1
|
Shin Y, Kim M, Kim C, Jeon H, Koo J, Oh J, Shin S, Youn YS, Lim C, Oh KT. Development and Characterization of Olaparib-Loaded Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) for Pharmaceutical Applications. AAPS PharmSciTech 2024; 25:221. [PMID: 39317842 DOI: 10.1208/s12249-024-02927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
This study aims to enhance the solubility of Olaparib, classified as biopharmaceutical classification system (BCS) class IV due to its low solubility and bioavailability using a solid self-nanoemulsifying drug delivery system (S-SNEDDS). For this purpose, SNEDDS formulations were created using Capmul MCM as the oil, Tween 80 as the surfactant, and PEG 400 as the co-surfactant. The SNEDDS formulation containing olaparib (OLS-352), selected as the optimal formulation, showed a mean droplet size of 87.0 ± 0.4 nm and drug content of 5.53 ± 0.09%. OLS-352 also demonstrated anticancer activity against commonly studied ovarian (SK-OV-3) and breast (MCF-7) cancer cell lines. Aerosil® 200 and polyvinylpyrrolidone (PVP) K30 were selected as solid carriers, and S-SNEDDS formulations were prepared using the spray drying method. The drug concentration in S-SNEDDS showed no significant changes (98.4 ± 0.30%, 25℃) with temperature fluctuations during the 4-week period, demonstrating improved storage stability compared to liquid SNEDDS (L-SNEDDS). Dissolution tests under simulated gastric and intestinal conditions revealed enhanced drug release profiles compared to those of the raw drug. Additionally, the S-SNEDDS formulation showed a fourfold greater absorption in the Caco-2 assay than the raw drug, suggesting that S-SNEDDS could improve the oral bioavailability of poorly soluble drugs like olaparib, thus enhancing therapeutic outcomes. Furthermore, this study holds significance in crafting a potent and cost-effective pharmaceutical formulation tailored for the oral delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Mikyung Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Chaeyeon Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Hyewon Jeon
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jain Koo
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jimin Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Soyoung Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
- College of Pharmacy, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Chaemin Lim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
- College of Pharmacy, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Aoki D, Tabata T, Yanagida S, Nakamura T, Kondo E, Hamanishi J, Harano K, Hasegawa K, Hirasawa T, Hori K, Komiyama S, Matsuura M, Nakai H, Nakamura H, Sakata J, Takehara K, Takekuma M, Yokoyama Y, Kase Y, Sumino S, Soeda J, Kato A, Suri A, Okamoto A, Sugiyama T. Niraparib in Japanese patients with heavily pretreated, homologous recombination-deficient ovarian cancer: final results of a multicenter phase 2 study. J Gynecol Oncol 2024; 35:e114. [PMID: 39251349 PMCID: PMC11390254 DOI: 10.3802/jgo.2024.35.e114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE To evaluate the long-term efficacy and safety of niraparib in Japanese women with heavily pretreated ovarian cancer. METHODS This was the follow-up analysis of a phase 2, multicenter, open-label, single-arm study in Japanese women with homologous recombination-deficient, platinum-sensitive, relapsed, high-grade serous epithelial ovarian, fallopian tube, or primary peritoneal cancer who had completed 3-4 lines of chemotherapy and were poly(ADP-ribose) polymerase inhibitor naïve. Participants received niraparib (starting dose, 300 mg) once daily in continuous 28-day cycles until objective disease progression, unacceptable toxicity, or consent withdrawal. The primary endpoint was confirmed objective response rate (ORR), as assessed using Response Evaluation Criteria in Solid Tumors version 1.1. Safety evaluations included treatment-emergent adverse events (TEAEs). RESULTS 20 patients were enrolled in the study and included in both efficacy and safety analyses. Median total study duration was 759.5 days. Median dose intensity was 201.3 mg/day. Confirmed ORR was 60.0% (90% confidence interval [CI]=39.4-78.3); 2 patients had complete response and 10 patients had partial response. Median duration of response was 9.9 months (95% CI=3.9-26.9) and the disease control rate was 90.0% (95% CI=68.3-98.8). The most common TEAEs were anemia (n=15), nausea (n=12), and decreased platelet count (n=11). TEAEs leading to study drug dose reduction, interruption, or discontinuation were reported in 16 (80.0%), 15 (75.0%), and 2 patients (10.0%), respectively. CONCLUSION The long-term efficacy and safety profile of niraparib was consistent with previous findings in the equivalent population in non-Japanese patients. No new safety signals were identified. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03759600.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- Akasaka Sanno Medical Center, International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Tsutomu Tabata
- Department of Obstetrics and Gynecology, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoshi Yanagida
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshiaki Nakamura
- Department of Obstetrics and Gynecology, Kagoshima City Hospital, Kagoshima, Japan
| | - Eiji Kondo
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenichi Harano
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Takeshi Hirasawa
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Kensuke Hori
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Shinichi Komiyama
- Department of Obstetrics and Gynecology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Motoki Matsuura
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroko Nakamura
- Department of Obstetrics and Gynecology, Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Kure, Japan
| | - Jun Sakata
- Department of Gynecology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | - Kazuhiro Takehara
- Department of Gynecologic Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | | | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Yoichi Kase
- Clinical Science, Oncology Cell Therapy and Therapeutic Area Unit, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Shuuji Sumino
- Biostatistics, Japan Development Center, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Junpei Soeda
- Department of Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Ai Kato
- Department of Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Ajit Suri
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Toru Sugiyama
- Department of Gynecology, St. Mary's Hospital, Fukuoka, Japan
| |
Collapse
|
3
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
4
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Zhang Y, Liang L, Li Z, Huang Y, Jiang M, Zou B, Xu Y. Polyadenosine diphosphate-ribose polymerase inhibitors: advances, implications, and challenges in tumor radiotherapy sensitization. Front Oncol 2023; 13:1295579. [PMID: 38111536 PMCID: PMC10726039 DOI: 10.3389/fonc.2023.1295579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Polyadenosine diphosphate-ribose polymerase (PARP) is a key modifying enzyme in cells, which participates in single-strand break repair and indirectly affects double-strand break repair. PARP inhibitors have shown great potential in oncotherapy by exploiting DNA damage repair pathways, and several small molecule PARP inhibitors have been approved by the U.S. Food and Drug Administration for treating various tumor types. PARP inhibitors not only have significant antitumor effects but also have some synergistic effects when combined with radiotherapy; therefore they have potential as radiation sensitizers. Here, we reviewed the advances and implications of PARP inhibitors in tumor radiotherapy sensitization. First, we summarized the multiple functions of PARP and the mechanisms by which its inhibitors exert antitumor effects. Next, we discuss the immunomodulatory effects of PARP and its inhibitors in tumors. Then, we described the theoretical basis of using PARP inhibitors in combination with radiotherapy and outlined their importance in oncological radiotherapy. Finally, we reviewed the current challenges in this field and elaborated on the future applications of PARP inhibitors as radiation sensitizers. A comprehensive understanding of the mechanism, optimal dosing, long-term safety, and identification of responsive biomarkers remain key challenges to integrating PARP inhibition into the radiotherapy management of cancer patients. Therefore, extensive research in these areas would facilitate the development of precision radiotherapy using PARP inhibitors to improve patient outcomes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lijie Liang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, China
| | - Ming Jiang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zhou J, Du T, Wang X, Yao H, Deng J, Li Y, Chen X, Sheng L, Ji M, Xu B. Discovery of Quinazoline-2,4(1 H,3 H)-dione Derivatives Containing a Piperizinone Moiety as Potent PARP-1/2 Inhibitors─Design, Synthesis, In Vivo Antitumor Activity, and X-ray Crystal Structure Analysis. J Med Chem 2023; 66:14095-14115. [PMID: 37843892 DOI: 10.1021/acs.jmedchem.3c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
PARP-1/2 inhibitors have become an important therapeutic strategy for the treatment of HR-deficient tumors. However, discovery of new inhibitors with an improved and distinct pharmacological file still need enormous explorations. Herein, a series of novel highly potent PARP-1/2 inhibitors bearing an N-substituted piperazinone moiety were achieved. In particular, Cpd36 was identified as a distinct PARP inhibitor, showing remarkable enzymatic activity not only toward PARP-1 (IC50 = 0.94 nM) and PARP-2 (IC50 = 0.87 nM) but also toward PARP-7 (IC50 = 0.21 nM), as well as high selectivity over other PARP isoforms. Furthermore, Cpd36 was orally bioavailable and significantly repressed the tumor growth in both breast cancer and prostate cancer xenograft model. The crystal structures of Cpd36 within PARP-1 and PARP-2 together with the predicted binding mode within PARP-7 revealed its binding features and provided insightful information for further developing highly potent and selective PARP-1 and/or PARP-7 inhibitors.
Collapse
Affiliation(s)
- Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haiping Yao
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jialing Deng
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Yu P, Wang Y, Yuan D, Sun Y, Qin S, Li T. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer. Front Immunol 2023; 14:1276694. [PMID: 37936692 PMCID: PMC10626545 DOI: 10.3389/fimmu.2023.1276694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Ovarian cancer remains a challenging disease with limited treatment options and poor prognosis. The tumor microenvironment (TME) plays a crucial role in tumor growth, progression, and therapy response. One characteristic feature of the TME is the abnormal tumor vasculature, which is associated with inadequate blood perfusion, hypoxia, and immune evasion. Vascular normalization, a therapeutic strategy aiming to rectify the abnormal tumor vasculature, has emerged as a promising approach to reshape the TME, enhance antitumor immunity, and synergize with immunotherapy in ovarian cancer. This review paper provides a comprehensive overview of vascular normalization and its potential implications in ovarian cancer. In this review, we summarize the intricate interplay between anti-angiogenesis and immune modulation, as well as ICI combined with anti-angiogenesis therapy in ovarian cancer. The compelling evidence discussed in this review contributes to the growing body of knowledge supporting the utilization of combination therapy as a promising treatment paradigm for ovarian cancer, paving the way for further clinical development and optimization of this therapeutic approach.
Collapse
Affiliation(s)
- Ping Yu
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yaru Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dahai Yuan
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yunqin Sun
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Wang Y, Li K, Xu W, Gou S. Design, synthesis, and biological evaluation of a series of benzofuran[3,2-d]pyrimidine-4(3H)-one derivatives containing thiosemicarbazone analogs as novel PARP-1 inhibitors. Bioorg Chem 2023; 139:106759. [PMID: 37544273 DOI: 10.1016/j.bioorg.2023.106759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Poly ADP ribose polymerase-1 (PARP-1), one of the most important members of the PARP protein family, plays a crucial role in DNA damage repair, gene transcription, and apoptosis of cancer cells. In this work, benzofuran[3,2-d]pyrimidine-4(3H)-one was used as a framework to design and synthesize a series of novel PARP-1 inhibitors by introducing thiosemicarbazone or its derivatives into the scafford. Among all the target compounds, 19b and 19c were found to exhibit more potent inhibitory activity and higher selectivity against PARP-1 than Olaparib, especially the latter had an IC50 value of 0.026 μM against PARP-1 enzyme and a PARP-2/PARP-1 selectivity of 85.19-fold over Olapanib. Apart from strong cytotoxicity against the tested cancer cell lines, 19c was most sensitive to SK-OV-3 cells, with an IC50 value of 4.98 μM superior to Olaparib. Anti-cancer mechanism studies revealed that 19c could inhibit DNA single-strand breakage repair and aggravate DNA double-strand breakage by inhibiting PARP-1 activity, and promote the apoptosis of cancer cells through the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Yuanjiang Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Kun Li
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenqing Xu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
9
|
Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov 2023; 22:723-742. [PMID: 37550363 DOI: 10.1038/s41573-023-00749-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
Cell death is critical for the development and homeostasis of almost all multicellular organisms. Moreover, its dysregulation leads to diverse disease states. Historically, apoptosis was thought to be the major regulated cell death pathway, whereas necrosis was considered to be an unregulated form of cell death. However, research in recent decades has uncovered several forms of regulated necrosis that are implicated in degenerative diseases, inflammatory conditions and cancer. The growing insight into these regulated, non-apoptotic cell death pathways has opened new avenues for therapeutic targeting. Here, we describe the regulatory pathways of necroptosis, pyroptosis, parthanatos, ferroptosis, cuproptosis, lysozincrosis and disulfidptosis. We discuss small-molecule inhibitors of the pathways and prospects for future drug discovery. Together, the complex mechanisms governing these pathways offer strategies to develop therapeutics that control non-apoptotic cell death.
Collapse
Affiliation(s)
- Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol 2023; 16:100. [PMID: 37641116 PMCID: PMC10464091 DOI: 10.1186/s13045-023-01497-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody-drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Araujo-Abad S, Fuentes-Baile M, Rizzuti B, Bazán JF, Villamarin-Ortiz A, Saceda M, Fernández E, Vidal M, Abian O, Velazquez-Campoy A, de Juan Romero C, Neira JL. The intrinsically disordered, epigenetic factor RYBP binds to the citrullinating enzyme PADI4 in cancer cells. Int J Biol Macromol 2023; 246:125632. [PMID: 37399862 DOI: 10.1016/j.ijbiomac.2023.125632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
RYBP (Ring1 and YY 1 binding protein) is a multifunctional, intrinsically disordered protein (IDP), best described as a transcriptional regulator. It exhibits a ubiquitin-binding functionality, binds to other transcription factors, and has a key role during embryonic development. RYBP, which folds upon binding to DNA, has a Zn-finger domain at its N-terminal region. By contrast, PADI4 is a well-folded protein and it is one the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. As both proteins intervene in signaling pathways related to cancer development and are found in the same localizations within the cell, we hypothesized they may interact. We observed their association in the nucleus and cytosol in several cancer cell lines, by using immunofluorescence (IF) and proximity ligation assays (PLAs). Binding also occurred in vitro, as measured by isothermal titration calorimetry (ITC) and fluorescence, with a low micromolar affinity (~1 μM). AlphaFold2-multimer (AF2) results indicate that PADI4's catalytic domain interacts with the Arg53 of RYBP docking into its active site. As RYBP sensitizes cells to PARP (Poly (ADP-ribose) polymerase) inhibitors, we applied them in combination with an enzymatic inhibitor of PADI4 observing a change in cell proliferation, and the hampering of the interaction of both proteins. This study unveils for the first time the possible citrullination of an IDP, and suggests that this new interaction, whether it involves or not citrullination of RYBP, might have implications in cancer development and progression.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Centro de Biotecnología, Universidad Nacional de Loja, Avda. Pío Jaramillo Alvarado s/n, 110111 Loja, Ecuador
| | - María Fuentes-Baile
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche, Alicante, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - J Fernando Bazán
- ħ Bioconsulting, LLC, Stillwater, MN, USA; Unit for Structural Biology, Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | | | - Miguel Saceda
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche, Alicante, Spain
| | - Eduardo Fernández
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Centro de Investigación Biomédica en Red CIBER-BBN, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche, Alicante, Spain.
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
12
|
Kim YH, Kim SB, Choi SH, Nguyen TTL, Ahn SH, Moon KS, Cho KH, Sim TY, Heo EJ, Kim ST, Jung HS, Jee JP, Choi HG, Jang DJ. Development and Evaluation of Self-Microemulsifying Drug Delivery System for Improving Oral Absorption of Poorly Water-Soluble Olaparib. Pharmaceutics 2023; 15:1669. [PMID: 37376117 DOI: 10.3390/pharmaceutics15061669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this study is to develop and evaluate a self-microemulsifying drug delivery system (SMEDDS) to improve the oral absorption of poorly water-soluble olaparib. Through the solubility test of olaparib in various oils, surfactants and co-surfactants, pharmaceutical excipients were selected. Self-emulsifying regions were identified by mixing the selected materials at various ratios, and a pseudoternary phase diagram was constructed by synthesizing these results. The various physicochemical properties of microemulsion incorporating olaparib were confirmed by investigating the morphology, particle size, zeta potential, drug content and stability. In addition, the improved dissolution and absorption of olaparib were also confirmed through a dissolution test and a pharmacokinetic study. An optimal microemulsion was generated in the formulation of Capmul® MCM 10%, Labrasol® 80% and PEG 400 10%. The fabricated microemulsions were well-dispersed in aqueous solutions, and it was also confirmed that they were maintained well without any problems of physical or chemical stability. The dissolution profiles of olaparib were significantly improved compared to the value of powder. Associated with the high dissolutions of olaparib, the pharmacokinetic parameters were also greatly improved. Taken together with the results mentioned above, the microemulsion could be an effective tool as a formulation for olaparib and other similar drugs.
Collapse
Affiliation(s)
- Yong-Han Kim
- College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul 03722, Republic of Korea
| | - Se-Hee Choi
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Bio-Pharmaceutical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | | | - Sung-Hoon Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyung-Sun Moon
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kwan-Hyung Cho
- College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Tae-Yong Sim
- Department of Artificial Intelligence, Sejong University, Seoul 05006, Republic of Korea
| | - Eun-Ji Heo
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Bio-Pharmaceutical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung Tae Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - Hyun-Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong-Jin Jang
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
13
|
Schwenck J, Sonanini D, Cotton JM, Rammensee HG, la Fougère C, Zender L, Pichler BJ. Advances in PET imaging of cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00576-4. [PMID: 37258875 DOI: 10.1038/s41568-023-00576-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
Molecular imaging has experienced enormous advancements in the areas of imaging technology, imaging probe and contrast development, and data quality, as well as machine learning-based data analysis. Positron emission tomography (PET) and its combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a multimodality PET-CT or PET-MRI system offer a wealth of molecular, functional and morphological data with a single patient scan. Despite the recent technical advances and the availability of dozens of disease-specific contrast and imaging probes, only a few parameters, such as tumour size or the mean tracer uptake, are used for the evaluation of images in clinical practice. Multiparametric in vivo imaging data not only are highly quantitative but also can provide invaluable information about pathophysiology, receptor expression, metabolism, or morphological and functional features of tumours, such as pH, oxygenation or tissue density, as well as pharmacodynamic properties of drugs, to measure drug response with a contrast agent. It can further quantitatively map and spatially resolve the intertumoural and intratumoural heterogeneity, providing insights into tumour vulnerabilities for target-specific therapeutic interventions. Failure to exploit and integrate the full potential of such powerful imaging data may lead to a lost opportunity in which patients do not receive the best possible care. With the desire to implement personalized medicine in the cancer clinic, the full comprehensive diagnostic power of multiplexed imaging should be utilized.
Collapse
Affiliation(s)
- Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonathan M Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Department of Immunology, IFIZ Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany.
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
Yang S, Green A, Brown N, Robinson A, Senat M, Testino B, Dinulescu DM, Sridhar S. Sustained delivery of PARP inhibitor Talazoparib for the treatment of BRCA-deficient ovarian cancer. Front Oncol 2023; 13:1175617. [PMID: 37228496 PMCID: PMC10203577 DOI: 10.3389/fonc.2023.1175617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Background Ovarian cancer has long been known to be the deadliest cancer associated with the female reproductive system. More than 15% of ovarian cancer patients have a defective BRCA-mediated homologous recombination repair pathway that can be therapeutically targeted with PARP inhibitors (PARPi), such as Talazoparib (TLZ). The expansion of TLZ clinical approval beyond breast cancer has been hindered due to the highly potent systemic side effects resembling chemotherapeutics. Here we report the development of a novel TLZ-loaded PLGA implant (InCeT-TLZ) that sustainedly releases TLZ directly into the peritoneal (i.p.) cavity to treat patient-mimicking BRCA-mutated metastatic ovarian cancer (mOC). Methods InCeT-TLZ was fabricated by dissolving TLZ and PLGA in chloroform, followed by extrusion and evaporation. Drug loading and release were confirmed by HPLC. The in vivo therapeutic efficacy of InCeT-TLZ was carried out in a murine Brca2-/-p53R172H/-Pten-/- genetically engineered peritoneally mOC model. Mice with tumors were divided into four groups: PBS i.p. injection, empty implant i.p. implantation, TLZ i.p. injection, and InCeT-TLZ i.p. implantation. Body weight was recorded three times weekly as an indicator of treatment tolerance and efficacy. Mice were sacrificed when the body weight increased by 50% of the initial weight. Results Biodegradable InCeT-TLZ administered intraperitoneally releases 66 μg of TLZ over 25 days. In vivo experimentation shows doubled survival in the InCeT-TLZ treated group compared to control, and no significant signs of toxicity were visible histologically in the surrounding peritoneal organs, indicating that the sustained and local delivery of TLZ greatly maximized therapeutic efficacy and minimized severe clinical side effects. The treated animals eventually developed resistance to PARPi therapy and were sacrificed. To explore treatments to overcome resistance, in vitro studies with TLZ sensitive and resistant ascites-derived murine cell lines were carried out and demonstrated that ATR inhibitor and PI3K inhibitor could be used in combination with the InCeT-TLZ to overcome acquired PARPi resistance. Conclusion Compared to intraperitoneal PARPi injection, the InCeT-TLZ better inhibits tumor growth, delays the ascites formation, and prolongs the overall survival of treated mice, which could be a promising therapy option that benefits thousands of women diagnosed with ovarian cancer.
Collapse
Affiliation(s)
- Shicheng Yang
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Allen Green
- Department of Pathology, Division of Women’s and Perinatal Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Needa Brown
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Cancer Nanomedicine Co-ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Alexis Robinson
- Cancer Nanomedicine Co-ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, MA, United States
| | - Merline Senat
- Cancer Nanomedicine Co-ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, MA, United States
| | - Bryanna Testino
- Department of Pathology, Division of Women’s and Perinatal Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Cancer Nanomedicine Co-ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, MA, United States
| | - Daniela M. Dinulescu
- Department of Pathology, Division of Women’s and Perinatal Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Srinivas Sridhar
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Cancer Nanomedicine Co-ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
15
|
Pandya K, Scher A, Omene C, Ganesan S, Kumar S, Ohri N, Potdevin L, Haffty B, Toppmeyer DL, George MA. Clinical efficacy of PARP inhibitors in breast cancer. Breast Cancer Res Treat 2023; 200:15-22. [PMID: 37129747 DOI: 10.1007/s10549-023-06940-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
BRCA1 and BRCA2 are key tumor suppressor genes that are essential for the homologous recombination DNA repair pathway. Loss of function mutations in these genes result in hereditary breast and ovarian cancer syndromes, which comprise approximately 5% of cases. BRCA1/2 mutations are associated with younger age of diagnosis and increased risk of recurrences. The concept of synthetic lethality led to the development of PARP inhibitors which cause cell cytotoxicity via the inhibition of PARP1, a key DNA repair protein, in cells with germline BRCA1/2 mutations. Although still poorly understood, the most well-acknowledged proposed mechanisms of action of PARP1 inhibition include the inhibition of single strand break repair, PARP trapping, and the upregulation of non-homologous end joining. Olaparib and talazoparib are PARP inhibitors that have been approved for the management of HER2-negative breast cancer in patients with germline BRCA1/2 mutations. This review article highlights the clinical efficacy of PARP inhibitors in patients with HER2-negative breast cancer in early and advanced settings.
Collapse
Affiliation(s)
- Karan Pandya
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Alyssa Scher
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Coral Omene
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Shicha Kumar
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nisha Ohri
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lindsay Potdevin
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Bruce Haffty
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Deborah L Toppmeyer
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Mridula A George
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
16
|
Subhan MA, Parveen F, Shah H, Yalamarty SSK, Ataide JA, Torchilin VP. Recent Advances with Precision Medicine Treatment for Breast Cancer including Triple-Negative Sub-Type. Cancers (Basel) 2023; 15:2204. [PMID: 37190133 PMCID: PMC10137302 DOI: 10.3390/cancers15082204] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Breast cancer is a heterogeneous disease with different molecular subtypes. Breast cancer is the second leading cause of mortality in woman due to rapid metastasis and disease recurrence. Precision medicine remains an essential source to lower the off-target toxicities of chemotherapeutic agents and maximize the patient benefits. This is a crucial approach for a more effective treatment and prevention of disease. Precision-medicine methods are based on the selection of suitable biomarkers to envision the effectiveness of targeted therapy in a specific group of patients. Several druggable mutations have been identified in breast cancer patients. Current improvements in omics technologies have focused on more precise strategies for precision therapy. The development of next-generation sequencing technologies has raised hopes for precision-medicine treatment strategies in breast cancer (BC) and triple-negative breast cancer (TNBC). Targeted therapies utilizing immune checkpoint inhibitors (ICIs), epidermal growth factor receptor inhibitor (EGFRi), poly(ADP-ribose) polymerase inhibitor (PARPi), antibody-drug conjugates (ADCs), oncolytic viruses (OVs), glucose transporter-1 inhibitor (GLUT1i), and targeting signaling pathways are potential treatment approaches for BC and TNBC. This review emphasizes the recent progress made with the precision-medicine therapy of metastatic breast cancer and TNBC.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital Jhang 35200, Primary and Secondary Healthcare Department, Government of Punjab, Lahore 54000, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Janaína Artem Ataide
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, SP, Brazil
| | - Valdimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
17
|
Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, Rajmalani BA, Torchilin VP. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers (Basel) 2023; 15:cancers15072116. [PMID: 37046777 PMCID: PMC10093719 DOI: 10.3390/cancers15072116] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer that is difficult to treat due to its resistance to both radiation and chemotherapy. This resistance is largely due to the unique biology of GBM cells, which can evade the effects of conventional treatments through mechanisms such as increased resistance to cell death and rapid regeneration of cancerous cells. Additionally, the blood–brain barrier makes it difficult for chemotherapy drugs to reach GBM cells, leading to reduced effectiveness. Despite these challenges, there are several treatment options available for GBM. The standard of care for newly diagnosed GBM patients involves surgical resection followed by concurrent chemoradiotherapy and adjuvant chemotherapy. Emerging treatments include immunotherapy, such as checkpoint inhibitors, and targeted therapies, such as bevacizumab, that attempt to attack specific vulnerabilities in GBM cells. Another promising approach is the use of tumor-treating fields, a type of electric field therapy that has been shown to slow the growth of GBM cells. Clinical trials are ongoing to evaluate the safety and efficacy of these and other innovative treatments for GBM, intending to improve with outcomes for patients.
Collapse
Affiliation(s)
- Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital, Jhang 35200, Pakistan
| | - Janaína Artem Ataide
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
18
|
WGS Data Collections: How Do Genomic Databases Transform Medicine? Int J Mol Sci 2023; 24:ijms24033031. [PMID: 36769353 PMCID: PMC9917848 DOI: 10.3390/ijms24033031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
As a scientific community we assumed that exome sequencing will elucidate the basis of most heritable diseases. However, it turned out it was not the case; therefore, attention has been increasingly focused on the non-coding sequences that encompass 98% of the genome and may play an important regulatory function. The first WGS-based datasets have already been released including underrepresented populations. Although many databases contain pooled data from several cohorts, recently the importance of local databases has been highlighted. Genomic databases are not only collecting data but may also contribute to better diagnostics and therapies. They may find applications in population studies, rare diseases, oncology, pharmacogenetics, and infectious and inflammatory diseases. Further data may be analysed with Al technologies and in the context of other omics data. To exemplify their utility, we put a highlight on the Polish genome database and its practical application.
Collapse
|
19
|
Li T, Feng R, Chen B, Zhou J. EREG is a risk factor for the prognosis of patients with cervical cancer. Front Med (Lausanne) 2023; 10:1161835. [PMID: 37020674 PMCID: PMC10067667 DOI: 10.3389/fmed.2023.1161835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Background Cervical cancer continues to threaten women's health worldwide. Identifying critical oncogenic molecules is important to drug development and prognosis prediction for patients with cervical cancer. Recent studies have demonstrated that epiregulin (EREG) is upregulated in various cancer types, which contributes to cancer progression by triggering the EGFR signaling pathway. However, the role of EREG is still unclear. Methods In this study, we first conducted a comprehensive biological analysis to investigate the expression of EREG in cervical cancer. Then, we investigated the correlations between EREG expression level and clinicopathological features. In addition, we validated the effects of EREG expression on the proliferation and apoptosis of cervical cancer cells. Results Based on the public database, we found that the expression of EREG was higher in advanced cervical cancer samples. Survival analysis showed that EREG was a risk factor for the prognosis of cervical cancer. In vitro experiments demonstrated that EREG knockdown undermined proliferation and promoted apoptosis in cancer cells. Conclusion EREG plays a vital role in the progression of cervical cancer, which contributes to hyperactive cell proliferation and decreased cell apoptosis. It might be a valuable target for prognosis prediction and drug development for cervical cancer in the future.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruijing Feng
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Wuhan, China
| | - Bingxin Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jianwei Zhou
| |
Collapse
|
20
|
Mahadevan J, Jha A, Rudolph J, Bowerman S, Narducci D, Hansen AS, Luger K. Dynamics of endogenous PARP1 and PARP2 during DNA damage revealed by live-cell single-molecule imaging. iScience 2022; 26:105779. [PMID: 36594010 PMCID: PMC9804145 DOI: 10.1016/j.isci.2022.105779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/16/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
PARP1 contributes to genome architecture and DNA damage repair through its dynamic association with chromatin. PARP1 and PARP2 (PARP1/2) recognize damaged DNA and recruit the DNA repair machinery. Using single-molecule microscopy in live cells, we monitored the movement of PARP1/2 on undamaged and damaged chromatin. We identify two classes of freely diffusing PARP1/2 and two classes of bound PARP1/2. The majority (>60%) of PARP1/2 diffuse freely in both undamaged and damaged nuclei and in the presence of inhibitors of PARP1/2 used for cancer therapy (PARPi). Laser-induced DNA damage results in a small fraction of slowly diffusing PARP1 and PARP2 to become transiently bound. Treatment of cells with PARPi in the presence of DNA damage causes subtle changes in the dynamics of bound PARP1/2, but not the high levels of PARP1/2 trapping seen previously. Our results imply that next-generation PARPi could specifically target the small fraction of DNA-bound PARP1/2.
Collapse
Affiliation(s)
- Jyothi Mahadevan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Asmita Jha
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Domenic Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA,Corresponding author
| |
Collapse
|
21
|
Maybee DV, Psaras AM, Brooks TA, Ali MAM. RYBP Sensitizes Cancer Cells to PARP Inhibitors by Regulating ATM Activity. Int J Mol Sci 2022; 23:ijms231911764. [PMID: 36233063 PMCID: PMC9570458 DOI: 10.3390/ijms231911764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ring1 and YY1 Binding Protein (RYBP) is a member of the non-canonical polycomb repressive complex 1 (PRC1), and like other PRC1 members, it is best described as a transcriptional regulator. Previously, we showed that RYBP, along with other PRC1 members, is also involved in the DNA damage response. RYBP inhibits recruitment of breast cancer gene 1(BRCA1) complex to DNA damage sites through its binding to K63-linked ubiquitin chains. In addition, ataxia telangiectasia mutated (ATM) kinase serves as an important sensor kinase in early stages of DNA damage response. Here, we report that overexpression of RYBP results in inhibition in both ATM activity and recruitment to DNA damage sites. Cells expressing RYBP show less phosphorylation of the ATM substrate, Chk2, after DNA damage. Due to its ability to inhibit ATM activity, we find that RYBP sensitizes cancer cells to poly-ADP-ribose polymerase (PARP) inhibitors. Although we find a synergistic effect between PARP inhibitor and ATM inhibitor in cancer cells, this synergy is lost in cells expressing RYBP. We also show that overexpression of RYBP hinders cancer cell migration through, at least in part, ATM inhibition. We provide new mechanism(s) by which RYBP expression may sensitize cancer cells to DNA damaging agents and inhibits cancer metastasis.
Collapse
|
22
|
Enhanced Antitumoral Activity of Encapsulated BET Inhibitors When Combined with PARP Inhibitors for the Treatment of Triple-Negative Breast and Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14184474. [PMID: 36139634 PMCID: PMC9496913 DOI: 10.3390/cancers14184474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Poly (adenosine diphosphate ribose) polymerase inhibitors (PARPis) have demonstrated antitumoral activity in several cancers harbouring germline and somatic BRCA1/2 mutations. The widespread use of these agents in clinical practice is restricted by the development of acquired resistance due to the presence of compensatory pathways. A strategy to deal with this is the use of combination therapies with drugs that act synergistically against the tumour. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. However, this strategy is hampered by the poor pharmacokinetic profile and short half-life of BETis. In this work and as a proof of concept, we discuss the potential preclinical benefit provided by the combination of the PARPi olaparib and the BET inhibitor JQ1 encapsulated into nanoparticles for the treatment of BRCAness tumours. Abstract BRCA1/2 protein-deficient or mutated cancers comprise a group of aggressive malignancies. Although PARPis have shown considerably efficacy in their treatment, the widespread use of these agents in clinical practice is restricted by various factors, including the development of acquired resistance due to the presence of compensatory pathways. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. Due to the poor pharmacokinetic profile and short half-life, the first-in-class BETi JQ1 was loaded into newly developed nanocarrier formulations to improve the effectivity of olaparib for the treatment of BRCAness cancers. First, polylactide polymeric nanoparticles were generated by double emulsion. Moreover, liposomes were prepared by ethanol injection and evaporation solvent method. JQ1-loaded drug delivery systems display optimal hydrodynamic radii between 60 and 120 nm, with a very low polydispersity index (PdI), and encapsulation efficiencies of 92 and 16% for lipid- and polymeric-based formulations, respectively. Formulations show high stability and sustained release. We confirmed that all assayed JQ1 formulations improved antiproliferative activity compared to the free JQ1 in models of ovarian and breast cancers. In addition, synergistic interaction between JQ1 and JQ1-loaded nanocarriers and olaparib evidenced the ability of encapsulated JQ1 to enhance antitumoral activity of PARPis.
Collapse
|
23
|
Woll P, Gaunt P, Danson S, Steele N, Ahmed S, Mulatero C, Shah R, Bhosle J, Hodgkinson E, Watkins B, Billingham L. Olaparib as maintenance treatment in patients with chemosensitive small cell lung cancer (STOMP): A randomised, double-blind, placebo-controlled phase II trial. Lung Cancer 2022; 171:26-33. [PMID: 35872530 DOI: 10.1016/j.lungcan.2022.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Small cell lung cancer (SCLC) responds well to chemoradiotherapy but frequently relapses. Here, we evaluate activity and safety of the poly (adenosine diphosphate (ADP)-ribose) polymerase (PARP) inhibitor olaparib as maintenance treatment for patients with chemoresponsive SCLC. MATERIALS AND METHODS Eligible patients had complete or partial response to first line chemotherapy or chemoradiotherapy for SCLC. Patients were randomised 2:2:1:1 to olaparib 300 mg twice a day (BD), olaparib 200 mg three times a day (TDS), placebo BD or placebo TDS. The primary outcome was progression-free survival time (PFS). The trial design had 80% power to detect a 3-month difference in median PFS based on a one-sided 5% significance level. Secondary outcome measures included overall survival time (OS), adverse events and quality of life. ISRCTN 73164486, EudraCT 2010-021165-76. RESULTS 220 patients were randomised: 74 placebo, 73 olaparib BD, 73 olaparib TDS. Median PFS (90% confidence interval (CI)) was 2·5 (1·8, 3·7), 3·7 (3·1, 4·6) and 3·6 (2·8, 4·7) months in the placebo, olaparib BD and TDS arms, respectively. There was no significant difference in PFS between olaparib and placebo for either BD (Hazard Ratio (HR) (90%CI) 0·76 (0·57, 1·02), P = 0·125 or TDS 0·86, (0·64, 1·15), P = 0·402. Common adverse events on olaparib were fatigue, nausea, anaemia, vomiting and anorexia. Of 214 patients who discontinued treatment before 24 months, toxicity was the reason cited for 66 (18 placebo, 24 olaparib BD, 24 olaparib TDS). CONCLUSION This trial does not provide sufficient evidence that either the BD or TDS regimen for maintenance olaparib monotherapy improves PFS or OS in an unselected SCLC population to warrant further research. Toxicity for olaparib was similar to other studies.
Collapse
Affiliation(s)
- Penella Woll
- University of Sheffield, Sheffield, United Kingdom; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Piers Gaunt
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Danson
- University of Sheffield, Sheffield, United Kingdom; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom.
| | - Nicola Steele
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Samreen Ahmed
- University Hospitals of Leicester, Leicester, United Kingdom
| | | | - Riyaz Shah
- Maidstone Hospital, Maidstone, United Kingdom
| | | | | | - Ben Watkins
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Lucinda Billingham
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Pacelli A, Zarrad F, Fendler WP, Herrmann K, Nader M. Fully Automated, High-Dose Radiosynthesis of [18F]PARPi. Pharmaceuticals (Basel) 2022; 15:ph15070865. [PMID: 35890164 PMCID: PMC9317788 DOI: 10.3390/ph15070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
[18F]PARPi is currently undergoing clinical trials as a PET tracer for many applications. However, only manual radiosynthesis was reported; this has several drawbacks, including an increased risk of contamination from the operator, and the need to limit the starting activity. The automation of the previously reported protocol for [18F]PARPi synthesis is challenging, as it requires transferring microvolumes of reagents, which many platforms cannot accommodate. We report a revised, high yield, and automated protocol for the radiosynthesis of [18F]PARPi, with final doses of over 20 GBq.
Collapse
|
25
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Congregado B, Rivero I, Osmán I, Sáez C, Medina López R. PARP Inhibitors: A New Horizon for Patients with Prostate Cancer. Biomedicines 2022; 10:1416. [PMID: 35740437 PMCID: PMC9220343 DOI: 10.3390/biomedicines10061416] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
The introduction of PARP inhibitors (PARPi) in prostate cancer is a milestone and provides a pathway to hope in fighting this disease. It is the first time that drugs, based on the concept of synthetic lethality, have been approved for prostate cancer. In addition, it is also the first time that genetic mutation tests have been included in the therapeutic algorithm of this disease, representing a significant step forward for precision and personalized treatment of prostate cancer. The objectives of this review are: (1) understanding the mechanism of action of PARPi in monotherapy and combinations; (2) gaining insights on patient selection for PARPi; (3) exposing the pivotal studies that have allowed its approval, and; (4) offering an overview of the ongoing trials. Nevertheless, many unsolved questions remain, such as the number of patients who could potentially benefit from PARPi, whether to use PARPi in monotherapy or in combination, and when is the best time to use them in advanced or localized disease. To answer these and other questions, many clinical trials are underway. Some of them have recently demonstrated promising results that may favor the introduction of new combinations in metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Belén Congregado
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.R.); (I.O.); (R.M.L.)
| | - Inés Rivero
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.R.); (I.O.); (R.M.L.)
| | - Ignacio Osmán
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.R.); (I.O.); (R.M.L.)
| | - Carmen Sáez
- Department of Pathology, Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Rafael Medina López
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.R.); (I.O.); (R.M.L.)
| |
Collapse
|
27
|
Pérez-Peiró M, Duran X, Yélamos J, Barreiro E. Attenuation of Muscle Damage, Structural Abnormalities, and Physical Activity in Respiratory and Limb Muscles following Treatment with Rucaparib in Lung Cancer Cachexia Mice. Cancers (Basel) 2022; 14:cancers14122894. [PMID: 35740560 PMCID: PMC9221243 DOI: 10.3390/cancers14122894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Muscle wasting and cachexia are common in patients with cancer. Several mechanisms underlie muscle physiological and structural alterations in cancer-induced cachexia. Poly (ADPribose) polymerases (PARPs) are involved in muscle metabolism and in cancer. Selective inhibitors of PARP activity improve muscle function and structure. This study sought to investigate whether rucaparib (PARP inhibitor) may attenuate muscle damage in a mouse model of lung-cancer-induced cachexia. Rucaparib was administered to cancer-cachectic mice. Physiological and biological parameters were determined in the respiratory and limb muscles of the animals. In cancer cachexia mice compared to non-cachexia controls, body weight and body weight gain, muscle weight, limb strength, physical activity, and muscle fiber size significantly declined, while levels of PARP activity, plasma troponin I, muscle damage, and proteolytic and autophagy markers increased. Treatment with rucaparib elicited a significant improvement in body weight gain, tumor size and weight, physical activity, muscle damage, troponin I, and proteolytic and autophagy levels. Abstract Overactivation of poly (ADPribose) polymerases (PARPs) is involved in cancer-induced cachexia. We hypothesized that the PARP inhibitor rucaparib may improve muscle mass and reduce damage in cancer cachexia mice. In mouse diaphragm and gastrocnemius (LP07 lung adenocarcinoma) treated with PARP inhibitor (rucaparib,150 mg/kg body weight/24 h for 20 days) and in non-tumor control animals, body, muscle, and tumor weights; tumor area; limb muscle strength; physical activity; muscle structural abnormalities, damage, and phenotype; PARP activity; and proteolytic and autophagy markers were quantified. In cancer cachexia mice compared to non-cachexia controls, body weight and body weight gain, muscle weight, limb strength, physical activity, and muscle fiber size significantly declined, while levels of PARP activity, plasma troponin I, muscle damage, and proteolytic and autophagy markers increased. Treatment with the PARP inhibitor rucaparib elicited a significant improvement in body weight gain, tumor size and weight, physical activity, muscle damage, troponin I, and proteolytic and autophagy levels. PARP pharmacological inhibition did not exert any significant improvements in muscle weight, fiber size, or limb muscle strength. Treatment with rucaparib, however, improved muscle damage and structural abnormalities and physical activity in cancer cachexia mice. These findings suggest that rucaparib exerts its beneficial effects on cancer cachexia performance through the restoration of muscle structure.
Collapse
Affiliation(s)
- Maria Pérez-Peiró
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Department of Medicine and Life Sciences (MELIS), Hospital del Mar, Medical Research Institute (IMIM), Parc de Salut Mar, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Duran
- Scientific, Statistics and Technical Department, Hospital del Mar, Medical Research Institute (IMIM), Parc de Salut Mar, 08003 Barcelona, Spain;
| | - José Yélamos
- Cancer Research Program, Hospital del Mar, Medical Research Institute (IMIM), 08003 Barcelona, Spain;
| | - Esther Barreiro
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Department of Medicine and Life Sciences (MELIS), Hospital del Mar, Medical Research Institute (IMIM), Parc de Salut Mar, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
28
|
McSwain LF, Parwani KK, Shahab SW, Hambardzumyan D, MacDonald TJ, Spangle JM, Kenney AM. Medulloblastoma and the DNA Damage Response. Front Oncol 2022; 12:903830. [PMID: 35747808 PMCID: PMC9209741 DOI: 10.3389/fonc.2022.903830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children with standard of care consisting of surgery, radiation, and chemotherapy. Recent molecular profiling led to the identification of four molecularly distinct MB subgroups – Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4. Despite genomic MB characterization and subsequent tumor stratification, clinical treatment paradigms are still largely driven by histology, degree of surgical resection, and presence or absence of metastasis rather than molecular profile. Patients usually undergo resection of their tumor followed by craniospinal radiation (CSI) and a 6 month to one-year multi-agent chemotherapeutic regimen. While there is clearly a need for development of targeted agents specific to the molecular alterations of each patient, targeting proteins responsible for DNA damage repair could have a broader impact regardless of molecular subgrouping. DNA damage response (DDR) protein inhibitors have recently emerged as targeted agents with potent activity as monotherapy or in combination in different cancers. Here we discuss the molecular underpinnings of genomic instability in MB and potential avenues for exploitation through DNA damage response inhibition.
Collapse
Affiliation(s)
- Leon F. McSwain
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Kiran K. Parwani
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Shubin W. Shahab
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Dolores Hambardzumyan
- Departments of Neurosurgery and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Jennifer M. Spangle
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Anna Marie Kenney
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- *Correspondence: Anna Marie Kenney,
| |
Collapse
|
29
|
Huang CC, Tseng LM. ASO Author Reflections: Broaden the Targeted Population of Synthetic Lethality for Taiwanese Breast Cancer. Ann Surg Oncol 2022; 29:3591-3592. [PMID: 35391610 DOI: 10.1245/s10434-022-11407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/18/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors selectively cause the failure of DNA single-stranded break (SSB) repair but do not affect double-stranded break (DSB) repair. Furthermore, antitumor activities have been reported for breast cancer, with germline BRCA1/2 mutations. The prevalence of germline BRCA1/2 mutations never exceed one-tenth; beyond BRCA1/2, genes recurrently altered (more than 5%) in the homologous repair pathway are ARID1A, PALB2, and PTEN. Altered homologous recombination repair genes can total up to one-quarter based on different definitions, and the potential of PARP inhibitors will be elucidated when further studies unraveling the impact of individual homologous recombination genes are conducted.
Collapse
Affiliation(s)
- Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
30
|
Rudolph J, Jung K, Luger K. Inhibitors of PARP: Number crunching and structure gazing. Proc Natl Acad Sci U S A 2022; 119:e2121979119. [PMID: 35259019 PMCID: PMC8931346 DOI: 10.1073/pnas.2121979119] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
SignificancePARP is an important target in the treatment of cancers, particularly in patients with breast, ovarian, or prostate cancer that have compromised homologous recombination repair (i.e., BRCA-/-). This review about inhibitors of PARP (PARPi) is for readers interested in the development of next-generation drugs for the treatment of cancer, providing insights into structure-activity relationships, in vitro vs. in vivo potency, PARP trapping, and synthetic lethality.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Karen Jung
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
- HHMI, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
31
|
Huang CC, Tsai YF, Liu CY, Lien PJ, Lin YS, Chao TC, Feng CJ, Chen YJ, Lai JI, Phan NN, Hsu CY, Chiu JH, Tseng LM. Prevalence of Tumor Genomic Alterations in Homologous Recombination Repair Genes Among Taiwanese Breast Cancers. Ann Surg Oncol 2022; 29:3578-3590. [PMID: 35226219 DOI: 10.1245/s10434-022-11347-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Deleterious germline BRCA1/2 mutations are among the most highly pathogenic variants in hereditary breast and ovarian cancer syndrome. Recently, genes implicated in homologous recombination repair (HRR) pathways have been investigated extensively. Defective HRR genes may indicate potential clinical benefits from PARP (poly ADP ribose polymerase) inhibitors beyond BRCA1/2 mutations. METHODS We evaluated the prevalence of BRCA1/2 mutations as well as alterations in HRR genes with targeted sequencing. A total of 648 consecutive breast cancer samples were assayed, and HRR genes were evaluated for prevalence in breast cancer tissues. RESULTS Among 648 breast cancers, there were 17 truncating and 2 missense mutations in BRCA1 and 45 truncating and 1 missense mutation in BRCA2, impacting 3% and 5% of the study population (collectively altered in 6%) with cooccurrence of BRCA1/2 in 7 breast cancers. On the other hand, HRR genes were altered in 122 (19%) breast cancers, while TBB (Talazoparib Beyond BRCA) trial-interrogated genes (excluding BRCA1/2) were mutated in 107 (17%) patients. Beyond BRCA1/2, the most prevalent HRR mutant genes came from ARID1A (7%), PALB2 (7%), and PTEN (6%). Collectively, 164 (25%) of the 648 Taiwanese breast cancer samples harbored at least one mutation among HRR genes. CONCLUSIONS The prevalence of BRCA1/2 mutations was far below one tenth, while the prevalence of HRR mutations was much higher and approached one-fourth among Taiwanese breast cancers. Further opportunities to take advantage of defective HRR genes for breast cancer treatment should be sought for the realization of precision medicine.
Collapse
Affiliation(s)
- Chi-Cheng Huang
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Fang Tsai
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Ju Lien
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Shu Lin
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Division of Chemotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Jung Feng
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Jen Chen
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiun-I Lai
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nam Nhut Phan
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yi Hsu
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jen-Hwey Chiu
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. .,School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
32
|
SFPQ-ABL1 and BCR-ABL1 utilize different signalling networks to drive B-cell acute lymphoblastic leukaemia. Blood Adv 2022; 6:2373-2387. [PMID: 35061886 PMCID: PMC9006296 DOI: 10.1182/bloodadvances.2021006076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
SFPQ-ABL1 is localized to the nuclear compartment and is a relatively weaker driver of cellular proliferation compared with BCR-ABL1. SFPQ-ABL1 and BCR-ABL1 activate distinct signaling networks, both of which converge on inhibiting apoptosis and driving proliferation.
Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile resembling Philadelphia chromosome–positive ALL (Ph+ ALL) in the absence of BCR-ABL1. Tyrosine kinase–activating fusions, some involving ABL1, are recurrent drivers of Ph-like ALL and are targetable with tyrosine kinase inhibitors (TKIs). We identified a rare instance of SFPQ-ABL1 in a child with Ph-like ALL. SFPQ-ABL1 expressed in cytokine-dependent cell lines was sufficient to transform cells and these cells were sensitive to ABL1-targeting TKIs. In contrast to BCR-ABL1, SFPQ-ABL1 localized to the nuclear compartment and was a weaker driver of cellular proliferation. Phosphoproteomics analysis showed upregulation of cell cycle, DNA replication, and spliceosome pathways, and downregulation of signal transduction pathways, including ErbB, NF-κB, vascular endothelial growth factor (VEGF), and MAPK signaling in SFPQ-ABL1–expressing cells compared with BCR-ABL1–expressing cells. SFPQ-ABL1 expression did not activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling and was associated with phosphorylation of G2/M cell cycle proteins. SFPQ-ABL1 was sensitive to navitoclax and S-63845 and promotes cell survival by maintaining expression of Mcl-1 and Bcl-xL. SFPQ-ABL1 has functionally distinct mechanisms by which it drives ALL, including subcellular localization, proliferative capacity, and activation of cellular pathways. These findings highlight the role that fusion partners have in mediating the function of ABL1 fusions.
Collapse
|
33
|
Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer 2022; 21:28. [PMID: 35062949 PMCID: PMC8780712 DOI: 10.1186/s12943-021-01489-2] [Citation(s) in RCA: 545] [Impact Index Per Article: 272.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Antibodies targeting programmed cell death protein-1 (PD-1) or its ligand PD-L1 rescue T cells from exhausted status and revive immune response against cancer cells. Based on the immense success in clinical trials, ten α-PD-1 (nivolumab, pembrolizumab, cemiplimab, sintilimab, camrelizumab, toripalimab, tislelizumab, zimberelimab, prolgolimab, and dostarlimab) and three α-PD-L1 antibodies (atezolizumab, durvalumab, and avelumab) have been approved for various types of cancers. Nevertheless, the low response rate of α-PD-1/PD-L1 therapy remains to be resolved. For most cancer patients, PD-1/PD-L1 pathway is not the sole speed-limiting factor of antitumor immunity, and it is insufficient to motivate effective antitumor immune response by blocking PD-1/PD-L1 axis. It has been validated that some combination therapies, including α-PD-1/PD-L1 plus chemotherapy, radiotherapy, angiogenesis inhibitors, targeted therapy, other immune checkpoint inhibitors, agonists of the co-stimulatory molecule, stimulator of interferon genes agonists, fecal microbiota transplantation, epigenetic modulators, or metabolic modulators, have superior antitumor efficacies and higher response rates. Moreover, bifunctional or bispecific antibodies containing α-PD-1/PD-L1 moiety also elicited more potent antitumor activity. These combination strategies simultaneously boost multiple processes in cancer-immunity cycle, remove immunosuppressive brakes, and orchestrate an immunosupportive tumor microenvironment. In this review, we summarized the synergistic antitumor efficacies and mechanisms of α-PD-1/PD-L1 in combination with other therapies. Moreover, we focused on the advances of α-PD-1/PD-L1-based immunomodulatory strategies in clinical studies. Given the heterogeneity across patients and cancer types, individualized combination selection could improve the effects of α-PD-1/PD-L1-based immunomodulatory strategies and relieve treatment resistance.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
34
|
Landry AP, Wang JZ, Nassiri F, Patil V, Gao A, Zadeh G. BAP1-deficient meningioma presenting with trabecular architecture and cytokeratin expression: a report of two cases and review of the literature. J Clin Pathol 2021; 76:315-319. [PMID: 34907091 DOI: 10.1136/jclinpath-2021-207952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/04/2021] [Indexed: 11/04/2022]
Abstract
AIMS BRCA (BReast CAncer gene)-associated protein 1 (BAP1), encoded by the BAP1 gene, a tumour suppressor that is lost in several cancers. Importantly, such mutations have been shown to be susceptible to poly (ADP-ribose) polymerase (PARP) inhibition in preclinical studies, offering hope for targeted therapy. While rare, BAP1 loss has been observed in a subset of rhabdoid and papillary meningioma and is associated with earlier recurrence. We seek to add to the literature on this rare disease and advocate for more routine BAP1 testing. METHODS We present a report of two cases of BAP1-deficient meningioma and review the available literature on this rare entity. RESULTS Both cases present with a distinct trabecular architecture without rhabdoid or papillary features. Interestingly, both also presented with radiographic and histopathological findings unusual for meningioma. While immunohistochemistry and genetic sequencing confirmed BAP1 loss, DNA methylation analysis was required to confirm the final diagnosis. CONCLUSIONS We suggest that BAP1-deficient meningioma should be considered in the differential diagnosis of extra-axial central nervous system (CNS) tumours with atypical imaging or histopathological features and that BAP1 loss may constitute a clinically important meningioma subtype with opportunities for targeted therapy.
Collapse
Affiliation(s)
- Alexander P Landry
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Justin Z Wang
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Vikas Patil
- Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Andrew Gao
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Li X, Zhang J, Yang Y, Hong H, Han L, Zhu N. Reductive cyclization of o-phenylenediamine with CO2 and BH3NH3 to synthesize 1H-benzoimidazole derivatives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Mehta P, Bothra SJ. PARP inhibitors in hereditary breast and ovarian cancer and other cancers: A review. ADVANCES IN GENETICS 2021; 108:35-80. [PMID: 34844716 DOI: 10.1016/bs.adgen.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There has been a paradigm shift in the management of cancer, with the immense progress in cancer genomics. More and more targeted therapies are becoming available by the day and personalized medicine is becoming popular with specific drugs being designed for selected subgroups of patients. One such new class of targeted drugs in the armamentarium is Poly ADP Ribose Polymerase (PARP) inhibitors (PARPi), which inhibit the enzyme PARP, thus interfering with DNA repair. This strategy utilizes a pre-existing genomic lesion in tumors with homologous recombination repair defects (including BRCA mutations), weakening tumor cells further by blocking the alternate pathway of DNA repair. In this review, we discuss in detail, the evolution, genetics, mechanism of action, mechanism of resistance, indications of use of PARP inhibitors, as well as combination with other agents and future directions.
Collapse
Affiliation(s)
- Prashant Mehta
- Department of Medical Oncology, Hematology and BMT, Asian Institute of Medical Sciences, Faridabad, India.
| | - Sneha J Bothra
- Department of Medical Oncology, Action Cancer Institute, New Delhi, India
| |
Collapse
|
37
|
Zhou J, Ji M, Wang X, Zhao H, Cao R, Jin J, Li Y, Chen X, Sheng L, Chen X, Xu B. Discovery of Quinazoline-2,4(1 H,3 H)-dione Derivatives Containing 3-Substituted Piperizines as Potent PARP-1/2 Inhibitors─Design, Synthesis, In Vivo Antitumor Activity, and X-ray Crystal Structure Analysis. J Med Chem 2021; 64:16711-16730. [PMID: 34748333 DOI: 10.1021/acs.jmedchem.1c01522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Inhibiting PARP-1/2 offered an important arsenal for cancer treatments via interfering with DNA repair of cancer cells. Novel PARP-1/2 inhibitors were designed by capitalizing on methyl- or ethyl-substituted piperizine ring to capture the characteristics of adenine-ribose binding site (AD site), and their unique binding features were revealed by the cocrystal structures of compounds 4 and 6 in PARP-1. The investigation on structure-activity relationship resulted in compounds 24 and 32 with high enzymatic potency, binding selectivity, and significantly longer residence time for PARP-1 over PARP-2 (compound 24, PARP-1: IC50 = 0.51 nM, PARP-2: IC50 = 23.11 nM; compound 32, PARP-1: IC50 = 1.31 nM, PARP-2: IC50 = 15.63 nM). Furthermore, compound 24 was determined to be an attractive candidate molecule, which possessed an acceptable pharmacokinetic profile and produced remarkable antitumor activity in both breast cancer xenograft model and glioblastoma orthotopic model in mice, either alone or in combination treatment.
Collapse
Affiliation(s)
- Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hailong Zhao
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ran Cao
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xianhong Chen
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Beijing Collab Pharma Co., Ltd, Beijing 102600, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
38
|
Bakr A, Hey J, Sigismondo G, Liu CS, Sadik A, Goyal A, Cross A, Iyer RL, Müller P, Trauernicht M, Breuer K, Lutsik P, Opitz C, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ID3 promotes homologous recombination via non-transcriptional and transcriptional mechanisms and its loss confers sensitivity to PARP inhibition. Nucleic Acids Res 2021; 49:11666-11689. [PMID: 34718742 PMCID: PMC8599806 DOI: 10.1093/nar/gkab964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The inhibitor of DNA-binding 3 (ID3) is a transcriptional regulator that limits interaction of basic helix-loop-helix transcription factors with their target DNA sequences. We previously reported that ID3 loss is associated with mutational signatures linked to DNA repair defects. Here we demonstrate that ID3 exhibits a dual role to promote DNA double-strand break (DSB) repair, particularly homologous recombination (HR). ID3 interacts with the MRN complex and RECQL helicase to activate DSB repair and it facilitates RAD51 loading and downstream steps of HR. In addition, ID3 promotes the expression of HR genes in response to ionizing radiation by regulating both chromatin accessibility and activity of the transcription factor E2F1. Consistently, analyses of TCGA cancer patient data demonstrate that low ID3 expression is associated with impaired HR. The loss of ID3 leads to sensitivity of tumor cells to PARP inhibition, offering new therapeutic opportunities in ID3-deficient tumors.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Chun-Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ashish Goyal
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Imperial College London, London, SW7 2AZ, UK
| | - Ramya Lakshmana Iyer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Patrick Müller
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Max Trauernicht
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Kersten Breuer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, INF672, 69120, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Boehi F, Manetsch P, Hottiger MO. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 2021; 7:104. [PMID: 34725336 PMCID: PMC8560908 DOI: 10.1038/s41421-021-00323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.
Collapse
Affiliation(s)
- Flurina Boehi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Cancer Biology PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Yu R, Sun T, Zhang X, Li Z, Xu Y, Liu K, Shi Y, Wu X, Shao Y, Kong L. TP53 Co-Mutational Features and NGS-Calibrated Immunohistochemistry Threshold in Gastric Cancer. Onco Targets Ther 2021; 14:4967-4978. [PMID: 34629881 PMCID: PMC8493115 DOI: 10.2147/ott.s321949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose TP53 is the most frequently mutated gene in gastric cancer and it can be potentially used for gastric cancer diagnosis and screening. However, standardized clinical approaches that could accurately and cost-effectively detect TP53 mutations in gastric cancer are largely lagged behind. Patients and Methods We conducted next-generation sequencing (NGS) analysis of 425 cancer-related genes in 42 gastric cancer patients in our cohort. A 1313-patient cohort derived from the cBioPortal database was used for validation. We performed immunohistochemistry (IHC) staining with four commonly used p53 antibodies, and the NGS results were used as the gold standard to optimize the IHC threshold for each antibody. Results By NGS analysis, we found that around 80% of gastric cancer patients in our cohort harbored TP53 alterations. Genetic alterations of BRCA1/2 or KMT2B were mostly exclusive with TP53 mutations, so were the MSI status or low grade of tumors. These results were further validated using the data from cBioPortal. We then used the NGS-derived TP53 status to optimize four commonly used IHC antibodies for detecting TP53 mutations. We showed that all antibodies could achieve more than 93% accuracy when proper IHC positivity thresholds were used, especially for the SP5 antibody that could reach 100% sensitivity and specificity with the 20% threshold. Conclusion Our results indicated that exclusivity between TP53 and BRCA mutations could be potentially used as a cost-effective way to predict BRCA status. Also, setting proper IHC thresholds for each specific antibody is critical to accurately detect TP53 mutations and facilitate disease diagnosis.
Collapse
Affiliation(s)
- Ruili Yu
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Tingyi Sun
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xianwei Zhang
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Xu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Kaihua Liu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Yuqian Shi
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China.,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
41
|
Immunological Response to COVID-19 Vaccination in Ovarian Cancer Patients Receiving PARP Inhibitors. Vaccines (Basel) 2021; 9:vaccines9101148. [PMID: 34696256 PMCID: PMC8541338 DOI: 10.3390/vaccines9101148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Objective: Vaccination for SARS-CoV-2 provides significant protection against the infection in the general population. However, limited data exist for cancer patients under systemic therapy. Methods: In this cohort, we prospectively enrolled cancer patients treated with PARPi as well as healthy volunteers in order to study the kinetics of anti-SARS-CoV-2 antibodies (NAbs) after COVID-19 vaccination. Baseline demographics, co-morbidities, and NAb levels were compared between the two groups. Results: The results of the cohort of 36 patients receiving PARP inhibitors are presented here. Despite no new safety issues being noticed, their levels of SARS-CoV-2 neutralizing antibodies were significantly lower in comparison to matched healthy volunteers up to day 30 after the second dose. Conclusions: These results suggest that maintaining precautions against COVID-19 is essential for cancer patients and should be taken into consideration for the patients under treatment, while further exploration is needed to reduce the uncertainty of SARS-CoV-2 immunity among cancer patients under treatment.
Collapse
|
42
|
Zhang X, Wang Y, A G, Qu C, Chen J. Pan-Cancer Analysis of PARP1 Alterations as Biomarkers in the Prediction of Immunotherapeutic Effects and the Association of Its Expression Levels and Immunotherapy Signatures. Front Immunol 2021; 12:721030. [PMID: 34531868 PMCID: PMC8438309 DOI: 10.3389/fimmu.2021.721030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023] Open
Abstract
Background Poly (ADP-ribose) polymerases-1 (PARP1) alterations are associated with PARP1 inhibitor resistance, regulating the function of Treg cells and PDL1 expression in tumor cells, and high PARP1 expression is significantly associated with aggressive behavior and chemotherapeutic resistance in several tumors. However, a comprehensive analysis of the predictive values of PARP1 alteration for immune checkpoint inhibitor (ICI) effectiveness in tumors remains unclear, and the associations between its expression and immunotherapy signatures also needs to be explored further. Methods We performed some analyses with the cBioPortal online database (https://www.cbioportal.org), TIMER2.0 (Tumor Immune Estimation Resource 2.0, http://timer.comp-genomics.org/) and TCGA database (https://xenabrowser.net or https://portal.gdc.cancer.gov/). Survival analysis was conducted using Kaplan–Meier method, and the associations between PARP1 transcription levels and immune checkpoint gene expression, the number of neoantigens, tumor mutation burden (TMB) levels, and microsatellite instability (MSI) event are analyzed by spearman correlation analysis and visualization of those mentioned above is performed using R, version 3.6.3 (http://www.r-project.org/). Results We found that PARP1 was altered in 1338 (2.9%) out of 45604 patients with diverse tumors, which was associated with markedly higher TMB levels in a variety of tumors (P < 0.01). Impressively, patients with PARP1 alterations in advanced tumors showed better overall survival (OS) in the ICI-treated cohort (P = 0.016). PARP1 altered group was substantially correlated with higher immune infiltrates across most tumors, including CD8+ T cells in colorectal adenocarcinoma (P = 0.0061), endometrial carcinoma (P = 0.0033), stomach cancer (P = 0.033), and cervical cancer (P = 0.026), respectively. The PARP1 altered group showed high expression in transcription (P < 0.001), and higher expression of LAG3, PDCD1, CTLA-4, and TIGIT (P < 0.05). Higher PARP1 expression was present in 27 tumor compared the corresponding normal tissues using the GTEx and TCGA databases and it had a worse OS in several tumors (P < 0.05). Further, high PARP1 expression was significantly associated with six immune cells (B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells) in most tumors, including colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), and liver hepatocellular carcinoma (LIHC) (P < 0.05). In particular, CD8+T cell infiltration, was also positively correlated with high PARP1 expression in bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), kidney renal papillary cell carcinoma (KIRP), brain lower grade glioma (LGG), LIHC, pancreatic adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), testicular germ cell tumors (TGCT), thymoma (THYM), uterine corpus endometrial carcinoma (UCEC), uveal melanoma (UVM) (P < 0.05, no data shown), and PARP1 expression was significantly positively correlated with the transcription levels of some of the 47 immune checkpoint genes, such as CD274, CTLA4, and PDCD1 in several tumors, including PAAD, LIHC, KIRC, HNSC, and BLCA (P < 0.05). A significant positive association between PARP1 expression and the number of immune neoantigen was found within COAD, KIRC, lung adenocarcinoma (LUAD), PAAD and THYM (P < 0.05), and there were also significantly positive correlations between PARP1 expression and TMB in many tumors like adrenocortical carcinoma (ACC), COAD, kidney chromophobe (KICH), LGG, LUAD, READ, skin cutaneous melanoma (SKCM) and stomach adenocarcinoma (STAD) (P < 0.05). In addition, high PARP1 expression was positively associated with microsatellite instability event in COAD, KIRP, BRCA, glioblastoma multiforme (GBM), lung squamous cell carcinoma (LUSC), LGG, READ, UCEC, SKCM and LUAD (P < 0.05). Conclusions Our results highlight the significance of PARP1 alterations as pan-cancer predictive biomarkers for ICI treatment, and its expression levels seem to be correlated with the status of immunotherapy-associated signatures, thus may be a promising biomarker for predicting ICI response in several tumors.
Collapse
Affiliation(s)
- Xinke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingying Wang
- Department of Scientific Research Management, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Gari A
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunhua Qu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiewei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
43
|
Hodgson D, Lai Z, Dearden S, Barrett JC, Harrington EA, Timms K, Lanchbury J, Wu W, Allen A, Senkus E, Domchek SM, Robson M. Analysis of mutation status and homologous recombination deficiency in tumors of patients with germline BRCA1 or BRCA2 mutations and metastatic breast cancer: OlympiAD. Ann Oncol 2021; 32:1582-1589. [PMID: 34500047 DOI: 10.1016/j.annonc.2021.08.2154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Presence of a germline BRCA1 and/or BRCA2 mutation (gBRCAm) may sensitize tumors to poly(ADP-ribose) polymerase (PARP) inhibition via inactivation of the second allele, resulting in gene-specific loss of heterozygosity (gsLOH) and homologous recombination deficiency (HRD). Here we explore whether tissue sample testing provides an additional route to germline testing to inform treatment selection for PARP inhibition. PATIENTS AND METHODS In this prespecified exploratory analysis, BRCA1 and/or BRCA2 mutations in blood samples (gBRCAm) and tumor tissue (tBRCAm) were analyzed from patients with human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer and known gBRCAm, enrolled in the phase III OlympiAD trial. The frequency and nature of tBRCAm, HRD score status [HRD-positive (score ≥42) versus HRD-negative (score <42) using the Myriad myChoice® CDx test] and rates of gsLOH were determined, and their impact on clinical efficacy (objective response rate and progression-free survival) was explored. RESULTS Tissue samples from 161/302 patients yielded tBRCAm, HRD and gsLOH data for 143 (47%), 129 (43%) and 125 (41%) patients, respectively. Concordance between gBRCAm and tBRCAm was 99%. gsLOH was observed in 118/125 (94%) patients [BRCA1m, 73/76 (96%); BRCA2m, 45/49 (92%)]. A second mutation event was recorded for two of the three BRCA1m patients without gsLOH. The incidence of HRD-negative was 16% (21/129) and was more common for BRCA2m (versus BRCA1m) and/or for hormone receptor-positive (versus triple-negative) disease. Olaparib antitumor activity was observed irrespective of HRD score. CONCLUSIONS gBRCAm identified in patients with HER2-negative metastatic breast cancer by germline testing in blood was also identified by tumor tissue testing. gsLOH was common, indicating a high rate of biallelic inactivation in metastatic breast cancer. Olaparib activity was seen regardless of gsLOH status or HRD score. Thus, additional tumor testing to inform PARP inhibitor treatment selection may not be supported for these patients.
Collapse
Affiliation(s)
| | | | | | | | | | - K Timms
- Myriad Genetics, Salt Lake City, USA
| | | | - W Wu
- AstraZeneca, Gaithersburg, USA
| | - A Allen
- AstraZeneca, Gaithersburg, USA
| | - E Senkus
- Medical University of Gdańsk, Gdańsk, Poland
| | - S M Domchek
- Basser Center, University of Pennsylvania, Philadelphia, USA
| | - M Robson
- Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
44
|
Mu S, Palmer D, Fitzgerald R, Andreu‐Vieyra C, Zhang H, Tang Z, Su D, Sahasranaman S. Human Mass Balance and Metabolite Profiling of [ 14 C]-Pamiparib, a Poly (ADP-Ribose) Polymerase Inhibitor, in Patients With Advanced Cancer. Clin Pharmacol Drug Dev 2021; 10:1108-1120. [PMID: 33876576 PMCID: PMC8453745 DOI: 10.1002/cpdd.943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
Pamiparib, a selective poly (ADP-ribose) polymerase 1/2 inhibitor, demonstrated tolerability and antitumor activity in patients with solid tumors at 60 mg orally twice daily. This phase 1 open-label study (NCT03991494; BGB-290-106) investigated the absorption, metabolism, and excretion (AME) of 60 mg [14 C]-pamiparib in 4 patients with solid tumors. The mass balance in excreta, blood, and plasma radioactivity and plasma pamiparib concentration were determined along with metabolite profiles in plasma, urine, and feces. Unchanged pamiparib accounted for the most plasma radioactivity (67.2% ± 10.2%). Pamiparib was rapidly absorbed with a median time to maximum plasma concentration (Cmax ) of 2.00 hours (range, 1.00-3.05 hours). After reaching Cmax , pamiparib declined in a biphasic manner, with a geometric mean terminal half-life (t1/2 ) of 28.7 hours. Mean cumulative [14 C]-pamiparib excretion was 84.7% ± 3.5%. Pamiparib was mainly cleared through metabolism, primarily via N-oxidation and oxidation of the pyrrolidine ring. A dehydrogenated oxidative product (M3) was the most abundant metabolite in biosamples. A mean of 2.11% and 1.11% of [14 C]-pamiparib was excreted as unchanged pamiparib in feces and urine, respectively, indicating near-complete absorption and low renal clearance of parent drug. Cytochrome P450 (CYP) phenotyping demonstrated CYP2C8 and CYP3A involvement in pamiparib metabolism. These findings provide an understanding of pamiparib AME mechanisms and potential drug-drug interaction liability.
Collapse
Affiliation(s)
- Song Mu
- BeiGene USA, Inc.San MateoCaliforniaUSA
| | - Daniel Palmer
- Liverpool CR UK/NIHR Experimental Cancer Medicine CentreUniversity of Liverpool and Clatterbridge Cancer CentreLiverpoolUK
| | - Richard Fitzgerald
- NIHR Royal Liverpool and Broadgreen Clinical Research FacilityLiverpool University HospitalsLiverpoolUK
| | | | | | | | - Dan Su
- BeiGene (Beijing) Co., Ltd.BeijingChina
| | | |
Collapse
|
45
|
Grzelak D. Treatment Options for Germline BRCA-Mutated Metastatic Pancreatic Adenocarcinoma. J Adv Pract Oncol 2021; 12:488-491. [PMID: 34430059 PMCID: PMC8299794 DOI: 10.6004/jadpro.2021.12.5.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of death from cancer in both men and women. Pancreatic cancer is typically diagnosed at an advanced stage and has an overall 5-year survival of approximately 9.3%. The National Comprehensive Cancer Network recommends both germline testing (testing cells such as blood or skin that do not have cancer) as well as somatic testing (testing cells with cancer) for pathogenic variants that may increase the risk of pancreatic cancer. In December 2019, the U.S. Food & Drug Administration approved the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib for maintenance treatment of germline BRCA-mutated metastatic pancreatic adenocarcinoma in individuals who have completed at least 16 weeks of progression-free treatment with first-line platinum-based chemotherapy. This new therapy option has implications not only for treatment but also for the role of the oncology advanced practitioner as genetic testing becomes more prevalent in the care of patients with cancer.
Collapse
|
46
|
Spiegel JO, Van Houten B, Durrant JD. PARP1: Structural insights and pharmacological targets for inhibition. DNA Repair (Amst) 2021; 103:103125. [PMID: 33940558 PMCID: PMC8206044 DOI: 10.1016/j.dnarep.2021.103125] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1, also known as ADPRT1) is a multifunctional human ADP-ribosyltransferase. It plays a role in multiple DNA repair pathways, including the base excision repair (BER), non-homologous end joining (NHEJ), homologous recombination (HR), and Okazaki-fragment processing pathways. In response to DNA strand breaks, PARP1 covalently attaches ADP-ribose moieties to arginine, glutamate, aspartate, cysteine, lysine, and serine acceptor sites on both itself and other proteins. This signal recruits DNA repair proteins to the site of DNA damage. PARP1 binding to these sites enhances ADP-ribosylation via allosteric communication between the distant DNA binding and catalytic domains. In this review, we provide a general overview of PARP1 and emphasize novel potential approaches for pharmacological inhibition. Clinical PARP1 inhibitors bind the catalytic pocket, where they directly interfere with ADP-ribosylation. Some inhibitors may further enhance potency by "trapping" PARP1 on DNA via an allosteric mechanism, though this proposed mode of action remains controversial. PARP1 inhibitors are used clinically to treat some cancers, but resistance is common, so novel pharmacological approaches are urgently needed. One approach may be to design novel small molecules that bind at inter-domain interfaces that are essential for PARP1 allostery. To illustrate these points, this review also includes instructive videos showing PARP1 structures and mechanisms.
Collapse
Affiliation(s)
- Jacob O Spiegel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Bennett Van Houten
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
47
|
PARP inhibitor olaparib has a potential to increase the effectiveness of electrochemotherapy in BRCA1 mutated breast cancer in mice. Bioelectrochemistry 2021; 140:107832. [PMID: 33984694 DOI: 10.1016/j.bioelechem.2021.107832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
Electrochemotherapy (ECT), a local therapy, has different effectiveness among tumor types. In breast cancer, its effectiveness is low; therefore, combined therapies are needed. The aim of our study was to combine ECT with PARP inhibitor olaparib, which could inhibit the repair of bleomycin or cisplatin induced DNA damage and potentiate the effectiveness of ECT. The effects of combined therapy were studied in BRCA1 mutated (HCC1937) and non-mutated (HCC1143) triple negative breast cancer cell lines. Therapeutic effectiveness was studied in 2D and 3D cell cultures and in vivo on subcutaneous HCC1937 tumor model in mice. The underlying mechanism of combined therapy was determined with the evaluation of γH2AX foci. Combined therapy of ECT with bleomycin and olaparib potentiated the effectiveness of ECT in BRCA1 mutated HCC1937, but not in non-mutated HCC1143 cells. The combined therapy had a synergistic effect, which was due to the increased number of DNA double strand breaks. Addition of olaparib to ECT with bleomycin in vivo in HCC1937 tumor model had only minimal effect, indicating repetitive olaparib treatment would be needed. This study demonstrates that DNA repair inhibiting drugs, like olaparib, have the potential to increase the effectiveness of ECT with bleomycin.
Collapse
|
48
|
Özdoğan M, Papadopoulou E, Tsoulos N, Tsantikidi A, Mariatou VM, Tsaousis G, Kapeni E, Bourkoula E, Fotiou D, Kapetsis G, Boukovinas I, Touroutoglou N, Fassas A, Adamidis A, Kosmidis P, Trafalis D, Galani E, Lypas G, Orhan B, Tansan S, Özatlı T, Kırca O, Çakır O, Nasioulas G. Comprehensive tumor molecular profile analysis in clinical practice. BMC Med Genomics 2021; 14:105. [PMID: 33853586 PMCID: PMC8045191 DOI: 10.1186/s12920-021-00952-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tumor molecular profile analysis by Next Generation Sequencing technology is currently widely applied in clinical practice and has enabled the detection of predictive biomarkers of response to targeted treatment. In parallel with targeted therapies, immunotherapies are also evolving, revolutionizing cancer therapy, with Programmed Death-ligand 1 (PD-L1), Microsatellite instability (MSI), and Tumor Mutational Burden (TMB) analysis being the biomarkers employed most commonly. METHODS In the present study, tumor molecular profile analysis was performed using a 161 gene NGS panel, containing the majority of clinically significant genes for cancer treatment selection. A variety of tumor types have been analyzed, including aggressive and hard to treat cancers such as pancreatic cancer. Besides, the clinical utility of immunotherapy biomarkers (TMB, MSI, PD-L1), was also studied. RESULTS Molecular profile analysis was conducted in 610 cancer patients, while in 393 of them a at least one biomarker for immunotherapy response was requested. An actionable alteration was detected in 77.87% of the patients. 54.75% of them received information related to on-label or off-label treatment (Tiers 1A.1, 1A.2, 2B, and 2C.1) and 21.31% received a variant that could be used for clinical trial inclusion. The addition to immunotherapy biomarker to targeted biomarkers' analysis in 191 cases increased the number of patients with an on-label treatment recommendation by 22.92%, while an option for on-label or off-label treatment was provided in 71.35% of the cases. CONCLUSIONS Tumor molecular profile analysis using NGS is a first-tier method for a variety of tumor types and provides important information for decision making in the treatment of cancer patients. Importantly, simultaneous analysis for targeted therapy and immunotherapy biomarkers could lead to better tumor characterization and offer actionable information in the majority of patients. Furthermore, our data suggest that one in two patients may be eligible for on-label ICI treatment based on biomarker analysis. However, appropriate interpretation of results from such analysis is essential for implementation in clinical practice and accurate refinement of treatment strategy.
Collapse
Affiliation(s)
- Mustafa Özdoğan
- Division of Medical Oncology, Memorial Hospital, Antalya, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eleni Galani
- Second Department of Medical Oncology, "Metropolitan" Hospital, Piraeus, Greece
| | - George Lypas
- Department of Genetic Oncology/Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Bülent Orhan
- Department of Medical Oncology, Ceylan International Hospital, Bursa, Turkey
| | | | | | - Onder Kırca
- Division of Medical Oncology, Memorial Hospital, Antalya, Turkey
| | - Okan Çakır
- Applied Health Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, Scotland, UK
| | | |
Collapse
|
49
|
Shyrokova EY, Prassolov VS, Spirin PV. The Role of the MCTS1 and DENR Proteins in Regulating the Mechanisms Associated with Malignant Cell Transformation. Acta Naturae 2021; 13:98-105. [PMID: 34377560 PMCID: PMC8327141 DOI: 10.32607/actanaturae.11181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
The mutations associated with malignant cell transformation are believed to disrupt the expression of a significant number of normal, non-mutant genes. The proteins encoded by these genes are involved in the regulation of many signaling pathways that are responsible for differentiation and proliferation, as well as sensitivity to apoptotic signals, growth factors, and cytokines. Abnormalities in the balance of signaling pathways can lead to the transformation of a normal cell, which results in tumor formation. Detection of the target genes and the proteins they encode and that are involved in the malignant transformation is one of the major evolutions in anti-cancer biomedicine. Currently, there is an accumulation of data that shed light on the role of the MCTS1 and DENR proteins in oncogenesis.
Collapse
Affiliation(s)
- E. Y. Shyrokova
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701 Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
| |
Collapse
|
50
|
Patel PS, Algouneh A, Hakem R. Exploiting synthetic lethality to target BRCA1/2-deficient tumors: where we stand. Oncogene 2021; 40:3001-3014. [PMID: 33716297 DOI: 10.1038/s41388-021-01744-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
The principle of synthetic lethality, which refers to the loss of viability resulting from the disruption of two genes, which, individually, do not cause lethality, has become an attractive target approach due to the development and clinical success of Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). In this review, we present the most recent findings on the use of PARPi in the clinic, which are currently approved for second-line therapy for advanced ovarian and breast cancer associated with mutations of BRCA1 or BRCA2 (BRCA1/2) genes. PARPi efficacy, however, appears to be limited by acquired and inherent resistance, highlighting the need for alternative and synergistic targets to eliminate these tumors. Here, we explore other identified synthetic lethal interactors of BRCA1/2, including DNA polymerase theta (POLQ), Fanconi anemia complementation group D2 (FANDC2), radiation sensitive 52 (RAD52), Flap structure-specific endonuclease 1 (FEN1), and apurinic/apyrimidinic endodeoxyribonuclease 2 (APE2), as well as other protein and nonprotein targets, for BRCA1/2-mutated cancers and their implications for future therapies. A wealth of information now exists for phenotypic and functional characterization of these novel synthetic lethal interactors of BRCA1/2, and leveraging these findings can pave the way for the development of new targeted therapies for patients suffering from these cancers.
Collapse
Affiliation(s)
- Parasvi S Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Arash Algouneh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Razq Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|