Agung Putra
- Stem Cell and Cancer Research (SCCR), Faculty of Medicine, Sultan Agung Islamic University, Semarang, Indonesia.,Department of Postgraduate Biomedical Science, Faculty of Medicine, Sultan Agung Islamic University, Semarang, Indonesia.,Department of Pathological Anatomy, Faculty of Medicine, Sultan Agung Islamic University, Semarang, Indonesia
| | - Sugeng Ibrahim
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Universitas Katolik Soegijapranata, Semarang, Indonesia.,Doctoral Program of Medical and Health Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Adi Muradi Muhar
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Novalia Kuntardjo
- Student of Postgraduate Biomedical Science Program, Faculty of Medicine, Sultan Agung Islamic University, Semarang, Indonesia
| | - Bayu Tirta Dirja
- Department of Microbiology, Faculty of Medicine, Mataram University, Mataram, Indonesia
| | - Zenitalia Pasongka
- Postgraduate Biomedical Science Program, Faculty of Medicine, Udayana University, Bukit Jimbaran, Indonesia
| | - Insan Sosiawan Tunru
- Department of Pathological Anatomy, Faculty of Medicine, YARSI University, Jakarta, Indonesia
| |
Collapse
|
21
|
Yi H, Wang Y, Liang Q, Mao X. Preclinical and Clinical Amelioration of Bone Fractures with Mesenchymal Stromal Cells: a Systematic Review and Meta-Analysis. Cell Transplant 2022; 31:9636897211051743. [PMID: 35916286 PMCID: PMC9350497 DOI: 10.1177/09636897211051743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Even though reunion of bone fracture confronts clinicians, mesenchymal stromal
cells (MSCs) are investigated to be curative in bone fracture. This study aimed
to explore the application potential of MSCs for healing bone fractures. By
inputting search terms and retrieving studies published up to March 2021,
multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane
Library, were searched to identify eligible studies. The mean difference (MD)
and 95% confidence interval (95% CI) were calculated to analyze the main results
in the meta-analysis. Data analysis was performed using Engauge Digitizer 10.8
and R Software. Of the 31 articles, 26 were preclinical studies
(n = 913), and 5 were clinical trials (n =
335). Preclinically, MSCs therapy significantly augmented the progress of bone
regeneration [(bone volume over tissue volume (MD7.35, p <
0.01)], despite some non-significant effects (on the callus index, bone
strength, work to failure, and stiffness). Clinically, the MSC group had a
significantly reduced incidence of poor recovery (odds ratio (OR) 0.30,
p < 0.01); however, a significant decrease in healing
time was not observed in the MSC group (MD 2.47, p = 0.26). In
summary, our data suggest that patients with bone fractures benefited from MSC
administration and that MSCs are a potentially useful agent for bone
regeneration. Despite these satisfactory outcomes, larger randomised clinical
trials (RCTs) are necessary to confirm these findings.
Collapse
Affiliation(s)
- Hanxiao Yi
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qunying Liang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoqun Mao
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Md Fadilah NI, Mohd Abdul Kader Jailani MS, Badrul Hisham MAI, Sunthar Raj N, Shamsuddin SA, Ng MH, Fauzi MB, Maarof M. Cell secretomes for wound healing and tissue regeneration: Next generation acellular based tissue engineered products. J Tissue Eng 2022; 13:20417314221114273. [PMID: 35923177 PMCID: PMC9340325 DOI: 10.1177/20417314221114273] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Abstract
Wound represents a significant socioeconomic burden for both affected individuals and as a whole healthcare system. Accordingly, stem cells have garnered attention due to their differentiation capacity and ability to aid tissue regeneration by releasing biologically active molecules, found in the cells' cultivated medium which known as conditioned medium (CM) or secretomes. This acellular approach provides a huge advantage over conventional treatment options, which are mainly used cellular treatment at wound closure. Interestingly, the secretomes contained the cell-secreted proteins such as growth factors, cytokines, chemokines, extracellular matrix (ECM), and small molecules including metabolites, microvesicles, and exosomes. This review aims to provide a general view on secretomes and how it is proven to have great potential in accelerating wound healing. Utilizing the use of secretomes with its secreted proteins and suitable biomaterials for fabrications of acellular skin substitutes can be promising in treating skin loss and accelerate the healing process.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | | | - Muhd Aliff Iqmal Badrul Hisham
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Nithiaraj Sunthar Raj
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| |
Collapse
|
23
|
Sampath SJP, Rath SN, Kotikalapudi N, Venkatesan V. Beneficial effects of secretome derived from mesenchymal stem cells with stigmasterol to negate IL-1β-induced inflammation in-vitro using rat chondrocytes-OA management. Inflammopharmacology 2021; 29:1701-1717. [PMID: 34546477 DOI: 10.1007/s10787-021-00874-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most prevalent joint disease predominantly characterized by inflammation which drives cartilage destruction. Mesenchymal stem cells-condition medium (MSC-CM) or the secretome is enriched with bioactive factors and possesses anti-inflammatory and regenerative effects. The present study aimed at evaluating the effects of combining MSC-conditioned medium with stigmasterol compared with the individual treatments in alleviating interleukin-1 beta (IL-1β)-induced inflammation in rat chondrocytes. Stigmasterol is a phytosterol exhibiting anti-inflammatory effects. IL-1β (10 ng/ml) was used to induce inflammation and mimic OA in-vitro in primary rat articular chondrocytes. The IL-1β-stimulated chondrocytes were treated with MSC-CM, stigmasterol, and a combination of MSC-CM and stigmasterol for 24 h. Cell viability was measured using MTT assay. Protein expression of inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), collagen II (COL2A1) and matrix metalloproteinase (MMP)-13 were evaluated by immunofluorescence. Gene expression levels of MMP-3, MMP-13 and A Disintegrin-like and Metalloproteinases with Thrombospondin Motifs (ADAMTS)-5 were measured using qRT-PCR. NF-κB signaling pathway was studied using western blotting. A significant reduction in the expression of iNOS, IL-6, MMP-3, MMP-13 and ADAMTS-5, and a significant increase in COL2A1 expression was observed in the rat chondrocytes across all the treatment groups. However, the combination treatment of MSC-CM and stigmasterol remarkably reversed the IL-1β-induced pro-inflammatory/pro-catabolic responses to near normal levels comparable to the control group. The combination treatment (MSC-CM + stigmasterol) elicited a superior anti-inflammatory/anti-catabolic effect by inhibiting the IL-1β-induced NF-κB activation evidenced by the negligible phosphorylation of p65 and IκBα subunits, thereby emphasizing the benefit of the combination therapy over the individual treatments.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Stem Cell Research Laboratory, Department of Cell and Molecular Biology, National Institute of Nutrition, Indian Council of Medical Research, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cells Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502285, Telangana, India
| | - Nagasuryaprasad Kotikalapudi
- Stem Cell Research Laboratory, Department of Cell and Molecular Biology, National Institute of Nutrition, Indian Council of Medical Research, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Vijayalakshmi Venkatesan
- Stem Cell Research Laboratory, Department of Cell and Molecular Biology, National Institute of Nutrition, Indian Council of Medical Research, Tarnaka, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
24
|
Hassanzadeh A, Shamlou S, Yousefi N, Nikoo M, Verdi J. Genetically-Modified Stem Cell in Regenerative Medicine and Cancer Therapy; A New Era. Curr Gene Ther 2021; 22:23-39. [PMID: 34238158 DOI: 10.2174/1566523221666210707125342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
Recently, genetic engineering by various strategies to stimulate gene expression in a specific and controllable mode is a speedily growing therapeutic approach. Genetic modification of human stem or progenitor cells, such as embryonic stem cells (ESCs), neural progenitor cells (NPCs), mesenchymal stem/stromal cells (MSCs), and hematopoietic stem cells (HSCs) for direct delivery of specific therapeutic molecules or genes has been evidenced as an opportune plan in the context of regenerative medicine due to their supported viability, proliferative features, and metabolic qualities. On the other hand, a large number of studies have investigated the efficacy of modified stem cells in cancer therapy using cells from various sources, disparate transfection means for gene delivery, different transfected yields, and wide variability of tumor models. Accordingly, cell-based gene therapy holds substantial aptitude for the treatment of human malignancy as it could relieve signs or even cure cancer succeeding expression of therapeutic or suicide transgene products; however, there exist inconsistent results in this regard. Herein, we deliver a brief overview of stem cell potential to use in cancer therapy and regenerative medicine and importantly discuss stem cells based gene delivery competencies to stimulate tissue repair and replacement in concomitant with their potential to use as an anti-cancer therapeutic strategy, focusing on the last two decades in vivo studies.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Cai YT, Xiong CL, Liu TS, Shen SL, Rao JP, Qiu F. Secretions released from mesenchymal stem cells improve spermatogenesis restoration of cytotoxic treatment with busulfan in azoospermia mice. Andrologia 2021; 53:e14144. [PMID: 34143903 DOI: 10.1111/and.14144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/25/2022] Open
Abstract
This study aimed at the efficacy of sequential treatment of bone marrow-derived mesenchymal stem cell secretion for busulfan-treated azoospermia in mice. The conditioned media (CM) was obtained from bone marrow mesenchymal stem cells (MSCs) or 293 cells. Chemically induced azoospermia mice received 200 μl MSC-CM or 293-CM twice a week intravenously for three consecutive weeks. The histological assessment of spermatogenic recovery quantifying the expression of meiosis-associated genes, and Sertoli cell barrier functional factors were assessed. The characteristics of TM4 cells (Sertoli cell line) after pre-incubation of MSC-CM in vitro were also obtained. The MSC-CM group had the most spermatogenic colonies among the three groups (p < .05), but no spermatids were seen. Expressions of the meiosis-associated genes Dazl, Vasa, Miwi, Stra8, CyclinA1, Pgk2 and Scp3 in MSC-CM testis were remarkably higher compared with 293-CM and busulfan groups respectively (p < .05). The levels of Sertoli cell barrier functional factors, for example ICAM-1 and N-cadherin, were significantly increased during MSC-CM treatment (p < .05). Moreover, pre-incubation of MSC-CM particularly accelerated the CD54 (ICAM-1) and CD44 expressions of TM4 cells and promoted cell inherent adhesion. MSC-CM treatment can significantly improve the short-term restoration of spermatogonial structures of chemically induced azoospermia related to facilitating Sertoli cell adhesion integrity.
Collapse
Affiliation(s)
- Yi-Ting Cai
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng-Liang Xiong
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Shu Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shi-Liang Shen
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Peng Rao
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Qiu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
The Crosstalk between Mesenchymal Stem Cells and Macrophages in Bone Regeneration: A Systematic Review. Stem Cells Int 2021; 2021:8835156. [PMID: 34221025 PMCID: PMC8219422 DOI: 10.1155/2021/8835156] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/28/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Bone regeneration is a complex and well-coordinated process that involves crosstalk between immune cells and resident cells in the injury site. Transplantation of mesenchymal stem cells (MSCs) is a promising strategy to enhance bone regeneration. Growing evidence suggests that macrophages have a significant impact on osteogenesis during bone regeneration. However, the precise mechanisms by which macrophage subtypes influence bone regeneration and how MSCs communicate with macrophages have not yet been fully elucidated. In this systematic literature review, we gathered evidence regarding the crosstalk between MSCs and macrophages during bone regeneration. According to the PRISMA protocol, we extracted literature from PubMed and Embase databases by using "mesenchymal stem cells" and "macrophages" and "bone regeneration" as keywords. Thirty-three studies were selected for this review. MSCs isolated from both bone marrow and adipose tissue and both primary macrophages and macrophage cell lines were used in the selected studies. In conclusion, anti-inflammatory macrophages (M2) have significantly more potential to strengthen bone regeneration compared with naïve (M0) and classically activated macrophages (M1). Transplantation of MSCs induced M1-to-M2 transition and transformed the skeletal microenvironment to facilitate bone regeneration in bone fracture and bone defect models. This review highlights the complexity between MSCs and macrophages, providing more insight into the polarized macrophage behavior in this evolving field of osteoimmunology. The results may serve as a useful reference for definite success in MSC-based therapy based on the critical interaction with macrophages.
Collapse
|