1
|
Barua S, Iduu NV, Murillo DFB, Tarannum A, Dimino H, Barua S, Shu Y, Johnson C, Miller MR, Chenoweth K, Christopherson P, Huber L, Wood T, Turner K, Wang C. Nationwide seroprevalence of SARS-CoV-2 Delta variant and five Omicron sublineages in companion cats and dogs in the USA: insights into their role in COVID-19 epidemiology. Emerg Microbes Infect 2025; 14:2437246. [PMID: 39635731 PMCID: PMC11636146 DOI: 10.1080/22221751.2024.2437246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Understanding SARS-CoV-2 epidemiology in companion animals is critical for evaluating their role in viral transmission and their potential as sentinels for human infections. This large-scale serosurvey analyzed serum samples from 706 cats and 2,396 dogs collected across the USA in 2023 using a surrogate virus neutralization test (sVNT) to detect SARS-CoV-2 antibodies. Overall, 5.7% of cats and 4.7% of dogs tested positive for antibodies, with younger animals (under 12 months) showing significantly lower seropositivity rates (p = 0.0048). Additionally, we analyzed 153 positive samples for variant-specific antibody responses using six sVNT kits targeting the Delta variant and five Omicron sublineages. Among cats, 67.5% showed antibodies to Delta, with positivity rates for Omicron sublineages as follows: BA.1 (62.5%), BA.2 (42.5%), BA.4/BA.5 (77.5%), XBB (52.5%), and XBB.1.5 (45.0%). In dogs, 55.8% were positive for Delta, and Omicron sublineage rates were BA.1 (46.0%), BA.4/BA.5 (37.2%), XBB (58.4%), BA.2 (13.3%), and XBB.1.5 (9.7%). Given the close contact between companion animals and humans, and the persistence of antibodies against various SARS-CoV-2 variants and sublineages, our findings suggest that seroprevalence in cats and dogs may serve as valuable tool for tracking COVID-19 epidemiology.
Collapse
Affiliation(s)
- Subarna Barua
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nneka Vivian Iduu
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | | - Asfiha Tarannum
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Hill Dimino
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Suchita Barua
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Yue Shu
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Calvin Johnson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Megan R. Miller
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Kelly Chenoweth
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Peter Christopherson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Theresa Wood
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Kelley Turner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Ukwishaka J, Mela CF, Aseneh JBN, Ettaj M, Ilboudo D, Danwang C, Samadoulougou S, Kirakoya-Samadoulougou F. Seroprevalence of SARS-CoV-2 antibodies among healthy blood donors: a systematic review and meta-analysis. BMC Public Health 2024; 24:2925. [PMID: 39438911 PMCID: PMC11515703 DOI: 10.1186/s12889-024-20364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION The development of a potent immune response and antibodies against SARS-CoV-2 is important for herd immunity. The serological response may be due to a previous infection or vaccination. Healthy blood donors could represent and provide information on the immune status of the general population. Therefore, we estimated the global and regional prevalence of SARS-CoV-2 antibodies among healthy blood donors. METHODS We conducted a systematic search of PubMed, Scopus, and ProQuest from December 2019 to January 2023. After critical appraisal and quality assessment, a qualitative synthesis of the identified relevant articles was performed. The random-effects model was used to estimate the pooled prevalence of SARS-CoV-2 antibodies. Funnel plots and Egger's test were used to assess publication bias. Sensitivity analysis was performed, and heterogeneity was quantified using I2 statistics. RESULTS A total of 70 peer-reviewed articles were selected that together included 2,454,192 blood donors. The global estimated pooled prevalence of SARS-CoV-2 antibodies among healthy blood donors was 10.3% (95% CI: 4.6 - 18.0%, n = 70). The highest seroprevalence was observed in Asia (17.7%), followed by Africa (16.1%). The seroprevalence in studies conducted before the introduction of the vaccine was 6.1%, whereas those of studies conducted after vaccines were available was 27.6%. High seroprevalence was observed in studies that measured antibodies against the S protein of the virus (15.2%), while lower (12.5%) in those that measured antibodies against the N protein. A high seroprevalence was observed in studies that only measured IgG antibodies (16.3%), and it was 5.9% in studies that measured total antibodies. CONCLUSION The prevalence of SARS-CoV-2 antibodies among healthy blood donors varies, potentially indicating geographical disparities in transmission and vaccination rates. To enhance community resilience, addressing these differences through inclusive health policies and adaptable public health measures is crucial.
Collapse
Affiliation(s)
- Joyeuse Ukwishaka
- Rwanda Biomedical Center, Maternal Child and Community Health Division, Kigali, Rwanda.
- Jhpiego, Kigali, Rwanda.
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium.
| | - Cyril Fotabong Mela
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | - Jerry Brown Njoh Aseneh
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | - Malak Ettaj
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
- Department of Anthropology, University of California-Davis, Davis, CA, USA
| | - Dieudonné Ilboudo
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Sekou Samadoulougou
- Evaluation Platform on Obesity Prevention, Quebec Heart and Lung Institute, Quebec, QC, G1V 4G5, Canada
- Centre for Research on Planning and Development, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Fati Kirakoya-Samadoulougou
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PNP, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJC, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. Cell 2024; 187:5554-5571.e19. [PMID: 39197450 PMCID: PMC11460329 DOI: 10.1016/j.cell.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024]
Abstract
Immunization with mosaic-8b (nanoparticles presenting 8 SARS-like betacoronavirus [sarbecovirus] receptor-binding domains [RBDs]) elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated the effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding the greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate mapping, in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19-vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Sandra E Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Ellis Robb
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Ian G Fotheringham
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Leon-Rojas JE, Arias-Erazo F, Jiménez-Arias P, Recalde-Navarrete R, Guevara A, Coloma J, Martin M, Chis Ster I, Cooper P, Romero-Sandoval N. COVID-19 IgG seropositivity and its determinants in occupational groups of varying infection risks in two Andean cities of Ecuador before mass vaccination. PLoS One 2024; 19:e0309466. [PMID: 39208200 PMCID: PMC11361580 DOI: 10.1371/journal.pone.0309466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has caused over 68.7 million infections and 1.35 million deaths in South America. There are limited data on SARS-CoV-2 seropositivity and its determinants from Andean countries prior to mass vaccinations against COVID-19. OBJECTIVE To estimate SARS-CoV-2 seropositivity and its determinants before vaccination in occupational groups of adults presumed to have different levels of exposure and associations with potential symptomatology. METHODS We measured seropositivity of anti-SARS-CoV-2 IgG antibodies in a cross-sectional study of vaccine-naïve adults aged 18 years and older, recruited within three occupational risk groups (defined as low [LR], moderate [MR], and high [HR]) between January and September 2021 in two Andean cities in Ecuador. Associations with risk factors were estimated using logistic regression. RESULTS In a sample of 882 adults, IgG seropositivity for the three different occupational risk groups was 39.9% (CI 95% 35.3-44.6), 74.6% (CI 95% 66.4-81.4), and 39.0% (CI 95% 34.0-44.4) for the HR, MR, and LR groups, respectively. History of an illness with loss of taste and/or smell was significantly associated with seropositivity in all occupational groups, with adjusted ORs of 14.31 (95%CI, 5.83-35.12; p<0.001), 14.34 (95%CI 3.01-68.42; p<0.001), and 8.79 (95%CI 2.69-28.72; p<0.001), for the HR, MR, and LR groups, respectively; while fever was significant for the LR group with an adjusted OR of 1.24 (95%CI, 1.11-4.57; p = 0.025) and myalgia for the HR group with an adjusted OR of 2.07 (95%CI, 1.13-3.81; p = 0.019). CONCLUSION Notable proportions of seropositivity were seen in all occupational groups between January and September 2021 prior to mass vaccination. Loss of taste and/or smell was strongly associated with presence of anti-SARS-CoV-2 IgG antibodies irrespective of presumed occupational exposure risk.
Collapse
Affiliation(s)
- Jose E. Leon-Rojas
- Departamento de Pediatría, Obstetricia y Ginecología y Medicina Preventiva, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Research Network Grups de Recerca d’Amèrica i Àfrica Llatines (GRAAL), Universidad Internacional del Ecuador, Quito, Ecuador
| | - Fernanda Arias-Erazo
- School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador
- Grupo de Investigación en Sanidad Animal y Humana (GISAH) ESPE, Quito, Ecuador
| | - Patricia Jiménez-Arias
- Research Network Grups de Recerca d’Amèrica i Àfrica Llatines (GRAAL), Universidad Internacional del Ecuador, Quito, Ecuador
- Grupo de Investigación en Sanidad Animal y Humana (GISAH) ESPE, Quito, Ecuador
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Ricardo Recalde-Navarrete
- Research Network Grups de Recerca d’Amèrica i Àfrica Llatines (GRAAL), Universidad Internacional del Ecuador, Quito, Ecuador
- Medical School, Universidad Tecnica de Ambato, Ambato, Ecuador
| | | | - Josefina Coloma
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States of America
| | - Miguel Martin
- Departamento de Pediatría, Obstetricia y Ginecología y Medicina Preventiva, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Research Network Grups de Recerca d’Amèrica i Àfrica Llatines (GRAAL), Universidad Internacional del Ecuador, Quito, Ecuador
- School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Irina Chis Ster
- Institute of Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Philip Cooper
- School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador
- Institute of Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Natalia Romero-Sandoval
- Research Network Grups de Recerca d’Amèrica i Àfrica Llatines (GRAAL), Universidad Internacional del Ecuador, Quito, Ecuador
- School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador
| | | |
Collapse
|
5
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PN, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJ, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.576722. [PMID: 38370696 PMCID: PMC10871317 DOI: 10.1101/2024.02.08.576722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Sandra E. Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J. Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D. Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY, 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Martina Quintanar-Audelo
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
- Present address: Centre for Inflammation Research and Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ellis Robb
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Ian G. Fotheringham
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
6
|
Sočan M, Mrzel M, Prosenc K, Korva M, Avšič-Županc T, Poljak M, Lunar MM, Zupanič T. Comparing COVID-19 severity in patients hospitalized for community-associated Delta, BA.1 and BA.4/5 variant infection. Front Public Health 2024; 12:1294261. [PMID: 38450129 PMCID: PMC10915065 DOI: 10.3389/fpubh.2024.1294261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background Despite decreasing COVID-19 disease severity during the Omicron waves, a proportion of patients still require hospitalization and intensive care. Objective To compare demographic characteristics, comorbidities, vaccination status, and previous infections in patients hospitalized for community-associated COVID-19 (CAC) in predominantly Delta, Omicron BA.1 and BA.4/5 SARS-CoV-2 waves. Methods Data were extracted from three national databases-the National COVID-19 Database, National Vaccination Registry and National Registry of Hospitalizations. Results Among the hospitalized CAC patients analyzed in this study, 5,512 were infected with Delta, 1,120 with Omicron BA.1, and 1,143 with the Omicron BA.4/5 variant. The age and sex structure changed from Delta to BA.4/5, with the proportion of women (9.5% increase), children and adolescents (10.4% increase), and octa- and nonagenarians increasing significantly (24.5% increase). Significantly more patients had comorbidities (measured by the Charlson Comorbidity Index), 30.3% in Delta and 43% in BA.4/5 period. The need for non-invasive ventilatory support (NiVS), ICU admission, mechanical ventilation (MV), and in-hospital mortality (IHM) decreased from Delta to Omicron BA.4/5 period for 12.6, 13.5, 11.5, and 6.3%, respectively. Multivariate analysis revealed significantly lower odds for ICU admission (OR 0.68, CI 0.54-0.84, p < 0.001) and IHM (OR 0.74, CI 0.58-0.93, p = 0.011) during the Delta period in patients who had been fully vaccinated or boosted with a COVID-19 vaccine within the previous 6 months. In the BA.1 variant period, patients who had less than 6 months elapsed between the last vaccine dose and SARS-CoV-2 positivity had lower odds for MV (OR 0.38, CI 0.18-0.72, p = 0.005) and IHM (OR 0.56, CI 0.37- 0.83, p = 0.005), but not for NIVS or ICU admission. Conclusion The likelihood of developing severe CAC in hospitalized patients was higher in those with the Delta and Omicron BA.1 variant compared to BA.4/5.
Collapse
Affiliation(s)
- Maja Sočan
- National Institute of Public Health, Ljubljana, Slovenia
| | - Maja Mrzel
- National Institute of Public Health, Ljubljana, Slovenia
| | - Katarina Prosenc
- National Institute of Health, Environment and Food, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja M. Lunar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Zupanič
- National Institute of Public Health, Ljubljana, Slovenia
| |
Collapse
|
7
|
Paduano S, Granata M, Turchi S, Modenese A, Galante P, Poggi A, Marchesi I, Frezza G, Dervishaj G, Vivoli R, Verri S, Marchetti S, Gobba F, Bargellini A. Factors Associated with SARS-CoV-2 Infection Evaluated by Antibody Response in a Sample of Workers from the Emilia-Romagna Region, Northern Italy. Antibodies (Basel) 2023; 12:77. [PMID: 38131799 PMCID: PMC10740768 DOI: 10.3390/antib12040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Factors associated with SARS-CoV-2 infection risk are still debated. This case-control study aims to investigate the possible relationship between SARS-CoV-2 infection, evaluated through antibody response, and the main sociodemographic, occupational, clinical-anamnestic, and biochemical factors in a population of Modena province (Northern Italy), mainly workers. Both workers who voluntarily joined the screening campaign proposed by companies and self-referred individuals who underwent serological testing were enrolled. Subjects with antibody positivity were recruited as cases (n = 166) and subjects tested negative (n = 239) as controls. A questionnaire on sociodemographic, occupational, and clinical data was administered through telephone interviews. Serum zinc/iron/copper/chromium/nickel, vitamins D/B12, folates, triglycerides, and LDL/HDL/total cholesterol were measured. Cases lived more often in urban areas (61.8% vs. 57%). Cases and controls did not differ significantly by working macrocategories, but the percentage of workers in the ceramic sector was higher among cases. Low adherence to preventive measures in the workplace was more frequent among seropositives. Folate concentration was significantly lower among cases. Therefore, adequate folate levels, living in rural areas, and good adherence to preventive strategies seem protective against infection. Workers in the ceramic sector seem to be at greater risk; specific factors involved are not defined, but preventive interventions are needed.
Collapse
Affiliation(s)
- Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Michele Granata
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Sara Turchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Pasquale Galante
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Alessandro Poggi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Giulia Dervishaj
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Roberto Vivoli
- Test Laboratory, 41100 Modena, Italy; (R.V.); (S.V.); (S.M.)
| | - Sara Verri
- Test Laboratory, 41100 Modena, Italy; (R.V.); (S.V.); (S.M.)
| | | | - Fabriziomaria Gobba
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| |
Collapse
|
8
|
Port JR, Yinda CK, Riopelle JC, Weishampel ZA, Saturday TA, Avanzato VA, Schulz JE, Holbrook MG, Barbian K, Perry-Gottschalk R, Haddock E, Martens C, Shaia CI, Lambe T, Gilbert SC, van Doremalen N, Munster VJ. Infection- or AZD1222 vaccine-mediated immunity reduces SARS-CoV-2 transmission but increases Omicron competitiveness in hamsters. Nat Commun 2023; 14:6592. [PMID: 37852960 PMCID: PMC10584863 DOI: 10.1038/s41467-023-42346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Limited data is available on the effect of vaccination and previous virus exposure on the nature of SARS-CoV-2 transmission and immune-pressure on variants. To understand the impact of pre-existing immunity on SARS-CoV-2 airborne transmission efficiency, we perform a transmission chain experiment using naïve, intranasally or intramuscularly AZD1222 vaccinated, and previously infected hamsters. A clear gradient in transmission efficacy is observed: Transmission in hamsters vaccinated via the intramuscular route was reduced over three airborne chains (approx. 60%) compared to naïve animals, whereas transmission in previously infected hamsters and those vaccinated via the intranasal route was reduced by 80%. We also find that the Delta B.1.617.2 variant outcompeted Omicron B.1.1.529 after dual infection within and between hosts in naïve, vaccinated, and previously infected transmission chains, yet an increase in Omicron B.1.1.529 competitiveness is observed in groups with pre-existing immunity against Delta B.1.617.2. This correlates with an increase in the strength of the humoral response against Delta B.1.617.2, with the strongest response seen in previously infected animals. These data highlight the continuous need to improve vaccination strategies and address the additional evolutionary pressure pre-existing immunity may exert on SARS-CoV-2.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jade C Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Zachary A Weishampel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kent Barbian
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl I Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
9
|
Kwedi Nolna S, Niba M, Djadda C, Masumbe Netongo P. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in HIV-positive and HIV-negative patients in clinical settings in Douala, Cameroon. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1212220. [PMID: 38455949 PMCID: PMC10910930 DOI: 10.3389/fepid.2023.1212220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 03/09/2024]
Abstract
Background The asymptomatic nature of COVID-19 coupled with differential testing are confounders in the assessment of SARS-CoV-2 incidence among people living with HIV (PLWH). As various comorbidities increase the risk of SARS-CoV-2 infection, it is crucial to assess the potential contribution of HIV to the risk of acquiring COVID-19. Our study aimed to compare the anti-SARS-CoV-2 IgG seroprevalence among people living with and without HIV. Methods PLWH were enrolled in the HIV units of two health facilities in Douala, Cameroon. Participants were consecutively enrolled, among which 47 were people living with HIV and 31 were HIV-negative patients. SARS-CoV-2 antibody tests were performed on all participants. Overall, medical consultation was conducted. For HIV-positive participants only, viral load, antiretroviral regimen, duration of HIV infection, and duration of antiretroviral treatment were retrieved from medical records. Results We found an overall SARS-CoV-2 IgG seroprevalence of 42.31% within the study population, with a SARS-CoV-2 IgG seroprevalence of 44.6% for PLWH and 38.7% among those without HIV infection; no significant statistical difference was observed. Adjusting for sex, HIV status, and BCG vaccination, the odds of previous SARS-CoV-2 infection were higher among married persons in the study population. Sex, BCG vaccination, and HIV status were not found to be associated with SARS-CoV-2 IgG seropositivity. Conclusions Our findings support the lack of association between HIV status and susceptibility to SARS-CoV-2 infection. The ARV regimen, suppressed viral load, and Tenofovir boasted ARV regimen might not affect the body's immune response after exposure to SARS-CoV-2 among PLWH. Thus, if HIV is well treated, the susceptibility to COVID-19 in PLWH would be like that of the general population.
Collapse
Affiliation(s)
- Sylvie Kwedi Nolna
- Epidemiology Department, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Capacity for Leadership Excellence and Research (CLEAR), Yaoundé, Cameroon
| | - Miriam Niba
- Capacity for Leadership Excellence and Research (CLEAR), Yaoundé, Cameroon
| | - Cedric Djadda
- Capacity for Leadership Excellence and Research (CLEAR), Yaoundé, Cameroon
| | - Palmer Masumbe Netongo
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaounde I, Yaoundé, Cameroon
- School of Science, Navajo Technical University, Crownpoint, NM, United States
| |
Collapse
|
10
|
Jankovics I, Müller C, Gönczöl É, Visontai I, Varga I, Lőrincz M, Kuti D, Hasitz Á, Malik P, Ursu K, Bányász B, Sarkadi J, Dénes B. Asymptomatic and Mild SARS-CoV-2 Infections in a Hungarian Outpatient Cohort in the First Year of the COVID-19 Pandemic. Trop Med Infect Dis 2023; 8:tropicalmed8040204. [PMID: 37104330 PMCID: PMC10146718 DOI: 10.3390/tropicalmed8040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/14/2023] [Accepted: 03/25/2023] [Indexed: 04/28/2023] Open
Abstract
We aimed to estimate the proportion of the population infected with SARS-CoV-2 in the first year of the pandemic. The study population consisted of outpatient adults with mild or no COVID-19 symptoms and was divided into subpopulations with different levels of exposure. Among the subpopulation without known previous COVID-19 contacts, 4143 patients were investigated. Of the subpopulation with known COVID-19 contacts, 594 patients were investigated. IgG- and IgA-seroprevalence and RT-PCR positivity were determined in context with COVID-19 symptoms. Our results suggested no significant age-related differences between participants for IgG positivity but indicated that COVID-19 symptoms occurred most frequently in people aged between 20 and 29 years. Depending on the study population, 23.4-74.0% PCR-positive people (who were symptomless SARS-CoV-2 carriers at the time of the investigation) were identified. It was also observed that 72.7% of the patients remained seronegative for 30 days or more after their first PCR-positive results. This study hoped to contribute to the scientific understanding of the significance of asymptomatic and mild infections in the long persistence of the pandemic.
Collapse
Affiliation(s)
- István Jankovics
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
| | - Cecília Müller
- Department of Chief Medical Officer, National Public Health Centre, 1097 Budapest, Hungary
| | - Éva Gönczöl
- Division of Project Coordination, National Public Health Centre, 1097 Budapest, Hungary
| | - Ildikó Visontai
- Division of Project Coordination, National Public Health Centre, 1097 Budapest, Hungary
| | - István Varga
- Division of Project Coordination, National Public Health Centre, 1097 Budapest, Hungary
| | - Márta Lőrincz
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
| | - Dávid Kuti
- Division of Virology, Department of Reference Laboratory for Microbiology, National Public Health Center, 1097 Budapest, Hungary
| | - Ágnes Hasitz
- Family Doctor's Office, 2000 Szentendre, Hungary
| | - Péter Malik
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, 1143 Budapest, Hungary
| | - Krisztina Ursu
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, 1143 Budapest, Hungary
| | - Borbála Bányász
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, 1143 Budapest, Hungary
| | - Júlia Sarkadi
- Division of Virology, Department of Reference Laboratory for Microbiology, National Public Health Center, 1097 Budapest, Hungary
| | - Béla Dénes
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
| |
Collapse
|
11
|
Socan M, Prosenc K, Mrzel M. Seroprevalence of Anti-SARS-CoV-2 Antibodies Following the Omicron BA.1 Wave. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3665. [PMID: 36834360 PMCID: PMC9959557 DOI: 10.3390/ijerph20043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
We conducted a seroprevalence study using convenient residual sera samples from the Slovenian population collected after the end of the Omicron BA.1 pandemic wave. Serum samples were tested for spike glycoprotein (anti-S) and nucleocapsid protein (anti-N) antibodies. Participants' data regarding confirmed infection and vaccination was obtained from national registries. Anti-S antibodies were detected in 2439 (84.1%) of 2899 sera from persons aged 0-90 years, with the lowest prevalence in the 0-17 age group. The proportion of anti-N positives was the lowest in the ≥70 age group. The proportion of anti-N positives was significantly higher among participants with confirmed past infection and among those who had never been vaccinated. In participants who had not been notified as infected and who had never been vaccinated, the seroprevalence of anti-S and anti-N antibodies was 53% and 35.5%, respectively. From the time of serum collection to mid-November 2022, 445 participants (15.3%) tested positive for SARS-CoV-2, with higher odds in seronegative participants, participants in the 40-59 age group, and those without notified previous infection. Vaccination status and gender had no significant effects on infection risk. This study underlines the importance of serosurveys in understanding the development of the pandemic.
Collapse
Affiliation(s)
- Maja Socan
- National Institute of Public Health, 1000 Ljubljana, Slovenia
| | - Katarina Prosenc
- National Laboratory for Health, Food and Environment, 1000 Ljubljana, Slovenia
| | - Maja Mrzel
- National Institute of Public Health, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Port JR, Yinda CK, Riopelle JC, Weishampel ZA, Saturday TA, Avanzato VA, Schulz JE, Holbrook MG, Barbian K, Perry-Gottschalk R, Haddock E, Martens C, Shaia CI, Lambe T, Gilbert SC, van Doremalen N, Munster VJ. Infection- or vaccine mediated immunity reduces SARS-CoV-2 transmission, but increases competitiveness of Omicron in hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.29.502072. [PMID: 35982658 PMCID: PMC9387121 DOI: 10.1101/2022.07.29.502072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Omicron has demonstrated a competitive advantage over Delta in vaccinated people. To understand this, we designed a transmission chain experiment using naïve, intranasally (IN) or intramuscularly (IM) vaccinated, and previously infected (PI) hamsters. Vaccination and previous infection protected animals from disease and virus replication after Delta and Omicron dual challenge. A gradient in transmission blockage was observed: IM vaccination displayed moderate transmission blockage potential over three airborne chains (approx. 70%), whereas, IN vaccination and PI blocked airborne transmission in >90%. In naïve hamsters, Delta completely outcompeted Omicron within and between hosts after dual infection in onward transmission. Although Delta also outcompeted Omicron in the vaccinated and PI transmission chains, an increase in Omicron competitiveness was observed in these groups. This correlated with the increase in the strength of the humoral response against Delta, with the strongest response seen in PI animals. These data highlight the continuous need to assess the emergence and spread of novel variants in populations with pre-existing immunity and address the additional evolutionary pressure this may exert on the virus.
Collapse
Affiliation(s)
- Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jade C. Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Zachary A. Weishampel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A. Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kent Barbian
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl. I. Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|