1
|
Kyo M, Zhu Z, Shibata R, Ooka T, Mansbach JM, Harmon B, Hahn A, Pérez-Losada M, Camargo CA, Hasegawa K. Nasal microRNA signatures for disease severity in infants with respiratory syncytial virus bronchiolitis: a multicentre prospective study. BMJ Open Respir Res 2024; 11:e002288. [PMID: 39089741 PMCID: PMC11293419 DOI: 10.1136/bmjresp-2023-002288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) bronchiolitis contributes to a large morbidity and mortality burden globally. While emerging evidence suggests that airway microRNA (miRNA) is involved in the pathobiology of RSV infection, its role in the disease severity remains unclear. METHODS In this multicentre prospective study of infants (aged<1 year) hospitalised for RSV bronchiolitis, we sequenced the upper airway miRNA and messenger RNA (mRNA) at hospitalisation. First, we identified differentially expressed miRNAs (DEmiRNAs) associated with higher bronchiolitis severity-defined by respiratory support (eg, positive pressure ventilation, high-flow oxygen therapy) use. We also examined the biological significance of miRNAs through pathway analysis. Second, we identified differentially expressed mRNAs (DEmRNAs) associated with bronchiolitis severity. Last, we constructed miRNA-mRNA coexpression networks and determined hub mRNAs by weighted gene coexpression network analysis (WGCNA). RESULTS In 493 infants hospitalised with RSV bronchiolitis, 19 DEmiRNAs were associated with bronchiolitis severity (eg, miR-27a-3p, miR-26b-5p; false discovery rate<0.10). The pathway analysis using miRNA data identified 1291 bronchiolitis severity-related pathways-for example, regulation of cell adhesion mediated by integrin. Second, 1298 DEmRNAs were associated with bronchiolitis severity. Last, of these, 190 DEmRNAs were identified as targets of DEmiRNAs and negatively correlated with DEmiRNAs. By applying WGCNA to DEmRNAs, four disease modules were significantly associated with bronchiolitis severity-for example, microtubule anchoring, cell-substrate junction. The hub genes for each of these modules were also identified-for example, PCM1 for the microtubule anchoring module, LIMS1 for the cell-substrate junction module. CONCLUSIONS In infants hospitalised for RSV bronchiolitis, airway miRNA-mRNA coexpression network contributes to the pathobiology of bronchiolitis severity.
Collapse
Affiliation(s)
- Michihito Kyo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tadao Ooka
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Health Science, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brennan Harmon
- Centre for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Andrea Hahn
- Centre for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Division of Infectious Diseases, Children’s National Hospital, Washington, District of Columbia, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, District of Columbia, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Baz-Redón N, Sánchez-Bellver L, Fernández-Cancio M, Rovira-Amigo S, Burgoyne T, Ranjit R, Aquino V, Toro-Barrios N, Carmona R, Polverino E, Cols M, Moreno-Galdó A, Camats-Tarruella N, Marfany G. Primary Ciliary Dyskinesia and Retinitis Pigmentosa: Novel RPGR Variant and Possible Modifier Gene. Cells 2024; 13:524. [PMID: 38534367 DOI: 10.3390/cells13060524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
We report a novel RPGR missense variant co-segregated with a familial X-linked retinitis pigmentosa (XLRP) case. The brothers were hemizygous for this variant, but only the proband presented with primary ciliary dyskinesia (PCD). Thus, we aimed to elucidate the role of the RPGR variant and other modifier genes in the phenotypic variability observed in the family and its impact on motile cilia. The pathogenicity of the variant on the RPGR protein was evaluated by in vitro studies transiently transfecting the mutated RPGR gene, and immunofluorescence analysis on nasal brushing samples. Whole-exome sequencing was conducted to identify potential modifier variants. In vitro studies showed that the mutated RPGR protein could not localise to the cilium and impaired cilium formation. Accordingly, RPGR was abnormally distributed in the siblings' nasal brushing samples. In addition, a missense variant in CEP290 was identified. The concurrent RPGR variant influenced ciliary mislocalisation of the protein. We provide a comprehensive characterisation of motile cilia in this XLRP family, with only the proband presenting PCD symptoms. The variant's pathogenicity was confirmed, although it alone does not explain the respiratory symptoms. Finally, the CEP290 gene may be a potential modifier for respiratory symptoms in patients with RPGR mutations.
Collapse
Affiliation(s)
- Noelia Baz-Redón
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Sánchez-Bellver
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mónica Fernández-Cancio
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sandra Rovira-Amigo
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Paediatrics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Thomas Burgoyne
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Rai Ranjit
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Virginia Aquino
- Plataforma Andaluza de Medicina Computacional, Fundación Pública Andaluza Progreso y Salud, 41092 Sevilla, Spain
| | - Noemí Toro-Barrios
- Plataforma Andaluza de Medicina Computacional, Fundación Pública Andaluza Progreso y Salud, 41092 Sevilla, Spain
| | - Rosario Carmona
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Plataforma Andaluza de Medicina Computacional, Fundación Pública Andaluza Progreso y Salud, 41092 Sevilla, Spain
| | - Eva Polverino
- Pneumology Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Pneumology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Cols
- Paediatric Pulmonology Department and Cystic Fibrosis Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Antonio Moreno-Galdó
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Paediatrics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Department of Paediatrics, Obstetrics, Gynecology, Preventive Medicine and Public Health, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Núria Camats-Tarruella
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gemma Marfany
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Wu JY, Cho SJ, Descant K, Li PH, Shapson-Coe A, Januszewski M, Berger DR, Meyer C, Casingal C, Huda A, Liu J, Ghashghaei T, Brenman M, Jiang M, Scarborough J, Pope A, Jain V, Stein JL, Guo J, Yasuda R, Lichtman JW, Anton ES. Mapping of neuronal and glial primary cilia contactome and connectome in the human cerebral cortex. Neuron 2024; 112:41-55.e3. [PMID: 37898123 PMCID: PMC10841524 DOI: 10.1016/j.neuron.2023.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/25/2023] [Accepted: 09/22/2023] [Indexed: 10/30/2023]
Abstract
Primary cilia act as antenna receivers of environmental signals and enable effective neuronal or glial responses. Disruption of their function is associated with circuit disorders. To understand the signals these cilia receive, we comprehensively mapped cilia's contacts within the human cortical connectome using serial-section EM reconstruction of a 1 mm3 cortical volume, spanning the entire cortical thickness. We mapped the "contactome" of cilia emerging from neurons and astrocytes in every cortical layer. Depending on the layer and cell type, cilia make distinct patterns of contact. Primary cilia display cell-type- and layer-specific variations in size, shape, and microtubule axoneme core, which may affect their signaling competencies. Neuronal cilia are intrinsic components of a subset of cortical synapses and thus a part of the connectome. This diversity in the structure, contactome, and connectome of primary cilia endows each neuron or glial cell with a unique barcode of access to the surrounding neural circuitry.
Collapse
Affiliation(s)
- Jun Yao Wu
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Su-Ji Cho
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine Descant
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Peter H Li
- Google Research, Mountain View, CA 94043, USA
| | - Alexander Shapson-Coe
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Daniel R Berger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cailyn Meyer
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Cristine Casingal
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ariba Huda
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jiaqi Liu
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Tina Ghashghaei
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Mikayla Brenman
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Michelle Jiang
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Joseph Scarborough
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Art Pope
- Google Research, Mountain View, CA 94043, USA
| | - Viren Jain
- Google Research, Mountain View, CA 94043, USA
| | - Jason L Stein
- UNC Neuroscience Center and the Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jiami Guo
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Woerz F, Hoffmann F, Antony S, Bolz S, Jarboui MA, Junger K, Klose F, Stehle IF, Boldt K, Ueffing M, Beyer T. Interactome Analysis Reveals a Link of the Novel ALMS1-CEP70 Complex to Centrosomal Clusters. Mol Cell Proteomics 2024; 23:100701. [PMID: 38122899 PMCID: PMC10820798 DOI: 10.1016/j.mcpro.2023.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/08/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
Alström syndrome (ALMS) is a very rare autosomal-recessive disorder, causing a broad range of clinical defects most notably retinal degeneration, type 2 diabetes, and truncal obesity. The ALMS1 gene encodes a complex and huge ∼0.5 MDa protein, which has hampered analysis in the past. The ALMS1 protein is localized to the centrioles and the basal body of cilia and is involved in signaling processes, for example, TGF-β signaling. However, the exact molecular function of ALMS1 at the basal body remains elusive and controversial. We recently demonstrated that protein complex analysis utilizing endogenously tagged cells provides an excellent tool to investigate protein interactions of ciliary proteins. Here, CRISPR/Cas9-mediated endogenously tagged ALMS1 cells were used for affinity-based protein complex analysis. Centrosomal and microtubule-associated proteins were identified, which are potential regulators of ALMS1 function, such as the centrosomal protein 70 kDa (CEP70). Candidate proteins were further investigated in ALMS1-deficient hTERT-RPE1 cells. Loss of ALMS1 led to shortened cilia with no change in structural protein localization, for example, acetylated and ɣ-tubulin, Centrin-3, or the novel interactor CEP70. Conversely, reduction of CEP70 resulted in decreased ALMS1 at the ciliary basal body. Complex analysis of CEP70 revealed domain-specific ALMS1 interaction involving the TPR-containing C-terminal (TRP-CT) fragment of CEP70. In addition to ALMS1, several ciliary proteins, including CEP135, were found to specifically bind to the TPR-CT domain. Data are available via ProteomeXchange with the identifier PXD046401. Protein interactors identified in this study provide candidate lists that help to understand ALMS1 and CEP70 function in cilia-related protein modification, cell death, and disease-related mechanisms.
Collapse
Affiliation(s)
- Franziska Woerz
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Felix Hoffmann
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Shibu Antony
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sylvia Bolz
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Mohamed Ali Jarboui
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Katrin Junger
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Franziska Klose
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Isabel F Stehle
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Tina Beyer
- Eberhard Karls University Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Ka HI, Cho M, Kwon SH, Mun SH, Han S, Kim MJ, Yang Y. IK is essentially involved in ciliogenesis as an upstream regulator of oral-facial-digital syndrome ciliopathy gene, ofd1. Cell Biosci 2023; 13:195. [PMID: 37898820 PMCID: PMC10612314 DOI: 10.1186/s13578-023-01146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The cilia are microtubule-based organelles that protrude from the cell surface. Abnormalities in cilia result in various ciliopathies, including polycystic kidney disease (PKD), Bardet-Biedl syndrome (BBS), and oral-facial-digital syndrome type I (OFD1), which show genetic defects associated with cilia formation. Although an increasing number of human diseases is attributed to ciliary defects, the functions or regulatory mechanisms of several ciliopathy genes remain unclear. Because multi ciliated cells (MCCs) are especially deep in vivo, studying ciliogenesis is challenging. Here, we demonstrate that ik is essential for ciliogenesis in vivo. RESULTS In the absence of ik, zebrafish embryos showed various ciliopathy phenotypes, such as body curvature, abnormal otoliths, and cyst formation in the kidney. RNA sequencing analysis revealed that ik positively regulated ofd1 expression required for cilium assembly. In fact, depletion of ik resulted in the downregulation of ofd1 expression with ciliary defects, and these ciliary defects in ik mutants were rescued by restoring ofd1 expression. Interestingly, ik affected ciliogenesis particularly in the proximal tubule but not in the distal tubule in the kidney. CONCLUSIONS This study demonstrates the role of ik in ciliogenesis in vivo for the first time. Loss of ik in zebrafish embryos displays various ciliopathy phenotypes with abnormal ciliary morphology in ciliary tissues. Our findings on the ik-ofd1 axis provide new insights into the biological function of ik in clinical ciliopathy studies in humans.
Collapse
Affiliation(s)
- Hye In Ka
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Mina Cho
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, 02841, South Korea
| | - Se Hwan Mun
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Sora Han
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Min Jung Kim
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea.
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04312, South Korea.
| | - Young Yang
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea.
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea.
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04312, South Korea.
| |
Collapse
|
6
|
Carotenuto P, Gradilone SA, Franco B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes (Basel) 2023; 14:1428. [PMID: 37510333 PMCID: PMC10379587 DOI: 10.3390/genes14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface with motility or sensory functions. Primary cilia work as antennae to sense and transduce extracellular signals. Cilia critically control proliferation by mediating cell-extrinsic signals and by regulating cell cycle entry. Recent studies have shown that primary cilia and their associated proteins also function in autophagy and genome stability, which are important players in oncogenesis. Abnormal functions of primary cilia may contribute to oncogenesis. Indeed, defective cilia can either promote or suppress cancers, depending on the cancer-initiating mutation, and the presence or absence of primary cilia is associated with specific cancer types. Together, these findings suggest that primary cilia play important, but distinct roles in different cancer types, opening up a completely new avenue of research to understand the biology and treatment of cancers. In this review, we discuss the roles of primary cilia in promoting or inhibiting oncogenesis based on the known or predicted functions of cilia and cilia-associated proteins in several key processes and related clinical implications.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School of Advanced Studies, Genomic and Experimental medicine Program (Scuola Superiore Meridionale), 80138 Naples, Italy
| |
Collapse
|
7
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Mendes A, Heil HS, Coelho S, Leterrier C, Henriques R. Mapping molecular complexes with super-resolution microscopy and single-particle analysis. Open Biol 2022; 12:220079. [PMID: 35892200 PMCID: PMC9326279 DOI: 10.1098/rsob.220079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the structure of supramolecular complexes provides insight into their functional capabilities and how they can be modulated in the context of disease. Super-resolution microscopy (SRM) excels in performing this task by resolving ultrastructural details at the nanoscale with molecular specificity. However, technical limitations, such as underlabelling, preclude its ability to provide complete structures. Single-particle analysis (SPA) overcomes this limitation by combining information from multiple images of identical structures and producing an averaged model, effectively enhancing the resolution and coverage of image reconstructions. This review highlights important studies using SRM-SPA, demonstrating how it broadens our knowledge by elucidating features of key biological structures with unprecedented detail.
Collapse
Affiliation(s)
| | | | - Simao Coelho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Ricardo Henriques
- Instituto Gulbenkian de Ciência, Oeiras, Portugal,MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
9
|
Song T, Yang Y, Zhou P, Ran J, Zhang L, Wu X, Xie W, Zhong T, Liu H, Liu M, Li D, Zhao H, Zhou J. ENKD1 promotes CP110 removal through competing with CEP97 to initiate ciliogenesis. EMBO Rep 2022; 23:e54090. [PMID: 35301795 PMCID: PMC9066061 DOI: 10.15252/embr.202154090] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the importance of cilia in cell signaling and motility, the molecular mechanisms regulating cilium formation remain incompletely understood. Herein, we characterize enkurin domain-containing protein 1 (ENKD1) as a novel centrosomal protein that mediates the removal of centriolar coiled-coil protein 110 (CP110) from the mother centriole to promote ciliogenesis. We show that Enkd1 knockout mice possess ciliogenesis defects in multiple organs. Super-resolution microscopy reveals that ENKD1 is a stable component of the centrosome throughout the ciliogenesis process. Simultaneous knockdown of ENKD1 and CP110 significantly reverses the ciliogenesis defects induced by ENKD1 depletion. Protein interaction analysis shows that ENKD1 competes with centrosomal protein 97 (CEP97) in binding to CP110. Depletion of ENKD1 enhances the CP110-CEP97 interaction and detains CP110 at the mother centriole. These findings thus identify ENKD1 as a centrosomal protein and uncover a novel mechanism controlling CP110 removal from the mother centriole for the initiation of ciliogenesis.
Collapse
Affiliation(s)
- Ting Song
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Yunfan Yang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Liang Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Xiaofan Wu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wei Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Tao Zhong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Hongbin Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China.,State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Smith AJ, Bustamante-Marin XM, Yin W, Sears PR, Herring LE, Dicheva NN, López-Giráldez F, Mane S, Tarran R, Leigh MW, Knowles MR, Zariwala MA, Ostrowski LE. The role of SPAG1 in the assembly of axonemal dyneins in human airway epithelia. J Cell Sci 2022; 135:jcs259512. [PMID: 35178554 PMCID: PMC8995097 DOI: 10.1242/jcs.259512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.
Collapse
Affiliation(s)
- Amanda J. Smith
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ximena M. Bustamante-Marin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weining Yin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick R. Sears
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nedyalka N. Dicheva
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret W. Leigh
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lawrence E. Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Hibino E, Ichiyama Y, Tsukamura A, Senju Y, Morimune T, Ohji M, Maruo Y, Nishimura M, Mori M. Bex1 is essential for ciliogenesis and harbours biomolecular condensate-forming capacity. BMC Biol 2022; 20:42. [PMID: 35144600 PMCID: PMC8830175 DOI: 10.1186/s12915-022-01246-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Primary cilia are sensory organelles crucial for organ development. The pivotal structure of the primary cilia is a microtubule that is generated via tubulin polymerization reaction that occurs in the basal body. It remains to be elucidated how molecules with distinct physicochemical properties contribute to the formation of the primary cilia. RESULTS Here we show that brain expressed X-linked 1 (Bex1) plays an essential role in tubulin polymerization and primary cilia formation. The Bex1 protein shows the physicochemical property of being an intrinsically disordered protein (IDP). Bex1 shows cell density-dependent accumulation as a condensate either in nucleoli at a low cell density or at the apical cell surface at a high cell density. The apical Bex1 localizes to the basal body. Bex1 knockout mice present ciliopathy phenotypes and exhibit ciliary defects in the retina and striatum. Bex1 recombinant protein shows binding capacity to guanosine triphosphate (GTP) and forms the condensate that facilitates tubulin polymerization in the reconstituted system. CONCLUSIONS Our data reveals that Bex1 plays an essential role for the primary cilia formation through providing the reaction field for the tubulin polymerization.
Collapse
Affiliation(s)
- Emi Hibino
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yusuke Ichiyama
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Atsushi Tsukamura
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Paediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Takao Morimune
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Paediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masahito Ohji
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Yoshihiro Maruo
- Department of Paediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Masaki Mori
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| |
Collapse
|
12
|
Kasera H, Kumar S, Singh P. Yeast 2-hybrid assay for investigating the interaction between the centrosome proteins PLK4 and STIL. Methods Cell Biol 2022; 169:97-114. [DOI: 10.1016/bs.mcb.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Afinanisa Q, Cho MK, Seong HA. AMPK Localization: A Key to Differential Energy Regulation. Int J Mol Sci 2021; 22:10921. [PMID: 34681581 PMCID: PMC8535671 DOI: 10.3390/ijms222010921] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.
Collapse
Affiliation(s)
| | | | - Hyun-A Seong
- Department of Biochemistry, School of Biological Sciences, Chungbuk National University, Cheongju 28644, Korea; (Q.A.); (M.K.C.)
| |
Collapse
|
14
|
Wensel TG, Potter VL, Moye A, Zhang Z, Robichaux MA. Structure and dynamics of photoreceptor sensory cilia. Pflugers Arch 2021; 473:1517-1537. [PMID: 34050409 PMCID: PMC11216635 DOI: 10.1007/s00424-021-02564-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures that enable them to carry out their function of light detection over a broad range of illumination intensities with optimized spatial and temporal resolution. Most prominent are their unusually large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme is assembled. These structures form a highway through which an enormous flux of material moves on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands of phototransduction. After decades of study, the details of the fine structure and distribution of molecular components of these structures are still incompletely understood, but recent advances in cellular imaging techniques and animal models of inherited ciliary defects are yielding important new insights. This knowledge informs our understanding both of the mechanisms of trafficking and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.
Collapse
Affiliation(s)
- Theodore G Wensel
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Valencia L Potter
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA
| | - Abigail Moye
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhixian Zhang
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael A Robichaux
- Departments of Ophthalmology and Biochemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
15
|
Focșa IO, Budișteanu M, Bălgrădean M. Clinical and genetic heterogeneity of primary ciliopathies (Review). Int J Mol Med 2021; 48:176. [PMID: 34278440 PMCID: PMC8354309 DOI: 10.3892/ijmm.2021.5009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Ciliopathies comprise a group of complex disorders, with involvement of the majority of organs and systems. In total, >180 causal genes have been identified and, in addition to Mendelian inheritance, oligogenicity, genetic modifications, epistatic interactions and retrotransposon insertions have all been described when defining the ciliopathic phenotype. It is remarkable how the structural and functional impairment of a single, minuscule organelle may lead to the pathogenesis of highly pleiotropic diseases. Thus, combined efforts have been made to identify the genetic substratum and to determine the pathophysiological mechanism underlying the clinical presentation, in order to diagnose and classify ciliopathies. Yet, predicting the phenotype, given the intricacy of the genetic cause and overlapping clinical characteristics, represents a major challenge. In the future, advances in proteomics, cell biology and model organisms may provide new insights that could remodel the field of ciliopathies.
Collapse
Affiliation(s)
- Ina Ofelia Focșa
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mihaela Bălgrădean
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children 'Maria Skłodowska Curie', 077120 Bucharest, Romania
| |
Collapse
|
16
|
Ciliary Signalling and Mechanotransduction in the Pathophysiology of Craniosynostosis. Genes (Basel) 2021; 12:genes12071073. [PMID: 34356089 PMCID: PMC8306115 DOI: 10.3390/genes12071073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Craniosynostosis (CS) is the second most prevalent inborn craniofacial malformation; it results from the premature fusion of cranial sutures and leads to dimorphisms of variable severity. CS is clinically heterogeneous, as it can be either a sporadic isolated defect, more frequently, or part of a syndromic phenotype with mendelian inheritance. The genetic basis of CS is also extremely heterogeneous, with nearly a hundred genes associated so far, mostly mutated in syndromic forms. Several genes can be categorised within partially overlapping pathways, including those causing defects of the primary cilium. The primary cilium is a cellular antenna serving as a signalling hub implicated in mechanotransduction, housing key molecular signals expressed on the ciliary membrane and in the cilioplasm. This mechanical property mediated by the primary cilium may also represent a cue to understand the pathophysiology of non-syndromic CS. In this review, we aimed to highlight the implication of the primary cilium components and active signalling in CS pathophysiology, dissecting their biological functions in craniofacial development and in suture biomechanics. Through an in-depth revision of the literature and computational annotation of disease-associated genes we categorised 18 ciliary genes involved in CS aetiology. Interestingly, a prevalent implication of midline sutures is observed in CS ciliopathies, possibly explained by the specific neural crest origin of the frontal bone.
Collapse
|
17
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
18
|
Casein kinase TbCK1.2 regulates division of kinetoplast DNA, and movement of basal bodies in the African trypanosome. PLoS One 2021; 16:e0249908. [PMID: 33861760 PMCID: PMC8051774 DOI: 10.1371/journal.pone.0249908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
The single mitochondrial nucleoid (kinetoplast) of Trypanosoma brucei is found proximal to a basal body (mature (mBB)/probasal body (pBB) pair). Kinetoplast inheritance requires synthesis of, and scission of kinetoplast DNA (kDNA) generating two kinetoplasts that segregate with basal bodies into daughter cells. Molecular details of kinetoplast scission and the extent to which basal body separation influences the process are unavailable. To address this topic, we followed basal body movements in bloodstream trypanosomes following depletion of protein kinase TbCK1.2 which promotes kinetoplast division. In control cells we found that pBBs are positioned 0.4 um from mBBs in G1, and they mature after separating from mBBs by at least 0.8 um: mBB separation reaches ~2.2 um. These data indicate that current models of basal body biogenesis in which pBBs mature in close proximity to mBBs may need to be revisited. Knockdown of TbCK1.2 produced trypanosomes containing one kinetoplast and two nuclei (1K2N), increased the percentage of cells with uncleaved kDNA 400%, decreased mBB spacing by 15%, and inhibited cytokinesis 300%. We conclude that (a) separation of mBBs beyond a threshold of 1.8 um correlates with division of kDNA, and (b) TbCK1.2 regulates kDNA scission. We propose a Kinetoplast Division Factor hypothesis that integrates these data into a pathway for biogenesis of two daughter mitochondrial nucleoids.
Collapse
|
19
|
Sears PR, Bustamante-Marin XM, Gong H, Markovetz MR, Superfine R, Hill DB, Ostrowski LE. Induction of ciliary orientation by matrix patterning and characterization of mucociliary transport. Biophys J 2021; 120:1387-1395. [PMID: 33705757 PMCID: PMC8105732 DOI: 10.1016/j.bpj.2021.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Impaired mucociliary clearance (MCC) is a key feature of many airway diseases, including asthma, bronchiectasis, chronic obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. To improve MCC and develop new treatments for these diseases requires a thorough understanding of how mucus concentration, mucus composition, and ciliary activity affect MCC, and how different therapeutics impact this process. Although differentiated cultures of human airway epithelial cells are useful for investigations of MCC, the extent of ciliary coordination in these cultures varies, and the mechanisms controlling ciliary orientation are not completely understood. By introducing a pattern of ridges and grooves into the underlying collagen substrate, we demonstrate for the first time, to our knowledge, that changes in the extracellular matrix can induce ciliary alignment. Remarkably, 90% of human airway epithelial cultures achieved continuous directional mucociliary transport (MCT) when grown on the patterned substrate. These cultures maintain transport for months, allowing carefully controlled investigations of MCC over a wide range of normal and pathological conditions. To characterize the system, we measured the transport of bovine submaxillary gland mucin (BSM) under several conditions. Transport of 5% BSM was significantly reduced compared with that of 2% BSM, and treatment of 5% BSM with the reducing agent tris(2-carboxyethyl)phosphine (TCEP) reduced viscosity and increased the rate of MCT by approximately twofold. Addition of a small amount of high-molecular-weight DNA increased mucus viscosity and reduced MCT by ∼75%, demonstrating that the composition of mucus, as well as the concentration, can have significant effects on MCT. Our results demonstrate that a simple patterning of the collagen substrate results in highly coordinated ciliated cultures that develop directional MCT, and can be used to investigate the mechanisms controlling the regulation of ciliary orientation. Furthermore, the results demonstrate that this method provides an improved system for studying the effects of mucus composition and therapeutic agents on MCC.
Collapse
Affiliation(s)
- Patrick R Sears
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | | | - Henry Gong
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Richard Superfine
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina
| | - David B Hill
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
20
|
Labat-de-Hoz L, Rubio-Ramos A, Casares-Arias J, Bernabé-Rubio M, Correas I, Alonso MA. A Model for Primary Cilium Biogenesis by Polarized Epithelial Cells: Role of the Midbody Remnant and Associated Specialized Membranes. Front Cell Dev Biol 2021; 8:622918. [PMID: 33585461 PMCID: PMC7873843 DOI: 10.3389/fcell.2020.622918] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are solitary, microtubule-based protrusions surrounded by a ciliary membrane equipped with selected receptors that orchestrate important signaling pathways that control cell growth, differentiation, development and homeostasis. Depending on the cell type, primary cilium assembly takes place intracellularly or at the cell surface. The intracellular route has been the focus of research on primary cilium biogenesis, whereas the route that occurs at the cell surface, which we call the "alternative" route, has been much less thoroughly characterized. In this review, based on recent experimental evidence, we present a model of primary ciliogenesis by the alternative route in which the remnant of the midbody generated upon cytokinesis acquires compact membranes, that are involved in compartmentalization of biological membranes. The midbody remnant delivers part of those membranes to the centrosome in order to assemble the ciliary membrane, thereby licensing primary cilium formation. The midbody remnant's involvement in primary cilium formation, the regulation of its inheritance by the ESCRT machinery, and the assembly of the ciliary membrane from the membranes originally associated with the remnant are discussed in the context of the literature concerning the ciliary membrane, the emerging roles of the midbody remnant, the regulation of cytokinesis, and the role of membrane compartmentalization. We also present a model of cilium emergence during evolution, and summarize the directions for future research.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Casares-Arias
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Bernabé-Rubio
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A. Alonso
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Ji Y, Garland MA, Sun B, Zhang S, Reynolds K, McMahon M, Rajakumar R, Islam MS, Liu Y, Chen Y, Zhou CJ. Cellular and developmental basis of orofacial clefts. Birth Defects Res 2020; 112:1558-1587. [PMID: 32725806 DOI: 10.1002/bdr2.1768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022]
Abstract
During craniofacial development, defective growth and fusion of the upper lip and/or palate can cause orofacial clefts (OFCs), which are among the most common structural birth defects in humans. The developmental basis of OFCs includes morphogenesis of the upper lip, primary palate, secondary palate, and other orofacial structures, each consisting of diverse cell types originating from all three germ layers: the ectoderm, mesoderm, and endoderm. Cranial neural crest cells and orofacial epithelial cells are two major cell types that interact with various cell lineages and play key roles in orofacial development. The cellular basis of OFCs involves defective execution in any one or several of the following processes: neural crest induction, epithelial-mesenchymal transition, migration, proliferation, differentiation, apoptosis, primary cilia formation and its signaling transduction, epithelial seam formation and disappearance, periderm formation and peeling, convergence and extrusion of palatal epithelial seam cells, cell adhesion, cytoskeleton dynamics, and extracellular matrix function. The latest cellular and developmental findings may provide a basis for better understanding of the underlying genetic, epigenetic, environmental, and molecular mechanisms of OFCs.
Collapse
Affiliation(s)
- Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Michael A Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Ratheya Rajakumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Mohammad S Islam
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Yue Liu
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| |
Collapse
|
22
|
Soh AWJ, van Dam TJP, Stemm-Wolf AJ, Pham AT, Morgan GP, O'Toole ET, Pearson CG. Ciliary force-responsive striated fibers promote basal body connections and cortical interactions. J Cell Biol 2020; 219:jcb.201904091. [PMID: 31740506 PMCID: PMC7039215 DOI: 10.1083/jcb.201904091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/15/2019] [Accepted: 10/02/2019] [Indexed: 12/28/2022] Open
Abstract
Multi-ciliary arrays promote fluid flow and cellular motility using the polarized and coordinated beating of hundreds of motile cilia. Tetrahymena basal bodies (BBs) nucleate and position cilia, whereby BB-associated striated fibers (SFs) promote BB anchorage and orientation into ciliary rows. Mutants that shorten SFs cause disoriented BBs. In contrast to the cytotaxis model, we show that disoriented BBs with short SFs can regain normal orientation if SF length is restored. In addition, SFs adopt unique lengths by their shrinkage and growth to establish and maintain BB connections and cortical interactions in a ciliary force-dependent mechanism. Tetrahymena SFs comprise at least eight uniquely localizing proteins belonging to the SF-assemblin family. Loss of different proteins that localize to the SF base disrupts either SF steady-state length or ciliary force-induced SF elongation. Thus, the dynamic regulation of SFs promotes BB connections and cortical interactions to organize ciliary arrays.
Collapse
Affiliation(s)
- Adam W J Soh
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO
| | - Teunis J P van Dam
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Alexander J Stemm-Wolf
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO
| | - Andrew T Pham
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO
| | - Garry P Morgan
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO
| | - Eileen T O'Toole
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO
| | - Chad G Pearson
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO
| |
Collapse
|
23
|
Mc Fie M, Koneva L, Collins I, Coveney CR, Clube AM, Chanalaris A, Vincent TL, Bezbradica JS, Sansom SN, Wann AKT. Ciliary proteins specify the cell inflammatory response by tuning NFκB signalling, independently of primary cilia. J Cell Sci 2020; 133:jcs.239871. [PMID: 32503942 PMCID: PMC7358134 DOI: 10.1242/jcs.239871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Complex inflammatory signalling cascades define the response to tissue injury but also control development and homeostasis, limiting the potential for these pathways to be targeted therapeutically. Primary cilia are subcellular regulators of cellular signalling, controlling how signalling is organized, encoded and, in some instances, driving or influencing pathogenesis. Our previous research revealed that disruption of ciliary intraflagellar transport (IFT), altered the cell response to IL-1β, supporting a putative link emerging between cilia and inflammation. Here, we show that IFT88 depletion affects specific cytokine-regulated behaviours, changing cytosolic NFκB translocation dynamics but leaving MAPK signalling unaffected. RNA-seq analysis indicates that IFT88 regulates one third of the genome-wide targets, including the pro-inflammatory genes Nos2, Il6 and Tnf. Through microscopy, we find altered NFκB dynamics are independent of assembly of a ciliary axoneme. Indeed, depletion of IFT88 inhibits inflammatory responses in the non-ciliated macrophage. We propose that ciliary proteins, including IFT88, KIF3A, TTBK2 and NPHP4, act outside of the ciliary axoneme to tune cytoplasmic NFκB signalling and specify the downstream cell response. This is thus a non-canonical function for ciliary proteins in shaping cellular inflammation. This article has an associated First Person interview with the first author of the paper. Summary: Ciliary proteins, acting independently of the ciliary axoneme, regulate the dynamics of cytosolic NFκB, but not other signalling pathways, defining an important subset of the inflammatory response.
Collapse
Affiliation(s)
- Megan Mc Fie
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK.,School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lada Koneva
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Isabella Collins
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Clarissa R Coveney
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Aisling M Clube
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Anastasios Chanalaris
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Tonia L Vincent
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Jelena S Bezbradica
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Angus K T Wann
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
24
|
Alfieri M, Iaconis D, Tammaro R, Perone L, Calì G, Nitsch L, Dougherty GW, Ragnini-Wilson A, Franco B. The centrosomal/basal body protein OFD1 is required for microtubule organization and cell cycle progression. Tissue Cell 2020; 64:101369. [PMID: 32473706 DOI: 10.1016/j.tice.2020.101369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
Oral-Facial-Digital type I (OFD1) is a rare inherited form of renal cystic disease associated with ciliary dysfunction. This disorder is due to mutations in the OFD1 gene that encodes a protein localized to centrosomes and basal bodies in different cell types. Immunofluorescence analysis demonstrated that OFD1 displays a dynamic distribution during cell cycle. High-content microscopy analysis of Ofd1-depleted fibroblasts revealed impaired cell cycle progression. Immunofluorescence analysis and cell proliferation assays also indicated the presence of a variety of defects such as centrosome accumulation, nuclear abnormalities and aneuploidy. In addition, Ofd1-depleted cells displayed an abnormal microtubule network that may underlie these defects. All together our results suggest that OFD1 contributes to the function of the microtubule organizing center (MTOC) in the cell, controlling cell cycle progression both in vitro and in vivo.
Collapse
Affiliation(s)
- Mariaevelina Alfieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Daniela Iaconis
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Lucia Perone
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Gaetano Calì
- National Research Council - Institute of Experimental Endocrinology and Oncology, Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Gerard W Dougherty
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of General Pediatrics, University Hospital Muenster, 48149, Muenster, Germany
| | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples "Federico II", Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
25
|
Bayless BA, Navarro FM, Winey M. Motile Cilia: Innovation and Insight From Ciliate Model Organisms. Front Cell Dev Biol 2019; 7:265. [PMID: 31737631 PMCID: PMC6838636 DOI: 10.3389/fcell.2019.00265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Ciliates are a powerful model organism for the study of basal bodies and motile cilia. These single-celled protists contain hundreds of cilia organized in an array making them an ideal system for both light and electron microscopy studies. Isolation and subsequent proteomic analysis of both cilia and basal bodies have been carried out to great success in ciliates. These studies reveal that ciliates share remarkable protein conservation with metazoans and have identified a number of essential basal body/ciliary proteins. Ciliates also boast a genetic and molecular toolbox that allows for facile manipulation of ciliary genes. Reverse genetics studies in ciliates have expanded our understanding of how cilia are positioned within an array, assembled, stabilized, and function at a molecular level. The advantages of cilia number coupled with a robust genetic and molecular toolbox have established ciliates as an ideal system for motile cilia and basal body research and prove a promising system for future research.
Collapse
Affiliation(s)
- Brian A Bayless
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Francesca M Navarro
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
26
|
Quarantotti V, Chen J, Tischer J, Gonzalez Tejedo C, Papachristou EK, D'Santos CS, Kilmartin JV, Miller ML, Gergely F. Centriolar satellites are acentriolar assemblies of centrosomal proteins. EMBO J 2019; 38:e101082. [PMID: 31304626 PMCID: PMC6627235 DOI: 10.15252/embj.2018101082] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 12/02/2022] Open
Abstract
Centrioles are core structural elements of both centrosomes and cilia. Although cytoplasmic granules called centriolar satellites have been observed around these structures, lack of a comprehensive inventory of satellite proteins impedes our understanding of their ancestry. To address this, we performed mass spectrometry (MS)-based proteome profiling of centriolar satellites obtained by affinity purification of their key constituent, PCM1, from sucrose gradient fractions. We defined an interactome consisting of 223 proteins, which showed striking enrichment in centrosome components. The proteome also contained new structural and regulatory factors with roles in ciliogenesis. Quantitative MS on whole-cell and centriolar satellite proteomes of acentriolar cells was performed to reveal dependencies of satellite composition on intact centrosomes. Although most components remained associated with PCM1 in acentriolar cells, reduced cytoplasmic and satellite levels were observed for a subset of centrosomal proteins. These results demonstrate that centriolar satellites and centrosomes form independently but share a substantial fraction of their proteomes. Dynamic exchange of proteins between these organelles could facilitate their adaptation to changing cellular environments during development, stress response and tissue homeostasis.
Collapse
Affiliation(s)
- Valentina Quarantotti
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Jia‐Xuan Chen
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Julia Tischer
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Carmen Gonzalez Tejedo
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | | | - Clive S D'Santos
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - John V Kilmartin
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| | - Martin L Miller
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Fanni Gergely
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
27
|
Colicino EG, Stevens K, Curtis E, Rathbun L, Bates M, Manikas J, Amack J, Freshour J, Hehnly H. Chromosome misalignment is associated with PLK1 activity at cenexin-positive mitotic centrosomes. Mol Biol Cell 2019; 30:1598-1609. [PMID: 31042116 PMCID: PMC6727634 DOI: 10.1091/mbc.e18-12-0817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 02/02/2023] Open
Abstract
The mitotic kinase, polo-like kinase 1 (PLK1), facilitates the assembly of the two mitotic spindle poles, which are required for the formation of the microtubule-based spindle that ensures appropriate chromosome distribution into the two forming daughter cells. Spindle poles are asymmetric in composition. One spindle pole contains the oldest mitotic centriole, the mother centriole, where the majority of cenexin, the mother centriole appendage protein and PLK1 binding partner, resides. We hypothesized that PLK1 activity is greater at the cenexin-positive older spindle pole. Our studies found that PLK1 asymmetrically localizes between spindle poles under conditions of chromosome misalignment, and chromosomes tend to misalign toward the oldest spindle pole in a cenexin- and PLK1-dependent manner. During chromosome misalignment, PLK1 activity is increased specifically at the oldest spindle pole, and this increase in activity is lost in cenexin-depleted cells. We propose a model where PLK1 activity elevates in response to misaligned chromosomes at the oldest spindle pole during metaphase.
Collapse
Affiliation(s)
- Erica G. Colicino
- Biology Department, Syracuse University, Syracuse, NY 13210
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13210
| | | | - Erin Curtis
- Biology Department, Syracuse University, Syracuse, NY 13210
| | | | - Michael Bates
- Biology Department, Syracuse University, Syracuse, NY 13210
| | - Julie Manikas
- Biology Department, Syracuse University, Syracuse, NY 13210
| | - Jeffrey Amack
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13210
| | - Judy Freshour
- Biology Department, Syracuse University, Syracuse, NY 13210
| | - Heidi Hehnly
- Biology Department, Syracuse University, Syracuse, NY 13210
| |
Collapse
|
28
|
Zabeo D, Croft JT, Höög JL. Axonemal doublet microtubules can split into two complete singlets in human sperm flagellum tips. FEBS Lett 2019; 593:892-902. [PMID: 30959570 PMCID: PMC6594080 DOI: 10.1002/1873-3468.13379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
Motile flagella are crucial for human fertility and embryonic development. The distal tip of the flagellum is where growth and intra-flagellar transport are coordinated. In most model organisms, but not all, the distal tip includes a 'singlet region', where axonemal doublet microtubules (dMT) terminate and only complete A-tubules extend as singlet microtubules (sMT) to the tip. How a human flagellar tip is structured is unknown. Here, the flagellar tip structure of human spermatozoa was investigated by cryo-electron tomography, revealing the formation of a complete sMT from both the A-tubule and B-tubule of dMTs. This different tip arrangement in human spermatozoa shows the need to investigate human flagella directly in order to understand their role in health and disease.
Collapse
Affiliation(s)
- Davide Zabeo
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jacob T Croft
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Alciaturi J, Anesetti G, Irigoin F, Skowronek F, Sapiro R. Distribution of sperm antigen 6 (SPAG6) and 16 (SPAG16) in mouse ciliated and non-ciliated tissues. J Mol Histol 2019; 50:189-202. [PMID: 30911868 DOI: 10.1007/s10735-019-09817-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
The cilia and flagella of eukaryotic cells serve many functions, exhibiting remarkable conservation of both structure and molecular composition in widely divergent eukaryotic organisms. SPAG6 and SPAG16 are the homologous in the mice to Chlamydomonas reinhardtii PF16 and PF20. Both proteins are associated with the axonemal central apparatus and are essential for ciliary and flagellar motility in mammals. Recent data derived from high-throughput studies revealed expression of these genes in tissues that do not contain motile cilia. However, the distribution of SPAG6 and SPAG16 in ciliated and non-ciliated tissues is not completely understood. In this work, we performed a quantitative analysis of the expression of Spag6 and Spag16 genes in parallel with the immune-localization of the proteins in several tissues of adult mice. Expression of mRNA was higher in the testis and tissues bearing motile cilia than in the other analyzed tissues. Both proteins were present in ciliated and non-ciliated tissues. In the testis, SPAG6 was detected in spermatogonia, spermatocytes, and in the sperm flagella whereas SPAG16 was found in spermatocytes and in the sperm flagella. In addition, both proteins were detected in the cytoplasm of cells from the brain, spinal cord, and ovary. A small isoform of SPAG16 was localized in the nucleus of germ cells and some neurons. In a parallel set of experiments, we overexpressed EGFP-SPAG6 in cultured cells and observed that the protein co-localized with a subset of acetylated cytoplasmic microtubules. A role of these proteins stabilizing the cytoplasmic microtubules of eukaryotic cells is discussed.
Collapse
Affiliation(s)
- Jimena Alciaturi
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Gabriel Anesetti
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Florencia Irigoin
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay.,Laboratorio de Genética Molecular Humana, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
| | - Fernanda Skowronek
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay.
| |
Collapse
|
30
|
Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance. Am J Hum Genet 2019; 104:229-245. [PMID: 30665704 DOI: 10.1016/j.ajhg.2018.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.
Collapse
|
31
|
Guen VJ, Gamble C, Lees JA, Colas P. The awakening of the CDK10/Cyclin M protein kinase. Oncotarget 2018; 8:50174-50186. [PMID: 28178678 PMCID: PMC5564841 DOI: 10.18632/oncotarget.15024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play important roles in the control of fundamental cellular processes. Some of the most characterized CDKs are considered to be pertinent therapeutic targets for cancers and other diseases, and first clinical successes have recently been obtained with CDK inhibitors. Although discovered in the pre-genomic era, CDK10 attracted little attention until it was identified as a major determinant of resistance to endocrine therapy for breast cancer. In some studies, CDK10 has been shown to promote cell proliferation whereas other studies have revealed a tumor suppressor function. The recent discovery of Cyclin M as a CDK10 activating partner has allowed the unveiling of a protein kinase activity against the ETS2 oncoprotein, whose degradation is activated by CDK10/Cyclin M-mediated phosphorylation. CDK10/Cyclin M has also been shown to repress ciliogenesis and to maintain actin network architecture, through the phoshorylation of the PKN2 protein kinase and the control of RhoA stability. These findings shed light on the molecular mechanisms underlying STAR syndrome, a severe human developmental genetic disorder caused by mutations in the Cyclin M coding gene. They also pave the way to a better understanding of the role of CDK10/Cyclin M in cancer.
Collapse
Affiliation(s)
- Vincent J Guen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Carly Gamble
- P2I2 Group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Roscoff, France
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Pierre Colas
- P2I2 Group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Roscoff, France
| |
Collapse
|
32
|
Bernabé-Rubio M, Alonso MA. Routes and machinery of primary cilium biogenesis. Cell Mol Life Sci 2017; 74:4077-4095. [PMID: 28624967 PMCID: PMC11107551 DOI: 10.1007/s00018-017-2570-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Primary cilia are solitary, microtubule-based protrusions of the cell surface that play fundamental roles as photosensors, mechanosensors and biochemical sensors. Primary cilia dysfunction results in a long list of developmental and degenerative disorders that combine to give rise to a large spectrum of human diseases affecting almost any major body organ. Depending on the cell type, primary ciliogenesis is initiated intracellularly, as in fibroblasts, or at the cell surface, as in renal polarized epithelial cells. In this review, we have focused on the routes of primary ciliogenesis placing particular emphasis on the recently described pathway in renal polarized epithelial cells by which the midbody remnant resulting from a previous cell division event enables the centrosome for initiation of primary cilium assembly. The protein machinery implicated in primary cilium formation in epithelial cells, including the machinery best known for its involvement in establishing cell polarity and polarized membrane trafficking, is also discussed.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
33
|
Shi X, Garcia G, Van De Weghe JC, McGorty R, Pazour GJ, Doherty D, Huang B, Reiter JF. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat Cell Biol 2017; 19:1178-1188. [PMID: 28846093 DOI: 10.1038/ncb3599] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
Abstract
Ciliopathies, including nephronophthisis (NPHP), Meckel syndrome (MKS) and Joubert syndrome (JBTS), can be caused by mutations affecting components of the transition zone, a domain near the base of the cilium that controls the protein composition of its membrane. We defined the three-dimensional arrangement of key proteins in the transition zone using two-colour stochastic optical reconstruction microscopy (STORM). NPHP and MKS complex components form nested rings comprised of nine-fold doublets. JBTS-associated mutations in RPGRIP1L or TCTN2 displace certain transition-zone proteins. Diverse ciliary proteins accumulate at the transition zone in wild-type cells, suggesting that the transition zone is a waypoint for proteins entering and exiting the cilium. JBTS-associated mutations in RPGRIP1L disrupt SMO accumulation at the transition zone and the ciliary localization of SMO. We propose that the disruption of transition-zone architecture in JBTS leads to a failure of SMO to accumulate at the transition zone and cilium, disrupting developmental signalling in JBTS.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, USA
| | - Galo Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143, USA.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143, USA
| | - Julie C Van De Weghe
- Department of Pediatrics, University of Washington Medical Center, Seattle, Washington 98195, USA
| | - Ryan McGorty
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Dan Doherty
- Department of Pediatrics, University of Washington Medical Center, Seattle, Washington 98195, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143, USA.,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143, USA.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
34
|
McClure-Begley TD, Klymkowsky MW. Nuclear roles for cilia-associated proteins. Cilia 2017; 6:8. [PMID: 28560031 PMCID: PMC5445336 DOI: 10.1186/s13630-017-0052-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023] Open
Abstract
Cilia appear to be derived, evolutionarily, from structures present in the ancestral (pre-ciliary) eukaryote, such as microtubule-based vesicle trafficking and chromosome segregation systems. Experimental observations suggest that the ciliary gate, the molecular complex that mediates the selective molecular movement between cytoplasmic and ciliary compartments, shares features with nuclear pores. Our hypothesis is that this shared transport machinery is at least partially responsible for the observation that a number of ciliary and ciliogenesis-associated proteins are found within nuclei where they play roles in the regulation of gene expression, DNA repair, and nuclear import and export. Recognizing the potential for such nuclear roles is critical when considering the phenotypic effects that arise from the mutational modification of ciliary proteins.
Collapse
Affiliation(s)
- Tristan D McClure-Begley
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Michael W Klymkowsky
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| |
Collapse
|
35
|
Abstract
Multiciliated cells are epithelial cells that are in contact with bodily fluids and are required for the proper function of major organs including the brain, the respiratory system and the reproductive tracts. Their multiple motile cilia beat unidirectionally to remove particles of external origin from their surface and/or drive cells or fluids into the lumen of the organs. Multiciliated cells in the brain are produced once, almost exclusively during embryonic development, whereas in respiratory tracts and oviducts they regenerate throughout life. In this Review, we provide a cell-to-organ overview of multiciliated cells and highlight recent studies that have greatly increased our understanding of the mechanisms driving the development and function of these cells in vertebrates. We discuss cell fate determination and differentiation of multiciliated cells, and provide a comprehensive account of their locations and functions in mammals.
Collapse
|
36
|
Schimmenti LA. Zebrafish: A Functional Refuge at the End of an Odyssey. Zebrafish 2016; 13:236-8. [DOI: 10.1089/zeb.2016.29005.sch] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|