1
|
Miska KB, Campos PM, Cloft SE, Jenkins MC, Proszkowiec-Weglarz M. Temporal Changes in Jejunal and Ileal Microbiota of Broiler Chickens with Clinical Coccidiosis ( Eimeria maxima). Animals (Basel) 2024; 14:2976. [PMID: 39457906 PMCID: PMC11503835 DOI: 10.3390/ani14202976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Coccidiosis in broiler chickens continues to be a major disease of the gastrointestinal tract, causing economic losses to the poultry industry worldwide. The goal of this study was to generate a symptomatic Eimeria maxima (1000 oocysts) infection to determine its effect on the luminal and mucosal microbiota populations (L and M) in the jejunum and ileum (J and IL). Samples were taken from day 0 to 14 post-infection, and sequencing of 16S rRNA was performed using Illumina technology. Infected birds had significantly (p < 0.0001) lower body weight gain (BWG), higher feed conversion ratio (FCR) (p = 0.0015), increased crypt depth, and decreased villus height (p < 0.05). The significant differences in alpha and beta diversity were observed primarily at height of infection (D7). Analysis of taxonomy indicated that J-L and M were dominated by Lactobacillus, and in IL-M, changeover from Candidatus Arthromitus to Lactobacillus as the major taxon was observed, which occurred quicky in infected animals. LEfSe analysis found that in the J-M of infected chickens, Lactobacillus was significantly more abundant in infected (IF) chickens. These findings show that E. maxima infection affects the microbiota of the small intestine in a time-dependent manner, with different effects on the luminal and mucosal populations.
Collapse
Affiliation(s)
- Katarzyna B. Miska
- Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA; (P.M.C.); (M.P.-W.)
| | - Philip M. Campos
- Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA; (P.M.C.); (M.P.-W.)
| | - Sara E. Cloft
- Animal Sciences Department, Purdue University, West Lafayette, IN 47907, USA;
| | - Mark C. Jenkins
- Animal Parasitic Diseases Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA;
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA; (P.M.C.); (M.P.-W.)
| |
Collapse
|
2
|
Qadri H, Shah AH, Almilaibary A, Mir MA. Microbiota, natural products, and human health: exploring interactions for therapeutic insights. Front Cell Infect Microbiol 2024; 14:1371312. [PMID: 39035357 PMCID: PMC11257994 DOI: 10.3389/fcimb.2024.1371312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
The symbiotic relationship between the human digestive system and its intricate microbiota is a captivating field of study that continues to unfold. Comprising predominantly anaerobic bacteria, this complex microbial ecosystem, teeming with trillions of organisms, plays a crucial role in various physiological processes. Beyond its primary function in breaking down indigestible dietary components, this microbial community significantly influences immune system modulation, central nervous system function, and disease prevention. Despite the strides made in microbiome research, the precise mechanisms underlying how bacterial effector functions impact mammalian and microbiome physiology remain elusive. Unlike the traditional DNA-RNA-protein paradigm, bacteria often communicate through small molecules, underscoring the imperative to identify compounds produced by human-associated bacteria. The gut microbiome emerges as a linchpin in the transformation of natural products, generating metabolites with distinct physiological functions. Unraveling these microbial transformations holds the key to understanding the pharmacological activities and metabolic mechanisms of natural products. Notably, the potential to leverage gut microorganisms for large-scale synthesis of bioactive compounds remains an underexplored frontier with promising implications. This review serves as a synthesis of current knowledge, shedding light on the dynamic interplay between natural products, bacteria, and human health. In doing so, it contributes to our evolving comprehension of microbiome dynamics, opening avenues for innovative applications in medicine and therapeutics. As we delve deeper into this intricate web of interactions, the prospect of harnessing the power of the gut microbiome for transformative medical interventions becomes increasingly tantalizing.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdullah Almilaibary
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
3
|
Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines 2024; 12:1496. [PMID: 39062068 PMCID: PMC11274472 DOI: 10.3390/biomedicines12071496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The field of multi-omics has witnessed unprecedented growth, converging multiple scientific disciplines and technological advances. This surge is evidenced by a more than doubling in multi-omics scientific publications within just two years (2022-2023) since its first referenced mention in 2002, as indexed by the National Library of Medicine. This emerging field has demonstrated its capability to provide comprehensive insights into complex biological systems, representing a transformative force in health diagnostics and therapeutic strategies. However, several challenges are evident when merging varied omics data sets and methodologies, interpreting vast data dimensions, streamlining longitudinal sampling and analysis, and addressing the ethical implications of managing sensitive health information. This review evaluates these challenges while spotlighting pivotal milestones: the development of targeted sampling methods, the use of artificial intelligence in formulating health indices, the integration of sophisticated n-of-1 statistical models such as digital twins, and the incorporation of blockchain technology for heightened data security. For multi-omics to truly revolutionize healthcare, it demands rigorous validation, tangible real-world applications, and smooth integration into existing healthcare infrastructures. It is imperative to address ethical dilemmas, paving the way for the realization of a future steered by omics-informed personalized medicine.
Collapse
Affiliation(s)
- Alex E. Mohr
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Carmen P. Ortega-Santos
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Corrie M. Whisner
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Judith Klein-Seetharaman
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Paniz Jasbi
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
| |
Collapse
|
4
|
Gao J, Yang Y, Xiang X, Zheng H, Yi X, Wang F, Liang Z, Chen D, Shi W, Wang L, Wu D, Feng S, Huang Q, Li X, Shu W, Chen R, Zhong N, Wang Z. Human genetic associations of the airway microbiome in chronic obstructive pulmonary disease. Respir Res 2024; 25:165. [PMID: 38622589 PMCID: PMC11367891 DOI: 10.1186/s12931-024-02805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Little is known about the relationships between human genetics and the airway microbiome. Deeply sequenced airway metagenomics, by simultaneously characterizing the microbiome and host genetics, provide a unique opportunity to assess the microbiome-host genetic associations. Here we performed a co-profiling of microbiome and host genetics with the identification of over 5 million single nucleotide polymorphisms (SNPs) through deep metagenomic sequencing in sputum of 99 chronic obstructive pulmonary disease (COPD) and 36 healthy individuals. Host genetic variation was the most significant factor associated with the microbiome except for geography and disease status, with its top 5 principal components accounting for 12.11% of the microbiome variability. Within COPD individuals, 113 SNPs mapped to candidate genes reported as genetically associated with COPD exhibited associations with 29 microbial species and 48 functional modules (P < 1 × 10-5), where Streptococcus salivarius exhibits the strongest association to SNP rs6917641 in TBC1D32 (P = 9.54 × 10-8). Integration of concurrent host transcriptomic data identified correlations between the expression of host genes and their genetically-linked microbiome features, including NUDT1, MAD1L1 and Veillonella parvula, TTLL9 and Stenotrophomonas maltophilia, and LTA4H and Haemophilus influenzae. Mendelian randomization analyses revealed a potential causal link between PARK7 expression and microbial type III secretion system, and a genetically-mediated association between COPD and increased relative abundance of airway Streptococcus intermedius. These results suggest a previously underappreciated role of host genetics in shaping the airway microbiome and provide fresh hypotheses for genetic-based host-microbiome interactions in COPD.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaopeng Xiang
- The Hong Kong Polytechnic University, Hong Kong, Hung Hom Kowloon, China
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Weijuan Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Di Wu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shengchuan Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qiaoyun Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueping Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Zhang Wang
- Institute of Ecological Sciences, Biomedical Research Center, School of Life Sciences, State Key Laboratory of Respiratory Disease, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Suárez J. Scrutinizing microbiome determinism: why deterministic hypotheses about the microbiome are conceptually ungrounded. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:12. [PMID: 38347271 PMCID: PMC10861753 DOI: 10.1007/s40656-024-00610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024]
Abstract
This paper addresses the topic of determinism in contemporary microbiome research. I distinguish two types of deterministic claims about the microbiome, and I show evidence that both types of claims are present in the contemporary literature. First, the idea that the host genetics determines the composition of the microbiome which I call "host-microbiome determinism". Second, the idea that the genetics of the holobiont (the individual unit composed by a host plus its microbiome) determines the expression of certain phenotypic traits, which I call "microbiome-phenotype determinism". Drawing on the stability of traits conception of individuality (Suárez in Hist Philos Life Sci 42:11, 2020) I argue that none of these deterministic hypotheses is grounded on our current knowledge of how the holobiont is transgenerationally assembled, nor how it expresses its phenotypic traits.
Collapse
Affiliation(s)
- Javier Suárez
- BIOETHICS Research Group - Department of Philosophy, University of Oviedo, Oviedo, Spain.
- Institute of Philosophy, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
6
|
Liu X, Tong X, Zou L, Ju Y, Liu M, Han M, Lu H, Yang H, Wang J, Zong Y, Liu W, Xu X, Jin X, Xiao L, Jia H, Guo R, Zhang T. A genome-wide association study reveals the relationship between human genetic variation and the nasal microbiome. Commun Biol 2024; 7:139. [PMID: 38291185 PMCID: PMC10828421 DOI: 10.1038/s42003-024-05822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
The nasal cavity harbors diverse microbiota that contributes to human health and respiratory diseases. However, whether and to what extent the host genome shapes the nasal microbiome remains largely unknown. Here, by dissecting the human genome and nasal metagenome data from 1401 healthy individuals, we demonstrated that the top three host genetic principal components strongly correlated with the nasal microbiota diversity and composition. The genetic association analyses identified 63 genome-wide significant loci affecting the nasal microbial taxa and functions, of which 2 loci reached study-wide significance (p < 1.7 × 10-10): rs73268759 within CAMK2A associated with genus Actinomyces and family Actinomycetaceae; and rs35211877 near POM121L12 with Gemella asaccharolytica. In addition to respiratory-related diseases, the associated loci are mainly implicated in cardiometabolic or neuropsychiatric diseases. Functional analysis showed the associated genes were most significantly expressed in the nasal airway epithelium tissue and enriched in the calcium signaling and hippo signaling pathway. Further observational correlation and Mendelian randomization analyses consistently suggested the causal effects of Serratia grimesii and Yokenella regensburgei on cardiometabolic biomarkers (cystine, glutamic acid, and creatine). This study suggested that the host genome plays an important role in shaping the nasal microbiome.
Collapse
Affiliation(s)
- Xiaomin Liu
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
| | | | - Yanmei Ju
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Mo Han
- BGI Research, Shenzhen, 518083, China
| | - Haorong Lu
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Huanming Yang
- BGI Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Jian Wang
- BGI Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Yang Zong
- BGI Research, Shenzhen, 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huijue Jia
- Greater Bay Area Institute of Precision Medicine, Guangzhou, Guangdong, China.
- School of Life Sciences, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
7
|
Zeineldin M, Barakat R. Host-specific signatures of the respiratory microbiota in domestic animals. Res Vet Sci 2023; 164:105037. [PMID: 37801741 DOI: 10.1016/j.rvsc.2023.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
While the importance of respiratory microbiota in maintaining respiratory health is increasingly recognized, we still lack a comprehensive understanding of the unique characteristics of respiratory microbiota specific to individual hosts. This study aimed to address this gap by analyzing publicly available 16S rRNA gene datasets from various domestic animals (cats, dogs, pigs, donkeys, chickens, sheep, and cattle) to identify host-specific signatures of respiratory microbiota. The findings revealed that cattle and pigs exhibited the highest Shannon diversity index and observed features, indicating a greater microbial variety compared to other animals. Discriminant analysis demonstrated distinct composition of respiratory microbiota across different animals, with no overlapping abundant taxa. The linear discriminant analysis effect size highlighted prevalent host-specific microbiota signatures in different animal species. Moreover, the composition and diversity of respiratory microbiota were significantly influenced by various factors such as individual study, health status, and sampling sites within the respiratory tract. While associations between host and respiratory microbiota have been uncovered, the relative contributions of host and environment in the selection of respiratory microbiota and their impact on host fitness remain unclear. Further investigations involving diverse hosts are necessary to fully comprehend the significance of host-microbial coevolution in maintaining respiratory health.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha 13511, Egypt.
| | - Radwa Barakat
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
8
|
Popovic D, Kulas J, Tucovic D, Popov Aleksandrov A, Glamoclija J, Sokovic Bajic S, Tolinacki M, Golic N, Mirkov I. Lung microbiota changes during pulmonary Aspergillus fumigatus infection in rats. Microbes Infect 2023; 25:105186. [PMID: 37479024 DOI: 10.1016/j.micinf.2023.105186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Since the realization that the lungs are not sterile but are normally inhabited by various bacterial species, studies have been conducted to define healthy lung microbiota and to investigate whether it changes during lung diseases, infections, and inflammation. Using next-generation sequencing, we investigated bacterial microbiota from whole lungs in two rat strains (previously shown to differ in gut microbiota composition) in a healthy state and during pulmonary infection caused by the opportunistic fungus Aspergillus fumigatus. No differences in alpha diversity indices and microbial composition between DA and AO rats before infection were noted. Fungal infection caused dysbiosis in both rat strains, characterized by increased alpha diversity indices and unchanged beta diversity. The relative abundance of genera and species was increased in DA but decreased in AO rats during infection. Changes in lung microbiota coincided with inflammation (in both rat strains) and oxidative stress (in DA rats). Disparate response of lung microbiota in DA and AO rats to pulmonary fungal infection might render these two rat strains differentially susceptible to a subsequent inflammatory insult.
Collapse
Affiliation(s)
- Dusanka Popovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Jasmina Glamoclija
- Mycology Laboratory, Department Plant Physiology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Svetlana Sokovic Bajic
- Group for Probiotics and Microbiota-host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, Belgrade, Serbia
| | - Maja Tolinacki
- Group for Probiotics and Microbiota-host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, Belgrade, Serbia
| | - Natasa Golic
- Group for Probiotics and Microbiota-host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia.
| |
Collapse
|
9
|
Xue-Meng C, Gao-Wang L, Xiao-Mei L, Fan-Fang Z, Jin-Fang X. Effect of mechanical ventilation under intubation on respiratory tract change of bacterial count and alteration of bacterial flora. Exp Lung Res 2023; 49:165-177. [PMID: 37789686 DOI: 10.1080/01902148.2023.2264947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Background: The most common 'second strike' in mechanically ventilated patients is a pulmonary infection caused by the ease with which bacteria can invade and colonize the lungs due to mechanical ventilation. At the same time, metastasis of lower airway microbiota may have significant implications in developing intubation mechanical ventilation lung inflammation. Thus, we establish a rat model of tracheal intubation with mechanical ventilation and explore the effects of mechanical ventilation on lung injury and microbiological changes in rats. To provide a reference for preventing and treating bacterial flora imbalance and pulmonary infection injury caused by mechanical ventilation of tracheal intubation. Methods: Sprague-Dawley rats were randomly divided into Control, Mechanical ventilation under intubation (1, 3, 6 h) groups, and Spontaneously breathing under intubation (1, 3, 6 h). Lung histopathological injury scores were evaluated. 16SrDNA sequencing was performed to explore respiratory microbiota changes, especially, changes of bacterial count and alteration of bacterial flora. Results: Compared to groups C and SV, critical pathological changes in pulmonary lesions occurred in the MV group after 6 h (p < 0.05). The Alpha diversity and Beta diversity of lower respiratory tract microbiota in MV6, SV6, and C groups were statistically significant (p < 0.05). The main dominant bacterial phyla in the respiratory tract of rats were Proteobacteria, Firmicutes, Bacteroidetes, and Cyanobacteria. Acinetobacter radioresistens in group C was significant, Megaonas in group MV6 was significantly increased, and Parvibacter in group SV6 was significantly increased. Anaerobic, biofilm formation, and Gram-negative bacteria-related functional genes were altered during mechanical ventilation with endotracheal intubation. Conclusion: Mechanical ventilation under intubation may cause dysregulation of lower respiratory microbiota in rats.
Collapse
Affiliation(s)
- Chen Xue-Meng
- Department of Anesthesiology, Deyang People's Hospital, Deyang, Sichuan, China
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liu Gao-Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Xiao-Mei
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zeng Fan-Fang
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Jin-Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Perez-Garcia J, Espuela-Ortiz A, Hernández-Pérez JM, González-Pérez R, Poza-Guedes P, Martin-Gonzalez E, Eng C, Sardón-Prado O, Mederos-Luis E, Corcuera-Elosegui P, Sánchez-Machín I, Korta-Murua J, Villar J, Burchard EG, Lorenzo-Diaz F, Pino-Yanes M. Human genetics influences microbiome composition involved in asthma exacerbations despite inhaled corticosteroid treatment. J Allergy Clin Immunol 2023; 152:799-806.e6. [PMID: 37301411 PMCID: PMC10522330 DOI: 10.1016/j.jaci.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The upper-airway microbiome is involved in asthma exacerbations despite inhaled corticosteroid (ICS) treatment. Although human genetics regulates microbiome composition, its influence on asthma-related airway bacteria remains unknown. OBJECTIVE We sought to identify genes and biological pathways regulating airway-microbiome traits involved in asthma exacerbations and ICS response. METHODS Saliva, nasal, and pharyngeal samples from 257 European patients with asthma were analyzed. The association of 6,296,951 genetic variants with exacerbation-related microbiome traits despite ICS treatment was tested through microbiome genome-wide association studies. Variants with 1 × 10-4 RESULTS Genes associated with exacerbation-related airway-microbiome traits were enriched in asthma comorbidities development (ie, reflux esophagitis, obesity, and smoking), and were likely regulated by trichostatin A and the nuclear factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein transcription factors (7.8 × 10-13 ≤ false discovery rate ≤ 0.022). Enrichment in smoking, trichostatin A, nuclear factor-κB, and glucocorticosteroid receptor were replicated in the saliva samples from diverse populations (4.42 × 10-9 ≤ P ≤ .008). The ICS-response-associated single nucleotide polymorphisms rs5995653 (APOBEC3B-APOBEC3C), rs6467778 (TRIM24), and rs5752429 (TPST2) were identified as microbiome quantitative trait loci of Streptococcus, Tannerella, and Campylobacter in the upper airway (0.027 ≤ false discovery rate ≤ 0.050). CONCLUSIONS Genes associated with asthma exacerbation-related microbiome traits might influence asthma comorbidities. We reinforced the therapeutic interest of trichostatin A, nuclear factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein in asthma exacerbations.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - José M Hernández-Pérez
- Pulmonary Medicine Service, Hospital Universitario N.S de Candelaria, La Laguna, Tenerife, Spain; Pulmonary Medicine Section, Hospital Universitario de La Palma, La Palma, Spain
| | - Ruperto González-Pérez
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Paloma Poza-Guedes
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Celeste Eng
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, Calif
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain; Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | | | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, Ontario, Canada
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco (UCSF), San Francisco, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| |
Collapse
|
11
|
Marathe SJ, Snider MA, Flores-Torres AS, Dubin PJ, Samarasinghe AE. Human matters in asthma: Considering the microbiome in pulmonary health. Front Pharmacol 2022; 13:1020133. [PMID: 36532717 PMCID: PMC9755222 DOI: 10.3389/fphar.2022.1020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/15/2022] [Indexed: 07/25/2023] Open
Abstract
Microbial communities form an important symbiotic ecosystem within humans and have direct effects on health and well-being. Numerous exogenous factors including airborne triggers, diet, and drugs impact these established, but fragile communities across the human lifespan. Crosstalk between the mucosal microbiota and the immune system as well as the gut-lung axis have direct correlations to immune bias that may promote chronic diseases like asthma. Asthma initiation and pathogenesis are multifaceted and complex with input from genetic, epigenetic, and environmental components. In this review, we summarize and discuss the role of the airway microbiome in asthma, and how the environment, diet and therapeutics impact this low biomass community of microorganisms. We also focus this review on the pediatric and Black populations as high-risk groups requiring special attention, emphasizing that the whole patient must be considered during treatment. Although new culture-independent techniques have been developed and are more accessible to researchers, the exact contribution the airway microbiome makes in asthma pathogenesis is not well understood. Understanding how the airway microbiome, as a living entity in the respiratory tract, participates in lung immunity during the development and progression of asthma may lead to critical new treatments for asthma, including population-targeted interventions, or even more effective administration of currently available therapeutics.
Collapse
Affiliation(s)
- Sandesh J. Marathe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Pulmonology, Allergy-Immunology, and Sleep, Memphis, TN, United States
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
| | - Mark A. Snider
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Emergency Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Armando S. Flores-Torres
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
| | - Patricia J. Dubin
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Pulmonology, Allergy-Immunology, and Sleep, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Pulmonology, Allergy-Immunology, and Sleep, Memphis, TN, United States
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
| |
Collapse
|
12
|
Irizar H, Chun Y, Arditi Z, Do A, Grishina G, Grishin A, Vicencio A, Bunyavanich S. Examination of host genetic effects on nasal microbiome composition. J Allergy Clin Immunol 2022; 150:1232-1236. [PMID: 35718139 PMCID: PMC9643606 DOI: 10.1016/j.jaci.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Genetic predisposition increases risk for asthma, and distinct nasal microbial compositions are associated with asthma. Host genetics might shape nasal microbiome composition. OBJECTIVE We examined associations between host genetics and nasal microbiome composition. METHODS Nasal samples were collected from 584 participants from the Mount Sinai Health System, New York. Seventy-seven follow-up samples were collected from a subset of 40 participants. 16S rRNA sequencing and RNA sequencing were performed on nasal samples. Beta diversity was calculated, variant calling on RNA sequencing data was performed, and genetic relatedness between individuals was determined. Using linear regression models, we tested for associations between genetic relatedness and nasal microbiome composition. RESULTS The median age of the cohort was 14.6 (interquartile range 11.2-19.5) years, with participants representing diverse ancestries and 52.7% of the cohort being female. For participants who provided follow-up samples, the median time between samples was 5.1 (interquartile range 1.4-7.2) months. Nasal microbiome composition similarity as reflected by beta diversity was significantly higher within subjects over time versus between subjects (coefficient = 0.091, P = 2.84-7). There was no significant association between genetic relatedness and beta diversity (coefficient = -0.05, P = .29). Additional analyses exploring the relationship between beta diversity and genetic variance yielded similar results. CONCLUSION Host genetics has little influence on nasal microbiome composition.
Collapse
Affiliation(s)
- Haritz Irizar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zoe Arditi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anh Do
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Galina Grishina
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander Grishin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alfin Vicencio
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
13
|
Wang Z, Xu C, Zhang Y, Huo X, Su J. Dietary supplementation with nanoparticle CMCS-20a enhances the resistance to GCRV infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2022; 127:572-584. [PMID: 35798246 DOI: 10.1016/j.fsi.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Combination of antimicrobial proteins and nanomaterials provides a platform for the development of immunopotentiators. Oral administration of immunopotentiators can significantly enhance the immunity of organisms, which provides ideas for disease prevention. In this study, we confirmed that nanoparticles CMCS-20a can efficiently prevent grass carp reovirus (GCRV) infection. Firstly, we verified that CiCXCL20a is involved in the immune responses post GCRV challenge in vivo and alleviates the cell death post GCRV challenge in CIK cells. Then, we prepared nanoparticles CMCS-20a using carboxymethyl chitosan (CMCS) loaded with grass carp (Ctenopharyngodon idella) CXCL20a (CiCXCL20a). Meanwhile, we confirmed nanoparticles CMCS-20a can alleviate the degradation in intestine. Subsequently, we added it to the feed by low temperature vacuum drying method and high temperature spray drying method, respectively. Grass carp were oral administration for 28 days and challenged by GCRV. Low temperature vacuum drying group (LD-CMCS-20a) significantly improve grass carp survival rate, but not high temperature spray drying group (HD-CMCS-20a). To reveal the mechanisms, we investigated the serum biochemical indexes, intestinal mucus barrier, immune gene regulation and tissue damage. The complement component 3 content, lysozyme and total superoxide dismutase activities are highest in LD-CMCS-20a group. LD-CMCS-20a effectively attenuates the damage of GCRV to the number of intestinal villous goblet cells and mucin thickness. LD-CMCS-20a effectively regulates mRNA expressions of immune genes (IFN1, Mx2, Gig1 and IgM) in spleen and head kidney tissues. In addition, LD-CMCS-20a obviously alleviate tissue lesions and viral load in spleen. These results indicated that the nanoparticles CMCS-20a can enhance the disease resistance of fish by improving their immunity, which provides a new perspective for fish to prevent viral infections.
Collapse
Affiliation(s)
- Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Chuang Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
14
|
Feng Y, Liu D, Liu Y, Yang X, Zhang M, Wei F, Li D, Hu Y, Guo Y. Host-genotype-dependent cecal microbes are linked to breast muscle metabolites in Chinese chickens. iScience 2022; 25:104469. [PMID: 35707722 PMCID: PMC9189123 DOI: 10.1016/j.isci.2022.104469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
In chickens, the effect of host genetics on the gut microbiota is not fully understood, and the extent to which the heritable gut microbes affect chicken metabolism and physiology is still an open question. Here, we explored the interactions among chicken genetics, the cecal microbiota and metabolites in breast muscle from ten chicken breeds in China. We found that different chicken breeds displayed distinct cecal microbial community structures and functions, and 15 amplicon sequence variants (ASVs) were significantly associated with host genetics through different genetic loci, such as those related to the intestinal barrier function. We identified five heritable ASVs significantly associated with 53 chicken muscle metabolites, among which the Megamonas probably affected lipid metabolism through the production of propionate. Our study revealed that the chicken genetically associated cecal microbes may have the potential to affect the bird’s physiology and metabolism. The cecal microbiota are different among ten chicken breeds The chicken genetics influences the cecal microbiota structures and functions The chicken heritable cecal microbes are associated with muscle metabolites Megamonas may affect lipid metabolism by the production of propionate
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
- Corresponding author
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
- Corresponding author
| |
Collapse
|
15
|
Collective effects of human genomic variation on microbiome function. Sci Rep 2022; 12:3839. [PMID: 35264618 PMCID: PMC8907173 DOI: 10.1038/s41598-022-07632-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022] Open
Abstract
Studies of the impact of host genetics on gut microbiome composition have mainly focused on the impact of individual single nucleotide polymorphisms (SNPs) on gut microbiome composition, without considering their collective impact or the specific functions of the microbiome. To assess the aggregate role of human genetics on the gut microbiome composition and function, we apply sparse canonical correlation analysis (sCCA), a flexible, multivariate data integration method. A critical attribute of metagenome data is its sparsity, and here we propose application of a Tweedie distribution to accommodate this. We use the TwinsUK cohort to analyze the gut microbiomes and human variants of 250 individuals. Sparse CCA, or sCCA, identified SNPs in microbiome-associated metabolic traits (BMI, blood pressure) and microbiome-associated disorders (type 2 diabetes, some neurological disorders) and certain cancers. Both common and rare microbial functions such as secretion system proteins or antibiotic resistance were found to be associated with host genetics. sCCA applied to microbial species abundances found known associations such as Bifidobacteria species, as well as novel associations. Despite our small sample size, our method can identify not only previously known associations, but novel ones as well. Overall, we present a new and flexible framework for examining host-microbiome genetic interactions, and we provide a new dimension to the current debate around the role of human genetics on the gut microbiome.
Collapse
|
16
|
Chen L, Zhang G, Li G, Wang W, Ge Z, Yang Y, He X, Liu Z, Zhang Z, Mai Q, Chen Y, Chen Z, Pi J, Yang S, Cui J, Liu H, Shen L, Zeng L, Zhou L, Chen X, Ge B, Chen ZW, Zeng G. Ifnar gene variants influence gut microbial production of palmitoleic acid and host immune responses to tuberculosis. Nat Metab 2022; 4:359-373. [PMID: 35288721 DOI: 10.1038/s42255-022-00547-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Both host genetics and the gut microbiome have important effects on human health, yet how host genetics regulates gut bacteria and further determines disease susceptibility remains unclear. Here, we find that the gut microbiome pattern of participants with active tuberculosis is characterized by a reduction of core species found across healthy individuals, particularly Akkermansia muciniphila. Oral treatment of A. muciniphila or A. muciniphila-mediated palmitoleic acid strongly inhibits tuberculosis infection through epigenetic inhibition of tumour necrosis factor in mice infected with Mycobacterium tuberculosis. We use three independent cohorts comprising 6,512 individuals and identify that the single-nucleotide polymorphism rs2257167 'G' allele of type I interferon receptor 1 (encoded by IFNAR1 in humans) contributes to stronger type I interferon signalling, impaired colonization and abundance of A. muciniphila, reduced palmitoleic acid production, higher levels of tumour necrosis factor, and more severe tuberculosis disease in humans and transgenic mice. Thus, host genetics are critical in modulating the structure and functions of gut microbiome and gut microbial metabolites, which further determine disease susceptibility.
Collapse
Affiliation(s)
- Lingming Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guoliang Zhang
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guobao Li
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Wei Wang
- Department of Clinical Laboratory, Foshan Fourth People's Hospital, Foshan, China
| | - Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yi Yang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xing He
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhi Liu
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyi Zhang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qiongdan Mai
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yiwei Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zixu Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiang Pi
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shuai Yang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haipeng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Lingchan Zeng
- Clinical Research Center, Department of Medical Records Management, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- Guangdong Center for Tuberculosis Control, National Clinical Research Center for Tuberculosis, Guangzhou, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Yang SF, Lin CW, Chuang CY, Lee YC, Chung WH, Lai HC, Chang LC, Su SC. Host Genetic Associations with Salivary Microbiome in Oral Cancer. J Dent Res 2021; 101:590-598. [PMID: 34875929 DOI: 10.1177/00220345211051967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the growing recognition of a host genetic effect on shaping gut microbiota composition, the genetic determinants of oral microbiota remain largely unexplored, especially in the context of oral diseases. Here, we performed a microbiome genome-wide association study in 2 independent cohorts of patients with oral squamous cell carcinoma (OSCC, n = 144 and 67) and an additional group of noncancer individuals (n = 104). Besides oral bacterial dysbiosis and signatures observed in OSCC, associations of 3 loci with the abundance of genus-level taxa and 4 loci with β diversity measures were detected (q < 0.05) at the discovery stage. The most significant hit (rs10906082 with the genus Lachnoanaerobaculum, P = 3.55 × 10-9 at discovery stage) was replicated in a second OSCC cohort. Moreover, the other 2 taxonomical associations, rs10973953 with the genus Kingella (P = 1.38 × 10-9) and rs4721629 with the genus Parvimonas (P = 3.53 × 10-8), were suggestive in the meta-analysis combining 2 OSCC cohorts. Further pathway analysis revealed that these loci were enriched for genes in regulation of oncogenic and angiogenic responses, implicating a genetic anchor to the oral microbiome in estimation of casual relationships with OSCC. Our findings delineate the role of host genotypes in influencing the structure of oral microbial communities.
Collapse
Affiliation(s)
- S F Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - C W Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - C Y Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Y C Lee
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - W H Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - H C Lai
- Department of Medical Biotechnology and Laboratory Science, and Microbiota Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Central Research Laboratory, XiaMen Chang Gung Hospital, XiaMen, China
| | - L C Chang
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - S C Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Central Research Laboratory, XiaMen Chang Gung Hospital, XiaMen, China
| |
Collapse
|
18
|
Logotheti M, Agioutantis P, Katsaounou P, Loutrari H. Microbiome Research and Multi-Omics Integration for Personalized Medicine in Asthma. J Pers Med 2021; 11:jpm11121299. [PMID: 34945771 PMCID: PMC8707330 DOI: 10.3390/jpm11121299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a multifactorial inflammatory disorder of the respiratory system characterized by high diversity in clinical manifestations, underlying pathological mechanisms and response to treatment. It is generally established that human microbiota plays an essential role in shaping a healthy immune response, while its perturbation can cause chronic inflammation related to a wide range of diseases, including asthma. Systems biology approaches encompassing microbiome analysis can offer valuable platforms towards a global understanding of asthma complexity and improving patients' classification, status monitoring and therapeutic choices. In the present review, we summarize recent studies exploring the contribution of microbiota dysbiosis to asthma pathogenesis and heterogeneity in the context of asthma phenotypes-endotypes and administered medication. We subsequently focus on emerging efforts to gain deeper insights into microbiota-host interactions driving asthma complexity by integrating microbiome and host multi-omics data. One of the most prominent achievements of these research efforts is the association of refractory neutrophilic asthma with certain microbial signatures, including predominant pathogenic bacterial taxa (such as Proteobacteria phyla, Gammaproteobacteria class, especially species from Haemophilus and Moraxella genera). Overall, despite existing challenges, large-scale multi-omics endeavors may provide promising biomarkers and therapeutic targets for future development of novel microbe-based personalized strategies for diagnosis, prevention and/or treatment of uncontrollable asthma.
Collapse
Affiliation(s)
- Marianthi Logotheti
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Panagiotis Agioutantis
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
| | - Paraskevi Katsaounou
- Pulmonary Dept First ICU, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, Ipsilantou 45-7, 10675 Athens, Greece;
| | - Heleni Loutrari
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Correspondence:
| |
Collapse
|
19
|
Vangrinsven E, Fastrès A, Taminiau B, Frédéric B, Daube G, Clercx C. Variations in facial conformation are associated with differences in nasal microbiota in healthy dogs. BMC Vet Res 2021; 17:361. [PMID: 34819074 PMCID: PMC8611846 DOI: 10.1186/s12917-021-03055-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extrinsic and intrinsic factors have been shown to influence nasal microbiota (NM) in humans. Very few studies investigated the association between nasal microbiota and factors such as facial/body conformation, age, and environment in dogs. The objectives are to investigate variations in NM in healthy dogs with different facial and body conformations. A total of 46 dogs of different age, living environment and from 3 different breed groups were recruited: 22 meso-/dolichocephalic medium to large breed dogs, 12 brachycephalic dogs and 12 terrier breeds. The nasal bacterial microbiota was assessed through sequencing of 16S rRNA gene (V1-V3 regions) amplicons. RESULTS We showed major differences in the NM composition together with increased richness and α-diversity in brachycephalic dogs, compared to meso-/dolichocephalic medium to large dogs and dogs from terrier breeds. CONCLUSION Healthy brachycephalic breeds and their unique facial conformation is associated with a distinct NM profile. Description of the NM in healthy dogs serves as a foundation for future researches assessing the changes associated with disease and the modulation of NM communities as a potential treatment.
Collapse
Affiliation(s)
- Emilie Vangrinsven
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium.
| | - Aline Fastrès
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Bernard Taminiau
- Department of Food Sciences - Microbiology, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Billen Frédéric
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Georges Daube
- Department of Food Sciences - Microbiology, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Cécile Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| |
Collapse
|
20
|
Habibi N, Mustafa AS, Khan MW. Composition of nasal bacterial community and its seasonal variation in health care workers stationed in a clinical research laboratory. PLoS One 2021; 16:e0260314. [PMID: 34818371 PMCID: PMC8612574 DOI: 10.1371/journal.pone.0260314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
The microorganisms at the workplace contribute towards a large portion of the biodiversity a person encounters in his or her life. Health care professionals are often at risk due to their frontline nature of work. Competition and cooperation between nasal bacterial communities of individuals working in a health care setting have been shown to mediate pathogenic microbes. Therefore, we investigated the nasal bacterial community of 47 healthy individuals working in a clinical research laboratory in Kuwait. The taxonomic profiling and core microbiome analysis identified three pre-dominant genera as Corynebacterium (15.0%), Staphylococcus (10.3%) and, Moraxella (10.0%). All the bacterial genera exhibited seasonal variations in summer, winter, autumn and spring. SparCC correlation network analysis revealed positive and negative correlations among the classified genera. A rich set of 16 genera (q < 0.05) were significantly differentially abundant (LEfSe) across the four seasons. The highest species counts, richness and evenness (P < 0.005) were recorded in autumn. Community structure profiling indicated that the entire bacterial population followed a seasonal distribution (R2-0.371; P < 0.001). Other demographic factors such as age, gender and, ethnicity contributed minimally towards community clustering in a closed indoor laboratory setting. Intra-personal diversity also witnessed rich species variety (maximum 6.8 folds). Seasonal changes in the indoor working place in conjunction with the outdoor atmosphere seems to be important for the variations in the nasal bacterial communities of professionals working in a health care setting.
Collapse
Affiliation(s)
- Nazima Habibi
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Abu Salim Mustafa
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Mohd Wasif Khan
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
21
|
Presley SJ, Graf J, Hassan AF, Sjodin AR, Willig MR. Effects of Host Species Identity and Diet on the Biodiversity of the Microbiota in Puerto Rican Bats. Curr Microbiol 2021; 78:3526-3540. [PMID: 34318342 DOI: 10.1007/s00284-021-02607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Microbiota perform vital functions for their mammalian hosts, making them potential drivers of host evolution. Understanding effects of environmental factors and host characteristics on the composition and biodiversity of the microbiota may provide novel insights into the origin and maintenance of these symbiotic relationships. Our goals were to (1) characterize biodiversity of oral and rectal microbiota in bats from Puerto Rico; and (2) determine the effects of geographic location and host characteristics on that biodiversity. We collected bats and their microbiota from three sites, and used four metrics (species richness, Shannon diversity, Camargo evenness, Berger-Parker dominance) to characterize biodiversity. We quantified the relative importance of site, host sex, host species-identity, and host foraging-guild on biodiversity of the microbiota. Microbe biodiversity was highly variable among conspecifics. Geographical location exhibited consistent effects, whereas host sex did not. Within each host guild, host species exhibited consistent differences in biodiversity of oral microbiota and of rectal microbiota. Oral microbe biodiversity was indistinguishable between guilds, whereas rectal microbe biodiversity was significantly greater in carnivores than in herbivores. The high intraspecific and spatial variation in microbe biodiversity necessitate a relatively large number of samples to statistically isolate the effects of environmental or host characteristics on the microbiota. Species-specific biodiversity of oral microbiota suggests these communities are structured by direct interactions with the host immune system via epithelial receptors. In contrast, the number of microbial taxa that a host gut supports may be driven by host diet-diversity or composition.
Collapse
Affiliation(s)
- Steven J Presley
- Institute of the Environment, Center for Environmental Sciences & Engineering, and Department of Ecology & Evolutionary Biology, University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT, 06269-4210, USA.
| | - Joerg Graf
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269-3125, USA
| | - Ahmad F Hassan
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269-3125, USA
| | - Anna R Sjodin
- Institute of the Environment, Center for Environmental Sciences & Engineering, and Department of Ecology & Evolutionary Biology, University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT, 06269-4210, USA.,Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Michael R Willig
- Institute of the Environment, Center for Environmental Sciences & Engineering, and Department of Ecology & Evolutionary Biology, University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT, 06269-4210, USA
| |
Collapse
|
22
|
Losol P, Choi JP, Kim SH, Chang YS. The Role of Upper Airway Microbiome in the Development of Adult Asthma. Immune Netw 2021; 21:e19. [PMID: 34277109 PMCID: PMC8263217 DOI: 10.4110/in.2021.21.e19] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Clinical and molecular phenotypes of asthma are complex. The main phenotypes of adult asthma are characterized by eosinophil and/or neutrophil cell dominant airway inflammation that represent distinct clinical features. Upper and lower airways constitute a unique system and their interaction shows functional complementarity. Although human upper airway contains various indigenous commensals and opportunistic pathogenic microbiome, imbalance of this interactions lead to pathogen overgrowth and increased inflammation and airway remodeling. Competition for epithelial cell attachment, different susceptibilities to host defense molecules and antimicrobial peptides, and the production of proinflammatory cytokine and pattern recognition receptors possibly determine the pattern of this inflammation. Exposure to environmental factors, including infection, air pollution, smoking is commonly associated with asthma comorbidity, severity, exacerbation and resistance to anti-microbial and steroid treatment, and these effects may also be modulated by host and microbial genetics. Administration of probiotic, antibiotic and corticosteroid treatment for asthma may modify the composition of resident microbiota and clinical features. This review summarizes the effect of some environmental factors on the upper respiratory microbiome, the interaction between host-microbiome, and potential impact of asthma treatment on the composition of the upper airway microbiome.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Korea
| | - Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Korea
| |
Collapse
|
23
|
Wen C, Yan W, Mai C, Duan Z, Zheng J, Sun C, Yang N. Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. MICROBIOME 2021; 9:126. [PMID: 34074340 PMCID: PMC8171024 DOI: 10.1186/s40168-021-01040-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Feed contributes most to livestock production costs. Improving feed efficiency is crucial to increase profitability and sustainability for animal production. Host genetics and the gut microbiota can both influence the host phenotype. However, the association between the gut microbiota and host genetics and their joint contribution to feed efficiency in chickens is largely unclear. RESULTS Here, we examined microbial data from the duodenum, jejunum, ileum, cecum, and feces in 206 chickens and their host genotypes and confirmed that the microbial phenotypes and co-occurrence networks exhibited dramatic spatial heterogeneity along the digestive tract. The correlations between host genetic kinship and gut microbial similarities within different sampling sites were weak, with coefficients ranging from - 0.07 to 0.08. However, microbial genome-wide analysis revealed that genetic markers near or inside the genes MTHFD1L and LARGE1 were associated with the abundances of cecal Megasphaera and Parabacteroides, respectively. The effect of host genetics on residual feed intake (RFI) was 39%. We further identified three independent genetic variations that were related to feed efficiency and had a modest effect on the gut microbiota. The contributions of the gut microbiota from the different parts of the intestinal tract on RFI were distinct. The cecal microbiota accounted for 28% of the RFI variance, a value higher than that explained by the duodenal, jejunal, ileal, and fecal microbiota. Additionally, six bacteria exhibited significant associations with RFI. Specifically, lower abundances of duodenal Akkermansia muciniphila and cecal Parabacteroides and higher abundances of cecal Lactobacillus, Corynebacterium, Coprobacillus, and Slackia were related to better feed efficiency. CONCLUSIONS Our findings solidified the notion that both host genetics and the gut microbiota, especially the cecal microbiota, can drive the variation in feed efficiency. Although host genetics has a limited effect on the entire microbial community, a small fraction of gut microorganisms tends to interact with host genes, jointly contributing to feed efficiency. Therefore, the gut microbiota and host genetic variations can be simultaneously targeted by favoring more-efficient taxa and selective breeding to improve feed efficiency in chickens. Video abstract.
Collapse
Affiliation(s)
- Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Wei Yan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Chunning Mai
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Zhongyi Duan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- National Animal Husbandry Service, Beijing, 100125, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Abstract
BACKGROUND Probiotic lactobacilli have been ineffective in preventing acute otitis media. In contrast to lactobacilli, alpha-hemolytic streptococci belong to the core microbiome of nasopharynx. METHODS We investigated the effects of Streptococcus salivarius K12 probiotic on the saliva and nasopharyngeal microbiome in 121 children attending daycare. Children were randomly allocated to receive oral K12 product for 1 month or no treatment. We obtained saliva and nasopharyngeal samples at study entry, at 1 and 2 months. The next-generation sequencing of the bacterial 16S gene was performed. RESULTS After the intervention, the diversity of saliva or nasopharyngeal microbiome did not differ between groups. The proportion of children with any otopathogen did not differ between the groups. At 1 month, the abundance of otopathogens in nasopharynx was lower in K12 group compared with that in control children (34% vs. 55%, P = 0.037). When we compared each otopathogen separately, Moraxella was the only group lower in the treatment group. We could not verify the reduction of Moraxella when an alternative Human Oral Microbiome Database taxonomy database was used. In children receiving K12 product, the mean abundance of S. salivarius was greater in saliva after the intervention (0.9% vs. 2.0%, P = 0.009). CONCLUSIONS The use of S. salivarius K12 probiotic appeared to be safe because it did not disrupt the normal microbiome in young children. Even though a short-term colonization of S. salivarius was observed in the saliva, the impact of S. salivarius K12 probiotic on the otopathogens in nasopharyngeal microbiome remained uncertain.
Collapse
|
25
|
The intersect of genetics, environment, and microbiota in asthma-perspectives and challenges. J Allergy Clin Immunol 2021; 147:781-793. [PMID: 33678251 DOI: 10.1016/j.jaci.2020.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
In asthma, a significant portion of the interaction between genetics and environment occurs through microbiota. The proposed mechanisms behind this interaction are complex and at times contradictory. This review covers recent developments in our understanding of this interaction: the "microbial hypothesis" and the "farm effect"; the role of endotoxin and genetic variation in pattern recognition systems; the interaction with allergen exposure; the additional involvement of host gut and airway microbiota; the role of viral respiratory infections in interaction with the 17q21 and CDHR3 genetic loci; and the importance of in utero and early-life timing of exposures. We propose a unified framework for understanding how all these phenomena interact to drive asthma pathogenesis. Finally, we point out some future challenges for continued research in this field, in particular the need for multiomic integration, as well as the potential utility of asthma endotyping.
Collapse
|
26
|
Jin X, Zhang Y, Celniker SE, Xia Y, Mao JH, Snijders AM, Chang H. Gut microbiome partially mediates and coordinates the effects of genetics on anxiety-like behavior in Collaborative Cross mice. Sci Rep 2021; 11:270. [PMID: 33431988 PMCID: PMC7801399 DOI: 10.1038/s41598-020-79538-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests that the gut microbiome (GM) plays a critical role in health and disease. However, the contribution of GM to psychiatric disorders, especially anxiety, remains unclear. We used the Collaborative Cross (CC) mouse population-based model to identify anxiety associated host genetic and GM factors. Anxiety-like behavior of 445 mice across 30 CC strains was measured using the light/dark box assay and documented by video. A custom tracking system was developed to quantify seven anxiety-related phenotypes based on video. Mice were assigned to a low or high anxiety group by consensus clustering using seven anxiety-related phenotypes. Genome-wide association analysis (GWAS) identified 141 genes (264 SNPs) significantly enriched for anxiety and depression related functions. In the same CC cohort, we measured GM composition and identified five families that differ between high and low anxiety mice. Anxiety level was predicted with 79% accuracy and an AUC of 0.81. Mediation analyses revealed that the genetic contribution to anxiety was partially mediated by the GM. Our findings indicate that GM partially mediates and coordinates the effects of genetics on anxiety.
Collapse
Affiliation(s)
- X Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Y Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - S E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Y Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - J-H Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - H Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
27
|
Sun T, Yu H, Fu J. Respiratory Tract Microecology and Bronchopulmonary Dysplasia in Preterm Infants. Front Pediatr 2021; 9:762545. [PMID: 34966701 PMCID: PMC8711720 DOI: 10.3389/fped.2021.762545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe respiratory complication in preterm infants. Although the etiology and pathogenesis of BPD are complex and remain to be clarified, recent studies have reported a certain correlation between the microecological environment of the respiratory tract and BPD. Changes in respiratory tract microecology, such as abnormal microbial diversity and altered evolutional patterns, are observed prior to the development of BPD in premature infants. Therefore, research on the colonization and evolution of neonatal respiratory tract microecology and its relationship with BPD is expected to provide new ideas for its prevention and treatment. In this paper, we review microecological changes in the respiratory tract and the mechanisms by which they can lead to BPD in preterm infants.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, Wood DLA, Gellatly SL, Shukla SD, Wood LG, Yang IA, Wark PA, Hugenholtz P, Hansbro PM. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun 2020; 11:5886. [PMID: 33208745 PMCID: PMC7676259 DOI: 10.1038/s41467-020-19701-0] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third commonest cause of death globally, and manifests as a progressive inflammatory lung disease with no curative treatment. The lung microbiome contributes to COPD progression, but the function of the gut microbiome remains unclear. Here we examine the faecal microbiome and metabolome of COPD patients and healthy controls, finding 146 bacterial species differing between the two groups. Several species, including Streptococcus sp000187445, Streptococcus vestibularis and multiple members of the family Lachnospiraceae, also correlate with reduced lung function. Untargeted metabolomics identifies a COPD signature comprising 46% lipid, 20% xenobiotic and 20% amino acid related metabolites. Furthermore, we describe a disease-associated network connecting Streptococcus parasanguinis_B with COPD-associated metabolites, including N-acetylglutamate and its analogue N-carbamoylglutamate. While correlative, our results suggest that the faecal microbiome and metabolome of COPD patients are distinct from those of healthy individuals, and may thus aid in the search for biomarkers for COPD. Chronic obstructive pulmonary disease (COPD) is a progressing disease, with lung but not gut microbiota implicated in its etiology. Here the authors compare the stool from patients with COPD and healthy controls to find specific gut bacteria and metabolites associated with active disease, thereby hinting at a potential role for the gut microbiome in COPD.
Collapse
Affiliation(s)
- Kate L Bowerman
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Saima Firdous Rehman
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Annalicia Vaughan
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, and Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute & University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian A Yang
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, and Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia. .,Centre for Inflammation, Centenary Institute & University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
29
|
Mehta SD, Nannini DR, Otieno F, Green SJ, Agingu W, Landay A, Zheng Y, Hou L. Host Genetic Factors Associated with Vaginal Microbiome Composition in Kenyan Women. mSystems 2020; 5:e00502-20. [PMID: 32723796 PMCID: PMC7394359 DOI: 10.1128/msystems.00502-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 01/07/2023] Open
Abstract
Bacterial vaginosis (BV) affects 20% of women worldwide and is associated with adverse reproductive health outcomes and increased risk for HIV. Typically, BV represents a shift in the vaginal microbiome from one that is dominated by Lactobacillus to one that is diverse. Persistent racial differences in BV and diverse vaginal microbiome composition overlap with racial disparities in risks for HIV and sexually transmitted infection, especially among women of African descent. Risk factors for BV and nonoptimal vaginal microbiome include sexual practices, yet racial differences persist when adjusted for behavioral factors, suggesting a host genetic component. Here, we perform a genome-wide association study on vaginal microbiome traits in Kenyan women. Linear regression and logistic regression were performed, adjusting for age and principal components of genetic ancestry, to evaluate the association between Lactobacillus crispatus, Lactobacillus iners, Gardnerella vaginalis, Shannon diversity index, and community state type (CST) with host genetic single nucleotide polymorphisms (SNPs). We identified novel genomic loci associated with the vaginal microbiome traits, though no SNP reached genome-wide significance. During pathway enrichment analysis, Toll-like receptors (TLRs), cytokine production, and other components of innate immune response were associated with L. crispatus, L. iners, and CST. Multiple previously reported genomic loci were replicated, including IL-8 (Shannon, CST), TIRAP (L. iners, Shannon), TLR2 (Shannon, CST), MBL2 (L. iners, G. vaginalis, CST), and MYD88 (L. iners, Shannon). These genetic associations suggest a role for the innate immune system and cell signaling in vaginal microbiome composition and susceptibility to nonoptimal vaginal microbiome.IMPORTANCE Globally, bacterial vaginosis (BV) is a common condition in women. BV is associated with poorer reproductive health outcomes and HIV risk. Typically, BV represents a shift in the vaginal microbiome from one that is dominated by Lactobacillus to one that is diverse. Despite many women having similar exposures, the prevalence of BV and nonoptimal vaginal microbiome is increased for women of African descent, suggesting a possible role for host genetics. We conducted a genome-wide association study of important vaginal microbiome traits in Kenyan women. We identified novel genetic loci and biological pathways related to mucosal immunity, cell signaling, and infection that were associated with vaginal microbiome traits; we replicated previously reported loci associated with mucosal immune response. These results provide insight into potential host genetic influences on vaginal microbiome composition and can guide larger longitudinal studies, with genetic and functional comparison across microbiome sites within individuals and across populations.
Collapse
Affiliation(s)
- Supriya D Mehta
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, Illinois, USA
| | - Drew R Nannini
- Center for Global Oncology, Institute of Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Stefan J Green
- Genome Research Core, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | | | - Alan Landay
- Department of Internal Medicine, Rush University College of Medicine, Chicago, Illinois, USA
| | - Yinan Zheng
- Center for Global Oncology, Institute of Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lifang Hou
- Center for Global Oncology, Institute of Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
30
|
Pasterkamp H, Menzies KJ, Bayomi DJ. Cystic fibrosis in Canadian Hutterites. Pediatr Pulmonol 2020; 55:526-532. [PMID: 31782915 DOI: 10.1002/ppul.24590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Hutterite Brethren are a communal group of Anabaptists who live in the Western regions of North America, predominantly in the Western Canadian provinces. Due to a founder effect, Hutterites have a high rate of cystic fibrosis (CF) with genotypes limited to only two CFTR mutations. One-third of Hutterite patients with CF are pancreatic sufficient. Previously we found an unexplained younger age at death in Hutterites compared with nonHutterites homozygous for the common F508del mutation. The present study expanded the data collection and analysis for confirmation and further exploration. METHODS Anonymized information, based on Hutterite surnames, was extracted from the Canadian CF Registry. Summary data on nonHutterite patients with CF homozygous for F508del served as control. Statistical analyses explored the effects of genotype within Hutterites and compared nutritional status, lung function, and microbiologic findings between the groups. RESULTS The younger average age at death in Hutterites compared with controls was confirmed, but there was no suggestion of a generally shortened life expectancy. While the nutritional status in Hutterite children was better than that of controls, their lung function was slightly but significantly lower. Staphylococcus aureus was more frequent in Hutterites while there was no difference between the groups regarding Pseudomonas aeruginosa. CONCLUSIONS Despite less pancreatic insufficiency, better nutrition, communal life in socioeconomic stability, and without exposure to environmental tobacco smoke, the clinical course of CF appears to be more severe in a significant number of Hutterites. Investigations of gene-environment interactions and of CF disease gene modifiers may help to explain this conundrum.
Collapse
Affiliation(s)
- Hans Pasterkamp
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Kathryn J Menzies
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Dennis J Bayomi
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
31
|
Mittal R, Sanchez-Luege SV, Wagner SM, Yan D, Liu XZ. Recent Perspectives on Gene-Microbe Interactions Determining Predisposition to Otitis Media. Front Genet 2019; 10:1230. [PMID: 31850076 PMCID: PMC6901973 DOI: 10.3389/fgene.2019.01230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023] Open
Abstract
A comprehensive understanding about the pathogenesis of otitis media (OM), one of the most common pediatric diseases, has the potential to alleviate a substantial disease burden across the globe. Advancements in genetic and bioinformatic detection methods, as well as a growing interest in the microbiome, has enhanced the capability of researchers to investigate the interplay between host genes, host microbiome, invading bacteria, and resulting OM susceptibility. Early studies deciphering the role of genetics in OM susceptibility assessed the heritability of the phenotype in twin and triplet studies, followed by linkage studies, candidate gene approaches, and genome-wide association studies that have helped in the identification of specific loci. With the advancements in techniques, various chromosomal regions and genes such as FBXO11, TGIF1, FUT2, FNDC1, and others have been implicated in predisposition to OM, yet questions still remain as to whether these implicated genes truly play a causative role in OM and to what extent. Meanwhile, 16S ribosomal RNA (rRNA) sequencing, microbial quantitative trait loci (mbQTL), and microbial genome-wide association studies (mGWAS) have mapped the microbiome of upper airways sites and therefore helped in enabling a more detailed study of interactions between host polymorphisms and host microbiome composition. Variants of specific genes conferring increased OM susceptibility, such as A2ML1, have also been shown to influence the microbial composition of the outer and middle ear in patients with OM, suggesting their role as mediators of disease. These interactions appear to impact the colonization of known otopathogens (Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis), as well as Neisseria, Gemella, Porphyromonas, Alloprevotella, and Fusobacterium populations that have also been implicated in OM pathogenesis. Meanwhile, studies demonstrating an increased abundance of Dolosigranulum and Corynebacterium in healthy patients compared to those with OM suggest a protective role for these bacteria, thereby introducing potential avenues for future probiotic treatment. Incorporating insights from these genetic, microbiome, and host-pathogen studies will allow for a more robust, comprehensive understanding of OM pathogenesis that can ultimately facilitate in the development of exciting new treatment modalities.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sebastian V Sanchez-Luege
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shannon M Wagner
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
32
|
Infant airway microbiota and topical immune perturbations in the origins of childhood asthma. Nat Commun 2019; 10:5001. [PMID: 31676759 PMCID: PMC6825176 DOI: 10.1038/s41467-019-12989-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/14/2019] [Indexed: 12/24/2022] Open
Abstract
Asthma is believed to arise through early life aberrant immune development in response to environmental exposures that may influence the airway microbiota. Here, we examine the airway microbiota during the first three months of life by 16S rRNA gene amplicon sequencing in the population-based Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC2010) cohort consisting of 700 children monitored for the development of asthma since birth. Microbial diversity and the relative abundances of Veillonella and Prevotella in the airways at age one month are associated with asthma by age 6 years, both individually and with additional taxa in a multivariable model. Higher relative abundance of these bacteria is furthermore associated with an airway immune profile dominated by reduced TNF-α and IL-1β and increased CCL2 and CCL17, which itself is an independent predictor for asthma. These findings suggest a mechanism of microbiota-immune interactions in early infancy that predisposes to childhood asthma. Here, Thorsen et al. examine the microbiota during the first three months of life in a cohort of 700 children and find that microbial diversity and the relative abundances of Veillonella and Prevotella in the airways at one month of age are associated with topical immune mediators and asthma by age 6 years.
Collapse
|
33
|
Ceccarani C, Marangoni A, Severgnini M, Camboni T, Laghi L, Gaspari V, D'Antuono A, Foschi C, Re MC, Consolandi C. Rectal Microbiota Associated With Chlamydia trachomatis and Neisseria gonorrhoeae Infections in Men Having Sex With Other Men. Front Cell Infect Microbiol 2019; 9:358. [PMID: 31681634 PMCID: PMC6813206 DOI: 10.3389/fcimb.2019.00358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 01/02/2023] Open
Abstract
Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) represent the most common agents of sexually transmitted rectal infections among men having sex with other men (MSM). In this study, we assessed the bacterial composition of the rectal microbiota associated with CT and/or NG infections in a cohort of men reporting unsafe rectal intercourse. A total of 125 rectal swabs were collected and four groups were compared: non-infected subjects (n = 53), patients with CT (n = 37), or NG rectal infection (n = 17) and patients with contemporary positivity for CT/NG (n = 18). CT and NG infections were detected by a real-time commercial test and the rectal microbiota composition was analyzed from rectal swabs through sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene. The rectal microbiota of all subgroups was dominated by Prevotellaceae, Enterobacteriaceae, and Ruminococcaceae families. Irrespective of the analyzed subgroup, we found that the rectal environment of all the enrolled MSM was rich in Prevotella and Escherichia genera. Moreover, a shift in the bacterial composition between patients with sexually transmitted rectal infections and controls was noticed: infected patients were characterized by a depletion of Escherichia species, associated with an increase of anaerobic genera, including Peptoniphilus, Peptostreptococcus, and Parvimonas. Overall, the presence of rectal symptoms did not significantly modify the rectal microbiota profiles among the four groups of analyzed patients. We confirmed that HIV-positive patients are characterized by a lower bacterial richness than HIV-negative subjects. However, we found that the presence of HIV has a different impact on bacterial rectal communities compared to CT and NG infections, modifying the relative abundance of several genera, including Gardnerella, Lactobacillus, Corynebacterium, and Sutterella. Information about the rectal microbiota composition in CT and NG infections could shed light on the pathogenesis of these conditions and could contribute to the onset of new strategies for their control.
Collapse
Affiliation(s)
- Camilla Ceccarani
- National Research Council, Institute of Biomedical Technologies, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Marco Severgnini
- National Research Council, Institute of Biomedical Technologies, Milan, Italy
| | - Tania Camboni
- National Research Council, Institute of Biomedical Technologies, Milan, Italy
| | - Luca Laghi
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Cesena, Italy
| | | | | | - Claudio Foschi
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Maria Carla Re
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Clarissa Consolandi
- National Research Council, Institute of Biomedical Technologies, Milan, Italy
| |
Collapse
|
34
|
Ivaska L, Alyazidi R, Hoang L, Goldfarb DM. Dermacoccus sp. isolated from a brain abscess in a 4-year-old child. J Infect Chemother 2019; 25:1070-1073. [PMID: 31253474 DOI: 10.1016/j.jiac.2019.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 11/25/2022]
Abstract
Dermacoccus spp. have rarely been reported as human pathogens. We describe a case of a 4-year-old boy with congenital heart disease who was diagnosed with a brain abscess. The abscess was drained and the sample grew Streptococcus intermedius, Aggregatibacter aphrophilus and Dermacoccus sp.. Dermacoccus grew after 5 days of incubation and the patient was treated with meropenem.
Collapse
Affiliation(s)
- Lauri Ivaska
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Kiinanmyllynkatu 4-8, 20521, Turku, Finland; University of British Columbia and BC Children's Hospital, 4480 Oak St, Vancouver, BC, V6H 3N1, Canada.
| | - Raidan Alyazidi
- University of British Columbia and BC Children's Hospital, 4480 Oak St, Vancouver, BC, V6H 3N1, Canada; Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Prince Majid Rd, Al Sulaymaniyah, Jeddah, 22252, Saudi Arabia.
| | - Linda Hoang
- BC Centre for Disease Control Public Health Microbiology, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada.
| | - David M Goldfarb
- University of British Columbia and BC Children's Hospital, 4480 Oak St, Vancouver, BC, V6H 3N1, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
35
|
The Indoor-Air Microbiota of Pig Farms Drives the Composition of the Pig Farmers' Nasal Microbiota in a Season-Dependent and Farm-Specific Manner. Appl Environ Microbiol 2019; 85:AEM.03038-18. [PMID: 30824439 DOI: 10.1128/aem.03038-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Prior studies have demonstrated an influence of the built environment on the human nasal microbiota. However, very little is known about the influences of working on a pig farm on the human nasal microbiota. We longitudinally collected samples from 30 pig farms (air and nasal swabs from humans and pigs) in Switzerland from 2014 to 2015. As controls, nasal swabs from cow farmers and individuals with no contact with farm animals were included. An analysis of the microbiota for all samples (n = 609) was performed based on 16S rRNA gene sequencing (MiSeq) and included the investigations of source-sink dynamics. The numbers of indoor airborne particles and bacterial loads in pig farms were also investigated and were highest in winter. Similarly, the microbiota analyses revealed that the alpha diversity values of the nares of pig farmers were increased in winter in contrast to those of samples from the nonexposed controls, which displayed low alpha diversity values throughout the seasons. Source-sink analyses revealed that bacteria from the noses of pigs are more commonly coidentified within the pig farmers' microbiota in winter but to a less extent in summer. In addition, in winter, there was a stronger intrasimilarity for samples that originated from the same farm than for samples from different farms, and this farm specificity was partially or completely lost in spring, summer, and fall. In conclusion, in contrast to nonexposed controls, a pig farmer's nasal microbiota is dynamic, as the indoor-air microbiota of pig farms drives the composition of the pig farmer's nasal microbiota in a season-dependent manner.IMPORTANCE The airborne microbiota of pig farms poses a potential health hazard and impacts both livestock and humans working in this environment. Therefore, a more thorough understanding of the microbiota composition and dynamics in this setting is needed. This study was of a prospective design (12 months) and used samples from different sites. This means that the microbiota of air, animals (pigs), and humans was simultaneously investigated. Our findings highlight that the potential health hazard might be particularly high in winter compared to that in summer.
Collapse
|
36
|
Chronic Inflammatory Diseases: Are We Ready for Microbiota-based Dietary Intervention? Cell Mol Gastroenterol Hepatol 2019; 8:61-71. [PMID: 30836147 PMCID: PMC6517864 DOI: 10.1016/j.jcmgh.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
The last 15 years have witnessed the emergence of a new field of research that focuses on the roles played by the intestinal microbiota in health and disease. This research field has produced accumulating evidence indicating that dysregulation of host-microbiota interactions contributes to a range of chronic inflammatory diseases, including inflammatory bowel diseases, colorectal cancer, and metabolic syndrome. Although dysregulation of the microbiota can take complex forms, in some cases, specific bacterial species that can drive specific clinical outcomes have been identified. Among the numerous factors influencing the intestinal microbiota composition, diet is a central actor, wherein numerous dietary factors can beneficially or detrimentally impact the host/microbiota relationship. This review will highlight recent literature that has advanced understanding of microbiota-diet-disease interplay, with a central focus on the following question: Are we ready to use intestinal microbiota composition-based personalized dietary interventions to treat chronic inflammatory diseases?
Collapse
|
37
|
Wang Q, Wang K, Wu W, Giannoulatou E, Ho JWK, Li L. Host and microbiome multi-omics integration: applications and methodologies. Biophys Rev 2019; 11:55-65. [PMID: 30627872 PMCID: PMC6381360 DOI: 10.1007/s12551-018-0491-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The study of the microbial community-the microbiome-associated with a human host is a maturing research field. It is increasingly clear that the composition of the human's microbiome is associated with various diseases such as gastrointestinal diseases, liver diseases and metabolic diseases. Using high-throughput technologies such as next-generation sequencing and mass spectrometry-based metabolomics, we are able to comprehensively sequence the microbiome-the metagenome-and associate these data with the genomic, epigenomics, transcriptomic and metabolic profile of the host. Our review summarises the application of integrating host omics with microbiome as well as the analytical methods and related tools applied in these studies. In addition, potential future directions are discussed.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Joshua W K Ho
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
38
|
Awany D, Allali I, Dalvie S, Hemmings S, Mwaikono KS, Thomford NE, Gomez A, Mulder N, Chimusa ER. Host and Microbiome Genome-Wide Association Studies: Current State and Challenges. Front Genet 2019; 9:637. [PMID: 30723493 PMCID: PMC6349833 DOI: 10.3389/fgene.2018.00637] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
The involvement of the microbiome in health and disease is well established. Microbiome genome-wide association studies (mGWAS) are used to elucidate the interaction of host genetic variation with the microbiome. The emergence of this relatively new field has been facilitated by the advent of next generation sequencing technologies that enable the investigation of the complex interaction between host genetics and microbial communities. In this paper, we review recent studies investigating host-microbiome interactions using mGWAS. Additionally, we highlight the marked disparity in the sampling population of mGWAS carried out to date and draw attention to the critical need for inclusion of diverse populations.
Collapse
Affiliation(s)
- Denis Awany
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Sian Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kilaza S Mwaikono
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas E Thomford
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andres Gomez
- Department of Animal Science, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
39
|
Pulvirenti G, Parisi GF, Giallongo A, Papale M, Manti S, Savasta S, Licari A, Marseglia GL, Leonardi S. Lower Airway Microbiota. Front Pediatr 2019; 7:393. [PMID: 31612122 PMCID: PMC6776601 DOI: 10.3389/fped.2019.00393] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
During the last several years, the interest in the role of microbiota in human health has grown significantly. For many years, the lung was considered a sterile environment, and only recently, with the use of more sophisticated techniques, has it been demonstrated that colonization by a complex population of microorganisms in lower airways also occurs in healthy subjects; a predominance of some species of Proteobacteria, Firmicutes, and Bacteroidetes phyla and with a peculiar composition in some disease conditions, such as asthma, have been noted. Lung microbiota derives mainly from the higher airways microbiota. Although we have some information about the role of gut microbiota in modulation of immune system, less it is known about the connection between lung microbiota and local and systemic immunity. There is a correlation between altered microbiota composition and some diseases or chronic states; however, despite this correlation, it has not been clearly demonstrated whether the lung microbiota dysbiosis could be a consequence or a cause of these diseases. We are far from a scientific approach to the therapeutic use of probiotics in airway diseases, but we are only at the starting point of a knowledge process in this fascinating field that could reveal important surprises, and randomized prospective studies in future could reveal more about the clinical possibilities for controlling lung microbiota. This review was aimed at updating the current knowledge in the field of airway microbiota.
Collapse
Affiliation(s)
- Giulio Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Fabio Parisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Giallongo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Papale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sara Manti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Salvatore Savasta
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Salvatore Leonardi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
40
|
Beilsmith K, Thoen MPM, Brachi B, Gloss AD, Khan MH, Bergelson J. Genome-wide association studies on the phyllosphere microbiome: Embracing complexity in host-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:164-181. [PMID: 30466152 DOI: 10.1111/tpj.14170] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 05/18/2023]
Abstract
Environmental sequencing shows that plants harbor complex communities of microbes that vary across environments. However, many approaches for mapping plant genetic variation to microbe-related traits were developed in the relatively simple context of binary host-microbe interactions under controlled conditions. Recent advances in sequencing and statistics make genome-wide association studies (GWAS) an increasingly promising approach for identifying the plant genetic variation associated with microbes in a community context. This review discusses early efforts on GWAS of the plant phyllosphere microbiome and the outlook for future studies based on human microbiome GWAS. A workflow for GWAS of the phyllosphere microbiome is then presented, with particular attention to how perspectives on the mechanisms, evolution and environmental dependence of plant-microbe interactions will influence the choice of traits to be mapped.
Collapse
Affiliation(s)
- Kathleen Beilsmith
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Manus P M Thoen
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Benjamin Brachi
- BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France
| | - Andrew D Gloss
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Mohammad H Khan
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| |
Collapse
|
41
|
Abstract
Although the gut microbiome has been linked to colorectal cancer (CRC) development, associations of microbial taxa with CRC status are often inconsistent across studies. We have recently shown that tumor genomics, a factor that is rarely incorporated in analyses of the CRC microbiome, has a strong effect on the composition of the microbiota. Here, we discuss these results in the wider context of studies characterizing interaction between host genetics and the microbiome, and describe the implications of our findings for understanding the role of the microbiome in CRC.
Collapse
Affiliation(s)
- Michael B. Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA,CONTACT Ran Blekhman Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Cong W, Xing J, Feng Y, Wang J, Fu R, Yue B, He Z, Lin L, Yang W, Cheng J, Sun W, Cui S. The microbiota in the intestinal and respiratory tracts of naked mole-rats revealed by high-throughput sequencing. BMC Microbiol 2018; 18:89. [PMID: 30134830 PMCID: PMC6103993 DOI: 10.1186/s12866-018-1226-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/06/2018] [Indexed: 01/21/2023] Open
Abstract
Background The naked mole-rat (NMR, Heterocephalus glaber) is being bred as a novel laboratory animal due to its unique biological characteristics, including longevity, cancer resistance, hypoxia tolerance, and pain insensitivity. It is expected that differences exist between the microbiota of wild NMRs and that of NMRs in an artificial environment. Overall, the effect of environment on changes in the NMR microbiota remains unknown. In an attempt to understand the microbiota composition of NMRs in captivity, variability in the microbiota of the intestinal and respiratory tracts of two groups of NMRs was assessed under two conditions. Results The results obtained by high-throughput sequencing revealed significant differences at the phylum, class, order, family and genus levels in the microbiota between the two groups of NMRs examined (first group in conventional environment, second group in barrier environment). For the trachea, 24 phyla and 533 genera and 26 phyla and 733 genera were identified for the first and second groups of animals. Regarding the cecum, 23 phyla and 385 genera and 25 phyla and 110 genera were identified in the microbiota of first and second groups of animals. There were no obvious differences between females and males or young and adult animals. Conclusions Our results suggest that the intestinal and respiratory tract NMR microbiota changed during captivity, which may be related to the transition to the breeding environment. Such changes in the microbiota of NMRs may have an effect on the original characteristics, which may be the direction of further research studies.
Collapse
Affiliation(s)
- Wei Cong
- Laboratory Animal Centre, Second Military Medical University, No.8 Rd. Panshan, Yangpu District, Shanghai, China
| | - Jin Xing
- National Institutes for Food and Drug Control, Institute for Laboratory Animal Resources, No.31 Rd. Huatuo, Daxing District, Beijing, China
| | - Yufang Feng
- National Institutes for Food and Drug Control, Institute for Laboratory Animal Resources, No.31 Rd. Huatuo, Daxing District, Beijing, China
| | - Ji Wang
- National Institutes for Food and Drug Control, Institute for Laboratory Animal Resources, No.31 Rd. Huatuo, Daxing District, Beijing, China
| | - Rui Fu
- National Institutes for Food and Drug Control, Institute for Laboratory Animal Resources, No.31 Rd. Huatuo, Daxing District, Beijing, China
| | - Bingfei Yue
- National Institutes for Food and Drug Control, Institute for Laboratory Animal Resources, No.31 Rd. Huatuo, Daxing District, Beijing, China
| | - Zhengming He
- National Institutes for Food and Drug Control, Institute for Laboratory Animal Resources, No.31 Rd. Huatuo, Daxing District, Beijing, China
| | - Lifang Lin
- Laboratory Animal Centre, Second Military Medical University, No.8 Rd. Panshan, Yangpu District, Shanghai, China
| | - Wenjing Yang
- Laboratory Animal Centre, Second Military Medical University, No.8 Rd. Panshan, Yangpu District, Shanghai, China
| | - Jishuai Cheng
- Laboratory Animal Centre, Second Military Medical University, No.8 Rd. Panshan, Yangpu District, Shanghai, China
| | - Wei Sun
- Laboratory Animal Centre, Second Military Medical University, No.8 Rd. Panshan, Yangpu District, Shanghai, China
| | - Shufang Cui
- Laboratory Animal Centre, Second Military Medical University, No.8 Rd. Panshan, Yangpu District, Shanghai, China.
| |
Collapse
|
43
|
Ho EXP, Cheung CMG, Sim S, Chu CW, Wilm A, Lin CB, Mathur R, Wong D, Chan CM, Bhagarva M, Laude A, Lim TH, Wong TY, Cheng CY, Davila S, Hibberd M. Human pharyngeal microbiota in age-related macular degeneration. PLoS One 2018; 13:e0201768. [PMID: 30089174 PMCID: PMC6082546 DOI: 10.1371/journal.pone.0201768] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/20/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND While the aetiology of age-related macular degeneration (AMD)-a major blinding disease-remains unknown, the disease is strongly associated with variants in the complement factor H (CFH) gene. CFH variants also confer susceptibility to invasive infection with several bacterial colonizers of the nasopharyngeal mucosa. This shared susceptibility locus implicates complement deregulation as a common disease mechanism, and suggests the possibility that microbial interactions with host complement may trigger AMD. In this study, we address this possibility by testing the hypothesis that AMD is associated with specific microbial colonization of the human nasopharynx. RESULTS High-throughput Illumina sequencing of the V3-V6 region of the microbial 16S ribosomal RNA gene was used to comprehensively and accurately describe the human pharyngeal microbiome, at genus level, in 245 AMD patients and 386 controls. Based on mean and differential microbial abundance analyses, we determined an overview of the pharyngeal microbiota, as well as candidate genera (Prevotella and Gemella) suggesting an association towards AMD health and disease conditions. CONCLUSIONS Utilizing an extensive study population from Singapore, our results provided an accurate description of the pharyngeal microbiota profiles in AMD health and disease conditions. Through identification of candidate genera that are different between conditions, we provide preliminary evidence for the existence of microbial triggers for AMD. Ethical approval for this study was obtained through the Singapore Health Clinical Institutional Review Board, reference numbers R799/63/2010 and 2010/585/A.
Collapse
Affiliation(s)
| | - Chui Ming Gemmy Cheung
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Shuzhen Sim
- Genome Institute of Singapore,Singapore, Singapore
| | | | - Andreas Wilm
- Genome Institute of Singapore,Singapore, Singapore
| | | | - Ranjana Mathur
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Doric Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Choi Mun Chan
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Mayuri Bhagarva
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
| | - Augustinus Laude
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tock Han Lim
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Ching Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Sonia Davila
- Genome Institute of Singapore,Singapore, Singapore
| | - Martin Hibberd
- Genome Institute of Singapore,Singapore, Singapore
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
44
|
Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA, Perkins SL. Comparing Microbiome Sampling Methods in a Wild Mammal: Fecal and Intestinal Samples Record Different Signals of Host Ecology, Evolution. Front Microbiol 2018; 9:803. [PMID: 29765359 PMCID: PMC5938605 DOI: 10.3389/fmicb.2018.00803] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022] Open
Abstract
The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated.
Collapse
Affiliation(s)
- Melissa R Ingala
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States.,Department of Mammalogy, American Museum of Natural History, New York, NY, United States.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - Nancy B Simmons
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States.,Department of Mammalogy, American Museum of Natural History, New York, NY, United States
| | - Claudia Wultsch
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | - Konstantinos Krampis
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, United States.,Center for Translational and Basic Research, Hunter College, New York, NY, United States.,Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY, United States
| | - Kelly A Speer
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States.,Department of Mammalogy, American Museum of Natural History, New York, NY, United States.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - Susan L Perkins
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, United States.,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| |
Collapse
|
45
|
Reppell M, Novembre J. Using pseudoalignment and base quality to accurately quantify microbial community composition. PLoS Comput Biol 2018; 14:e1006096. [PMID: 29659582 PMCID: PMC5945057 DOI: 10.1371/journal.pcbi.1006096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 05/10/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Pooled DNA from multiple unknown organisms arises in a variety of contexts, for example microbial samples from ecological or human health research. Determining the composition of pooled samples can be difficult, especially at the scale of modern sequencing data and reference databases. Here we propose a novel method for taxonomic profiling in pooled DNA that combines the speed and low-memory requirements of k-mer based pseudoalignment with a likelihood framework that uses base quality information to better resolve multiply mapped reads. We apply the method to the problem of classifying 16S rRNA reads using a reference database of known organisms, a common challenge in microbiome research. Using simulations, we show the method is accurate across a variety of read lengths, with different length reference sequences, at different sample depths, and when samples contain reads originating from organisms absent from the reference. We also assess performance in real 16S data, where we reanalyze previous genetic association data to show our method discovers a larger number of quantitative trait associations than other widely used methods. We implement our method in the software Karp, for k-mer based analysis of read pools, to provide a novel combination of speed and accuracy that is uniquely suited for enhancing discoveries in microbial studies.
Collapse
Affiliation(s)
- Mark Reppell
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
46
|
Kostric M, Milger K, Krauss-Etschmann S, Engel M, Vestergaard G, Schloter M, Schöler A. Development of a Stable Lung Microbiome in Healthy Neonatal Mice. MICROBIAL ECOLOGY 2018; 75:529-542. [PMID: 28905200 DOI: 10.1007/s00248-017-1068-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
The lower respiratory tract has been previously considered sterile in a healthy state, but advances in culture-independent techniques for microbial identification and characterization have revealed that the lung harbors a diverse microbiome. Although research on the lung microbiome is increasing and important questions were already addressed, longitudinal studies aiming to describe developmental stages of the microbial communities from the early neonatal period to adulthood are lacking. Thus, little is known about the early-life development of the lung microbiome and the impact of external factors during these stages. In this study, we applied a barcoding approach based on high-throughput sequencing of 16S ribosomal RNA gene amplicon libraries to determine age-dependent differences in the bacterial fraction of the murine lung microbiome and to assess potential influences of differing "environmental microbiomes" (simulated by the application of used litter material to the cages). We could clearly show that the diversity of the bacterial community harbored in the murine lung increases with age. Interestingly, bacteria belonging to the genera Delftia and Rhodococcus formed an age-independent core microbiome. The addition of the used litter material influenced the lung microbiota of young mice but did not significantly alter the community composition of adult animals. Our findings elucidate the dynamic nature of the early-life lung microbiota and its stabilization with age. Further, this study indicates that even slight environmental changes modulate the bacterial community composition of the lung microbiome in early life, whereas the lung microbes of adults demonstrate higher resilience towards environmental variations.
Collapse
Affiliation(s)
- Matea Kostric
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85716, Neuherberg, Germany
| | - Katrin Milger
- Department of Internal Medicine V, University of Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Lung Biology and Disease (ILBD), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Munich, Germany
| | - Susanne Krauss-Etschmann
- Division of Experimental Asthma Research, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Member of the German Center for Lung Research (DZL), Parkallee 1-40, 23845, Borstel, Germany
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Marion Engel
- Research Unit Scientific Computing, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85716, Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85716, Neuherberg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85716, Neuherberg, Germany.
- ZIEL Institute for Food and Health, Technische Universität München, Weihenstephaner Berg 1, 85354, Freising, Germany.
| | - Anne Schöler
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85716, Neuherberg, Germany
| |
Collapse
|
47
|
Liang D, Leung RKK, Guan W, Au WW. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog 2018; 10:3. [PMID: 29416567 PMCID: PMC5785832 DOI: 10.1186/s13099-018-0230-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
The commensal, symbiotic, and pathogenic microbial community which resides inside our body and on our skin (the human microbiome) can perturb host energy metabolism and immunity, and thus significantly influence development of a variety of human diseases. Therefore, the field has attracted unprecedented attention in the last decade. Although a large amount of data has been generated, there are still many unanswered questions and no universal agreements on how microbiome affects human health have been agreed upon. Consequently, this review was written to provide an updated overview of the rapidly expanding field, with a focus on revealing knowledge gaps and research opportunities. Specifically, the review covered animal physiology, optimal microbiome standard, health intervention by manipulating microbiome, knowledge base building by text mining, microbiota community structure and its implications in human diseases and health monitoring by analyzing microbiome in the blood. The review should enhance interest in conducting novel microbiota investigations that will further improve health and therapy.
Collapse
Affiliation(s)
- Dachao Liang
- Division of Genomics and Bioinformatics, CUHK-BGI Innovation Institute of Trans-omics Hong Kong, Hong Kong SAR, China
| | - Ross Ka-Kit Leung
- 2State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Wenda Guan
- 2State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - William W Au
- 3University of Medicine and Pharmacy, Tirgu Mures, Romania.,4Shantou University Medical College, Shantou, China
| |
Collapse
|
48
|
Dal Grande F, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I. Environment and host identity structure communities of green algal symbionts in lichens. THE NEW PHYTOLOGIST 2018; 217:277-289. [PMID: 28892165 DOI: 10.1111/nph.14770] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
An understanding of how biotic interactions shape species' distributions is central to predicting host-symbiont responses under climate change. Switches to locally adapted algae have been proposed to be an adaptive strategy of lichen-forming fungi to cope with environmental change. However, it is unclear how lichen photobionts respond to environmental gradients, and whether they play a role in determining the fungal host's upper and lower elevational limits. Deep-coverage Illumina DNA metabarcoding was used to track changes in the community composition of Trebouxia algae associated with two phylogenetically closely related, but ecologically divergent fungal hosts along a steep altitudinal gradient in the Mediterranean region. We detected the presence of multiple Trebouxia species in the majority of thalli. Both altitude and host genetic identity were strong predictors of photobiont community assembly in these two species. The predominantly clonally dispersing fungus showed stronger altitudinal structuring of photobiont communities than the sexually reproducing host. Elevation ranges of the host were not limited by the lack of compatible photobionts. Our study sheds light on the processes guiding the formation and distribution of specific fungal-algal combinations in the lichen symbiosis. The effect of environmental filtering acting on both symbiotic partners appears to shape the distribution of lichens.
Collapse
Affiliation(s)
- Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Pradeep K Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| |
Collapse
|
49
|
van Moorsel CHM. To progress understanding of disease triggers and modifiers in sarcoidosis, stratification is the key. Eur Respir J 2017; 50:50/6/1702002. [PMID: 29242265 DOI: 10.1183/13993003.02002-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Coline H M van Moorsel
- Interstitial Lung Diseases Center of Excellence, Dept of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
50
|
The oral microbiome. Emerg Top Life Sci 2017; 1:287-296. [DOI: 10.1042/etls20170040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
The human microbiome is receiving a great deal of attention as its role in health and disease becomes ever more apparent. The oral microbiome, perhaps due to the ease with which we can obtain samples, is arguably the most well-studied human microbiome to date. It is obvious, however, that we have only just begun to scratch the surface of the complex bacterial and bacterial–host interactions within this complex community. Here, we describe the factors which are known to influence the development of the seemingly globally conserved, core, oral microbiome and those which are likely to be responsible for the observed differences at the individual level. We discuss the paradoxical situation of maintaining a stable core microbiome which is at the same time incredibly resilient and adaptable to many different stresses encountered in the open environment of the oral cavity. Finally, we explore the interactions of the oral microbiome with the host and discuss the interactions underlying human health and disease.
Collapse
|