1
|
Zeng Q, Sun P, Li W, Tang Y, Hu Y, Zhou J, Zhou Y, Chen L, Yimou W. Protective immunity induced by a novel P1 adhesin C-terminal anchored mRNA vaccine against Mycoplasma pneumoniae infection in BALB/c mice. Microbiol Spectr 2025:e0214024. [PMID: 39831768 DOI: 10.1128/spectrum.02140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Mycoplasma pneumoniae (Mp), a unique pathogen devoid of a cell wall, is naturally impervious to penicillin antibiotics. This bacterium is the causative agent of M. pneumoniae pneumonia, an acute pulmonary affliction marked by interstitial lung damage. Non-macrolide medications may have potential adverse effects on the developmental trajectory of children, thereby establishing macrolides as the preferred treatment for M. pneumoniae in pediatric patients. However, the emergence of macrolide-resistant and multidrug-resistant strains of M. pneumoniae presents significant challenges to clinical management and public health. Vaccines, particularly those based on mRNA technology, are regarded as a promising avenue for preventing and controlling M. pneumoniae infections due to their inherent safety, immunogenicity, and adaptability. Our research delves into the P1 adhesin of M. pneumoniae, a protein that binds to host cell receptors with its immunodominant epitopes located at the carboxyl terminus, known to provoke robust immune responses and pulmonary inflammation. We have developed an mRNA vaccine harnessing this dominant antigenic epitope and assessed its protective immunity in BALB/c mice against M. pneumoniae infection. The vaccine elicited potent humoral and cellular immune responses, effectively diminishing inflammation. It notably decreased IL-6 levels in the lungs of infected mice and concurrently elevated IL-4, IL-10, and IFN-γ levels post-immunization. The vaccine also reduced pathological changes in the lungs and the M. pneumoniae DNA copy numbers in the infected animals. Collectively, these findings underscore the mRNA vaccine's remarkable immunogenicity and protective potential against M. pneumoniae infections, offering valuable insights for the development of mRNA vaccines targeting mycoplasma infections.IMPORTANCEM. pneumoniae, a bacteria without a cell wall, is known for causing pneumonia and is resistant to penicillin. The increasing prevalence of macrolide-resistant strains has complicated treatment options, emphasizing the need for new strategies. Our research explores an mRNA vaccine candidate that targets the P1 adhesin of M. pneumoniae, a protein critical for the bacteria's interaction with host cells. In a mouse model, this vaccine has shown potential by inducing immune responses and suggesting a possible reduction in inflammation, as indicated by changes in cytokine levels and lung pathology. While further research is required, the vaccine's preliminary results hint at a potential new direction in managing mycoplasma infections, offering a promising avenue for future therapeutic development. This study contributes to the ongoing search for effective preventive measures against M. pneumoniae.
Collapse
Affiliation(s)
- Qilin Zeng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Peiyuan Sun
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, Foshan, China
| | - Yuanyuan Tang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Yuxuan Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Yanxia Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Liesong Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Wu Yimou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| |
Collapse
|
2
|
Meng T, Xu Y. Clinical Characteristics and Laboratory Diagnoses of Pediatric Patients Hospitalized During an Outbreak of Mycoplasma pneumoniae. APMIS 2025; 133:e13514. [PMID: 39791269 DOI: 10.1111/apm.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/22/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
This study prospectively collected the clinical data, information on respiratory pathogens, and laboratory findings of children with Mycoplasma pneumoniae (M. pneumonia) infection who were hospitalized at the First Affiliated Hospital of Anhui Medical University during the M. pneumoniae outbreak in Hefei City, Anhui Province, China, between October 2023 and December 2023. We analyzed the prevalence of M. pneumoniae infection in hospitalized children during the M. pneumoniae outbreak, discrepancies in the detection of M. pneumoniae by multiplex polymerase chain reaction (PCR) and serological methods, and the differences in clinical characteristics and laboratory results of patients with co-infections of M. pneumoniae and other pathogens with the aim of providing a reference for disease assessment and clinical treatment of M. pneumoniae. A total of 270 children, 146 males and 124 females, were enrolled in the study after screening with the inclusion criteria. The most common co-infections were adenovirus (ADV) (48 cases) and influenza A virus (FLU A) (30 cases). The prevalence of infections was higher in children under the age of 7 years (54.1%). In addition, 167 of the PCR-positive patients were infected with macrolide-resistant Mycoplasma pneumoniae (MRMP), suggesting that MRMP infections are common in hospitalized children. Levels of procalcitonin (PCT) (OR 15.765 [95% CI, 1.651-150.533], p < 0.017) and lactate dehydrogenase (LDH) (OR 1.006 [95% CI, 1.003-1.009], p < 0.001) were independently predictive of co-infections in patients infected with M. pneumoniae.
Collapse
Affiliation(s)
- Tao Meng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Cai B, Yang L, Li X, Zhang X. Effect of Early Oral Administration of Doxycycline on Macrolide Resistance in Children with Mycoplasma Pneumoniae Pneumonia: A Retrospective Study. Br J Hosp Med (Lond) 2024; 85:1-12. [PMID: 39831489 DOI: 10.12968/hmed.2024.0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aims/Background Mycoplasma pneumoniae pneumonia (MPP) is typically a benign and self-limiting disease. This study aimed to investigate the effect of early oral administration of doxycycline on macrolide resistance in children with MPP. Methods This study retrospectively analyzed the clinical data of 173 MPP children treated with macrolides at the Second Affiliated Hospital of Mudanjiang Medical University from March 2020 to March 2023. Nine cases that did not meet the inclusion criteria were excluded, leaving 164 children. They were divided into Group A (early oral administration of doxycycline + macrolide treatment) (n = 85) and Group B (macrolide treatment alone) (n = 79) based on whether early oral administration of doxycycline was given. Drug sensitivity results and adverse reactions after treatment were statistically analyzed. Based on the drug sensitivity results, the MPP children were classified as having either macrolide-resistant mycoplasma pneumoniae (MRMP) or macrolide-sensitive mycoplasma pneumoniae (MSMP) infections. A stratified analysis was performed to compare the disappearance time of fever, disappearance time of shortness of breath, disappearance time of rales, and symptom improvement time on chest X-ray examination, and to further explore the clinical efficacy of early oral administration of doxycycline in different groups of children. Results No significant differences were found in baseline data such as age, sex, and weight between the two groups (p > 0.05). A total of 112 out of 164 children developed macrolide resistance (68.29%), with 47 cases in Group A and 65 cases in Group B, indicating a significant difference between the two groups (p < 0.05). The two groups showed a significant difference in macrolide sensitivity levels after treatment (p < 0.05), with no significant difference in the incidence of adverse reactions (p > 0.05). After treatment, the time to the disappearance of febrile fever, time to disappearance time of fever, disappearance time of shortness of breath, disappearance time of rales, symptom improvement time on chest X-ray examination, and time to administration of macrolides after treatment were shorter in children with MRMP in group A than in children with MRMP in group B (p < 0.05). In contrast, MSMP children in both groups exhibited no significant differences in symptom disappearance time and duration of macrolides treatment (p > 0.05). Conclusion Early oral administration of doxycycline is a safe and effective treatment for MPP. It helps relieve symptoms in MRMP children, shortens the duration of macrolide use, and reduces the incidence of macrolide resistance.
Collapse
Affiliation(s)
- Bingbing Cai
- Department of Pediatrics, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lei Yang
- Department of Pediatrics, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xin Li
- Department of Pediatrics, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xin Zhang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
4
|
Jia X, Chen Y, Gao Y, Ren X, Du B, Zhao H, Feng Y, Xue G, Cui J, Gan L, Feng J, Fan Z, Fu T, Xu Z, Yu Z, Yang Y, Zhao S, Huang L, Ke Y, Liu C, Yan C, Yuan J. Increased in vitro antimicrobial resistance of Mycoplasma pneumoniae isolates obtained from children in Beijing, China, in 2023. Front Cell Infect Microbiol 2024; 14:1478087. [PMID: 39760095 PMCID: PMC11695237 DOI: 10.3389/fcimb.2024.1478087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Mycoplasma pneumoniae (M. pneumoniae), a common pathogen of community-acquired pneumonia in school-age children and adolescents, can cause epidemics worldwide. In late 2023, the incidence of M. pneumoniae infection among children reached a high level. Methods We investigated the in vitro antimicrobial susceptibility of 62 M. pneumoniae isolates obtained from children with pneumonia in Beijing between 2021 and 2023, and analyzed the correlation of antimicrobial susceptibility with molecular characteristics of isolates and clinical manifestations of patients. Results The resistance rates of M. pneumoniae isolates against erythromycin and azithromycin were both 100% (62/62). The minimum inhibitory concentration (MIC) of acetylspiramycin (16-membered macrolides) was lower than that of erythromycin and azithromycin. The MIC of azithromycin in 2023 was notably higher compared to 2021 and 2022. No resistance to tetracycline and levofloxacin was observed. Genotypes P1 type 1 and P1 type 2 were identified in 74.2% and 25.8% of isolates, and M4-5-7-2 (61.3%) and M3-5-6-2 (22.6%) were predominant multi-locus variable-number tandem-repeat analysis (MLVA) types. The A2063G mutation was present in all isolates (100%). Among the patients, 45/59 cases (76.3%) had severe M. pneumoniae pneumonia, and 14/59 cases (23.7%) presented co-infection. The duration of fever was 12 days (1-30 days) and the fever duration after initiation of macrolide antibiotics treatment was 8 days (1-22 days). Discussion Our study showed that macrolide-resistant M. pneumoniae (MRMP) with high in vitro antimicrobial resistance level may be the causative factor of the M. pneumoniae epidemic in late 2023 in Beijing, China. It is urgent to pay more attention to MRMP and the antibiotics choose.
Collapse
Affiliation(s)
- Xinyu Jia
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- Department of Allergy, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Yujie Chen
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yagang Gao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Xue Ren
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yang Yang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shuo Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Lijuan Huang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Chuanhe Liu
- Department of Allergy, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
5
|
Lu Y, Li WJ, Wang XX, Huang AQ, Cheng H. Risk factors and prescription patterns analysis for macrolide-resistant Mycoplasma pneumoniae pneumonia in children. iScience 2024; 27:111503. [PMID: 39759004 PMCID: PMC11699248 DOI: 10.1016/j.isci.2024.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
First-line macrolide therapy is encountering challenges due to the escalating incidence of macrolide-resistant Mycoplasma pneumoniae pneumonia (MRMPP). This study aimed to illustrate prescription patterns among children diagnosed with either macrolide-sensitive Mycoplasma pneumoniae pneumonia (MSMPP) or MRMPP and to further analyze the risk factors associated with MRMPP. This research encompassed 825 children who were diagnosed with Mycoplasma pneumoniae pneumonia (MPP) at a tertiary hospital located in central China in 2023. Notably, the MRMPP group had a longer fever duration compared to the MSMPP group. A combination of doxycycline and piperacillin-tazobactam was the most frequently used treatment for hospitalized MRMPP children, whereas azithromycin was the primary choice for the MSMPP group. More children in the MRMPP group required discharge medications, primarily doxycycline, whereas the MSMPP group primarily received azithromycin. Furthermore, a history of allergy emerged as an increased risk factor for MRMPP, alongside age, fever, pulmonary imaging changes, and co-detections of bacteria or fungi.
Collapse
Affiliation(s)
- Yun Lu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen-jing Li
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan-xuan Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - An-qi Huang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Wang YS, Zhou YL, Bai GN, Li SX, Xu D, Chen LN, Chen X, Dong XY, Fu HM, Fu Z, Hao CL, Hong JG, Liu EM, Liu HM, Lu XX, Luo ZX, Tang LF, Tian M, Yin Y, Zhang XB, Zhang JH, Zhang HL, Zhao DY, Zhao SY, Zhu GH, Zou YX, Lu Q, Zhang YY, Chen ZM. Expert consensus on the diagnosis and treatment of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. World J Pediatr 2024; 20:901-914. [PMID: 39143259 PMCID: PMC11422262 DOI: 10.1007/s12519-024-00831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Mycoplasma pneumoniae (M. pneumoniae) is a significant contributor to community-acquired pneumonia among children. Since 1968, when a strain of M. pneumoniae resistant to macrolide antibiotics was initially reported in Japan, macrolide-resistant M. pneumoniae (MRMP) has been documented in many countries worldwide, with varying incidence rates. MRMP infections lead to a poor response to macrolide antibiotics, frequently resulting in prolonged fever, extended antibiotic treatment, increased hospitalization, intensive care unit admissions, and a significantly higher proportion of patients receiving glucocorticoids or second-line antibiotics. Since 2000, the global incidence of MRMP has gradually increased, especially in East Asia, which has posed a serious challenge to the treatment of M. pneumoniae infections in children and attracted widespread attention from pediatricians. However, there is still no global consensus on the diagnosis and treatment of MRMP in children. METHODS We organized 29 Chinese experts majoring in pediatric pulmonology and epidemiology to write the world's first consensus on the diagnosis and treatment of pediatric MRMP pneumonia, based on evidence collection. The evidence searches and reviews were conducted using electronic databases, including PubMed, Embase, Web of Science, CNKI, Medline, and the Cochrane Library. We used variations in terms for "macrolide-resistant", "Mycoplasma pneumoniae", "MP", "M. pneumoniae", "pneumonia", "MRMP", "lower respiratory tract infection", "Mycoplasma pneumoniae infection", "children", and "pediatric". RESULTS Epidemiology, pathogenesis, clinical manifestations, early identification, laboratory examination, principles of antibiotic use, application of glucocorticoids and intravenous immunoglobulin, and precautions for bronchoscopy are highlighted. Early and rapid identification of gene mutations associated with MRMP is now available by polymerase chain reaction and fluorescent probe techniques in respiratory specimens. Although the resistance rate to macrolide remains high, it is fortunate that M. pneumoniae still maintains good in vitro sensitivity to second-line antibiotics such as tetracyclines and quinolones, making them an effective treatment option for patients with initial treatment failure caused by macrolide antibiotics. CONCLUSIONS This consensus, based on international and national scientific evidence, provides scientific guidance for the diagnosis and treatment of MRMP in children. Further studies on tetracycline and quinolone drugs in children are urgently needed to evaluate their effects on the growth and development. Additionally, developing an antibiotic rotation treatment strategy is necessary to reduce the prevalence of MRMP strains.
Collapse
Affiliation(s)
- Ying-Shuo Wang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yun-Lian Zhou
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Guan-Nan Bai
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Shu-Xian Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dan Xu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Li-Na Chen
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xing Chen
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xiao-Yan Dong
- Department of Pulmonology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hong-Min Fu
- Department of Pulmonary and Critical Care Medicine, Kunming Children's Hospital, Kunming 650034, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chuang-Li Hao
- Department of Pulmonology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Jian-Guo Hong
- Department of Pediatrics, Shanghai General Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - En-Mei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Han-Min Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Xia Lu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Zheng-Xiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lan-Fang Tang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Man Tian
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiao-Bo Zhang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jian-Hua Zhang
- Department of Pediatric Pulmonology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201102, China
| | - Hai-Lin Zhang
- Department of Pediatric Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - De-Yu Zhao
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Shun-Ying Zhao
- National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Guo-Hong Zhu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ying-Xue Zou
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300074, China
| | - Quan Lu
- Department of Pulmonology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China.
| | - Yuan-Yuan Zhang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Zhi-Min Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
7
|
Wu TH, Fang YP, Liu FC, Pan HH, Yang YY, Song CS, Lee CY. Macrolide-Resistant Mycoplasma pneumoniae Infections among Children before and during COVID-19 Pandemic, Taiwan, 2017-2023. Emerg Infect Dis 2024; 30:1692-1696. [PMID: 39043456 PMCID: PMC11286047 DOI: 10.3201/eid3008.231596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Before the COVID-19 pandemic, Mycoplasma pneumoniae infections emerged during spring to summer yearly in Taiwan, but infections were few during the pandemic. M. pneumoniae macrolide resistance soared to 85.7% in 2020 but declined to 0% during 2022-2023. Continued molecular surveillance is necessary to monitor trends in macrolide-resistant M. pneumoniae.
Collapse
|
8
|
Leng M, Yang J, Liu X. Macrolide-resistant mycoplasma pneumoniae infection in children observed during a period of high incidence in Henan, China. Heliyon 2024; 10:e33697. [PMID: 39040303 PMCID: PMC11260988 DOI: 10.1016/j.heliyon.2024.e33697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Objective Mycoplasma pneumoniae (Mp) is one of the major pathogens that causes respiratory tract infections, and macrolide resistance has increased rapidly in recent years due to the inappropriate use of macrolides in northeastern Asia. In the present study, we aimed to investigate Mp infection and macrolide resistance during a period of high incidence of Mp infection in Henan, China. Methods A total of 29473 suspected children with Mp infection were enrolled in the study from July to December 2023. Throat swab specimens were collected from all the study subjects, and real-time PCR was performed to detect the Mp-DNA and macrolide resistance-associated A2063G or A2064G mutations. Results The overall percentage of Mp-DNA-positive patients was 51.1 %, and the percentage of macrolide-resistant strains was 91 %. The rate of macrolide resistance remained stable from July to December. The Mp-DNA positivity rates among the different age groups from low to high were 0-1, 1-3, 3-6, 10-18 and 6-10 years. The macrolide resistance rate was the lowest in the 0-1 age group and highest in the 6-10 age group. No difference in the rate of macrolide resistance was observed between male and female children. Conclusions The macrolide resistance rate of Mp did not change during the investigated period of high incidence of infection, and no sex difference existed. The macrolide resistance rate of Mp was the lowest in children under 1 year old.
Collapse
Affiliation(s)
- Maodong Leng
- Department of Clinical Laboratory, Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, Henan, PR China
| | - Junmei Yang
- Department of Clinical Laboratory, Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, Henan, PR China
| | - Xinrui Liu
- Department of Clinical Laboratory, Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, Henan, PR China
| |
Collapse
|
9
|
Ma CX, Li Y, Liu WT, Li Y, Zhao F, Lian XT, Ding J, Liu SM, Liu XP, Fan BZ, Liu LY, Xue F, Li J, Zhang JR, Xue Z, Pei XT, Lin JZ, Liang JH. Synthetic macrolides overcoming MLS BK-resistant pathogens. Cell Discov 2024; 10:75. [PMID: 38992047 PMCID: PMC11239830 DOI: 10.1038/s41421-024-00702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Conventional macrolide-lincosamide-streptogramin B-ketolide (MLSBK) antibiotics are unable to counter the growing challenge of antibiotic resistance that is conferred by the constitutive methylation of rRNA base A2058 or its G2058 mutation, while the presence of unmodified A2058 is crucial for high selectivity of traditional MLSBK in targeting pathogens over human cells. The absence of effective modes of action reinforces the prevailing belief that constitutively antibiotic-resistant Staphylococcus aureus remains impervious to existing macrolides including telithromycin. Here, we report the design and synthesis of a novel series of macrolides, featuring the strategic fusion of ketolide and quinolone moieties. Our effort led to the discovery of two potent compounds, MCX-219 and MCX-190, demonstrating enhanced antibacterial efficacy against a broad spectrum of formidable pathogens, including A2058-methylated Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, and notably, the clinical Mycoplasma pneumoniae isolates harboring A2058G mutations which are implicated in the recent pneumonia outbreak in China. Mechanistic studies reveal that the modified quinolone moiety of MCX-190 establishes a distinctive secondary binding site within the nascent peptide exit tunnel. Structure-activity relationship analysis underscores the importance of this secondary binding, maintained by a sandwich-like π-π stacking interaction and a water-magnesium bridge, for effective engagement with A2058-methylated ribosomes rather than topoisomerases targeted by quinolone antibiotics. Our findings not only highlight MCX-219 and MCX-190 as promising candidates for next-generation MLSBK antibiotics to combat antibiotic resistance, but also pave the way for the future rational design of the class of MLSBK antibiotics, offering a strategic framework to overcome the challenges posed by escalating antibiotic resistance.
Collapse
Affiliation(s)
- Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ye Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Xiao-Tian Lian
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xie-Peng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bing-Zhi Fan
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Li-Yong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Jue-Ru Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhao Xue
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Xiao-Tong Pei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Jin-Zhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Center for mRNA Translational Research, Fudan University, Shanghai, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
10
|
Zhang T, Zhao X, Zhang X, Liang X, Guan Z, Wang G, Liu G, Wu Z. Research on the metabolic regulation mechanism of Yangyin Qingfei decoction plus in severe pneumonia caused by Mycoplasma pneumoniae in mice. Front Pharmacol 2024; 15:1376812. [PMID: 38694915 PMCID: PMC11061391 DOI: 10.3389/fphar.2024.1376812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: With amazing clinical efficacy, Yangyin Qingfei Decoction Plus (YQDP), a well-known and age-old Chinese compound made of ten Chinese botanical drugs, is utilized in clinical settings to treat a range of respiratory conditions. This study examines the impact of Yangyin Qingfei Decoction (YQDP) on lung tissue metabolic products in severe Mycoplasma pneumoniae pneumonia (SMPP) model mice and examines the mechanism of YQDP in treating MP infection using UPLC-MS/MS technology. Methods: YQDP's chemical composition was ascertained by the use of Agilent 1260 Ⅱ high-performance liquid chromatography. By using a nasal drip of 1010 CCU/mL MP bacterial solution, an SMPP mouse model was created. The lung index, pathology and ultrastructural observation of lung tissue were utilized to assess the therapeutic effect of YQDP in SMPP mice. Lung tissue metabolites were found in the normal group, model group, and YQDP group using UPLC-MS/MS technology. Using an enzyme-linked immunosorbent test (ELISA), the amount of serum inflammatory factors, such as interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α), was found. Additionally, the protein expression of PI3K, P-PI3K, AKT, P-AKT, NF-κB, and P-NF-κB was found using Western blot. Results: The contents of chlorogenic acid, paeoniflorin, forsythrin A, forsythrin, and paeonol in YQDP were 3.480 ± 0.051, 3.255 ± 0.040, 3.612 ± 0.017, 1.757 ± 0.031, and 1.080 ± 0.007 mg/g respectively. YQDP can considerably lower the SMPP mice's lung index (p < 0.05). In the lung tissue of YQDP groups, there has been a decrease (p < 0.05) in the infiltration of inflammatory cells at varying concentrations in the alveoli compared with the model group. A total of 47 distinct metabolites, including choline phosphate, glutamyl lysine, L-tyrosine, 6-thioinosine, Glu Trp, 5-hydroxydecanoate, etc., were linked to the regulation of YQDP, according to metabolomics study. By controlling the metabolism of porphyrins, pyrimidines, cholines, fatty acids, sphingolipids, glycerophospholipids, ferroptosis, steroid hormone biosynthesis, and unsaturated fatty acid biosynthesis, enrichment analysis suggested that YQDP may be used to treat SMPP. YQDP can lower the amount of TNF-α and IL-6 in model group mice as well as downregulate P-PI3K, P-AKT, and P-NF-κB expression (p < 0.05). Conclusion: A specific intervention effect of YQDP is observed in SMPP model mice. Through the PI3K/Akt/NF-κB signaling pathways, YQDP may have therapeutic benefits by regulating the body's metabolism of α-Linoleic acid, sphingolipids, glycerophospholipids, arachidonic acid, and the production of unsaturated fatty acids.
Collapse
Affiliation(s)
- Tianyu Zhang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiyu Zhao
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xining Zhang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiangyu Liang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhenglong Guan
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Guanghan Wang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Guanghua Liu
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhenqi Wu
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
11
|
Li P, Wang W, Zhang X, Pan J, Gong L. Observational retrospective clinical study on clinical features of macrolide-resistant Mycoplasma pneumoniae pneumonia in Chinese pediatric cases. Sci Rep 2024; 14:5632. [PMID: 38453960 PMCID: PMC10920782 DOI: 10.1038/s41598-024-55311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
This study aimed to investigate differences in clinical characteristics and laboratory findings between children infected with Macrolide-Sensitive Mycoplasma pneumoniae (MSMP) and Macrolide-Resistant Mycoplasma pneumoniae (MRMP). Additionally, the research sought to identify laboratory markers for rapidly distinguishing refractory Mycoplasma pneumoniae pneumonia (RMPP) from ordinary Mycoplasma pneumoniae pneumonia (OMPP). In total, 265 Mycoplasma pneumoniae (MP) patients were included, with MRMP identified by specific point mutations in domain V of the 23S rRNA gene. A retrospective analysis compared the clinical courses and laboratory data, revealing that MRMP patients experienced prolonged febrile days (P = 0.004), elevated CRP levels (P < 0.001), and higher MP DNA loads than MSMP patients (P = 0.037). Based on clinical symptoms, MRMP was divided into RMPP (n = 56) and OMPP (n = 70), with RMPP demonstrating significantly increased IL-18, community-acquired respiratory distress syndrome (CARDS) toxins in nasopharyngeal aspirate, and serum CRP levels (P < 0.001; P = 0.006; P < 0.001). In conclusion, timely recognition of RMPP is crucial for enhancing prognosis. The identification of MRMP, coupled with proinflammatory cytokines such as IL-18, CARDS toxins, and CRP, emerges as promising markers with the potential to contribute significantly to diagnostic accuracy and prognosis assessment.
Collapse
Affiliation(s)
- Peng Li
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Wei Wang
- Department of Laboratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xianhui Zhang
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Lina Gong
- Department of Laboratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, China.
- Department of Medical Risk Management, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
12
|
Wang N, Chen Y, Qu X, Bian X, Hu J, Xu X, Xiao L, Liu Y, Zhang J. In vitro pharmacodynamics of nemonoxacin and other antimicrobial agents against Mycoplasma pneumoniae. Microbiol Spectr 2023; 11:e0243123. [PMID: 37975686 PMCID: PMC10715200 DOI: 10.1128/spectrum.02431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE This study first reported the in vitro effector kinetics of the new non-fluorinated quinolone, nemonoxacin, against macrolide-resistant M. pneumoniae (MRMP) and macrolide susceptible M. pneumoniae (MSMP) strains along with other antimicrobial agents. The time-kill assays and pharmacodynamic analysis showed that nemonoxacin has significant mycoplasmacidal activity against MRMP and MSMP. This study paves the road to establish appropriate dosing protocols of a new antimicrobial drug for children infected with M. pneumoniae.
Collapse
Affiliation(s)
- Na Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yuancheng Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiali Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Guo P, Mei S, Wang Y, Zheng X, Li L, Cheng Y. Molecular typing of Mycoplasma pneumoniae and its correlation with macrolide resistance in children in Henan of China. Indian J Med Microbiol 2023; 46:100435. [PMID: 37945129 DOI: 10.1016/j.ijmmb.2023.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND/PURPOSE As a major causative pathogen of community-acquired pneumonia, Mycoplasma pneumoniae (M. pneumoniae) can cause both upper and lower respiratory tract inflammation as well as extrapulmonary syndromes, especially in infants and the elderly. The emergence of macrolide-resistance has significant effects on the treatment of relevant diseases in children. This study aimed to analyze the genotypes and the macrolide resistance-associated mutations in M. pneumoniae sampled from the pediatric patients in Henan, China. METHODS A segment of gene on the 23S rRNA was amplified and sequenced to detect the mutations related to macrolide resistance. Molecular typing was performed by the method named multiple locus variable-number tandem repeat analysis (MLVA) for macrolide-susceptible and macrolide-resistant specimens. RESULTS Among the M. pneumoniae-positive samples, 95.7% (111/116) had macrolide-resistant mutation, and all of them consisted of the A2063G mutation. There were only two MLVA types identified in this study, type 4-5-7-2 (51/92, 55.4%) and type 3-5-6-2 (41/92, 44.6%). CONCLUSION There was no correlation between MLVA types and macrolide resistance (P > 0.05).
Collapse
Affiliation(s)
- Pengbo Guo
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, China.
| | - Shiyue Mei
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, China.
| | - Yanhong Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, China.
| | - Xuan Zheng
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, China.
| | - Lifeng Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, China; Henan International Joint Laboratory of Children's Infectious Disease, China.
| | - Yibing Cheng
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, China.
| |
Collapse
|
14
|
Hu L, Wang X, Cao D, Cheng Q, Li Q. Establishment and Performance Evaluation of Multiplex PCR-Dipstick DNA Chromatography for Mycoplasma pneumoniae and Chlamydia pneumoniae Rapid Detection. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:6654504. [PMID: 37808892 PMCID: PMC10555492 DOI: 10.1155/2023/6654504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
Methods Nasopharyngeal swab samples of 300 children with an acute respiratory tract infection were detected by a multiplex PCR-dipstick chromatography assay, and the results were compared with the DNA sequencing and serum IgM antibody assay. Results A multiplex PCR-dipstick DNA assay can specifically detect Mycoplasma pneumoniae and Chlamydia pneumoniae and shows a good specificity, with a minimum detection limit of 10 CFU/mL, respectively. Using DNA sequencing results as the gold standard, the sensitivity, specificity, positive predictive value, and negative predictive value of the multiplex PCR-dipstick DNA chromatography assay for the diagnosis of Mycoplasma pneumoniae were 96.61%, 100%, 100%, and 99.18% respectively, and those of Chlamydia pneumoniae were 95.24%, 100%, 100%, and 99.64% respectively. There was no statistical significance MP and CP diagnosis by the multiplex PCR-dipstick DNA assay and DNA sequencing (MP: P = 0.5; CP: P = 1.0), and the two assays had very high statistical consistency (MP: kappa = 0.979; CP: kappa = 0.974). The positive rate of the multiplex PCR-dipstick chromatography assay was significantly higher than that of the serum IgM antibody assay, with MP (17.7% vs. 13.3%), CP (5.7% vs. 3.3%), and mixed infection of MP and CP (1.3% vs. 0.67%). Conclusions A multiplex PCR-dipstick chromatography assay was successfully established for the joint detection of Mycoplasma pneumoniae and Chlamydia pneumoniae within 2 hours. It is simple, fast, sensitive, accurate, cost-effective with good diagnostic performance, which can be used for small laboratories and point-of-care diagnosis.
Collapse
Affiliation(s)
- Liuyang Hu
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530016, China
| | - Xiuri Wang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530016, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qiuchen Cheng
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530016, China
| | - Qiong Li
- Guangzhou Biotron Technology Co., Ltd., Guangzhou 510336, China
| |
Collapse
|
15
|
Kenri T, Yamazaki T, Ohya H, Jinnai M, Oda Y, Asai S, Sato R, Ishiguro N, Oishi T, Horino A, Fujii H, Hashimoto T, Nakajima H, Shibayama K. Genotyping of Mycoplasma pneumoniae strains isolated in Japan during 2019 and 2020: spread of p1 gene type 2c and 2j variant strains. Front Microbiol 2023; 14:1202357. [PMID: 37405159 PMCID: PMC10316025 DOI: 10.3389/fmicb.2023.1202357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
We characterized 118 Mycoplasma pneumoniae strains isolated from three areas of Japan (Saitama, Kanagawa, and Osaka) during the period of 2019 and 2020. Genotyping of the p1 gene in these strains revealed that 29 of them were type 1 lineage (29/118, 24.6%), while 89 were type 2 lineage (89/118, 75.4%), thereby indicating that type 2 lineage was dominant in this period. The most prevalent variant of type 2 lineage was type 2c (57/89, 64%), while the second-most was type 2j, a novel variant identified in this study (30/89, 33.7%). Type 2j p1 is similar to type 2 g p1, but cannot be distinguished from reference type 2 (classical type 2) using the standard polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) with HaeIII digestion. Thus, we used MboI digestion in the PCR-RFLP analysis and re-examined the data from previous genotyping studies as well. This revealed that most strains reported as classical type 2 after 2010 in our studies were actually type 2j. The revised genotyping data showed that the type 2c and 2j strains have been spreading in recent years and were the most prevalent variants in Japan during the time-period of 2019 and 2020. We also analyzed the macrolide-resistance (MR) mutations in the 118 strains. MR mutations in the 23S rRNA gene were detected in 29 of these strains (29/118, 24.6%). The MR rate of type 1 lineage (14/29, 48.3%) was still higher than that of type 2 lineage (15/89, 16.9%); however, the MR rate of type 1 lineage was lower than that found in previous reports published in the 2010s, while that of type 2 lineage strains was slightly higher. Thus, there is a need for continuous surveillance of the p1 genotype and MR rate of M. pneumoniae clinical strains, to better understand the epidemiology and variant evolution of this pathogen, although M. pneumoniae pneumonia cases have decreased significantly since the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Hitomi Ohya
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Michio Jinnai
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | | | | | - Rikako Sato
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuhisa Ishiguro
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomohiro Oishi
- Department of Clinical Infectious Diseases, Kawasaki Medical School, Okayama, Japan
| | - Atsuko Horino
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Hiroshi Nakajima
- Okayama Prefectural Institute for Environmental Science and Public Health, Okayama, Japan
| | - Keigo Shibayama
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Leng M, Yang J, Zhou J. The molecular characteristics, diagnosis, and treatment of macrolide-resistant Mycoplasma pneumoniae in children. Front Pediatr 2023; 11:1115009. [PMID: 36937963 PMCID: PMC10017863 DOI: 10.3389/fped.2023.1115009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The purpose of this study is to review the molecular characteristics, the diagnosis, and treatment of the widespread infection of macrolide-resistant Mycoplasma pneumoniae (M. pneumoniae; MRMP) in children, thus providing a better knowledge of this infection and presenting the associated problems. Single point mutations in the V region of the 23S rRNA gene of M. pneumoniae genome are associated with macrolide resistance. P1-1, MLVA4-5-7-2, and ST3 are usually the predominated genetic types in the M. pneumoniae epidemics. The short-term two times serological IgM (or together with IgG) test in the acute stage can be used for confirmation. Combined serological testing and PCR might be a more prudent method to reduce macrolide consumption and antibiotic selective pressure in a clinical setting. Molecular methods for the detection of single-nucleotide mutations in the V region of the 23S rRNA gene can be used for the diagnosis of MRMP. The routine use of macrolide for the treatment of macrolide-sensitive Mycoplasma pneumoniae (MSMP) infections can get good effect, but the effects are limited for severe MRMP infections. Additional corticosteroids may be required for the treatment of severe MRMP infections in children in China during the era of MRMP.
Collapse
|
17
|
Wang X, Li M, Luo M, Luo Q, Kang L, Xie H, Wang Y, Yu X, Li A, Dong M, Huang F, Gong C. Mycoplasma pneumoniae triggers pneumonia epidemic in autumn and winter in Beijing: a multicentre, population-based epidemiological study between 2015 and 2020. Emerg Microbes Infect 2022; 11:1508-1517. [PMID: 35582916 PMCID: PMC9176688 DOI: 10.1080/22221751.2022.2078228] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this paper is to explore the characteristics of Mycoplasma pneumoniae (MP) epidemics in Beijing, China. Patients with acute respiratory tract infection (ARTI) were enrolled from 35 sentinel hospitals in Beijing, 2015–2020. Their medical records were reviewed and respiratory specimens were collected for assay for nucleic acids of 24 respiratory pathogens, including MP. The genotypes of MP were analysed using a real-time PCR method. The domain V of 23s rRNA gene was sequenced to identify macrolide-resistant mutations. A total of 41,677 specimens of ARTI patients were included, with an MP positive rate of 6.16%. MP prevalence mainly occurred between August and January, and peaked in October. The increase in the MP detection rate was coincident with the elevation of the reported number of patients with pneumonia in the 35 sentinel hospitals. One or more respiratory pathogens were co-detected in 27.1% of the MP-positive patients. Type 1 MP remained predominant, and the macrolide-resistant rate of MP had exceeded over 90%. A2063G mutation accounted for 99.0% of macrolide-resistant MP infections. MP epidemic in Beijing mainly occurred between August and January with a remarkable high macrolide-resistant rate. MP is one of the important contributors to the pneumonia epidemic in autumn and winter in Beijing.
Collapse
Affiliation(s)
- Xue Wang
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Maozhong Li
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Ming Luo
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Qin Luo
- College of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Lu Kang
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Hui Xie
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Yiting Wang
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Xiali Yu
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Aihua Li
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Mei Dong
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Fang Huang
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Cheng Gong
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| |
Collapse
|
18
|
Shen HX, Liu C, Lin HJ, Xu LJ, Wang GY, Yan MX. The efficacy and safety of minocycline as adjuvant therapy in refractory mycoplasma pneumonia in Chinese children: a meta-analysis. Ital J Pediatr 2022; 48:176. [PMID: 36131320 PMCID: PMC9494764 DOI: 10.1186/s13052-022-01362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background To explore the efficacy and safety of minocycline as adjuvant therapy for refractory mycoplasma pneumonia in Chinese children. Methods PubMed, EMBASE, Cochrane Library, CNKI, Wanfang database and VIP database were systematically searched. Studies where minocycline was used as adjuvant therapy for refractory mycoplasma pneumonia in Chinese children were included. The effect of numeration data and the measurement data were represented by odds ratios (OR) and weighted mean differences (MD), respectively. Review Manager version 5.3 was used to compare the treatment efficacy, time for the cough to subside, defervescence time, hospitalisation time, adverse events and other indicators. Results Ten studies involving 857 patients were included in the final analysis. Compared with the conventional treatment of refractory mycoplasma pneumonia in children, the addition of minocycline as adjuvant therapy was found to improve the treatment efficacy (OR: 5.45; 95% CI: 3.46, 8.57, p < 0.001); shorten the duration of cough (MD: -3.61; 95%CI: -4.25, -2.97, p < 0.001), fever time (MD: -4.77; 95% CI: -6.30, -3.23, p < 0.001) and hospitalisation time (MD: -5.53 (95% CI: -7.19, -3.88, p < 0.001); and decrease the concentration of C-reactive protein (MD: -13.95; 95%CI: -18.61, -9.29; p < 0.001) and the erythrocyte sedimentation rate (MD: -10.88; 95% CI: -14.05, -7.72, p < 0.001). The use of minocycline did not lead to significant adverse events (OR = 0.63; 95% CI: 0.39, 1.01, p = 0.05). Conclusion The use of minocycline as adjuvant treatment of refractory mycoplasma pneumonia in Chinese children has good efficacy and safety and may be promoted in clinical practice.
Collapse
Affiliation(s)
- Hong-Xia Shen
- Department of Pharmacy, Women and Children's Hospital, Qingdao University, No. 6 of Tongfu Street, Shibei District, Qingdao, 266034, China
| | - Chang Liu
- Department of Pharmacy, Women and Children's Hospital, Qingdao University, No. 6 of Tongfu Street, Shibei District, Qingdao, 266034, China
| | - Hui-Jun Lin
- Department of Pharmacy, Women and Children's Hospital, Qingdao University, No. 6 of Tongfu Street, Shibei District, Qingdao, 266034, China
| | - Lu-Jie Xu
- Department of Pharmacy, Women and Children's Hospital, Qingdao University, No. 6 of Tongfu Street, Shibei District, Qingdao, 266034, China
| | - Guang-Yan Wang
- Department of Pharmacy, Women and Children's Hospital, Qingdao University, No. 6 of Tongfu Street, Shibei District, Qingdao, 266034, China
| | - Mei-Xing Yan
- Department of Pharmacy, Women and Children's Hospital, Qingdao University, No. 6 of Tongfu Street, Shibei District, Qingdao, 266034, China.
| |
Collapse
|
19
|
Li L, Ma J, Guo P, Song X, Li M, Yu Z, Yu Z, Cheng P, Sun H, Zhang W. Molecular beacon based real-time PCR p1 gene genotyping, macrolide resistance mutation detection and clinical characteristics analysis of Mycoplasma pneumoniae infections in children. BMC Infect Dis 2022; 22:724. [PMID: 36068499 PMCID: PMC9447981 DOI: 10.1186/s12879-022-07715-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mycoplasma pneumoniae can be divided into different subtypes on the basis of the sequence differences of adhesive protein P1, but the relationship between different subtypes, macrolide resistance and clinical manifestations are still unclear. In the present study, we established a molecular beacon based real-time polymerase chain reaction (real-time PCR) p1 gene genotyping method, analyzed the macrolide resistance gene mutations and the relationship of clinical characteristics with the genotypes. Methods A molecular beacon based real-time PCR p1 gene genotyping method was established, the mutation sites of macrolide resistance genes were analyzed by PCR and sequenced, and the relationship of clinical characteristics with the genotypes was analyzed. Results The detection limit was 1–100 copies/reaction. No cross-reactivity was observed in the two subtypes. In total, samples from 100 patients with positive M. pneumoniae detection results in 2019 and 2021 were genotyped using the beacon based real-time PCR method and P1-1 M. pneumoniae accounted for 69.0%. All the patients had the A2063G mutation in the macrolide resistance related 23S rRNA gene. Novel mutations were also found, which were C2622T, C2150A, C2202G and C2443A mutations. The relationship between p1 gene genotyping and the clinical characteristics were not statistically related. Conclusion A rapid and easy clinical application molecular beacon based real-time PCR genotyping method targeting the p1 gene was established. A shift from type 1 to type 2 was found and 100.0% macrolide resistance was detected. Our study provided an efficient method for genotyping M. pneumoniae, valuable epidemiological monitoring information and clinical treatment guidance to control high macrolide resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07715-6.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.,Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jiayue Ma
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Pengbo Guo
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Mingchao Li
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zengyuan Yu
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ping Cheng
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Huiqing Sun
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Wancun Zhang
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
20
|
Wang N, Zhang H, Yin Y, Xu X, Xiao L, Liu Y. Antimicrobial Susceptibility Profiles and Genetic Characteristics of Mycoplasma pneumoniae in Shanghai, China, from 2017 to 2019. Infect Drug Resist 2022; 15:4443-4452. [PMID: 35983294 PMCID: PMC9379117 DOI: 10.2147/idr.s370126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The current study investigated the recent genetic characteristics and antimicrobial susceptibility profiles of Mycoplasma pneumoniae (M. pneumoniae) in Shanghai, becoming a clinical reference for treating M. pneumoniae infection in Shanghai. Methods Clinical strains were isolated from nasopharyngeal aspirates of the pediatric patients in Shanghai from 2017 to 2019. Nine antimicrobial agents of three antimicrobial classes macrolides, fluoroquinolones and tetracyclines, against M. pneumoniae isolates were investigated using the broth microdilution method. The mechanism of macrolide resistance was analyzed by evaluating the sequences of the 23S rRNA gene and the ribosomal protein genes L4 and L22. Molecular genotyping was undergone to classify the P1 subtypes and the multi-locus variable-number tandem-repeat analysis (MLVA) types. Results A total of 72 isolates were resistant to macrolides (MICs > 64 mg/L for erythromycin) based on the A2063G mutation in the 23S rRNA gene. These strains were susceptible to tetracyclines and fluoroquinolones. P1 type 1 (166/182, 91.2%) and MLVA type 4-5-7-2 (165/182, 90.7%) were the dominant subtypes. MLVA type was associated with the P1 subtypes. The distribution of the P1 subtypes and MLVA types did not change over time. The macrolide-resistant rate in P1 type 2 and MLVA type 3-5-6-2 strains were increased during the three-year study. The 5-loci MLVA typing scheme revealed the clonal expansion of MLVA type 3-4-5-7-2 strains which are macrolide-resistant in 2019. Conclusion Macrolide resistance in M. pneumoniae in Shanghai is very high and is evolving among certain subtypes. Cautions should be taken for the possible clonal spreading of macrolide-resistant genotypes within this populated region.
Collapse
Affiliation(s)
- Na Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China.,Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200062, People's Republic of China
| | - Yihua Yin
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
21
|
Dumke R. Molecular Tools for Typing Mycoplasma pneumoniae and Mycoplasma genitalium. Front Microbiol 2022; 13:904494. [PMID: 35722324 PMCID: PMC9203060 DOI: 10.3389/fmicb.2022.904494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma pneumoniae and Mycoplasma genitalium are cell wall-less bacteria with strongly reduced genome content and close phylogenetic relatedness. In humans, the only known natural host, the microorganisms colonize the respiratory or genitourinary mucosa and may cause a broad range of clinical presentations. Besides fundamental differences in their tissue specificity, transmission route, and ability to cause prevalence peaks, both species share similarities such as the occurrence of asymptomatic carriers, preferred populations for infection, and problems with high rates of antimicrobial resistance. To further understand the epidemiology of these practically challenging bacteria, typing of strains is necessary. Since the cultivation of both pathogens is difficult and not performed outside of specialized laboratories, molecular typing methods with adequate discriminatory power, stability, and reproducibility have been developed. These include the characterization of genes containing repetitive sequences, of variable genome regions without the presence of repetitive sequences, determination of single and multi-locus variable-number tandem repeats, and detection of single nucleotide polymorphisms in different genes, respectively. The current repertoire of procedures allows reliable differentiation of strains circulating in different populations and in different time periods as well as comparison of strains occurring subsequently in individual patients. In this review, the methods for typing M. pneumoniae and M. genitalium, including the results of their application in different studies, are summarized and current knowledge regarding the association of typing data with the clinical characteristics of infections is presented.
Collapse
Affiliation(s)
- Roger Dumke
- TU Dresden, Institute of Medical Microbiology and Virology, Dresden, Germany
| |
Collapse
|
22
|
Wang G, Wu P, Tang R, Zhang W. Global prevalence of resistance to macrolides in Mycoplasma pneumoniae: a systematic review and meta-analysis. J Antimicrob Chemother 2022; 77:2353-2363. [PMID: 35678262 DOI: 10.1093/jac/dkac170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/03/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To determine the prevalence of resistance to macrolides in Mycoplasma pneumoniae worldwide. METHODS Prior to 12 December 2020, PubMed, Web of Science, Scopus and Embase databases were searched for epidemiological studies of M. pneumoniae resistance. Two reviewers independently extracted data from included studies. The extracted data include sampling population, total sampling number, the number of resistant strains and the molecular subtype of resistant strains. The estimate of resistance prevalence was calculated using the random-effects model. RESULTS A total of 17 873 strains were obtained from five continents and reported in 98 investigations between 2000 and 2020, with 8836 strains characterized as macrolide resistant. In summary, macrolide-resistant M. pneumoniae was most common in Asia (63% [95% CI 56, 69]). In Europe, North America, South America and Oceania, the prevalence was 3% [2, 7], 8.6% [6, 11], 0% and 3.3%, respectively. Over the last 20 years, the prevalence of macrolide-resistant M. pneumoniae has remained high in China (81% [73, 87]), with a significant increasing trend in South Korea (4% [1, 9] to 78% [49, 93], P < 0.0001). Furthermore, a point mutation at 2063 from A to G was mostly related to M. pneumoniae macrolide resistance. In terms of clinical outcomes, longer cough (mean difference [MD]: 2.93 [0.26, 5.60]) and febrile days (MD: 1.52 [1.12, 1.92]), and prolonged hospital stays (MD: 0.76 [0.05, 1.46]) might be induced by macrolide-resistant M. pneumoniae pneumonia. CONCLUSIONS The incidence of macrolide-resistant M. pneumoniae varies globally, with eastern Asia having a greater degree of resistance. However, attention is also required in other areas, and antibiotic alternatives should be considered for treatment in high-prevalence countries.
Collapse
Affiliation(s)
- Guotuan Wang
- Department of pharmacy, Karamay central hospital of Xinjiang, Karamay, Xinjiang, China
| | - Peng Wu
- Department of emergency, Karamay central hospital of Xinjiang, Karamay, Xinjiang, China
| | - Rui Tang
- Department of pharmacy, West China hospital, Sichuan university, Chengdu, Sichuan, China
| | - Weidong Zhang
- Department of pharmacy, Karamay central hospital of Xinjiang, Karamay, Xinjiang, China
| |
Collapse
|
23
|
Refractory Mycoplasma pneumoniae Pneumonia in Children: Early Recognition and Management. J Clin Med 2022; 11:jcm11102824. [PMID: 35628949 PMCID: PMC9144103 DOI: 10.3390/jcm11102824] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Refractory Mycoplasma pneumoniae pneumonia (RMPP) is a severe state of M. pneumoniae infection that has attracted increasing universal attention in recent years. The pathogenesis of RMPP remains unknown, but the excessive host immune responses as well as macrolide resistance of M. pneumoniae might play important roles in the development of RMPP. To improve the prognosis of RMPP, it is mandatory to recognize RMPP in the early stages, and the detection of macrolide-resistant MP, clinical unresponsiveness to macrolides and elevated proinflammatory cytokines might be clues. Timely and effective anti-mycoplasmal therapy and immunomodulating therapy are the main strategies for RMPP.
Collapse
|
24
|
Wang S, Huang A, Gu Y, Li J, Huang L, Wang X, Tao Y, Liu Z, Wu C, Yuan Z, Hao H. Rational Use of Danofloxacin for Treatment of Mycoplasma gallisepticum in Chickens Based on the Clinical Breakpoint and Lung Microbiota Shift. Antibiotics (Basel) 2022; 11:antibiotics11030403. [PMID: 35326865 PMCID: PMC8944443 DOI: 10.3390/antibiotics11030403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
The study was to explore the rational use of danofloxacin against Mycoplasma gallisepticum (MG) based on its clinical breakpoint (CBP) and the effect on lung microbiota. The CBP was established according to epidemiological cutoff value (ECV/COWT), pharmacokinetic–pharmacodynamic (PK–PD) cutoff value (COPD) and clinical cutoff value (COCL). The ECV was determined by the micro-broth dilution method and analyzed by ECOFFinder software. The COPD was determined according to PK–PD modeling of danofloxacin in infected lung tissue with Monte Carlo analysis. The COCL was performed based on the relationship between the minimum inhibitory concentration (MIC) and the possibility of cure (POC) from clinical trials. The CBP in infected lung tissue was 1 μg/mL according to CLSI M37-A3 decision tree. The 16S ribosomal RNA (rRNA) sequencing results showed that the lung microbiota, especially the phyla Firmicutes and Proteobacteria had changed significantly along with the process of cure regimen (the 24 h dosing interval of 16.60 mg/kg b.w for three consecutive days). Our study suggested that the rational use of danofloxacin for the treatment of MG infections should consider the MIC and effect of antibiotics on the respiratory microbiota.
Collapse
Affiliation(s)
- Shuge Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Anxiong Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Jun Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Congming Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87287186; Fax: +86-27-87672232
| |
Collapse
|
25
|
Mycoplasma pneumoniae among Chinese Outpatient Children with Mild Respiratory Tract Infections during the Coronavirus Disease 2019 Pandemic. Microbiol Spectr 2022; 10:e0155021. [PMID: 35138173 PMCID: PMC8826743 DOI: 10.1128/spectrum.01550-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mycoplasma pneumoniae is a common pathogen causing respiratory disease in children. We sought to investigate the epidemiology of M. pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the coronavirus disease 2019 (COVID-19) pandemic. Eligible patients were prospectively enrolled from January 2020 to June 2021. Throat swabs were tested for M. pneumoniae RNA. M. pneumoniae IgM was tested by a colloidal gold assay. Macrolide resistance and the effect of the COVID-19 countermeasures on M. pneumoniae prevalence were assessed. Symptom scores, treatments, and outcomes were evaluated. Eight hundred sixty-two eligible children at 15 centers in China were enrolled. M. pneumoniae was detected in 78 (9.0%) patients. Seasonally, M. pneumoniae peaked in the first spring and dropped dramatically to extremely low levels over time until the next summer. Decreases in COVID-19 prevalence were significantly associated with decreases in M. pneumoniae prevalence (r = 0.76, P = 0.001). The macrolide resistance rate was 7.7%. The overall sensitivity and specificity of the colloidal gold assay used in determining M. pneumoniae infection were 32.1% and 77.9%, respectively. No more benefits for improving the severity of symptoms and outcomes were observed in M. pneumoniae-infected patients treated with a macrolide than in those not treated with a macrolide during follow-up. The prevalences of M. pneumoniae and macrolide resistance in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs. IMPORTANCE This is the first and largest prospective, multicenter, active, population-based surveillance study of the epidemiology of Mycoplasma pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the COVID-19 pandemic. Nationwide measures like strict face mask wearing and restrictions on population movement implemented to prevent the spread of COVID-19 might also effectively prevent the spread of M. pneumoniae. The prevalence of M. pneumoniae and the proportion of drug-resistant M. pneumoniae isolates in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for screening and diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs.
Collapse
|
26
|
Guo Z, Liu L, Gong J, Han N, He L, Wang W, Meng F, Xia X, Zhang J, Zhao F. Molecular features and antimicrobial susceptibility of Mycoplasma pneumoniae isolates from pediatric inpatients in Weihai, China. J Glob Antimicrob Resist 2022; 28:180-184. [PMID: 35017067 DOI: 10.1016/j.jgar.2022.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES We analyzed the molecular features and antimicrobial susceptibility of Mycoplasma pneumoniae isolates from Weihai in 2019. METHODS Pharyngeal swabs of 160 pediatric patients with pneumonia-related symptoms were collected and subjected to culture and subsequent characteristic analysis. The characteristics of M. pneumoniae isolates were analyzed through real-time PCR and genotyping. Antimicrobial susceptibility test was performed against 4 antibiotics. All isolates were amplified for the analysis of macrolide (ML) resistant gene of the 23S rRNA and were genotyped with multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) and 'AGT' VNTR detection in p1 gene. RESULTS M. pneumoniae nucleic acid and culture positive rate of 160 specimens were 87.6% and 51.3%, respectively. Almost all isolates were ML resistant (81/82). Point mutation at 2063 site in 23S rRNA was identified in all ML resistant isolates. ML resistance rate of genotype 2 isolates was 97.6% in the M. pneumoniae isolates in Weihai. MLVA types 4/5/7/2 and 4/5/7/3 belonged to genotype 1, while 3/5/6/2 belonged to genotype 2. Numbers of 'AGT' VNTR in p1 gene from all isolates was in a range of 5-15. CONCLUSIONS This is the first report that the two genotypes of M. pneumoniae isolates were presented in relative equivalent ratio, with genotype 2 slightly dominant, in pediatric patients in Weihai in 2019, and the overall ML resistance rate was close to 100%. Minimum inhibitory concentration (MIC) of erythromycin in A2063T ML resistance in M. pneumoniae in Weihai was higher than previous publications.
Collapse
Affiliation(s)
- Zhili Guo
- The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai 264200, China
| | - Liyong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Jie Gong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Na Han
- The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai 264200, China
| | - Lihua He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Weijing Wang
- The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai 264200, China
| | - Fanliang Meng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Xiuliang Xia
- The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai 264200, China
| | - Jianzhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China.
| |
Collapse
|
27
|
Wan R, Jia M, Dou H, Tu P, Shi D, Yuan Q, Xin D. Mechanism of Infantile Feire Kechuan Oral Solution against Mycoplasma pneumoniae infection of A549 cells. Biomed Pharmacother 2021; 145:112366. [PMID: 34776306 DOI: 10.1016/j.biopha.2021.112366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mycoplasma pneumoniae is a leading cause of community-acquired respiratory infections. Infantile Feire Kechuan Oral Solution (IFKOS) is effective for treatment of M. pneumoniae infection. The aim of this study was to explore the potential mechanism of IFKOS against M. pneumoniae infection in basal epithelial human lung adenocarcinoma A549 cells. METHODS The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the effects of IFKOS on the viability of A549 cells infected with M. pneumoniae. Optical microscopy was used to observe cell morphology and a Muse cell analyzer was used to assess apoptosis and the cell cycle phase. Enzyme-linked immunosorbent assays were employed to assess the expression levels of interleukin (IL)-4, IL-6, IL-8, IL-17, tumor necrosis factor (TNF)-α, interferon (IFN)-α, and IFN-γ. RESULTS Under certain conditions, M. pneumoniae infection reduced the viability and inhibited the proliferation of A549 cells, promoted early apoptosis, and arrested cells in the G0/G1 phase, thus shortening the S and G2/M phases (all p < 0.05). M. pneumoniae also upregulated expression of IL-8 and TNF-α and downregulated that of IL-6 (p < 0.05), which switched the immune balance of Th1/Th2 to Th1 cells. IFKOS (5.531 mg/mL) improved the viability and proliferation of M. pneumoniae-infected A549 cells, mitigated early apoptosis, and reversed cell cycle arrest in the G0/G1 phase, thereby extending the S and G2/M phases (all, p < 0.05). IFKOS downregulated expression of IL-8 and TNF-α and upregulated that of IL-6 (p < 0.01), thereby reversing the immune imbalance of Th1/Th2. Secretion of IL-4, IL-17, IFN-α, and IFN-γ was not observed. CONCLUSION IFKOS played a protective role in the regulation of cell viability, apoptosis, the cell cycle, and Th1/Th2 immune imbalance induced by M. pneumoniae infection and conveyed an anti-inflammatory effect in A549 cells.
Collapse
Affiliation(s)
- Ruijie Wan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Minyi Jia
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Haiwei Dou
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Peng Tu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Dawei Shi
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Qing Yuan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Deli Xin
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
28
|
Chen J, Qi X, Yin Y, Zhang L, Zhang J, Yuan S. Effects of minocycline on macrolide-unresponsive Mycoplasma pneumoniae pneumonia in children: a single-center retrospective study. Transl Pediatr 2021; 10:2997-3004. [PMID: 34976765 PMCID: PMC8649588 DOI: 10.21037/tp-21-356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Macrolide-resistant Mycoplasma pneumoniae (Mp) has become widespread in the world. We sought to determine the independently associated risk factors for refractory Mp pneumonia among macrolide-unresponsive Mp pneumonia children treated with minocycline and to investigate the effects of minocycline against macrolide-unresponsive Mp pneumonia. METHODS In our center, we retrospectively analyzed the data of hospitalized macrolide-unresponsive Mp pneumonia patients aged ≤18 years old who changed macrolide therapies to minocycline treatments between March 2013 and September 2018. Patient characteristics and defervescence after minocycline treatment were compared between refractory Mp pneumonia and non-refractory Mp pneumonia groups. Multivariable logistic regression analysis was performed among these macrolide-unresponsive Mp pneumonia patients. RESULTS Among 150 included macrolide-unresponsive Mp pneumonia children treated with minocycline; 30 cases (20.0%) were refractory Mp pneumonia. Duration of macrolide treatment before administration of minocycline (odds ratio =2.87, 95% CI: 1.79-4.61, P<0.001) and serum procalcitonin levels (odds ratio =13.50, 95% CI: 1.22-149.57, P=0.034) were independently associated with refractory Mp pneumonia. Defervescence after minocycline treatment was significantly longer among the refractory Mp pneumonia group than in the non-refractory Mp pneumonia group (median 2 vs. 1 day, P<0.001). Only one case (0.7%) suspected of a side effect of minocycline therapy was observed. CONCLUSIONS Two risk factors independently associated with refractory Mp pneumonia were determined. Early use of minocycline might safely prevent macrolide-unresponsive Mp pneumonia from progressing to refractory Mp pneumonia.
Collapse
Affiliation(s)
- Jiande Chen
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Qi
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Jiang FC, Wang RF, Chen P, Dong LY, Wang X, Song Q, Wan YQ, Song QQ, Song J, Wang YH, Xia ZQ, Xia D, Han J. Genotype and mutation patterns of macrolide resistance genes of Mycoplasma pneumoniae from children with pneumonia in Qingdao, China, in 2019. J Glob Antimicrob Resist 2021; 27:273-278. [PMID: 34687926 DOI: 10.1016/j.jgar.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/16/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study assessed the incidence and resistance of Mycoplasma pneumoniae (MP) in children in Qingdao, China, in 2019. METHODS We detected MP infection in 78 pharyngeal swabs from children with pneumonia by qPCR. The RepMP4 element in the P1 adhesin gene, domain V of the 23S rRNA gene, and the L4/L22 ribosomal proteins were amplified by nested PCR. Evolutionary analysis was conducted based on the P1 gene sequence. Resistance mutations in domain V of the 23S rRNA gene and L4/L22 ribosomal proteins were analysed. RESULTS The incidence of MP infection in children with pneumonia was 59.0% (46/78). The mean duration of MP infection was longer than that of non-MP infection. According to P1 gene sequencing of 21 samples, 12 (57.1%) were type 1 and 9 (42.9%) were type 2. Drug resistance mutations A2063G in domain V of 23S rRNA gene and T508C in L22 were identified from all sequenced MP. However, mutations at positions 2064 and 2617 were not found in this study. C162A mutation appeared in most type 2 samples. A430G mutation appeared in one type 1 sample and in several type 2 samples. T279C mutation in L22 was mostly found in type 2 samples. CONCLUSION The incidence of MP infection was 59.0% in children with pneumonia in Qingdao in 2019. Type 1 MP infection was slightly more common than type 2, indicating that the genotype of MP is gradually shifting from type 1 to type 2. Macrolide resistance mutation A2063G could be detected in all sequenced MP.
Collapse
Affiliation(s)
- Fa-Chun Jiang
- Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, Qingdao 266033, Shandong, China
| | - Rui-Fang Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ping Chen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Li-Yan Dong
- Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, Qingdao 266033, Shandong, China
| | - Xia Wang
- District Center of Disease Control and Prevention of Shibei, Qingdao 266000, Shandong, China
| | - Qin Song
- District Center of Disease Control and Prevention of Chengyang, Qingdao 266041, Shandong, China
| | - Yi-Qiu Wan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Medical College of Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Qin-Qin Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yan-Hai Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhi-Qiang Xia
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dong Xia
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
30
|
Loconsole D, De Robertis AL, Sallustio A, Centrone F, Morcavallo C, Campanella S, Accogli M, Chironna M. Update on the Epidemiology of Macrolide-Resistant Mycoplasma pneumoniae in Europe: A Systematic Review. Infect Dis Rep 2021; 13:811-820. [PMID: 34562998 PMCID: PMC8482213 DOI: 10.3390/idr13030073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Macrolide-resistant Mycoplasma pneumoniae (MR-MP) infections cause upper and lower respiratory tract infections in both children and adults, and are characterized by a longer duration of symptoms. Here, we undertook a systematic review of studies on MR-MP in Europe. The review meets PRISMA guidelines. The PubMed, Scopus, and Science Direct databases were searched using suitable keywords to identify relevant studies published from 2010 to 2021; 21 studies were included. Overall, a low level of MR-MP spread was reported in Europe. MR-MP spread increased during epidemic waves registered in Europe, particularly in Italy and Scotland, where the highest MR-MP infection rates were registered during the 2010–2011 epidemic. By contrast, no MR-MP infections were reported in Finland and the Netherlands. Continued monitoring of MR-MP in Europe is needed to maintain the low rates of infection. Moreover, a coordinated and structured pan-European surveillance program adequate for public health surveillance is advisable, with the purpose of containing the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Daniela Loconsole
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Anna Lisa De Robertis
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Anna Sallustio
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Francesca Centrone
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Caterina Morcavallo
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Silvia Campanella
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Marisa Accogli
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
- Correspondence: ; Tel.: +39-080-5478498; Fax: +39-080-5593887
| |
Collapse
|
31
|
Cho HK. Consideration in treatment decisions for refractory Mycoplasma pneumoniae pneumonia. Clin Exp Pediatr 2021; 64:459-467. [PMID: 33561337 PMCID: PMC8426095 DOI: 10.3345/cep.2020.01305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
Mycoplasma pneumoniae (MP) is the most common cause of childhood bacterial pneumonia. Although macrolide is known to be effective as a first-line therapy, the proportion of macrolide resistance in MP pneumonia has strikingly increased during recent 2 decades in East Asia. This is challenging to physicians since they have to decide more often whether to use secondary treatment. Diagnostic methods to detect macrolide-resistance of MP are currently not available in Korean hospitals. Even in the diagnosis of MP infection, both serologic and molecular test have limitation: inability to differentiate current illness from carriage or asymptomatic infection. Combining these 2 diagnostic methods and excluding infection caused by other respiratory pathogens allow a more reliable diagnosis. This effort is even more demanding in recent years to keep children from unnecessary exposure to secondary antibiotics. Although several observational studies have reported that tetracycline and fluoroquinolone, which are considered in the treatment of refractory MP pneumonia, have efficacy of shortening the duration of fever and respiratory symptoms, those findings need to be proven by well-designed prospective studies. The use of tetracycline and fluoroquinolone in children is generally tolerable, as supported by many observational data. However, since concerns about side effects still remain, careful consideration about benefits and risks is needed to decide their use.
Collapse
Affiliation(s)
- Hye-Kyung Cho
- Department of Pediatrics, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
32
|
Rivaya B, Jordana-Lluch E, Fernández-Rivas G, Molinos S, Campos R, Méndez-Hernández M, Matas L. Macrolide resistance and molecular typing of Mycoplasma pneumoniae infections during a 4 year period in Spain. J Antimicrob Chemother 2021; 75:2752-2759. [PMID: 32653897 PMCID: PMC7678890 DOI: 10.1093/jac/dkaa256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/21/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
Background Mycoplasma pneumoniae (MP) causes community-acquired pneumonia affecting mainly children, and tends to produce cyclic outbreaks. The widespread use of macrolides is increasing resistance rates to these antibiotics. Molecular tools can help in diagnosis, typing and resistance detection, leading to better patient management. Objectives To assess the MP genotypes and resistance pattern circulating in our area while comparing serological and molecular diagnosis of MP. Methods Molecular and serological diagnosis of MP was performed in 821 samples collected in Badalona (Barcelona, Spain) from 2013 to 2017. Multiple locus variable number tandem repeat analysis (MLVA) and macrolide resistance detection by pyrosequencing were performed in those cases positive by PCR. Presence of respiratory viruses and relevant clinical data were also recorded. Results MP was detected in 16.8% of cases by PCR, with an overall agreement with serology of 76%. Eleven different MLVA types were identified, with 4-5-7-2 (50.1%) and 3-5-6-2 (29.2%) being the most abundant, with the latter showing a seasonal increase during the study. A total of 8% of the strains harboured a point substitution associated with macrolide resistance, corresponding mainly to an A2063G 23S rRNA mutation and directly related to previous macrolide therapy. Analysis of respiratory viruses showed viral coinfections in most cases. Conclusions Serological and molecular tools combined could improve MP diagnosis and the analysis of its infection patterns. Macrolide resistance is associated with previous therapy. Given that MP pneumonia usually resolves spontaneously, it should be reconsidered whether antibiotic treatment is suitable for all cases.
Collapse
Affiliation(s)
- Belén Rivaya
- Microbiology Department, Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Jordana-Lluch
- Microbiology Department, Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gema Fernández-Rivas
- Microbiology Department, Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sònia Molinos
- Microbiology Department, Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roi Campos
- Paediatric Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Lurdes Matas
- Microbiology Department, Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
33
|
Morozumi M, Tajima T, Sakuma M, Shouji M, Meguro H, Saito K, Iwata S, Ubukata K. Sequence Type Changes Associated with Decreasing Macrolide-Resistant Mycoplasma pneumoniae, Japan. Emerg Infect Dis 2021; 26:2210-2213. [PMID: 32818419 PMCID: PMC7454074 DOI: 10.3201/eid2609.191575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We compared sequence types (STs) of Mycoplasma pneumoniae isolates from Japan during 2002–2019. ST3 and ST14 dominated during 2002–2016, and ST7 and ST33 dominated during 2018–2019. These STs were associated with a decrease in macrolide-resistant strains after an epidemic of infection with M. pneumoniae during 2011–2012.
Collapse
|
34
|
Feng M, Schaff AC, Balish MF. Mycoplasma pneumoniae biofilms grown in vitro: traits associated with persistence and cytotoxicity. MICROBIOLOGY-SGM 2021; 166:629-640. [PMID: 32421492 DOI: 10.1099/mic.0.000928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The atypical bacterial pathogen Mycoplasma pneumoniae is a leading etiological agent of community-acquired pneumonia in humans; infections are often recalcitrant, recurrent and resistant to antibiotic treatment. These characteristics suggest a mechanism that facilitates long-term colonization in hosts. In an in vitro setting, M. pneumoniae forms biofilms that are unusual in that motility plays no more than a very limited role in their formation and development. Given the unusual nature of M. pneumoniae biofilms, open questions remain concerning phenotypes associated with persistence, such as what properties might favour the bacteria while minimizing host damage. M. pneumoniae also produces several cytotoxic molecules including community-acquired respiratory distress syndrome (CARDS) toxin, H2S and H2O2, but how it deploys these agents during growth is unknown. Whereas several biochemical techniques for biofilm disruption were ineffective, sonication was required for disruption of M. pneumoniae biofilms to generate individual cells for comparative studies, suggesting unusual physical properties likely related to the atypical cell envelope. Nonetheless, like for other bacteria, biofilms were less susceptible to antibiotic inhibition and complement killing than dispersed cells, with resistance increasing as the biofilms matured. CARDS toxin levels and enzymatic activities associated with H2S and H2O2 production were highest during early biofilm formation and decreased over time, suggesting attenuation of virulence in connection with chronic infection. Collectively, these findings result in a model of how M. pneumoniae biofilms contribute to both the establishment and propagation of M. pneumoniae infections, and how both biofilm towers and individual cells participate in persistence and chronic disease.
Collapse
Affiliation(s)
- Monica Feng
- Present address: Department of Medicine, Albert Einstein Medical College, Bronx, NY 10461, USA
| | - Andrew C Schaff
- Present address: Hudson College of Public Health, Department of Biostatistics and Epidemiology, University of Oklahoma Health Schiences Center, Oklahoma City, OK 73104, USA
| | - Mitchell F Balish
- Department of Microbiology, Miami University, 212 Pearson Hall, Oxford, OH 45056, USA
| |
Collapse
|
35
|
Wang Y, Xu B, Wu X, Yin Q, Wang Y, Li J, Jiao W, Quan S, Sun L, Wang Y, Shen A. Increased Macrolide Resistance Rate of M3562 Mycoplasma pneumoniae Correlated With Macrolide Usage and Genotype Shifting. Front Cell Infect Microbiol 2021; 11:675466. [PMID: 34055671 PMCID: PMC8149950 DOI: 10.3389/fcimb.2021.675466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/09/2021] [Indexed: 11/20/2022] Open
Abstract
To characterize Mycoplasma pneumoniae (MP) strains and to clarify the continuous high rates of macrolide resistance, 1,524 oropharyngeal swabs collected from children in Beijing Children’s Hospital infected with MP during 2016-2019 were analyzed. Among the 1,524 samples, 1,386 harbored mutations associated with macrolide resistance; 1,049 samples were successfully classified into 11 genotypes using multiple locus variable-number tandem-repeat analysis (MLVA). The proportion of the predominant type, M4572, decreased from 84.49 to 70.77% over the time period examined, while that of M3562 increased from 11.63 to 24.67%. Notably, we also found that the frequency of macrolide resistance in M3562 drastically increased, from 60% in 2016 to 93.48% in 2019. Clinical data suggested that the frequency of resistant M3562 was higher in the macrolide usage group than in the nondrug usage group (90.73 vs 53.57%, P<0.0001), while the resistance rate of M4572 was not substantially affected by previous macrolide exposure. These findings validated that antimicrobial application and clonal expansion of resistant MP strains play important roles in the high rates of macrolide resistance.
Collapse
Affiliation(s)
- Yacui Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Baoping Xu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xirong Wu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qingqin Yin
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jieqiong Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Weiwei Jiao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuting Quan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lin Sun
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yonghong Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Adong Shen
- Children's Hospital Affiliated to Zhengzhou University Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
36
|
Zhao F, Zhang J, Wang X, Liu L, Gong J, Zhai Z, He L, Meng F, Xiao D. A multisite SNP genotyping and macrolide susceptibility gene method for Mycoplasma pneumoniae based on MALDI-TOF MS. iScience 2021; 24:102447. [PMID: 33997713 PMCID: PMC8105657 DOI: 10.1016/j.isci.2021.102447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/20/2021] [Accepted: 04/14/2021] [Indexed: 11/06/2022] Open
Abstract
In this study, a multisite SNP genotyping and macrolide (ML) susceptibility gene test method for Mycoplasma pneumoniae (M. pneumoniae) was developed based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The detection limit of this method for nucleic acids was 102 -103 copies/reaction. Six SNP site-based genotyping and 3 ML susceptibility sites could be detected simultaneously based on multiplex PCR and mass probe. Using the method constructed in this study, 141 Chinese clinical isolates were divided into 8 SNP types. All the SNP test results for the ML susceptibility gene were in line with those of the 23S rRNA sequencing results. With this method, the multisite SNP genotyping and ML susceptibility determination of M. pneumoniae can be completed simultaneously in one test, which greatly reduces the workload and cost, improves the genotyping ability of M. pneumoniae and deserves clinical application. An all-in-one genotyping and macrolide resistance testing method for M. pneumoniae Multisite SNP detection technology was used for genotyping and resistance testing The cost of M. pneumoniae genotyping and macrolide resistance detection was reduced
Collapse
Affiliation(s)
- Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Jianzhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Xuemei Wang
- Intelligene Biosystems (Qingdao) Co., Ltd, Qingdao, China
| | - Liyong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Jie Gong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Zhixiang Zhai
- Intelligene Biosystems (Qingdao) Co., Ltd, Qingdao, China
| | - Lihua He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Fanliang Meng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Di Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| |
Collapse
|
37
|
Han HY, Park KC, Yang EA, Lee KY. Macrolide-Resistant and Macrolide-Sensitive Mycoplasma pneumoniae Pneumonia in Children Treated Using Early Corticosteroids. J Clin Med 2021; 10:jcm10061309. [PMID: 33810090 PMCID: PMC8004593 DOI: 10.3390/jcm10061309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
We have found that early corticosteroid therapy was effective for reducing morbidity during five Korea-wide epidemics. We evaluated the clinical and laboratory parameters of 56 children who received early corticosteroid treatment for pneumonia that was caused by macrolide-resistant Mycoplasma pneumoniae (M. pneumoniae) or macrolide-sensitive M. pneumoniae between July 2019 and February 2020. All subjects had dual positive results from a PCR assay and serological test, and received corticosteroids within 24–36 h after admission. Point mutation of residues 2063, 2064, and 2067 was identified in domain V of 23S rRNA. The mean age was 6.8 years and the male:female ratio was 1.2:1 (31:25 patients). Most of the subjects had macrolide-resistant M. pneumoniae (73%), and all mutated strains had the A2063G transition. No significant differences in clinical and laboratory parameters were observed between macrolide-resistant and macrolide-sensitive M. pneumoniae groups that were treated with early dose-adjusted corticosteroids. Higher-dose steroid treatment may be needed for patients who have fever that persists for >48 h or increased biomarkers such as lactate dehydrogenase concentration at follow-up despite a usual dose of steroid therapy.
Collapse
Affiliation(s)
- Hye Young Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (H.Y.H.); (K.-Y.L.)
- Department of Pediatrics, Daejeon St. Mary’s Hospital, The Catholic University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Korea
| | - Ki Cheol Park
- Clinical Research Institute, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Daejeon 34943, Korea;
| | - Eun-Ae Yang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (H.Y.H.); (K.-Y.L.)
- Department of Pediatrics, Daejeon St. Mary’s Hospital, The Catholic University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Korea
- Correspondence: ; Tel.: +82-42-220-9540; Fax: +82-42-221-2925
| | - Kyung-Yil Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (H.Y.H.); (K.-Y.L.)
- Junglock Biomedical Institute, 127, Yuchun-ro, Jung-gu, Deajeon 34886, Korea
| |
Collapse
|
38
|
Molecular Characterization of Mycoplasma pneumoniae Isolates in the United States from 2012 to 2018. J Clin Microbiol 2020; 58:JCM.00710-20. [PMID: 32817226 PMCID: PMC7512161 DOI: 10.1128/jcm.00710-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
Mycoplasma pneumoniae is a major cause of community-acquired pneumonia. There are limited data in the United States on the molecular epidemiological characteristics of M. pneumoniae. We collected 446 M. pneumoniae-positive specimens from 9 states between August 2012 and October 2018. Culture, antimicrobial susceptibility testing, P1 subtyping, and multilocus VNTR (variable-number tandem repeats) analysis (MLVA) were performed to characterize the isolates. Mycoplasma pneumoniae is a major cause of community-acquired pneumonia. There are limited data in the United States on the molecular epidemiological characteristics of M. pneumoniae. We collected 446 M. pneumoniae-positive specimens from 9 states between August 2012 and October 2018. Culture, antimicrobial susceptibility testing, P1 subtyping, and multilocus VNTR (variable-number tandem repeats) analysis (MLVA) were performed to characterize the isolates. Macrolide-resistant M. pneumoniae (MRMp) was detected in 37 (8.3%) specimens. P1 subtype 2 (P1-2) was the predominant P1 subtype (59.8%). P1 subtype distribution did not change significantly chronologically or geographically. The macrolide resistance rate in P1 subtype 1 (P1-1) samples was significantly higher than that in P1-2 (12.9% versus 5.5%). Six P1-2 variants were identified, including two novel types, and variant 2c was predominant (64.6%). P1-2 variants were distributed significantly differently among geographic regions. Classical P1-2 was more frequent in lower respiratory tract specimens and had longer p1 trinucleotide repeats. Classical P1-2 was most common in MRMp (35.7%), while variant 2c was most common in macrolide-susceptible M. pneumoniae (67.5%). Fifteen MLVA types were identified; 3-5-6-2 (41.7%), 4-5-7-2 (35.3%), and 3-6-6-2 (16.6%) were the major types, and four MLVA clusters were delineated. The distribution of MLVA types varied significantly over time and geographic location. The predominant MLVA type switched from 4-5-7-2 to 3-5-6-2 in 2015. MLVA type was associated with P1 subtypes and P1-2 variant types but not with macrolide resistance. To investigate the M. pneumoniae genotype shift and its impact on clinical presentations, additional surveillance programs targeting more diverse populations and prolonged sampling times are required.
Collapse
|
39
|
Kenri T, Suzuki M, Sekizuka T, Ohya H, Oda Y, Yamazaki T, Fujii H, Hashimoto T, Nakajima H, Katsukawa C, Kuroda M, Shibayama K. Periodic Genotype Shifts in Clinically Prevalent Mycoplasma pneumoniae Strains in Japan. Front Cell Infect Microbiol 2020; 10:385. [PMID: 32850484 PMCID: PMC7424021 DOI: 10.3389/fcimb.2020.00385] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
Nationwide increases in Mycoplasma pneumoniae pneumonia cases in Japan were reported in 2011, 2012, 2015, and 2016. In this study, we isolated 554 M. pneumoniae strains in 4 areas in Japan (Kanagawa, Okayama, Osaka, and Saitama) between 2006 and 2019, and performed genotyping analysis. More than 80% of the strains isolated in 2011 and 2012 harbored type 1 p1 adhesin gene; however, strains harboring type 2 or its variant p1 gene increased in 2015 and 2016 and dominated after 2017. These findings suggested that a shift in the prevalent genotype of M. pneumoniae clinical strains occurred recently in Japan. More than 90% of the type 1 strains isolated after 2010 harbored macrolide-resistance mutations in their 23S rRNA gene, whereas most type 2 lineage strains had no such mutations. Consequently, the increase in type 2 lineage strains in Japan has reduced the macrolide resistance rate of clinical M. pneumoniae strains. During this analysis, we also identified M. pneumoniae strains carrying a novel variant type 1 p1 gene, and we classified it as type 1b. We then sequenced the genomes of 81 selected M. pneumoniae strains that we collected between 1976 and 2017 in Japan, and compared them with 156 M. pneumoniae genomes deposited in public databases to provide insights into the interpretation of M. pneumoniae genotyping methods, including p1 typing, multiple-locus variable-number tandem repeat analysis (MLVA), multi-locus sequence typing (MLST), and typing by 8 single-nucleotide polymorphism markers (SNP-8). As expected, p1 typing, MLST, and SNP-8 results exhibited good correlation with whole-genome SNP analysis results in terms of phylogenetic relationships; however, MLVA typing results were less comparable to those of the other methods. MLVA may be useful for the discrimination of strains derived from a single outbreak within a limited area; however, is not reliable for classification of strains collected from distantly separated areas at different time points. This study showed the usefulness of genome-based comparison of M. pneumoniae for molecular epidemiology. Genome sequencing of more strains will improve our understanding of global propagation routes of this pathogen and evolutionary aspects of M. pneumoniae strains.
Collapse
Affiliation(s)
- Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitomi Ohya
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | | | | | | | | | - Hiroshi Nakajima
- Okayama Prefectural Institute for Environmental Science and Public Health, Okayama, Japan
| | - Chihiro Katsukawa
- Osaka Institute of Public Health, Osaka, Japan.,Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
40
|
McCurdy S, Nenninger A, Sheets A, Keedy K, Lawrence L, Quintas M, Cammarata S. Efficacy of delafloxacin versus moxifloxacin against atypical bacterial respiratory pathogens in adults with community-acquired bacterial pneumonia (CABP): Data from the Delafloxacin Phase 3 CABP Trial. Int J Infect Dis 2020; 97:374-379. [DOI: 10.1016/j.ijid.2020.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022] Open
|