1
|
Feng H, Sun Z, Han B, Xia H, Chen L, Tian C, Yan S, Shi Y, Yin J, Song W, Gong P, Wang S, Li Y. Miro2 sulfhydration by CBS/H 2S promotes human trophoblast invasion and migration via regulating mitochondria dynamics. Cell Death Dis 2024; 15:776. [PMID: 39461943 PMCID: PMC11513031 DOI: 10.1038/s41419-024-07167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Insufficient cytotrophoblast (CTB) migration and invasion into the maternal myometrium leads to pregnancy related complications like Intra-uterus Growth Restriction (IUGR), and pre-eclampsia (PE). We previously found that hydrogen sulfide (H2S) enhanced CTB migration without knowing the mechanism(s) and the pathophysiological significance. By studying human samples and cell line, we found that H2S levels were lower in PE patients' plasma; H2S synthetic enzyme cystathionine β-synthetase (CBS) was reduced in PE extravillious invasive trophoblasts. GYY4137 (H2S donor, 1 µM) promoted CBS/H2S translocation onto mitochondria, preserved mitochondria functions, enhanced cell invasion and migration. CBS knockdown hindered the above functions which were rescued by GYY4137, indicating the vital roles of CBS/H2S signal. Disturbance of mitochondria dynamics inhibited cell invasion and migration. The 185 and 504 cysteines of Mitochondrial Rho GTPase 2 (Miro2C185/C504) were highly sulfhydrated by H2S. Knockdown Miro2 or double mutation of Miro2C185/C504 to serine fragmented mitochondria, and inhibited cell invasion and migration which can't be rescued by H2S. The present study showed that human cytotrophoblast receives low dose H2S regulation; CBS/H2S sustained mitochondria functions via Miro2C185/C504 sulfhydration to enhance cytotrophoblast mobility. These findings established a new regulatory pathway for cytotrophoblast functions, and provided new targets for IUGR and PE.
Collapse
Affiliation(s)
- Hao Feng
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Zongxin Sun
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Department of Emergency, Affiliated Hospital of Chifeng University, Shifeng, 024001, China
| | - Baoshi Han
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Huitang Xia
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
| | - Lumei Chen
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Chunlei Tian
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Suhua Yan
- Department of Cardiology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Yugen Shi
- Department of Cardiology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Jie Yin
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250012, China
| | - Peipei Gong
- Department of Rehabilitation Medicine, the Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Shuanglian Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250012, China.
| | - Yan Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250012, China.
- Translational Medical Research Centre, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
2
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
3
|
Li Y, Liu Y, Mu C, Zhang C, Yu M, Tian Z, Deng D, Ma X. Magnolol-driven microbiota modulation elicits changes in tryptophan metabolism resulting in reduced skatole formation in pigs. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133423. [PMID: 38359760 DOI: 10.1016/j.jhazmat.2024.133423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024]
Abstract
Skatole of gut origin has garnered significant attention as a malodorous pollutant due to its escalating emissions, recalcitrance to biodegradation and harm to animal and human health. Magnolol is a health-promoting polyphenol with potential to considerably mitigate the skatole production in the intestines. To investigate the impact of magnolol and its underlying mechanism on the skatole formation, in vivo and in vitro experiments were conducted in pigs. Our results revealed that skatole concentrations in the cecum, colon, and faeces decreased by 58.24% (P = 0.088), 44.98% (P < 0.05) and 43.52% (P < 0.05), respectively, following magnolol supplementation. Magnolol supplementation significantly decreased the abundance of Lachnospira, Faecalibacterium, Paramuribaculum, Faecalimonas, Desulfovibrio, Bariatricus, and Mogibacterium within the colon (P < 0.05). Moreover, a strong positive correlation (P < 0.05) between skatole concentration and Desulfovibrio abundance was observed. Subsequent in silico studies showed that magnolol could dock well with indolepyruvate decarboxylase (IPDC) within Desulfovibrio. Further in vitro investigation unveiled that magnolol addition led to less indole-3-pyruvate diverted towards the oxidative skatole pathway by the potential docking of magnolol towards IPDC, thereby diminishing the conversion of substrate into skatole. Our findings offer novel targets and strategies for mitigating skatole emission from the source.
Collapse
Affiliation(s)
- Yuanfei Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China; Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China
| | - Yanchen Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China.
| |
Collapse
|
4
|
Barton LL, Duarte AG, Staicu LC. Genomic insight into iron acquisition by sulfate-reducing bacteria in microaerophilic environments. Biometals 2023; 36:339-350. [PMID: 35767096 DOI: 10.1007/s10534-022-00410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Historically, sulfate-reducing bacteria (SRB) have been considered to be strict anaerobes, but reports in the past couple of decades indicate that SRB tolerate exposure to O2 and can even grow in aerophilic environments. With the transition from anaerobic to microaerophilic conditions, the uptake of Fe(III) from the environment by SRB would become important. In evaluating the metabolic capability for the uptake of iron, the genomes of 26 SRB, representing eight families, were examined. All SRB reviewed carry genes (feoA and feoB) for the ferrous uptake system to transport Fe(II) across the plasma membrane into the cytoplasm. In addition, all of the SRB genomes examined have putative genes for a canonical ABC transporter that may transport ferric siderophore or ferric chelated species from the environment. Gram-negative SRB have additional machinery to import ferric siderophores and ferric chelated species since they have the TonB system that can work alongside any of the outer membrane porins annotated in the genome. Included in this review is the discussion that SRB may use the putative siderophore uptake system to import metals other than iron.
Collapse
Affiliation(s)
- Larry L Barton
- Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM, 87131, USA
| | - Americo G Duarte
- Instituto de Tecnologia Química E Biológica António Xavier/Universidade NOVA de Lisboa, Av. República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Lucian C Staicu
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
5
|
Karnachuk OV, Beletsky AV, Rakitin AL, Ikkert OP, Avakyan MR, Zyusman VS, Napilov A, Mardanov AV, Ravin NV. Antibiotic-Resistant Desulfovibrio Produces H2S from Supplements for Animal Farming. Microorganisms 2023; 11:microorganisms11040838. [PMID: 37110261 PMCID: PMC10146906 DOI: 10.3390/microorganisms11040838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Sulphate-reducing bacteria, primarily Desulfovibrio, are responsible for the active generation of H2S in swine production waste. The model species for sulphate reduction studies, Desulfovibrio vulgaris strain L2, was previously isolated from swine manure characterized by high rates of dissimilatory sulphate reduction. The source of electron acceptors in low-sulphate swine waste for the high rate of H2S formation remains uncertain. Here, we demonstrate the ability of the L2 strain to use common animal farming supplements including L-lysine-sulphate, gypsum and gypsum plasterboards as electron acceptors for H2S production. Genome sequencing of strain L2 revealed the presence of two megaplasmids and predicted resistance to various antimicrobials and mercury, which was confirmed in physiological experiments. Most of antibiotic resistance genes (ARG) are carried by two class 1 integrons located on the chromosome and on the plasmid pDsulf-L2-2. These ARGs, predicted to confer resistance to beta-lactams, aminoglycosides, lincosamides, sulphonamides, chloramphenicol and tetracycline, were probably laterally acquired from various Gammaproteobacteria and Firmicutes. Resistance to mercury is likely enabled by two mer operons also located on the chromosome and on pDsulf-L2-2 and acquired via horizontal gene transfer. The second megaplasmid, pDsulf-L2-1, encoded nitrogenase, catalase and type III secretion system suggesting close contact of the strain with intestinal cells in the swine gut. The location of ARGs on mobile elements allows us to consider D. vulgaris strain L2 as a possible vector transferring antimicrobials resistance determinants between the gut microbiote and microbial communities in environmental biotopes.
Collapse
|
6
|
Karnachuk OV, Panova IA, Panov VL, Ikkert OP, Kadnikov VV, Rusanov II, Avakyan MR, Glukhova LB, Lukina AP, Rakitin AV, Begmatov S, Beletsky AV, Pimenov NV, Ravin NV. Active Sulfate-Reducing Bacterial Community in the Camel Gut. Microorganisms 2023; 11:microorganisms11020401. [PMID: 36838366 PMCID: PMC9963290 DOI: 10.3390/microorganisms11020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The diversity and activity of sulfate-reducing bacteria (SRB) in the camel gut remains largely unexplored. An abundant SRB community has been previously revealed in the feces of Bactrian camels (Camelus bactrianus). This study aims to combine the 16S rRNA gene profiling, sulfate reduction rate (SRR) measurement with a radioactive tracer, and targeted cultivation to shed light on SRB activity in the camel gut. Fresh feces of 55 domestic Bactrian camels grazing freely on semi-arid mountain pastures in the Kosh-Agach district of the Russian Altai area were analyzed. Feces were sampled in early winter at an ambient temperature of -15 °C, which prevented possible contamination. SRR values measured with a radioactive tracer in feces were relatively high and ranged from 0.018 to 0.168 nmol S cm-3 day-1. The 16S rRNA gene profiles revealed the presence of Gram-negative Desulfovibrionaceae and spore-forming Desulfotomaculaceae. Targeted isolation allowed us to obtain four pure culture isolates belonging to Desulfovibrio and Desulforamulus. An active SRB community may affect the iron and copper availability in the camel intestine due to metal ions precipitation in the form of sparingly soluble sulfides. The copper-iron sulfide, chalcopyrite (CuFeS2), was detected by X-ray diffraction in 36 out of 55 analyzed camel feces. In semi-arid areas, gypsum, like other evaporite sulfates, can be used as a solid-phase electron acceptor for sulfate reduction in the camel gastrointestinal tract.
Collapse
Affiliation(s)
- Olga V. Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
- Correspondence:
| | - Inna A. Panova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Vasilii L. Panov
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Olga P. Ikkert
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia
| | - Igor I. Rusanov
- Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marat R. Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Lubov B. Glukhova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Anastasia P. Lukina
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Anatolii V. Rakitin
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Shahjahon Begmatov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia
| | - Nikolai V. Pimenov
- Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia
| |
Collapse
|
7
|
Iakhno S, Delogu F, Umu ÖCO, Kjos NP, Håkenåsen IM, Mydland LT, Øverland M, Sørum H. Longitudinal analysis of the faecal microbiome in pigs fed Cyberlindnera jadinii yeast as a protein source during the weanling period followed by a rapeseed- and faba bean-based grower-finisher diet. Anim Microbiome 2022; 4:62. [PMID: 36494755 PMCID: PMC9733224 DOI: 10.1186/s42523-022-00217-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The porcine gut microbiome is central to animal health and growth as well as it can be structurally or functionally reshaped by dietary interventions. The gut microbiota composition in relation to Cyberlindnera jadinii yeast as a protein source in a weanling diet was studied previously. Also, there is a mounting body of knowledge regarding the porcine gut microbiome composition in response to the use of rapeseed (Brassica napus subsp. napus) meal, and faba beans (Vicia faba) as protein sources during the growing/finishing period. However, there is limited data on how the porcine gut microbiome respond to a combination of C. jadinii yeast in the weanling phase and rapeseed meal and faba beans in the growing/finishing phase. This work investigated how the porcine faecal microbiome was changing in response to a novel yeast diet with a high inclusion of yeast proteins (40% of crude protein) in a weanling diet followed by a diet based on rapeseed meal and faba beans during the growing/finishing period. The faecal microbiomes of the weanling pigs fed yeast were more diverse with higher relative abundance of Firmicutes over Bacteroidetes compared with those of soybean meal-based diet fed weanlings. Reduced numbers of Prevotella in the yeast fed faecal microbiomes remained a microbiome characteristic up until two weeks after the yeast diet was changed to the rapeseed/faba bean growing finishing diet. A number of differentially abundant bacterial phylotypes along with distinct co-occurrence patterns observed during the growing/finishing period indicated the presence of a "carry-over" effect of the yeast weanling diet onto the faecal microbiomes of the grower/finisher pigs.
Collapse
Affiliation(s)
- Stanislav Iakhno
- grid.19477.3c0000 0004 0607 975XFaculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Francesco Delogu
- grid.16008.3f0000 0001 2295 9843Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Özgün C. O. Umu
- grid.19477.3c0000 0004 0607 975XFaculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Nils P. Kjos
- grid.19477.3c0000 0004 0607 975XFaculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ingrid M. Håkenåsen
- grid.19477.3c0000 0004 0607 975XFaculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Liv T. Mydland
- grid.19477.3c0000 0004 0607 975XFaculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Margareth Øverland
- grid.19477.3c0000 0004 0607 975XFaculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Henning Sørum
- grid.19477.3c0000 0004 0607 975XFaculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
8
|
A Clinical Outcome of the Anti-PD-1 Therapy of Melanoma in Polish Patients Is Mediated by Population-Specific Gut Microbiome Composition. Cancers (Basel) 2022; 14:cancers14215369. [PMID: 36358789 PMCID: PMC9653730 DOI: 10.3390/cancers14215369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The gut microbiota is considered a key player modulating the efficacy of immune checkpoint inhibitor therapy. The study investigated the association between the response to anti-PD-1 therapy and the baseline gut microbiome in a Polish cohort of melanoma patients, alongside selected agents modifying the microbiome. Sixty-four melanoma patients enrolled for the anti-PD-1 therapy, and ten healthy subjects were recruited. The response to the treatment was assessed according to the response evaluation criteria in solid tumors, and patients were classified as responders or non-responders. The association between selected extrinsic factors and response was investigated using questionnaire-based analysis and the metataxonomics of the microbiota. In the responders, the Bacteroidota to Firmicutes ratio was higher, and the richness was decreased. The abundance of Prevotella copri and Bacteroides uniformis was related to the response, whereas the non-responders’ gut microbiota was enriched with Faecalibacterium prausnitzii and Desulfovibrio intestinalis and some unclassified Firmicutes. Dietary patterns, including plant, dairy, and fat consumption as well as gastrointestinal tract functioning were significantly associated with the therapeutic effects of the therapy. The specific gut microbiota along with diet were found to be associated with the response to the therapy in the population of melanoma patients.
Collapse
|
9
|
Cai H, Cao X, Qin D, Liu Y, Liu Y, Hua J, Peng S. Gut microbiota supports male reproduction via nutrition, immunity, and signaling. Front Microbiol 2022; 13:977574. [PMID: 36060736 PMCID: PMC9434149 DOI: 10.3389/fmicb.2022.977574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota (GM) is a major component of the gastrointestinal tract. Growing evidence suggests that it has various effects on many distal organs including the male reproductive system in mammals. GM and testis form the gut-testis axis involving the production of key molecules through microbial metabolism or de novo synthesis. These molecules have nutrition, immunity, and hormone-related functions and promote the male reproductive system via the circulatory system. GM helps maintain the integral structure of testes and regulates testicular immunity to protect the spermatogenic environment. Factors damaging GM negatively impact male reproductive function, however, the related mechanism is unknown. Also, the correlation between GM and testis remains to be yet investigated. This review discusses the complex influence of GM on the male reproductive system highlighting the impact on male fertility.
Collapse
Affiliation(s)
- Hui Cai
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Xuanhong Cao
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yundie Liu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yang Liu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Sha Peng
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
- *Correspondence: Sha Peng,
| |
Collapse
|
10
|
Ni’matuzahroh, Affandi M, Fatimah, Trikurniadewi N, Khiftiyah AM, Sari SK, Abidin AZ, Ibrahim SNMM. Comparative study of gut microbiota from decomposer fauna in household composter using metataxonomic approach. Arch Microbiol 2022; 204:210. [DOI: 10.1007/s00203-022-02785-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|
11
|
Correa F, Luise D, Bosi P, Trevisi P. Weaning differentially affects the maturation of piglet peripheral blood and jejunal Peyer's patches. Sci Rep 2022; 12:1604. [PMID: 35102264 PMCID: PMC8803882 DOI: 10.1038/s41598-022-05707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The study aimed to assess how the post-weaning condition changes piglet peripheral blood (PB) and jejunal Peyer's patches (JPPs) as compared to the suckling period, and how these changes are associated with intestinal microbiota evolution. Sixteen pigs were slaughtered and sampled for PB, JPPs and jejunal content (JC) at weaning (26 days) or at 12 days fed on a pre-starter diet. The PB and JPP transcriptomes were analysed using mRNA-seq. The Gene Set Enrichment Analysis was used to demonstrate enriched gene clusters, depending on sampling time. Jejunal microbiota was profiled using 16S rRNA gene sequencing. Post-weaning JPPs were enriched for processes related to the activation of IFN-γ and major histocompatibility complex (MHC) class I antigen processing which clustered with the reduced abundance of the Weisella genus and Faecalibacterium prausnitzii in JC. The post-weaning microbiome differed from that seen in just-weaned pigs. For just-weaned PB, the enrichment of genes related to hemoglobin and the iron metabolism indicated the greater presence of reticulocytes and immature erythrocytes. The JPP genes involved in the I MHC and IFN-γ activations were markers of the post-weaning phase. Several genes attributable to reticulocyte and erythrocyte maturation could be interesting for testing the iron nutrition of piglets.
Collapse
Affiliation(s)
- Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
12
|
|
13
|
Microbiomes in the Intestine of Developing Pigs: Implications for Nutrition and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:161-176. [PMID: 34807442 DOI: 10.1007/978-3-030-85686-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The past decade has seen an expansion of studies on the role of gut microbiome in piglet nutrition and health. With the help of culture-independent sequencing techniques, the colonization of gut microbiota and their implication in physiology are being investigated in depth. Immediately after birth, the microbes begin to colonize following an age-dependent trajectory, which can be modified by maternal environment, diet, antibiotics, and fecal microbiota transplantation. The early-life gut microbiome is relatively simple but enriched with huge metabolic potential to utilize milk oligosaccharides and affect the epithelial function. After weaning, the gut microbiome develops towards a gradual adaptation to the introduction of solid food, with an enhanced ability to metabolize amino acids, fibers, and bile acids. Here we summarize the compositional and functional difference of the gut microbiome in the keystone developing phases, with a specific focus on the use of different nutritional approaches based on the phase-specific gut microbiome.
Collapse
|
14
|
Ramayo-Caldas Y, Zingaretti LM, Pérez-Pascual D, Alexandre PA, Reverter A, Dalmau A, Quintanilla R, Ballester M. Leveraging host-genetics and gut microbiota to determine immunocompetence in pigs. Anim Microbiome 2021; 3:74. [PMID: 34689834 PMCID: PMC8543910 DOI: 10.1186/s42523-021-00138-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The gut microbiota influences host performance playing a relevant role in homeostasis and function of the immune system. The aim of the present work was to identify microbial signatures linked to immunity traits and to characterize the contribution of host-genome and gut microbiota to the immunocompetence in healthy pigs. RESULTS To achieve this goal, we undertook a combination of network, mixed model and microbial-wide association studies (MWAS) for 21 immunity traits and the relative abundance of gut bacterial communities in 389 pigs genotyped for 70K SNPs. The heritability (h2; proportion of phenotypic variance explained by the host genetics) and microbiability (m2; proportion of variance explained by the microbial composition) showed similar values for most of the analyzed immunity traits, except for both IgM and IgG in plasma that was dominated by the host genetics, and the haptoglobin in serum which was the trait with larger m2 (0.275) compared to h2 (0.138). Results from the MWAS suggested a polymicrobial nature of the immunocompetence in pigs and revealed associations between pigs gut microbiota composition and 15 of the analyzed traits. The lymphocytes phagocytic capacity (quantified as mean fluorescence) and the total number of monocytes in blood were the traits associated with the largest number of taxa (6 taxa). Among the associations identified by MWAS, 30% were confirmed by an information theory network approach. The strongest confirmed associations were between Fibrobacter and phagocytic capacity of lymphocytes (r = 0.37), followed by correlations between Streptococcus and the percentage of phagocytic lymphocytes (r = -0.34) and between Megasphaera and serum concentration of haptoglobin (r = 0.26). In the interaction network, Streptococcus and percentage of phagocytic lymphocytes were the keystone bacterial and immune-trait, respectively. CONCLUSIONS Overall, our findings reveal an important connection between gut microbiota composition and immunity traits in pigs, and highlight the need to consider both sources of information, host genome and microbial levels, to accurately characterize immunocompetence in pigs.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, IRTA, Torre Marimón, 08140 Caldes de Montbui, Barcelona Spain
| | - Laura M. Zingaretti
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - David Pérez-Pascual
- Unité de Génétique des Biofilms, Institut Pasteur, UMR CNRS2001, Paris, France
| | | | - Antonio Reverter
- CSIRO Agriculture and Food, St. Lucia, Brisbane, QLD 4067 Australia
| | - Antoni Dalmau
- Animal Welfare Subprogram, IRTA, 17121 Monells, Girona Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, IRTA, Torre Marimón, 08140 Caldes de Montbui, Barcelona Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, IRTA, Torre Marimón, 08140 Caldes de Montbui, Barcelona Spain
| |
Collapse
|
15
|
Distribution of Sulfate-Reducing Bacteria in the Environment: Cryopreservation Techniques and Their Potential Storage Application. Processes (Basel) 2021. [DOI: 10.3390/pr9101843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are a heterogeneous group of anaerobic microorganisms that play an important role in producing hydrogen sulfide not only in the natural environment, but also in the gastrointestinal tract and oral cavity of animals and humans. The present review was written with the inclusion of 110 references including the time period from 1951 to 2021. The following databases were evaluated: Web of Science, Scopus and Google Scholar. The articles chosen to be included in the review were written mainly in the English and Czech languages. The molecular mechanisms of microbial cryoprotection differ depending on the environment where microorganisms were initially isolated. It was observed that the viability of microorganisms after cryopreservation is dependent on a number of factors, primarily colony age, amount of inoculum, cell size or rate of cooling, and their molecular inventory. Therefore, this paper is devoted to assessing the performance and suitability of various cryopreservation methods of intestinal bacteria, including molecular mechanisms of their protection. In order to successfully complete the cryopreservation process, selecting the correct laboratory equipment and cryopreservation methodology is important. Our analysis revealed that SRB should be stored in glass vials to help mitigate the corrosive nature of hydrogen sulfide, which can affect their physiology on a molecular level. Furthermore, it is recommended that their storage be performed in distilled water or in a suspension with a low salt concentration. From a molecular biological and bioengineering perspective, this contribution emphasizes the need to consider the potential impact associated with SRB in the medical, construction, and environmental sectors.
Collapse
|
16
|
Dell’Anno M, Reggi S, Caprarulo V, Hejna M, Sgoifo Rossi CA, Callegari ML, Baldi A, Rossi L. Evaluation of Tannin Extracts, Leonardite and Tributyrin Supplementation on Diarrhoea Incidence and Gut Microbiota of Weaned Piglets. Animals (Basel) 2021; 11:1693. [PMID: 34204108 PMCID: PMC8229630 DOI: 10.3390/ani11061693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of the dietary administration of a combination of Quebracho and Chestnut tannins, leonardite and tributyrin were evaluated in weaned piglets. A total of 168 weaned piglets (Landrace × Large White) were randomly allotted to two experimental groups (6 pens/group, 14 piglets/pen). Animals were fed a basal control diet (CTRL) and a treatment diet (MIX) supplemented with 0.75% tannin extracts, 0.25% leonardite and 0.20% tributyrin for 28 days. Individual body weight and feed intake were recorded weekly. Diarrhoea incidence was recorded by a faecal scoring scale (0-3; considering diarrhoea ≥ 2). At 0 and 28 days, faecal samples were obtained from four piglets/pen for microbiological and chemical analyses of faecal microbiota, which were then assessed by V3-V4 region amplification sequencing. At 28 days, blood from two piglets/pen was sampled to evaluate the serum metabolic profile. After 28 days, a reduction in diarrhoea incidence was observed in the MIX compared to CTRL group (p < 0.05). In addition, compared to CTRL, MIX showed a higher lactobacilli:coliform ratio and increased Prevotella and Fibrobacter genera presence (p < 0.01). The serum metabolic profile showed a decreased level of low-density lipoproteins in the treated group (p < 0.05). In conclusion, a combination of tannin extract, leonardite and tributyrin could decrease diarrhoea incidence and modulate the gut microbiota.
Collapse
Affiliation(s)
- Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Valentina Caprarulo
- Department of Molecular and Translational Medicine (DMMT), Università Degli Studi di Brescia, 25123 Brescia, Italy;
| | - Monika Hejna
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Carlo Angelo Sgoifo Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Maria Luisa Callegari
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| |
Collapse
|
17
|
Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility. Sci Rep 2021; 11:10720. [PMID: 34021225 PMCID: PMC8140134 DOI: 10.1038/s41598-021-90256-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
There is still a lack of understanding of H2S formation in agricultural waste, which leads to poor odour prevention and control. Microbial sulfate reduction is a major process contributing to sulfide formation in natural and technogenic environments with high sulfate and low oxygen concentration. Agricultural waste can be considered a low-sulfate system with no obvious input of oxidised sulfur compounds. The purpose of this study was to characterise a microbial community participating in H2S production and estimate the microbial sulfate reduction rate (SRR) in manure slurry from a large-scale swine finishing facility in Western Siberia. In a series of manure slurry microcosms, we identified bacterial consortia by 16S rRNA gene profiling and metagenomic analysis and revealed that sulfate-reducing Desulfovibrio were key players responsible for H2S production. The SRR measured with radioactive sulfate in manure slurry was high and comprised 7.25 nmol S cm-3 day-1. Gypsum may be used as a solid-phase electron acceptor for sulfate reduction. Another plausible source of sulfate is a swine diet, which often contains supplements in the form of sulfates, including lysine sulfate. Low-sulfur diet, manure treatment with iron salts, and avoiding gypsum bedding are possible ways to mitigate H2S emissions from swine manure.
Collapse
|
18
|
Kushkevych I, Hýžová B, Vítězová M, Rittmann SKMR. Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats. Int J Mol Sci 2021; 22:4007. [PMID: 33924516 PMCID: PMC8069399 DOI: 10.3390/ijms22084007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/01/2022] Open
Abstract
This paper is devoted to microscopic methods for the identification of sulfate-reducing bacteria (SRB). In this context, it describes various habitats, morphology and techniques used for the detection and identification of this very heterogeneous group of anaerobic microorganisms. SRB are present in almost every habitat on Earth, including freshwater and marine water, soils, sediments or animals. In the oil, water and gas industries, they can cause considerable economic losses due to their hydrogen sulfide production; in periodontal lesions and the colon of humans, they can cause health complications. Although the role of these bacteria in inflammatory bowel diseases is not entirely known yet, their presence is increased in patients and produced hydrogen sulfide has a cytotoxic effect. For these reasons, methods for the detection of these microorganisms were described. Apart from selected molecular techniques, including metagenomics, fluorescence microscopy was one of the applied methods. Especially fluorescence in situ hybridization (FISH) in various modifications was described. This method enables visual identification of SRB, determining their abundance and spatial distribution in environmental biofilms and gut samples.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Blanka Hýžová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Wien, Austria
| |
Collapse
|
19
|
Rodríguez-Gómez IM, Gómez-Laguna J, Ruedas-Torres I, Sánchez-Carvajal JM, Garrido-Medina ÁV, Roger-García G, Carrasco L. Melanosis Coli in Pigs Coincides With High Sulfate Content in Drinking Water. Vet Pathol 2021; 58:574-577. [PMID: 33590812 DOI: 10.1177/0300985821991565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Melanosis coli is a well-described condition in humans, characterized by the accumulation of lipofuscin-laden macrophages in the lamina propria of the colon, giving it a dark tone. An increased apoptosis rate of colonic epithelial cells appears to be the underlying pathogenesis. In pigs, oxidative damage has been proposed as one of the causes for melanosis coli. In this article, we report a series of cases of melanosis coli in pigs affecting several finishing units in the south of Spain. Large intestines had dark green to brown pigmentation of the mucosa. Histological, histochemical, and ultrastructural studies confirmed a high number of lipofuscin-laden macrophages in the lamina propria of the rectum and colon, which additionally stained positive for the apoptosis marker cleaved caspase-3. Of note, all affected finishing units utilized water supply with a high content of sulfates, which may be one of the causes for melanosis coli development in pigs.
Collapse
|
20
|
Löffler M, Wallerang KB, Venceslau SS, Pereira IAC, Dahl C. The Iron-Sulfur Flavoprotein DsrL as NAD(P)H:Acceptor Oxidoreductase in Oxidative and Reductive Dissimilatory Sulfur Metabolism. Front Microbiol 2020; 11:578209. [PMID: 33178160 PMCID: PMC7596348 DOI: 10.3389/fmicb.2020.578209] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
DsrAB-type dissimilatory sulfite reductase is a key enzyme of microbial sulfur-dependent energy metabolism. Sulfur oxidizers also contain DsrL, which is essential for sulfur oxidation in Allochromatium vinosum. This NAD(P)H oxidoreductase acts as physiological partner of oxidative-type rDsrAB. Recent analyses uncovered that DsrL is not confined to sulfur oxidizers but also occurs in (probable) sulfate/sulfur-reducing bacteria. Here, phylogenetic analysis revealed a separation into two major branches, DsrL-1, with two subgroups, and DsrL-2. When present in organisms with reductive-type DsrAB, DsrL is of type 2. In the majority of cases oxidative-type rDsrAB occurs with DsrL-1 but combination with DsrL-2-type enzymes is also observed. Three model DsrL proteins, DsrL-1A and DsrL-1B from the sulfur oxidizers A. vinosum and Chlorobaculum tepidum, respectively, as well as DsrL-2 from thiosulfate- and sulfur-reducing Desulfurella amilsii were kinetically characterized. DaDsrL-2 is active with NADP(H) but not with NAD(H) which we relate to a conserved YRR-motif in the substrate-binding domains of all DsrL-2 enzymes. In contrast, AvDsrL-1A has a strong preference for NAD(H) and the CtDsrL-1B enzyme is completely inactive with NADP(H). Thus, NAD+ as well as NADP+ are suitable in vivo electron acceptors for rDsrABL-1-catalyzed sulfur oxidation, while NADPH is required as electron donor for sulfite reduction. This observation can be related to the lower redox potential of the NADPH/NADP+ than the NADH/NAD+ couple under physiological conditions. Organisms with a rdsrAB and dsrL-1 gene combination can be confidently identified as sulfur oxidizers while predictions for organisms with other combinations require much more caution and additional information sources.
Collapse
Affiliation(s)
- Maria Löffler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Kai B Wallerang
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
21
|
Tretola M, Luciano A, Ottoboni M, Baldi A, Pinotti L. Influence of Traditional vs Alternative Dietary Carbohydrates Sources on the Large Intestinal Microbiota in Post-Weaning Piglets. Animals (Basel) 2019; 9:ani9080516. [PMID: 31374923 PMCID: PMC6719221 DOI: 10.3390/ani9080516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Nutritional and environmental changes result in significant physiological changes in pigs at the weaning stage. The post-weaning period is mainly characterized by low feed intake and feed efficiency, together with intestinal disturbances. Maximizing the energy intake is known to be critical for promoting growth in weaned piglets, and it is essential to formulate diets with highly digestible and absorbable nutrients/ingredients, as the degree of intestinal maturation is limited. The current challenge is to find new sustainable, effective, and simple carbohydrate sources to satisfy these conditions without producing detrimental effects on the gut ecosystem. In this research, processed and ready-to-eat food products that are no longer suitable for humans were tested, which have high potential as an alternative energy source for pig nutrition. The results demonstrated that replacing conventional ingredients with highly digestible and simple carbohydrate-rich ingredients in the diets of post-weaning piglets did not affect their growth. However, both the abundance and composition of the bacterial community in the large intestine changed. Thus, the results should be interpreted with caution, as they are case-specific, and when these alternative feed ingredients are used in the post-weaning period, their inclusion rate and their effect on microbiota must be carefully considered. Abstract In this study, common cereal grains were partially replaced by former foodstuffs products (FFPs) in post-weaning piglets’ diets, to investigate how these alternative ingredients influence the faecal microbiota in the post-weaning period. Twelve post-weaning piglets were housed for 16 days in individual pens and were then fed two diets: a standard wheat-barley-corn meal diet and a diet containing 30% FFPs, thus partially substituting conventional cereals. The growth performance was monitored and faecal microbiota was characterized by the next generation sequencing of the 16S rRNA gene. The results showed no detrimental effects on growth performance when FFPs were used. However, the FFP diet decreased the bacterial richness and evenness in the large intestine, while minor differences were observed in the taxa composition. The core microbiota composition was only slightly affected, and no differences between the two groups in the gut microbiota composition at the phylum level over time were observed. Thus, although these results should be interpreted with caution, as they are case-specific, FFPs can be potentially used as alternative carbohydrate sources in post-weaning piglets, but further investigations are necessary to clarify their impact on gut health when used for a longer period.
Collapse
Affiliation(s)
- Marco Tretola
- Department of Health, Animal Science and Food Safety, VESPA, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Alice Luciano
- Department of Health, Animal Science and Food Safety, VESPA, Università degli Studi di Milano, 20133 Milano, Italy
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, VESPA, Università degli Studi di Milano, 20133 Milano, Italy
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, VESPA, Università degli Studi di Milano, 20133 Milano, Italy
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, VESPA, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|