1
|
Chang WS, Harvey E, Mahar JE, Firth C, Shi M, Simon-Loriere E, Geoghegan JL, Wille M. Improving the reporting of metagenomic virome-scale data. Commun Biol 2024; 7:1687. [PMID: 39706917 DOI: 10.1038/s42003-024-07212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024] Open
Abstract
Over the last decade metagenomic sequencing has facilitated an increasing number of virome-scale studies, leading to an exponential expansion in understanding of virus diversity. This is partially driven by the decreasing costs of metagenomic sequencing, improvements in computational tools for revealing novel viruses, and an increased understanding of the key role that viruses play in human and animal health. A central concern associated with this remarkable increase in the number of virome-scale studies is the lack of broadly accepted "gold standards" for reporting the data and results generated. This is of particular importance for animal virome studies as there are a multitude of nuanced approaches for both data presentation and analysis, all of which impact the resulting outcomes. As such, the results of published studies can be difficult to contextualise and may be of reduced utility due to reporting deficiencies. Herein, we aim to address these reporting issues by outlining recommendations for the presentation of virome data, encouraging a transparent communication of findings that can be interpreted in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Erin Harvey
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jackie E Mahar
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Animal Health Laboratory and Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Cadhla Firth
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Mang Shi
- Sun Yat-Sen University, Shenzhen campus of Sun Yat-Sen University, Shenzhen, China
| | - Etienne Simon-Loriere
- Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Michelle Wille
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Ji L, Wang Y, Sun Y, Ji L, Wang X, Liu Y, Shen Q, Yang S, Zhang W. Identification and characterization of multiple novel viruses in fecal samples of ruddy shelducks using viral metagenomics methods. Heliyon 2024; 10:e38338. [PMID: 39398034 PMCID: PMC11470519 DOI: 10.1016/j.heliyon.2024.e38338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
The viral metagenomics approach is an effective technique for investigating and analysing both existing and emerging viruses in humans and diverse animal samples. The ruddy shelduck, a nationally protected secondary key species of wild animals, has become the predominant species among overwintering waterbirds in Qinghai Lake. Viruses carried by ruddy shelducks can potentially infect humans or other animals; however, limited research on the faecal virome of ruddy shelducks is currently available. In the present study, faecal samples of ruddy shelducks collected from Saga County, Shigatse City, Tibet, China, were subjected to viral metagenomic analysis. The predominant viral families identified in ruddy shelduck samples were Picornaviridae, Parvoviridae, Microviridae, Vilyaviridae, Astroviridae, and Caliciviridae. Among these, two picornavirus genomes have been identified as new strains of the genus Megrivirus in the family Parvoviridae. In addition, viruses that infect parasites and bacteria have been identified and characterised. The present study enhances our comprehension of the composition of the viral community in ruddy shelducks faeces and highlights the dynamic nature of viral evolution and the significance of continuous monitoring to assess potential risks to wildlife and public health.
Collapse
Affiliation(s)
- Li Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, 212005, China
| | - Yan Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yijie Sun
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuwei Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
3
|
Zhao J, Wan W, Yu K, Lemey P, Pettersson JHO, Bi Y, Lu M, Li X, Chen Z, Zheng M, Yan G, Dai J, Li Y, Haerheng A, He N, Tu C, Suchard MA, Holmes EC, He WT, Su S. Farmed fur animals harbour viruses with zoonotic spillover potential. Nature 2024; 634:228-233. [PMID: 39232170 DOI: 10.1038/s41586-024-07901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
Animals such as raccoon dogs, mink and muskrats are farmed for fur and are sometimes used as food or medicinal products1,2, yet they are also potential reservoirs of emerging pathogens3. Here we performed single-sample metatranscriptomic sequencing of internal tissues from 461 individual fur animals that were found dead due to disease. We characterized 125 virus species, including 36 that were novel and 39 at potentially high risk of cross-species transmission, including zoonotic spillover. Notably, we identified seven species of coronaviruses, expanding their known host range, and documented the cross-species transmission of a novel canine respiratory coronavirus to raccoon dogs and of bat HKU5-like coronaviruses to mink, present at a high abundance in lung tissues. Three subtypes of influenza A virus-H1N2, H5N6 and H6N2-were detected in the lungs of guinea pig, mink and muskrat, respectively. Multiple known zoonotic viruses, such as Japanese encephalitis virus and mammalian orthoreovirus4,5, were detected in guinea pigs. Raccoon dogs and mink carried the highest number of potentially high-risk viruses, while viruses from the Coronaviridae, Paramyxoviridae and Sedoreoviridae families commonly infected multiple hosts. These data also reveal potential virus transmission between farmed animals and wild animals, and from humans to farmed animals, indicating that fur farming represents an important transmission hub for viral zoonoses.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Wenbo Wan
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Kang Yu
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - John H-O Pettersson
- Clinical Microbiology, Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, Uppsala, Sweden
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Meng Lu
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xinxin Li
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Zhuohang Chen
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Mengdi Zheng
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Ge Yan
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - JianJun Dai
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuxing Li
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Ayidana Haerheng
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Na He
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, and Departments of Biomathematics and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Wan-Ting He
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Shuo Su
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Liu Y, Qin Y, Hu Y, Chen W, Han Z, Yi C, Bi J, Huang H, Li Y, Zhang X, Lan T, Zheng M, Sun W. Epidemiological and evolutionary analysis of canine circovirus from 1996 to 2023. BMC Vet Res 2024; 20:328. [PMID: 39033103 PMCID: PMC11264901 DOI: 10.1186/s12917-024-04186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Canine circovirus (CanineCV), a non-enveloped virus with a circular DNA genome, has been identified in various avian and mammalian species, including domestic and wild canids. This study aimed to comprehensively analyze the prevalence of CanineCV across diverse animal species in 11 provinces of China. RESULTS A total of 1,666 serum samples were collected, revealing a 5.82% prevalence of CanineCV in dogs, with the highest rates being observed in southern and eastern China. Phylogenetic analysis of 266 global CanineCV genomes sourced from the NCBI identified six distinct genotypes, elucidating the complex dynamics of their evolution. Evidence suggested a potential bat origin for CanineCV, with positive selection and high rates of evolution being observed. Recombination analysis revealed dynamic genetic exchange, highlighting the intricate nature of CanineCV evolution. Mutational analysis identified key amino acid substitutions likely to influence the virus's adaptation. Additionally, glycosylation, palmitoylation, and SUMOylation sites were predicted, shedding light on crucial functional properties of the virus. CONCLUSIONS This study provides a global perspective on the origin, genetic diversity, and evolutionary dynamics of CanineCV. Understanding these factors is crucial for elucidating its epidemiology and potential health risks.
Collapse
Affiliation(s)
- Yumeng Liu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yan Qin
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Yanqing Hu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Wei Chen
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Zhixiao Han
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chizhe Yi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jingshan Bi
- Guangxi Centre for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Haixin Huang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Yuying Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - XinYu Zhang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Tian Lan
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China.
| | - Min Zheng
- Guangxi Centre for Animal Disease Control and Prevention, Nanning, 530001, China.
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Paietta EN, Kraberger S, Lund MC, Vargas KL, Custer JM, Ehmke E, Yoder AD, Varsani A. Diverse Circular DNA Viral Communities in Blood, Oral, and Fecal Samples of Captive Lemurs. Viruses 2024; 16:1099. [PMID: 39066262 PMCID: PMC11281440 DOI: 10.3390/v16071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Few studies have addressed viral diversity in lemurs despite their unique evolutionary history on the island of Madagascar and high risk of extinction. Further, while a large number of studies on animal viromes focus on fecal samples, understanding viral diversity across multiple sample types and seasons can reveal complex viral community structures within and across species. Groups of captive lemurs at the Duke Lemur Center (Durham, NC, USA), a conservation and research center, provide an opportunity to build foundational knowledge on lemur-associated viromes. We sampled individuals from seven lemur species, i.e., collared lemur (Eulemur collaris), crowned lemur (Eulemur coronatus), blue-eyed black lemur (Eulemur flavifrons), ring-tailed lemur (Lemur catta), Coquerel's sifaka (Propithecus coquereli), black-and-white ruffed lemur (Varecia variegata variegata), and red ruffed lemur (Varecia rubra), across two lemur families (Lemuridae, Indriidae). Fecal, blood, and saliva samples were collected from Coquerel's sifaka and black-and-white ruffed lemur individuals across two sampling seasons to diversify virome biogeography and temporal sampling. Using viral metagenomic workflows, the complete genomes of anelloviruses (n = 4), cressdnaviruses (n = 47), caudoviruses (n = 15), inoviruses (n = 34), and microviruses (n = 537) were determined from lemur blood, feces, and saliva. Many virus genomes, especially bacteriophages, identified in this study were present across multiple lemur species. Overall, the work presented here uses a viral metagenomics approach to investigate viral communities inhabiting the blood, oral cavity, and feces of healthy captive lemurs.
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27708, USA
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
6
|
Regney M, Kraberger S, Custer JM, Crane AE, Shero MR, Beltran RS, Kirkham AL, Van Doorslaer K, Stone AC, Goebel ME, Burns JM, Varsani A. Diverse papillomaviruses identified from Antarctic fur seals, leopard seals and Weddell seals from the Antarctic. Virology 2024; 594:110064. [PMID: 38522135 DOI: 10.1016/j.virol.2024.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Papillomaviruses (family Papillomaviridae) are non-enveloped, circular, double-stranded DNA viruses known to infect squamous and mucosal epithelial cells. In the family Papillomaviridae there are 53 genera and 133 viral species whose members infect a variety of mammalian, avian, reptilian, and fish species. Within the Antarctic context, papillomaviruses (PVs) have been identified in Adélie penguins (Pygoscelis adeliae, 2 PVs), Weddell seals (Leptonychotes weddellii, 7 PVs), and emerald notothen (Trematomus bernacchii, 1 PV) in McMurdo Sound and Ross Island in eastern Antarctica. Here we identified 13 diverse PVs from buccal swabs of Antarctic fur seals (Arctocephalus gazella, 2 PVs) and leopard seal (Hydrurga leptonyx, 3 PVs) in western Antarctica (Antarctic Peninsula), and vaginal and nasal swabs of Weddell seals (8 PVs) in McMurdo Sound. These PV genomes group into four genera representing 11 new papillomavirus types, of which five are from two Antarctic fur seals and a leopard seal and six from Weddell seals.
Collapse
Affiliation(s)
- Melanie Regney
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, United States; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States
| | - Adele E Crane
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, United States
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA, 02543, United States
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA, 95060, United States
| | - Amy L Kirkham
- U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 E. Tudor Road, Anchorage, AK, 99503, United States
| | - Koenraad Van Doorslaer
- Department of Immunobiology, UA Cancer Center, The BIO5 Institute, University of Arizona, Tucson, AZ, 85724, United States
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, United States
| | - Michael E Goebel
- Department of Ecology and Evolutionary Biology, University of California-Santa Cruz, Santa Cruz, CA, United States
| | - Jennifer M Burns
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, United States
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, United States; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| |
Collapse
|
7
|
Liu J, Jiang X, Lei W, Xi Y, Zhang Q, Cai H, Ma X, Liu Y, Wang W, Liu N, Zhang X, Ma W, Zhao C, Ni B, Zhang W, Wang Y. Differences between the intestinal microbial communities of healthy dogs from plateau and those of plateau dogs infected with Echinococcus. Virol J 2024; 21:116. [PMID: 38783310 PMCID: PMC11112841 DOI: 10.1186/s12985-024-02364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE Cystic echinococcosis (CE) represents a profoundly perilous zoonotic disease. The advent of viral macrogenomics has facilitated the exploration of hitherto uncharted viral territories. In the scope of this investigation, our objective is to scrutinize disparities in the intestinal microbiotic ecosystems of canines dwelling in elevated terrains and those afflicted by Echinococcus infection, employing the tool of viral macrogenomics. METHODS In this study, we collected a comprehensive total of 1,970 fecal samples from plateau dogs infected with Echinococcus, as well as healthy control plateau dogs from the Yushu and Guoluo regions in the highland terrain of China. These samples were subjected to viral macrogenomic analysis to investigate the viral community inhabiting the canine gastrointestinal tract. RESULTS Our meticulous analysis led to the identification of 136 viral genomic sequences, encompassing eight distinct viral families. CONCLUSION The outcomes of this study hold the potential to enhance our comprehension of the intricate interplay between hosts, parasites, and viral communities within the highland canine gut ecosystem. Through the examination of phage presence, it may aid in early detection or assessment of infection severity, providing valuable insights into Echinococcus infection and offering prospects for potential treatment strategies.
Collapse
Affiliation(s)
- Jia Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wen Lei
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qing Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Huixia Cai
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Xiao Ma
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Yufang Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Wei Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Na Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Xiongying Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Wanli Ma
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Cunzhe Zhao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Bin Ni
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Yongshun Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China.
| |
Collapse
|
8
|
Munday JS, Bond SD, Piripi S, Soulsby SJ, Knox MA. Canis Familiaris Papillomavirus Type 26: A Novel Papillomavirus of Dogs and the First Canine Papillomavirus within the Omegapapillomavirus Genus. Viruses 2024; 16:595. [PMID: 38675936 PMCID: PMC11054245 DOI: 10.3390/v16040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Domestic dogs are currently recognized as being infected by 25 different canine papillomavirus (CPV) types classified into three genera. A short sequence from a novel CPV type was amplified, along with CPV1, from a papilloma (wart) from the mouth of a dog. The entire 7499 bp genome was amplified, and CPV26 contained putative coding regions that were predicted to produce four early proteins and two late ones. The ORF L1 showed less than 62% similarity for all previously sequenced CPV types but over 69% similarity to multiple Omegapapillomavirus types from a variety of Caniform species including the giant panda, Weddel seal, and polar bear. Phylogenetic analysis confirmed CPV26 clusters within the Omegapapillomavirus genus. Specific primers were used to investigate the presence of CPV26 DNA within a series of 37 canine proliferative lesions. CPV26 DNA was amplified from one lesion, a cutaneous papilloma that also contained CPV6. This is the first time a PV type within the Omegapapillomavirus genus has been detected in a non-domestic species and this provides evidence that the omegapapillomaviruses infected a common ancestor of, and then co-evolved with, the Caniform species. Whether CPV26 causes disease is uncertain, but the absence of an E7 protein may suggest low pathogenicity.
Collapse
Affiliation(s)
- John S. Munday
- Pathobiology, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Sarah D. Bond
- Pathobiology, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Susan Piripi
- IDEXX Laboratories, Palmerston Noth 4410, New Zealand;
| | | | - Matthew A. Knox
- Molecular Epidemiology Laboratory, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
9
|
Li Y, Xu W, Wang J, Liu H, Liu J, Zhang L, Hou R, Shen F, Liu Y, Cai K. Giant pandas in captivity undergo short-term adaptation in nerve-related pathways. BMC ZOOL 2024; 9:4. [PMID: 38383502 PMCID: PMC10880213 DOI: 10.1186/s40850-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Behaviors in captive animals, including changes in appetite, activity level, and social interaction, are often seen as adaptive responses. However, these behaviors may become progressively maladaptive, leading to stress, anxiety, depression, and other negative reactions in animals. RESULTS In this study, we investigated the whole-genome sequencing data of 39 giant panda individuals, including 11 in captivity and 28 in the wild. To eliminate the mountain range effect and focus on the factor of captivity only, we first performed a principal component analysis. We then enumerated the 21,474,180 combinations of wild giant pandas (11 chosen from 28) and calculated their distances from the 11 captive individuals. The 11 wild individuals with the closest distances were used for the subsequent analysis. The linkage disequilibrium (LD) patterns demonstrated that the population was almost eliminated. We identified 505 robust selected genomic regions harboring at least one SNP, and the absolute frequency difference was greater than 0.6 between the two populations. GO analysis revealed that genes in these regions were mainly involved in nerve-related pathways. Furthermore, we identified 22 GO terms for which the selection strength significantly differed between the two populations, and there were 10 nerve-related pathways among them. Genes in the differentially abundant regions were involved in nerve-related pathways, indicating that giant pandas in captivity underwent minor genomic selection. Additionally, we investigated the relationship between genetic variation and chromatin conformation structures. We found that nucleotide diversity (θπ) in the captive population was correlated with chromatin conformation structures, which included A/B compartments, topologically associated domains (TADs) and TAD-cliques. For each GO term, we then compared the expression level of genes regulated by the above four factors (AB index, TAD intactness, TAD clique and PEI) with the corresponding genomic background. The retained 10 GO terms were all coordinately regulated by the four factors, and three of them were associated with nerve-related pathways. CONCLUSIONS This study revealed that giant pandas in captivity undergo short-term adaptation in nerve-related pathways. Furthermore, it provides new insights into the molecular mechanism of gene expression regulation under short-term adaptation to environmental change.
Collapse
Affiliation(s)
- Yan Li
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Wei Xu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Juan Wang
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Hong Liu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Jiawen Liu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Liang Zhang
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Fujun Shen
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Kailai Cai
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China.
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China.
| |
Collapse
|
10
|
Zhu Q, Qi S, Guo D, Li C, Su M, Wang J, Li Z, Yang D, Sun H, Wang X, Wang M, Wu H, Yu S, Bai W, Zhang Y, Yang X, Jiang L, Liu J, Zhao Y, Xing X, Shi D, Feng L, Sun D. A survey of fecal virome and bacterial community of the diarrhea-affected cattle in northeast China reveals novel disease-associated ecological risk factors. mSystems 2024; 9:e0084223. [PMID: 38108282 PMCID: PMC10804951 DOI: 10.1128/msystems.00842-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Limited information on the virome and bacterial community hampers our ability to discern systemic ecological risk factors that cause cattle diarrhea, which has become a pressing issue in the control of disease. A total of 110 viruses, 1,011 bacterial genera, and 322 complete viral genomes were identified from 70 sequencing samples mixed with 1,120 fecal samples from 58 farms in northeast China. For the diarrheic samples, the identified virome and bacterial community varied in terms of composition, abundance, diversity, and geographic distribution in relation to different disease-associated ecological factors; the abundance of identified viruses and bacteria was significantly correlated with the host factors of clinical status, cattle type, and age, and with environmental factors such as aquaculture model and geographical location (P < 0.05); a significant interaction occurred between viruses and viruses, bacteria and bacteria, as well as between bacteria and viruses (P < 0.05). The abundance of SMB53, Butyrivibrio, Facklamia, Trichococcus, and Turicibacter was significantly correlated with the health status of cattle (P < 0.05). The proportion of BRV, BCoV, BKV, BToV, BoNoV, BoNeV, BoAstV, BEV, BoPV, and BVDV in 1,120 fecal samples varied from 1.61% to 12.05%. A series of significant correlations were observed between the prevalence of individual viruses and the disease-associated ecological factors. A genome-based phylogenetic analysis revealed high variability of 10 bovine enteric viruses. The bovine hungarovirus was initially identified in both dairy and beef cattle in China. This study elucidates the fecal virome and bacterial community signatures of cattle affected by diarrhea, and reveals novel disease-associated ecological risk factors, including cattle type, cattle age, aquaculture model, and geographical location.IMPORTANCEThe lack of data on the virome and bacterial community restricts our capability to recognize ecological risk factors for bovine diarrhea disease, thereby hindering our overall comprehension of the disease's cause. In this study, we found that, for the diarrheal samples, the identified virome and bacterial community varied in terms of composition, abundance, diversity, configuration, and geographic distribution in relation to different disease-associated ecological factors. A series of significant correlations were observed between the prevalence of individual viruses and the disease-associated ecological factors. Our study aims to uncover novel ecological risk factors of bovine diarrheal disease by examining the pathogenic microorganism-host-environment disease ecology, thereby providing a new perspective on the control of bovine diarrheal diseases.
Collapse
Affiliation(s)
- Qinghe Zhu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Qi
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Donghua Guo
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunqiu Li
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingjun Su
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianfa Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zijian Li
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dan Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Haibo Sun
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoran Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Meijiao Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Haoyang Wu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shiping Yu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenfei Bai
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yongchen Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xu Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Limin Jiang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiaying Liu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yingying Zhao
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoxu Xing
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongbo Sun
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
11
|
Tang L, Yan L, Jia H, Xiong Y, Ma X, Chu H, Sun Z, Wang L, Shalitanati M, Li K, Hu D, Zhang D. Gut microbial community structure and function of Przewalski's horses varied across reintroduced sites in China. Integr Zool 2023; 18:1027-1040. [PMID: 36606497 DOI: 10.1111/1749-4877.12699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Host-associated microbiota can significantly impact host fitness. Therefore, naturally occurring variations in microbiota may influence the health and persistence of their hosts. This finding is particularly important in reintroduced animals, as they typically experience habitat changes during translocations. However, little is known about how microbiomes are altered in response to conservation translocation. Here, we accessed the gut microbiome of Przewalski's horse (Equus przewalskii) populations in China from three nature reserves (i.e. Xinjiang Kalamaili Nature Reserve, KNR; Dunhuang Xihu National Nature Reserve, DXNNR; and Anxi Extreme-arid Desert Nature Reserve, AENR) using 16s rRNA gene and metagenome sequencing. The results showed that the microbial composition and function differed significantly across locations, while a subset of core taxa was consistently present in most of the samples. The abundance of genes encoding microbe-produced enzymes involved in the metabolism of carbohydrates, especially for glycoside hydrolases, was significantly higher in open-spaced KNR populations than in more confined AENR individuals. This study offers detailed and significant differential characters related to the microbial community and metabolic pathways in various reintroduced sites of Przewalski's horse, which might provide a basis for future microecological and conservation research on endangered reintroduced animals.
Collapse
Affiliation(s)
- Liping Tang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Huiping Jia
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yu Xiong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xinping Ma
- Xinjiang Mountain Ungulate Nature Reserve Management Center, Urumqi, China
| | - Hongjun Chu
- Institute of Forestry Ecology, Xinjiang Academy of Forestry Sciences, Urumqi, China
| | - Zhicheng Sun
- Administrative Bureau of Dunhuang Xihu National Nature Reserve, Dunhuang, China
| | - Liang Wang
- Administration of Gansu Anxi Extra-arid Desert National Nature Reserve, Guazhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mubalake Shalitanati
- Xinjiang Uygur Autonomous Region Wild Horse Breeding Research Center, Urumqi, China
| | - Kai Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Jiang X, Liu J, Xi Y, Zhang Q, Wang Y, Zhao M, Lu X, Wu H, Shan T, Ni B, Zhang W, Ma X. Virome of high-altitude canine digestive tract and genetic characterization of novel viruses potentially threatening human health. mSphere 2023; 8:e0034523. [PMID: 37724888 PMCID: PMC10597464 DOI: 10.1128/msphere.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
The majority of currently emerging infectious illnesses are zoonotic infections, which have caused serious public health and economic implications. The development of viral metagenomics has helped us to explore unknown viruses. We collected 1,970 canine feces from Yushu and Guoluo in the plateau region of China for this study to do a metagenomics analysis of the viral community of the canine digestive tract. Our analysis identified 203 novel viruses, classified into 11 known families and 2 unclassified groups. These viruses include the hepatitis E virus, first identified in dogs, and the astrovirus, coronavirus, polyomavirus, and others. The relationship between the newly identified canine viruses and known viruses was investigated through the use of phylogenetic analysis. Furthermore, we demonstrated the cross-species transmission of viruses and predicted new viruses that may cause diseases in both humans and animals, providing technical support for the prevention and control of diseases caused by environmental pollution viruses. IMPORTANCE Most emerging infectious diseases are due to zoonotic disease agents. Because of their effects on the security of human or animal life, agriculture production, and food safety, zoonotic illnesses and livestock diseases are of worldwide significance. Because dogs are closely related to humans and domestic animals, they serve as one of the important links in the transmission of zoonotic and livestock diseases. Canines can contaminate the environment in which humans live such as water and soil through secretions, potentially altering the human gut microbiota or causing diseases. Our study enriched the viral community in the digestive tract microbiome of dogs and found types of viruses that threaten human health, providing technical support for the prevention and control of early warning of diseases caused by environmental contaminant viruses.
Collapse
Affiliation(s)
- Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Yongshun Wang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiang Lu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bin Ni
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| |
Collapse
|
13
|
Zhao Q, Zhao R, Sun Y, Ji L, Xi Y, Wang X, Shen Q, Ji L, Wang Y, You Z, Yang S, Zhang W. Identification of Multiple Novel Viruses in Fecal Samples of Black-Necked Cranes Using Viral Metagenomic Methods. Viruses 2023; 15:2068. [PMID: 37896845 PMCID: PMC10612090 DOI: 10.3390/v15102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The black-necked crane is the only species of crane that lives in the high-altitude region of the Tibet Plateau. At present, there is little research on viral diseases of the black-necked crane (Grus nigricollis). In this study, a viral metagenomic approach was employed to investigate the fecal virome of black-necked cranes in Saga County, Shigatse City, Tibet, China. The identified virus families carried by black-necked cranes mainly include Genomoviridae, Parvoviridae, and Picornaviridae. The percentages of sequence reads belonging to these three virus families were 1.6%, 3.1%, and 93.7%, respectively. Among them, one genome was characterized as a novel species in the genus Grusopivirus of the family Picornaviridae, four new parvovirus genomes were obtained and classified into four different novel species within the genus Chaphamaparvovirus of the subfamily Hamaparvovirinae, and four novel genomovirus genomes were also acquired and identified as members of three different species, including Gemykroznavirus haeme1, Gemycircularvirus ptero6, and Gemycircularvirus ptero10. All of these viruses were firstly detected in fecal samples of black-necked cranes. This study provides valuable information for understanding the viral community composition in the digestive tract of black-necked cranes in Tibet, which can be used for monitoring, preventing, and treating potential viral diseases in black-necked cranes.
Collapse
Affiliation(s)
- Qifan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (Y.S.); (L.J.); (Y.X.); (X.W.); (Q.S.); (L.J.); (Y.W.)
| | - Ran Zhao
- Department of Prevention and Control, Xiamen Animal Disease Prevention and Control Center, Xiamen 361009, China;
| | - Yijie Sun
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (Y.S.); (L.J.); (Y.X.); (X.W.); (Q.S.); (L.J.); (Y.W.)
| | - Li Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (Y.S.); (L.J.); (Y.X.); (X.W.); (Q.S.); (L.J.); (Y.W.)
| | - Yuan Xi
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (Y.S.); (L.J.); (Y.X.); (X.W.); (Q.S.); (L.J.); (Y.W.)
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (Y.S.); (L.J.); (Y.X.); (X.W.); (Q.S.); (L.J.); (Y.W.)
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (Y.S.); (L.J.); (Y.X.); (X.W.); (Q.S.); (L.J.); (Y.W.)
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (Y.S.); (L.J.); (Y.X.); (X.W.); (Q.S.); (L.J.); (Y.W.)
| | - Yan Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (Y.S.); (L.J.); (Y.X.); (X.W.); (Q.S.); (L.J.); (Y.W.)
| | - Zhenqiang You
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China;
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (Y.S.); (L.J.); (Y.X.); (X.W.); (Q.S.); (L.J.); (Y.W.)
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (Y.S.); (L.J.); (Y.X.); (X.W.); (Q.S.); (L.J.); (Y.W.)
| |
Collapse
|
14
|
Pan J, Ji L, Wu H, Wang X, Wang Y, Wu Y, Yang S, Shen Q, Liu Y, Zhang W, Zhang K, Shan T. Metagenomic analysis of herbivorous mammalian viral communities in the Northwest Plateau. BMC Genomics 2023; 24:568. [PMID: 37749507 PMCID: PMC10521573 DOI: 10.1186/s12864-023-09646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Mammals are potential hosts for many infectious diseases. However, studies on the viral communities of herbivorous mammals in the Northwest Plateau are limited. Here, we studied the viral communities of herbivorous mammals in the Northwest Plateau using virus metagenomic analysis to analyze and compare the viral community composition of seven animal species. RESULTS By library construction and next-generation sequencing, contigs and singlets reads with similar viral sequences were classified into 24 viral families. Analyzed from the perspective of sampling areas, the virus community composition was relatively similar in two areas of Wuwei and Jinchang, Gansu Province. Analyzed from the perspective of seven animal species, the viral reads of seven animal species were mostly ssDNA and dominated by CRESS-DNA viruses. Phylogenetic analysis based on viral marker genes indicated that CRESS-DNA viruses and microviruses have high genetic diversity. In addition to DNA viruses, nodaviruses, pepper mild mottle viruses and picornaviruses were RNA viruses that we performed by phylogenetic analysis. The CRESS-DNA viruses and nodaviruses are believed to infect plants and insects, and microviruses can infect bacteria, identifying that they were likely from the diet of herbivorous mammals. Notably, two picornaviruses were identified from red deer and wild horse, showing that the picornavirus found in red deer had the relatively high similarity with human hepatitis A virus, and the picornavirus carried by wild horse could potentially form a new species within the Picornaviridae family. CONCLUSIONS This study explored the herbivorous mammalian virus community in the Northwest Plateau and the genetic characteristics of viruses that potentially threaten human health. It reveals the diversity and stability of herbivorous mammalian virus communities in the Northwest Plateau and helps to expand our knowledge of various herbivorous mammalian potentially pathogenic viruses.
Collapse
Grants
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
Collapse
Affiliation(s)
- Jiamin Pan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
15
|
Mao Q, Liu Y, Zhang J, Li W, Zhang W, Zhou C. Blood virome of patients with traumatic sepsis. Virol J 2023; 20:198. [PMID: 37658428 PMCID: PMC10472630 DOI: 10.1186/s12985-023-02162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Sepsis is one of the possible outcomes of severe trauma, and it poses a dire threat to human life, particularly in immunocompromised people. The most prevalent pathogens are bacteria and fungi, but viruses should not be overlooked. For viral metagenomic analysis, we collected blood samples from eight patients with post-traumatic sepsis before and seven days after treatment. The results demonstrated that Anellovirus predominated the viral community, followed by Siphoviridae and Myoviridae, and that the variations in viral community and viral load before and after treatment were not statistically significant. This study allows us to investigate methods for establishing NGS-based viral diagnostic instruments for detecting viral infections in the blood of sepsis patients so that antiviral therapy can be administered quickly.
Collapse
Affiliation(s)
- Qingqing Mao
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Liu
- Clinical Laboratory Center, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Ju Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
16
|
Guo G, Wang M, Zhou D, He X, Han P, Chen G, Zeng J, Liu Z, Wu Y, Weng S, He J. Virome Analysis Provides an Insight into the Viral Community of Chinese Mitten Crab Eriocheir sinensis. Microbiol Spectr 2023; 11:e0143923. [PMID: 37358426 PMCID: PMC10433957 DOI: 10.1128/spectrum.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023] Open
Abstract
Recent advances in viromics have led to the discovery of a great diversity of RNA viruses and the identification of a large number of viral pathogens. A systematic exploration of viruses in Chinese mitten crab (Eriocheir sinensis), one of the most important aquatic commercial species, is still lacking. Here, we characterized the RNA viromes of asymptomatic, milky disease (MD)-affected, and hepatopancreatic necrosis syndrome (HPNS)-affected Chinese mitten crabs collected from 3 regions in China. In total, we identified 31 RNA viruses belonging to 11 orders, 22 of which were first reported here. By comparing viral composition between samples, we observed high variation in viral communities across regions, with most of the viral species being region-specific. We proposed to establish several novel viral families or genera based on the phylogenetic relationships and genome structures of viruses discovered in this study, expanding our knowledge of viral diversity in brachyuran crustaceans. IMPORTANCE High-throughput sequencing and meta-transcriptomic analysis provide us with an efficient tool to discover unknown viruses and explore the composition of viral communities in specific species. In this study, we investigated viromes in asymptomatic and diseased Chinese mitten crabs collected from three distant locations. We observed high regional variation in the composition of viral species, highlighting the importance of multi-location sampling. In addition, we classified several novel and ICTV-unclassified viruses based on their genome structures and phylogenetic relationships, providing a new perspective on current viral taxa.
Collapse
Affiliation(s)
- Guangyu Guo
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Muhua Wang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dandan Zhou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xinyi He
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiyun Han
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gongrui Chen
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiamin Zeng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi Liu
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Yinqing Wu
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Xin W, Guo Z, Wang L, Li Y, Shangguan H, Xue K, Chen H, Yang H, Zhao L, Ge J. Multiple genotypes infection and molecular characterization of Torque teno neovison virus: A novel Anelloviridae of mink in China. Res Vet Sci 2023; 161:145-155. [PMID: 37384973 DOI: 10.1016/j.rvsc.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
A novel Torque teno neovison virus (TTVs) was identified in specimens collected from dead mink during an outbreak of the Aleutian mink disease virus. Eighteen complete genomic sequences were obtained, ranging from 2109 to 2158 nucleotides in length and consisting of an untranslated region and three open reading frames. The genomic organization of mink TTVs is similar to previously reported anelloviruses. However, the deduced amino acid sequence of its ORF1 protein shows genetic diversity compared to related anelloviruses, suggesting that it represents a putative new species within the Anelloviridae family. This study provides a detailed molecular characterization of the novel mink anelloviruses, including its codon usage pattern, origin, and evolution. Analysis of the viral genomic sequences reveals the existence of multiple genotypes of co-infection. Principal component analysis and phylogenetic trees confirm the coexistence of multiple genotypes. Furthermore, the codon usage analyses indicate that mink TTVs have a genotype-specific codon usage pattern and show a low codon usage bias. Host-specific adaptation analysis suggests that TTVs are less adapted to mink. The possible origin and evolutionary history of mink TTVs were elucidated. Mink TTVs was genetically closely related to giant panda anellovirus, representing a new species. The observed incongruence between the phylogenetic history of TTVs and that of their hosts suggests that the evolution of anellovirus is largely determined by cross-species transmission. The study provides insights into the co-infection and genetic evolution of anellovirus in China.
Collapse
Affiliation(s)
- Weizhi Xin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Kun Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongliang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal, Pathogen Biology, Harbin 150030, China.
| |
Collapse
|
18
|
Xi Y, Jiang X, Xie X, Zhao M, Zhang H, Qin K, Wang X, Liu Y, Yang S, Shen Q, Ji L, Shang P, Zhang W, Shan T. Viromics Reveals the High Diversity of Viruses from Fishes of the Tibet Highland. Microbiol Spectr 2023; 11:e0094623. [PMID: 37219423 PMCID: PMC10269613 DOI: 10.1128/spectrum.00946-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Aquaculture is important for food security and nutrition. The economy has recently been significantly threatened and the risk of zoonoses significantly increased by aquatic diseases, and the ongoing introduction of new aquatic pathogens, particularly viruses, continues to represent a hazard. Yet, our knowledge of the diversity and abundance of fish viruses is still limited. Here, we conducted a metagenomic survey of different species of healthy fishes caught in the Lhasa River, Tibet, China, and sampled intestinal contents, gills, and tissues. To be more precise, by identifying and analyzing viral genomes, we aim to determine the abundance, diversity, and evolutionary relationships of viruses in fish with other potential hosts. Our analysis identified 28 potentially novel viruses, 22 of which may be associated with vertebrates, across seven viral families. During our research, we found several new strains of viruses in fish, including papillomavirus, hepadnavirus, and hepevirus. Additionally, we discovered two viral families, Circoviridae and Parvoviridae, which were prevalent and closely related to viruses that infect mammals. These findings further expand our understanding of highland fish viruses and highlight the emerging view that fish harbor large, unknown viruses. IMPORTANCE The economy and zoonoses have recently been significantly threatened by aquatic diseases. Yet, our knowledge of the diversity and abundance of fish viruses is still limited. We identified the wide genetic diversity of viruses that these fish were harboring. Since there are currently few studies on the virome of fish living in the Tibet highland, our research adds to the body of knowledge. This discovery lays the groundwork for future studies on the virome of fish species and other highland animals, preserving the ecological equilibrium on the plateau.
Collapse
Affiliation(s)
- Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinrui Xie
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Han Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kailin Qin
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
19
|
Butkovic A, Kraberger S, Smeele Z, Martin DP, Schmidlin K, Fontenele RS, Shero MR, Beltran RS, Kirkham AL, Aleamotu’a M, Burns JM, Koonin EV, Varsani A, Krupovic M. Evolution of anelloviruses from a circovirus-like ancestor through gradual augmentation of the jelly-roll capsid protein. Virus Evol 2023; 9:vead035. [PMID: 37325085 PMCID: PMC10266747 DOI: 10.1093/ve/vead035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Anelloviruses are highly prevalent in diverse mammals, including humans, but so far have not been linked to any disease and are considered to be part of the 'healthy virome'. These viruses have small circular single-stranded DNA (ssDNA) genomes and encode several proteins with no detectable sequence similarity to proteins of other known viruses. Thus, anelloviruses are the only family of eukaryotic ssDNA viruses currently not included in the realm Monodnaviria. To gain insights into the provenance of these enigmatic viruses, we sequenced more than 250 complete genomes of anelloviruses from nasal and vaginal swab samples of Weddell seal (Leptonychotes weddellii) from Antarctica and a fecal sample of grizzly bear (Ursus arctos horribilis) from the USA and performed a comprehensive family-wide analysis of the signature anellovirus protein ORF1. Using state-of-the-art remote sequence similarity detection approaches and structural modeling with AlphaFold2, we show that ORF1 orthologs from all Anelloviridae genera adopt a jelly-roll fold typical of viral capsid proteins (CPs), establishing an evolutionary link to other eukaryotic ssDNA viruses, specifically, circoviruses. However, unlike CPs of other ssDNA viruses, ORF1 encoded by anelloviruses from different genera display remarkable variation in size, due to insertions into the jelly-roll domain. In particular, the insertion between β-strands H and I forms a projection domain predicted to face away from the capsid surface and function at the interface of virus-host interactions. Consistent with this prediction and supported by recent experimental evidence, the outermost region of the projection domain is a mutational hotspot, where rapid evolution was likely precipitated by the host immune system. Collectively, our findings further expand the known diversity of anelloviruses and explain how anellovirus ORF1 proteins likely diverged from canonical jelly-roll CPs through gradual augmentation of the projection domain. We suggest assigning Anelloviridae to a new phylum, 'Commensaviricota', and including it into the kingdom Shotokuvirae (realm Monodnaviria), alongside Cressdnaviricota and Cossaviricota.
Collapse
Affiliation(s)
- Anamarija Butkovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, Paris 75015, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Zoe Smeele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Darren P Martin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Amy L Kirkham
- U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 E, Tudor Road, Anchorage, AK 99503, USA
| | - Maketalena Aleamotu’a
- School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Jennifer M Burns
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 1 Anzio Road, Cape Town 7925, South Africa
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
20
|
König MT, Frölich K, Jandowsky A, Knauf-Witzens T, Langner C, Dietrich R, Märtlbauer E, Didier A. First Insights into the Occurrence of Circular Single-Stranded DNA Genomes in Asian and African Cattle. Animals (Basel) 2023; 13:ani13091492. [PMID: 37174530 PMCID: PMC10177065 DOI: 10.3390/ani13091492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Circular replicase-encoding single-stranded (CRESS) DNA viruses and other circular DNA agents are increasingly found in various samples and animals. A specific class of these agents-termed bovine meat and milk factors (BMMF)-has been supposed to act as a factor in indirect carcinogenesis in humans. Initial observations attributed the BMMF to European cattle breeds and foodstuffs produced thereof. In the present study, blood and fecal samples from African and Asian cattle were examined. BMMF molecules and genomoviruses were detected in all bovids under study. The majority (79%) of the 29 circular elements could be assigned to BMMF groups 1 and 2, whereas CRESS viruses of the family Genomoviridae accounted for the smaller part (21%). Two genomoviruses belong to the genus Gemykibivirus and one to the genus Gemykrogvirus. The remaining three might be considered as novel species within the genus Gemycircularvirus. The majority of all isolated molecules originated from fecal samples, whereas only three derived from blood. The results from this study expand our knowledge on the diversity and presence of circular DNA in different ruminants that serve for food production in many countries over the world.
Collapse
Affiliation(s)
- Marie-Thérèse König
- Department of Veterinary Sciences, Institute of Food Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstraße 8, 85764 Oberschleißheim, Germany
| | - Kai Frölich
- Tierpark Arche Warder, Zentrum für Seltene Nutztierrassen e. V., Langwedeler Weg 11, 24646 Warder, Germany
| | - Anabell Jandowsky
- Tierpark Arche Warder, Zentrum für Seltene Nutztierrassen e. V., Langwedeler Weg 11, 24646 Warder, Germany
| | - Tobias Knauf-Witzens
- Wilhelma Zoological-Botanical Gardens Stuttgart, Wilhelma 13, 70376 Stuttgart, Germany
| | - Christoph Langner
- Stralsund Zoological Garden, Grünhufer Bogen 2, 18437 Stralsund, Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Institute of Food Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstraße 8, 85764 Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Institute of Food Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstraße 8, 85764 Oberschleißheim, Germany
| | - Andrea Didier
- Department of Veterinary Sciences, Institute of Food Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstraße 8, 85764 Oberschleißheim, Germany
| |
Collapse
|
21
|
Lu X, Zhu R, Dai Z. Characterization of a novel papillomavirus identified from a whale (Delphinapterus leucas) pharyngeal metagenomic library. Virol J 2023; 20:48. [PMID: 36941650 PMCID: PMC10029273 DOI: 10.1186/s12985-023-02009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
Here, using viral metagenomic method, a novel whale papillomavirus (temporarily named wPV, GenBank accession number OP856597) was discovered in a whale (Delphinapterus leucas) pharyngeal metagenomic library. The complete genome size of wPV is 7179 bp, with GC content of 54.4% and a nucleotide composition of 23.4% A, 22.3% T, 28.4% G, and 25.9% C. The viral genome has a typical papillomavirus organization pattern, and five ORFs were predicted, including two late genes encoding L1 and L2, and three early genes encoding E1, E2, and E6. Pairwise sequence comparison and phylogenetic analysis based on the L1 gene sequence indicated that wPV may be a novel species within genus Dyodeltapapillomavirus. In addition, the E2 region of wPV was predicted to have a potential recombination event. The discovery of this novel papillomavirus increases our understanding of the viral ecology of marine mammals, providing insights into possible future infectious diseases.
Collapse
Affiliation(s)
- Xiang Lu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Rong Zhu
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Ziyuan Dai
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China.
| |
Collapse
|
22
|
Zhao M, Bao S, Xu D, He J, Zhang H, Ji L, Yang S, Wang X, Shen Q, Liu J, Zhang Q, Ma X, Zhang W, Shan T. Virome of wild rats (Rattus norvegicus) captured far from pig farms in Jiangsu province of China reveals novel porcine circovirus type 2d (PCV2d) sequences. Virol J 2023; 20:46. [PMID: 36894948 PMCID: PMC9997004 DOI: 10.1186/s12985-023-02005-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Porcine circovirus type 2 (PCV2) has caused great economic losses in the global pig industry. There have been published records of wild rats acting as the reservoirs of PCV2 (only PCV2a and PCV2b), but almost all of which were related to the PCV2-infected swine herds. RESULTS In this study, we carried out the detection, amplification, and characterization of novel PCV2 strains in wild rats that were captured far from pig farms. Nested PCR assay demonstrated that the kidney, heart, lung, liver, pancreas, and large and small intestines of rats were screened positive for PCV2. We subsequently sequenced two full genomes of PCV2 in positive sample pools, designated as js2021-Rt001 and js2021-Rt002. Genome sequence analysis indicated that they had the highest similarity to nucleotide sequences of porcine-origin PCV2 isolates in Vietnam. Phylogenetically, js2021-Rt001 and js2021-Rt002 were a part of the PCV2d genotype cluster, which is a predominant genotype circulating worldwide in recent years. The antibody recognition regions, immunodominant decoy epitope, and heparin sulfate binding motif of the two complete genome sequences coincided with those previously reported. CONCLUSIONS Our research reported the genomic characterization of two novel PCV2 strains (js2021-Rt001 and js2021-Rt002) and provided the first supported evidence that PCV2d could naturally infect wild rats in China. However, whether the newly identified strains have potential for circulating in nature in vertical and horizontal transmission or inter-species jumping between rats and pigs needs further research.
Collapse
Affiliation(s)
- Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Siwen Bao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Diandian Xu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Jingxian He
- School of Medicine, Suzhou University, Suzhou, 215031, Jiangsu, China
| | - Han Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, 811602, Qinghai, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, 811602, Qinghai, China
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, 811602, Qinghai, China.
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
23
|
Harding C, Larsen BB, Otto HW, Potticary AL, Kraberger S, Custer JM, Suazo C, Upham NS, Worobey M, Van Doorslaer K, Varsani A. Diverse DNA virus genomes identified in fecal samples of Mexican free-tailed bats (Tadarida brasiliensis) captured in Chiricahua Mountains of southeast Arizona (USA). Virology 2023; 580:98-111. [PMID: 36801670 DOI: 10.1016/j.virol.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Bats (order Chiroptera) are some of the most abundant mammals on earth and their species ecology strongly influences zoonotic potential. While substantial research has been conducted on bat-associated viruses, particularly on those that can cause disease in humans and/or livestock, globally, limited research has focused on endemic bats in the USA. The southwest region of the US is of particular interest because of its high diversity of bat species. We identified 39 single-stranded DNA virus genomes in the feces of Mexican free-tailed bats (Tadarida brasiliensis) sampled in the Rucker Canyon (Chiricahua Mountains) of southeast Arizona (USA). Twenty-eight of these belong to the virus families Circoviridae (n = 6), Genomoviridae (n = 17), and Microviridae (n = 5). Eleven viruses cluster with other unclassified cressdnaviruses. Most of the viruses identified represent new species. Further research on identification of novel bat-associated cressdnaviruses and microviruses is needed to provide greater insights regarding their co-evolution and ecology relative to bats.
Collapse
Affiliation(s)
- Ciara Harding
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Ahva L Potticary
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; University of Georgia in the Department of Entomology, Athens, GA, 30602, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA
| | - Crystal Suazo
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|
24
|
Fatehi S, Aikins M, Philips TW, Brown S, Zhu KY, Scully ED, Park Y. Characterization of Iflavirus in the Red Flour Beetle, Tribolium castaneum (Coleoptera; Tenebrionidae). INSECTS 2023; 14:220. [PMID: 36975905 PMCID: PMC10051554 DOI: 10.3390/insects14030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Iflavirus is a group of viruses distributed mainly in arthropod species. We surveyed Tribolium castaneum iflavirus (TcIV) in different laboratory strains and in Sequence Read Archives (SRA) in GenBank. TcIV is highly specific to only T. castaneum and is not found in seven other Tenebrionid species, including the closely related species T. freemani. The same strains from different laboratories and different strains displayed largely different degrees of infections in the examination of 50 different lines by using Taqman-based quantitative PCR. We found that ~63% (27 out of 43 strains) of T. castaneum strains in different laboratories are positive for TcIV PCR with large degrees of variation, in the range of seven orders of magnitude, indicating that the TcIV is highly fluctuating depending on the rearing conditions. The TcIV was prevalent in the nervous system with low levels found in the gonad and gut. The transovarial transmission was supported in the experiment with surface-sterilized eggs. Interestingly, TcIV infection did not show observable pathogenicity. TcIV offers an opportunity to study the interaction between the virus and the immune system of this model beetle species.
Collapse
Affiliation(s)
- Soheila Fatehi
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Michael Aikins
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Thomas W. Philips
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Susan Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Erin D. Scully
- Stored Product Insect and Engineering Research Unit, USDA-ARS-CGAHR, Manhattan, KS 66502, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
25
|
Yang Z, Wang H, Yang S, Wang X, Shen Q, Ji L, Zeng J, Zhang W, Gong H, Shan T. Virome diversity of ticks feeding on domestic mammals in China. Virol Sin 2023; 38:208-221. [PMID: 36781125 PMCID: PMC10176445 DOI: 10.1016/j.virs.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Ticks are considered the second most common pathogen vectors transmitting a broad range of vital human and veterinary viruses. From 2017 to 2018, 640 ticks were collected in eight different provinces in central and western China. Six species were detected, including H.longicornis, De.everestianus, Rh.microplus, Rh.turanicus, Rh.sanguineous, and Hy.asiaticum. Sixty-four viral metagenomic libraries were constructed on the MiSeq Illumina platform, resulting in 13.44 G (5.88 × 107) of 250-bp-end reads, in which 2,437,941 are viral reads. We found 27 nearly complete genome sequences, including 16 genome sequences encoding entire protein-coding regions (lack of 3' or 5' end non-coding regions) and complete viral genomes, distributed in the arboviral family (Chuviridae, Rhabdoviridae, Nairoviridae, Phenuiviridae, Flaviviridae, Iflaviridae) as well as Parvoviridae and Polyomaviridae that cause disease in mammals and even humans. In addition, 13 virus sequences found in Chuviridae, Nairoviridae, Flaviviridae, Iflaviridae, Hepeviridae, Parvoviridae, and Polyomaviridae were identified as belonging to a new virus species in the identified viral genera. Besides, an epidemiological survey shows a high prevalence (9.38% and 15.63%) of two viruses (Ovine Copiparvovirus and Bovine parvovirus 2) in the tick cohort.
Collapse
Affiliation(s)
- Zijun Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China; Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Wang
- Department of Clinical Laboratory, Huai'an Hospital, Xuzhou Medical University, Huai'an, 223002, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jian Zeng
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Haiyan Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
26
|
Demoliner M, Filippi M, Gularte JS, da Silva MS, de Almeida PR, Pereira VMDAG, Heldt FH, Spilki FR. Genome of a husavirus from Southern Brazil. Rev Inst Med Trop Sao Paulo 2023; 65:e5. [PMID: 36651466 PMCID: PMC9870242 DOI: 10.1590/s1678-9946202365005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023] Open
Abstract
New viruses of the Picornavirales order have been discovered with the increase in the number of sequences obtained by high-throughput sequencing, as well as human stool-associated RNA virus (husavirus [HuV]), found in human stool samples. However, there is much to be clarified about HuV. Its cellular host, evolutionary history, and other biological characteristics are still unknown. Therefore, samples collected from human beings and environmental samples in a watershed in Southern Brazil were processed for the metagenomic library. Upon metagenomic analysis, we identified a HuV (husavirus LMM_67754 OP019707) genome with 8,846 bp, which was reported for the first time in Southern Brazil. The new genome presents only 37% of nucleotide identity with Brazilian strains and more than 90% with genomes from China, Vietnam, Venezuela, and the Netherlands. The HuV phylogeny presents significant differences among genomes, probably because multiple introductions of the virus may have occurred. Many questions still need to be answered about HuV. Therefore, more sequences and studies on this virus are necessary to improve the comprehension of the unknown origin of Picornavirales.
Collapse
Affiliation(s)
- Meriane Demoliner
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Micheli Filippi
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Juliana Schons Gularte
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Mariana Soares da Silva
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, Rio Grande do Sul, Brazil
| | | | | | - Fágner Henrique Heldt
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Fernando Rosado Spilki
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, Rio Grande do Sul, Brazil
| |
Collapse
|
27
|
Bao S, Wang H, Li W, Wu H, Lu C, Yong L, Zhang Q, Lu X, Zhao M, Lu J, Liu J, Ikechukwu CK, Xu J, Ni P, Xiong Y, Zhang W, Zhou C. Viral metagenomics of the gut virome of diarrheal children with Rotavirus A infection. Gut Microbes 2023; 15:2234653. [PMID: 37448101 PMCID: PMC10351451 DOI: 10.1080/19490976.2023.2234653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Diarrhea is a leading cause of morbidity and mortality in children worldwide and represents a major dysbiosis event. Rotavirus has been recognized as a global leading pathogen of diarrhea. This study is aimed at investigating differences in the gut virome between diarrheal children and healthy controls. In 2018, 76 diarrheal fecal samples and 27 healthy fecal samples in Shanghai and 40 diarrheal fecal samples and 19 healthy fecal samples in Taizhou were collected to investigate the composition of the gut virome. Viral metagenomic analyses revealed that the alpha diversity of the diarrheal virome was not significantly different from that of the healthy virome, and the beta diversity had a significant difference between diarrheal and healthy children. The diarrheal virome was mainly dominated by the families Adenoviridae, Astroviridae, Caliciviridae, and Picornaviridae. Meanwhile, the healthy virome also contains phages, including Microviridae and Caudovirales. The high prevalence of diverse enteric viruses in all samples and the little abundance of Microviridae and Caudovirales in diarrheal groups were identified. The study introduced a general overview of the gut virome in diarrheal children, revealed the compositional differences in the gut viral community compared to healthy controls, and provided a reference for efficient treatments and prevention of virus-infectious diarrhea in children.
Collapse
Affiliation(s)
- Siwen Bao
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Chunying Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Liang Yong
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Qing Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | | | - Juan Xu
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Ping Ni
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Ying Xiong
- Department of Pharmacy, Yancheng Third People’s Hospital, Yancheng, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
28
|
Zhou D, Liu S, Guo G, He X, Xing C, Miao Q, Chen G, Chen X, Yan H, Zeng J, Zheng Z, Deng H, Weng S, He J. Virome Analysis of Normal and Growth Retardation Disease-Affected Macrobrachium rosenbergii. Microbiol Spectr 2022; 10:e0146222. [PMID: 36445118 PMCID: PMC9769563 DOI: 10.1128/spectrum.01462-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important aquaculture species in China. Growth retardation disease (GRD) is a common contagious disease in M. rosenbergii, resulting in slow growth and precocious puberty in prawns, and has caused growing economic losses in the M. rosenbergii industry. To investigate the viral diversity of M. rosenbergii and identify potentially high-risk viruses linked to GRD, virome analysis of the GRD-affected and normal M. rosenbergii was carried out using next-generation sequencing (NGS). A total of 327 contigs (>500 bp) were related to viral sequences belonging to 23 families/orders and a group of unclassified viruses. The majority of the viral contigs in M. rosenbergii belonged to the order Picornavirales, with the Solinviviridae family being the most abundant in both the diseased and normal groups. Furthermore, 16 RNA viral sequences with nearly complete genomes were characterized and phylogenetically analyzed, belonging to the families Solinviviridae, Flaviviridae, Polycipiviridae, Marnaviridae, and Dicistroviridae as well as three new clades of the order Picornavirales. Notably, the cross-species transmission of a picorna-like virus was observed between M. rosenbergii and plants. The "core virome" seemed to be present in the diseased and normal prawns. Still, a clear difference in viral abundance was observed between the two groups. These results showed that the broad diversity of viruses is present in M. rosenbergii and that the association between viruses and disease of M. rosenbergii needs to be further investigated. IMPORTANCE Growth retardation disease (GRD) has seriously affected the development and economic growth of the M. rosenbergii aquaculture industry. Our virome analysis showed that diverse viral sequences were present in M. rosenbergii, significantly expanding our knowledge of viral diversity in M. rosenbergii. Some differences in viral composition were noted between the diseased and normal prawns, indicating that some viruses become more abundant in occurrences or outbreaks of diseases. In the future, more research will be needed to determine which viruses pose a risk for M. rosenbergii. Our study provides important baseline information contributing to disease surveillance and risk assessment in M. rosenbergii aquaculture.
Collapse
Affiliation(s)
- Dandan Zhou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Guangyu Guo
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyi He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Qijin Miao
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gongrui Chen
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Chen
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Yan
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiamin Zeng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenwen Zheng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
30
|
Hu H, Ling Y, Wang X, Wang H, Zhu N, Li Y, Xu H. Viral Metagenomics Reveals a Putative Novel HPV Type in Anogenital Wart Tissues. Pathogens 2022; 11:pathogens11121452. [PMID: 36558785 PMCID: PMC9781650 DOI: 10.3390/pathogens11121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Viral metagenomics is widely employed to identify novel viruses in biological samples. Recently, although numerous novel human papillomavirus (HPV) types have been identified in clinical samples including anogenital warts (AGWs), many novel HPV sequences remain to be discovered. In this study, a putative novel HPV type designated as HPV-JDFY01 was discovered from library GW05 with 63 sequence reads by the viral metagenomic technique. Its complete genomic sequence was determined by PCR to bridge the gaps between contigs combining Sanger sequencing. The complete genome of HPV-JDFY01 is a 7186 bp encoding 7 open reading frames (ORFs) (E6, E7, E1, E2, E4, L2 and L1) and contains a 487 bp long control region (LCR) between L1 and E6. Sequence and phylogeny analysis indicated that HPV-JDFY01 shared the highest sequence identity of 74.2% with HPV-mSK_244 (MH777383) and well clustered into the genus Gammapapillomavirus. It has the classical genomic organization of Gammapapillomaviruses. Epidemiological investigation showed that one out of the 413 AGW tissue samples was positive for HPV-JDFY01. Further research with large size and different type of samples should be performed to elucidate the epidemiologic status of HPV-JDFY01.
Collapse
Affiliation(s)
- Huimin Hu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Department of Dermatology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian 223002, China
| | - Yu Ling
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Xuan Wang
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hao Wang
- Department of Dermatology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian 223002, China
| | - Niannan Zhu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yumei Li
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hui Xu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Correspondence: ; Tel.: +86-051185026785
| |
Collapse
|
31
|
Yang S, Mao Q, Wang Y, He J, Yang J, Chen X, Xiao Y, He Y, Zhao M, Lu J, Yang Z, Dai Z, Liu Q, Yao Y, Lu X, Li H, Zhou R, Zeng J, Li W, Zhou C, Wang X, Shen Q, Xu H, Deng X, Delwart E, Shan T, Zhang W. Expanding known viral diversity in plants: virome of 161 species alongside an ancient canal. ENVIRONMENTAL MICROBIOME 2022; 17:58. [PMID: 36437477 PMCID: PMC9703751 DOI: 10.1186/s40793-022-00453-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Since viral metagenomic approach was applied to discover plant viruses for the first time in 2006, many plant viruses had been identified from cultivated and non-cultivated plants. These previous researches exposed that the viral communities (virome) of plants have still largely uncharacterized. Here, we investigated the virome in 161 species belonging to 38 plant orders found in a riverside ecosystem. RESULTS We identified 245 distinct plant-associated virus genomes (88 DNA and 157 RNA viruses) belonging to 27 known viral families, orders, or unclassified virus groups. Some viral genomes were sufficiently divergent to comprise new species, genera, families, or even orders. Some groups of viruses were detected that currently are only known to infect organisms other than plants. It indicates a wider host range for members of these clades than previously recognized theoretically. We cannot rule out that some viruses could be from plant contaminating organisms, although some methods were taken to get rid of them as much as possible. The same viral species could be found in different plants and co-infections were common. CONCLUSIONS Our data describe a complex viral community within a single plant ecosystem and expand our understanding of plant-associated viral diversity and their possible host ranges.
Collapse
Affiliation(s)
- Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- International Genome Center, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qingqing Mao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yan Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jingxian He
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xu Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuqing Xiao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yumin He
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zijun Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyuan Dai
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qi Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuxin Yao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hong Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rui Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jian Zeng
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Li
- Department of Laboratory Medicine, Jiangsu Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Chenglin Zhou
- Department of Laboratory Medicine, Jiangsu Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Xu
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, 94118, USA
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94118, USA
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- International Genome Center, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
32
|
Liu J, Yu J, Yu X, Bi W, Yang H, Xue F, Zhang G, Zhang J, Yi D, Ma R, Zhou Y, Lan G, Gu J, Wu W, Li Z, Qi G. Complete Mitogenomes of Ticks Ixodes acutitarsus and Ixodes ovatus Parasitizing Giant Panda: Deep Insights into the Comparative Mitogenomic and Phylogenetic Relationship of Ixodidae Species. Genes (Basel) 2022; 13:2049. [PMID: 36360286 PMCID: PMC9691169 DOI: 10.3390/genes13112049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 04/11/2024] Open
Abstract
Ticks rank second in the world as vectors of disease. Tick infestation is one of the factors threatening the health and survival of giant pandas. Here, we describe the mitogenomes of Ixodes acutitarsus and Ixodes ovatus parasitizing giant pandas, and perform comparative and phylogenetic genomic analyses on the newly sequenced and other available mitogenomes of hard ticks. All six newly determined mitogenomes contain a typical gene component and share an ancient Arthropoda gene arrangement pattern. Our study suggests that I. ovatus is a species complex with high genetic divergence, indicating that different clades of I. ovatus represent distinct species. Comparative mitogenomic analyses show that the average A + T content of Ixodidae mitogenomes is 78.08%, their GC-skews are strongly negative, while AT-skews fluctuate around 0. A large number of microsatellites are detected in Ixodidae mitogenomes, and the main microsatellite motifs are mononucleotide A and trinucleotide AAT. We summarize five gene arrangement types, and identify the trnY-COX1-trnS1-COX2-trnK-ATP8-ATP6-COX3-trnG fragment is the most conserved region, whereas the region near the control region is the rearrangement hotspot in Ixodidae mitogenomes. The phylogenetic trees based on 15 genes provide a very convincing relationship (Ixodes + (Robertsicus + ((Bothriocroton + Haemaphysalis) + (Amblyomma + (Dermacentor + (Rhipicentor + (Hyalomma + Rhipicephalus))))))) with very strong supports. Remarkably, Archaeocroton sphenodonti is embedded in the Haemaphysalis clade with strong supports, resulting in paraphyly of the Haemaphysalis genus, so in-depth morphological and molecular studies are essential to determine the taxonomic status of A. sphenodonti and its closely related species. Our results provide new insights into the molecular phylogeny and evolution of hard ticks, as well as basic data for population genetics assessment and efficient surveillance and control for the giant panda-infesting ticks.
Collapse
Affiliation(s)
- Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Jiaojiao Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Xiang Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Hong Yang
- Management Center of Daxiangling Nature Reserve in Yingjing County, Ya’an 625200, China
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Gexiang Zhang
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu 610059, China
| | - Jindong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Dejiao Yi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Yanshan Zhou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guanwei Lan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Jiang Gu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Wei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Zusheng Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guilan Qi
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| |
Collapse
|
33
|
Mao Q, Sun G, Qian Y, Qian Y, Li W, Wang X, Shen Q, Yang S, Zhou C, Wang H, Zhang W. Viral metagenomics of pharyngeal secretions from children with acute respiratory diseases with unknown etiology revealed diverse viruses. Virus Res 2022; 321:198912. [PMID: 36058285 DOI: 10.1016/j.virusres.2022.198912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022]
Abstract
Acute respiratory tract infections are a major public health problem and the leading cause of morbidity in children younger than 5 years old. This study investigated the potential reasons of unexplained acute respiratory infections in children in Xuzhou and its environs during 2018-2019.We collected pharyngeal swab samples from 411 children under the age of five who presented with symptoms of unexplained acute respiratory infection and were negative for bacteria, mycoplasma, and influenza viruses. Using viral metagenomic techniques, viral nucleic acids were extracted, enriched, and sequenced from the samples. Results indicated that Picornaviridae, Parvoviridae, Paramyxoviridae, Coronaviridae, and Anelloviridae were the five virus families with the highest relative content of sequence reads. And we detected 35 HBoV-positive and 12 HEV-positive samples out of 411 samples by the polymerase chain reaction (PCR). Partial or nearly complete genome sequences of viruses belonging to the families Picornaviridae, Parvoviridae, and Anelloviridae were characterized, and phylogenetic trees were constructed based on the nucleic acid or amino acid sequences of the predicted viral open reading frames (ORFs), as well as genotyping of the viruses. In addition, we observed recombination events in the Saffold virus and Coxsackievirus A9 by analyzing the genetic characteristics of the viruses revealed in this study. This study provides vital information for the prevention and treatment of acute respiratory infections in children younger than five years old.
Collapse
Affiliation(s)
- Qingqing Mao
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China; School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Guangming Sun
- Department of Clinical Laboratory, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Yu Qian
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yuchen Qian
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital, Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital, Nanjing Medical University, Taizhou, Jiangsu 225300, China.
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Wen Zhang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China; School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
34
|
Ning SY, Xiao YQ, Qian YC, Feng ZH, Dai ZY, Zhang W, Wang H, Tang YJ. Viromic analysis of feces from laboratory rabbits reveals a new Circovirus. Virus Res 2022; 319:198861. [PMID: 35820512 DOI: 10.1016/j.virusres.2022.198861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Members of the genus Circovirus with the family Circoviridae are responsible for fatal diseases that can affect mammals and birds. Beak and feather disease virus (BFDV) is responsible for fatal diseases that could affect birds, causing the psittacine beak and feather disease. The current study discovered a new Circovirus from feces of laboratory rabbits and name it RabCV, which shows close relationship to BFDVs. RESULTS We investigated the feces virome of 10 laboratory rabbits using the viral metagenomic method. In these samples, we detected a new rabbit-associated Circovirus (RabCV) and performed phylogenetic analysis based on replication-associated (Rep) protein. The result showed that the RabCV was closely clustered with BFDVs, sharing the identity of 56.7%-57.2% with them based on the whole genome sequence. PCR screening in a cohort of 38 laboratory rabbits showed that 3 out of the 38 rabbits were positive for this new rabbit-associated Circovirus. CONCLUSION A new Circovirus was discovered from feces of rabbits, which showed low prevalence in the healthy laboratory rabbits. BFDV is responsible for fatal diseases that could affect birds, which suggested that the potential threat of the new rabbit-associated Circovirus to the health of laboratory rabbits needs further study.
Collapse
Affiliation(s)
- Song-Yi Ning
- Donghai County People's Hospital, Jiangsu University, Donghai, Jiangsu 222300, China; Department of Oncology, Yangzhou Friendliness Hospital, Yangzhou, Jiangsu 225003, China
| | - Yu-Qing Xiao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Yu-Chen Qian
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Zhang-Hao Feng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Zi-Yuan Dai
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, China.
| | - Yuan-Jie Tang
- Jiangsu Provincial Corps Hospital, Chinese People's Armed Police Forces, Yangzhou, Jiangsu 225003, China.
| |
Collapse
|
35
|
Virome of Giant Panda-Infesting Ticks Reveals Novel Bunyaviruses and Other Viruses That Are Genetically Close to Those from Giant Pandas. Microbiol Spectr 2022; 10:e0203422. [PMID: 35916407 PMCID: PMC9430136 DOI: 10.1128/spectrum.02034-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tick infestations have been reported as one of the factors threatening the health of giant pandas, but studies of viral pathogens carried by ticks feeding on the blood of giant pandas are limited. To assess whether blood-sucking ticks of giant pandas can carry viral pathogens and if so, whether the viruses in ticks are associated with those previously detected in giant panda hosts, we determined the viromes of ticks detached from giant pandas in a field stocking area in Sichuan Province, southwest China. Using viral metagenomics we identified 32 viral species in ticks, half of which (including anellovirus [n = 9], circovirus [n = 3], and gemycircularvirus [n = 4]) showed homology to viruses carried by giant pandas and their associated host species (such as red pandas and mosquitoes) in the same living domain. Remarkably, several viruses in this study phylogenetically assigned as bunyavirus, hepe-like virus, and circovirus were detected with relatively high abundance, but whether these newly identified tick-associated viruses can replicate in ticks and then transmit to host animals during a blood meal will require further investigation. These findings further expand our understanding of the role of giant panda-infesting ticks in the local ecosystem, especially related to viral acquisition and transmission, and lay a foundation to assess the risk for giant panda exposure to tick-borne viruses. IMPORTANCE Ticks rank only second to mosquitoes as blood-feeding arthropods, capable of spreading pathogens (including viruses, bacteria, and parasites) to hosts during a blood meal. To better understand the relationship between viruses carried by ticks and viruses that have been reported in giant pandas, it is necessary to analyze the viromes of giant panda-parasitic blood-sucking ticks. This study collected 421 ticks on the body surface of giant pandas in Sichuan Province, China. We characterized the extensive genetic diversity of viruses harbored by these ticks and reported frequent communication of viruses between giant pandas and their ticks. While most of the virome discovered here are nonpathogenic viruses from giant pandas and potentially tick-specific viruses, we revealed some possible tick-borne viruses, represented by novel bunyaviruses. This research contributes to the literature because currently there are few studies on the virome of giant panda-infesting ticks.
Collapse
|
36
|
Bao S, Wang H, Li W, Ji L, Wang X, Shen Q, Yang S, Zhou C, Zhang W. Dynamic alterations of the mice gut virome after Coxsackievirus B3 infection. J Med Virol 2022; 94:4959-4969. [PMID: 35718835 DOI: 10.1002/jmv.27946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022]
Abstract
The gut microbiome plays an essential role in the human health and dysbiosis has been implicated in numerous diseases. Coxsackievirus B3 infects millions of humans yearly and yet limited research has explored dynamic alterations of the gut virome after infection. Here, we established the mouse model of Coxsackievirus B3 infection and collected fecal samples at several time points to investigate alterations of the gut virome using viral metagenomic analysis. We found that the mice virome was dominated by Caudovirales and Microviridae, and phylogenetic analyses showed that both Caudovirales and Microviridae had high diversity. The gut virome had significant variations with the increase of Caudovirales and the decrease of Microviridae after infection. We proposed that Caudovirales and Microviridae may be biomarkers for the Coxsackievirus infection process. This study provides a reference for the dynamic changes of the gut virome after human Enterovirus infection, which may help guide the rational drug use in clinical treatment and provide new ideas for preventing Enterovirus infection.
Collapse
Affiliation(s)
- Siwen Bao
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Likai Ji
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| | - Quan Shen
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| | - Shixing Yang
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Wen Zhang
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| |
Collapse
|
37
|
Shen Q, Zhuang Z, Lu J, Qian L, Li G, Kanton AG, Yang S, Wang X, Wang H, Yin J, Zhang W. Genome Analysis of Goose-Origin Astroviruses Causing Fatal Gout in Shanghai, China Reveals One of Them Belonging to a Novel Type Is a Recombinant Strain. Front Vet Sci 2022; 9:878441. [PMID: 35782540 PMCID: PMC9247502 DOI: 10.3389/fvets.2022.878441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Since 2014, a goose-origin astroviruses disease, which is characterized by urate precipitation in viscera, has rapidly spread to major commercial goose provinces leading to huge economic losses in the poultry industry of China. In March 2020, a goose farm locates in Shanghai, China, where there was no goose astroviruses (GAstVs) infection reported before, experienced an outbreak of gout disease in geese. The etiological investigation was carried out by virus metagenomics and bacterial culture and two GAstVs strains, designated as CHSH01 and CHSH02, were determined. Their complete genomes were measured to 7,154 and 7,330 nt in length, excludingthe poly(A) tail, respectively, and had different genomic features and classifications. CHSH01 shared a very low sequence identity with other strains in terms of not only the complete genome but also different ORFs. Phylogenetic analysis showed CHSH02 belonged to GAstV-2, which was the predominant species in the geese with gout in China according to the previous study. Meanwhile, CHSH01 strain displayed low identity with other AstVs, and phylogenetic and recombination analysis suggested that CHSH01 belonging to a novel type was a recombinant strain, one parent strain of which was an AstV determined from a bar-headed goose (a kind of migrant bird). Moreover, the primary epidemiological investigation showed that the two strains were prevalent in the same goose farm and co-infection occurred. These findings arise the potential cross-species transmission of CHSH01 between domestic and wild fowl.
Collapse
Affiliation(s)
- Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zi Zhuang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingling Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Guangquan Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Aaron Gia Kanton
- Department of Orthopedics, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Huiying Wang
| | - Jun Yin
- Nanjing Customs District, Nanjing, China
- Jun Yin
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Wen Zhang
| |
Collapse
|
38
|
Detection of Equus caballus papillomavirus-2 in equine penile/preputial papillomas and squamous cell carcinomas in southern Brazil. Braz J Microbiol 2022; 53:1707-1713. [PMID: 35570259 PMCID: PMC9433495 DOI: 10.1007/s42770-022-00769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/02/2022] Open
Abstract
For approximately one decade, a novel papillomavirus termed Equus caballus papillomavirus-2 (EcPV-2) has been associated with equine penile/preputial papillomas and squamous cell carcinomas (SCCs). It is currently believed that the virus has a carcinogenic activity, being able to induce such neoplastic lesions. After being first described, EcPV-2 has been detected in many countries from North America, Europe, and Asia; however, to date, it has not been reported in Brazil. The aim of this research was to investigate the presence of EcPV-2 in penile/preputial papillomas and SCCs of Brazilian horses. Forty samples diagnosed as equine penile and/or preputial papillomas, carcinomas in situ (CIS), or SCCs in two veterinary anatomic pathology services from southern Brazil were investigated. Histologic evaluation and immunohistochemistry (IHC) using a BPV-1 antibody were performed. Posteriorly, the samples were submitted to polymerase chain reaction using two broad-spectrum (MY09/11 and FAP) and one EcPV-2-specific primer sets. Positive samples were sequenced. PV antigen expression was detected in one papilloma, one CIS, and two SCCs by IHC. Five SCCs, one papilloma, and one CIS were PV-positive on PCR. Sequencing of the seven PCR products revealed homology with EcPV-2. This study confirms the occurrence of EcPV-2 infection in Brazilian horses. Moreover, the results presented here provide useful information concerning the phylogeny from the viruses detected in our samples. We hope to encourage further studies on this novel agent, contributing to its characterization, and, possibly, to the eventual development of preventive measurements, including a possible vaccine.
Collapse
|
39
|
Zhao M, Yue C, Yang Z, Li Y, Zhang D, Zhang J, Yang S, Shen Q, Su X, Qi D, Ma R, Xiao Y, Hou R, Yan X, Li L, Zhou Y, Liu J, Wang X, Wu W, Zhang W, Shan T, Liu S. Viral metagenomics unveiled extensive communications of viruses within giant pandas and their associated organisms in the same ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153317. [PMID: 35066043 DOI: 10.1016/j.scitotenv.2022.153317] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Cross-species transmission events were commonplace, with numerous cases of host-switching during the viral evolutionary history, but relatively little evidence for onward transmission in different species living in the same ecosystem. For understanding the communications of viruses in giant pandas (Ailuropoda melanoleuca) and their associated organisms, based on a large size of samples (N = 2305) collected between 2015 and 2020 from giant panda (N = 776) and other four giant panda-associated organisms in the same ecosystem, red pandas (N = 700), stray cats (N = 32), wild rats (N = 42), and mosquitoes (N = 755), viromics was used for the virus identification and subsequent virus traceability. The results showed that a feline panleukopenia virus (FPV) was found in giant pandas with clinical signs of vomiting and mild diarrhea. Meanwhile, the same FPV strain was also prevalent in the healthy red panda (Ailurus fulgens) population. From the viromes of the five different organisms, 250 virus genomes were determined. Our data revealed that besides FPV, other putative pathogenic viruses, such as red panda amdoparvoviruses (RPAVs) and Getah viruses (GETVs) were responsible for previous disease or death of some red pandas. We also demonstrated that a number of viruses were involved in potential interspecies jumping events between giant pandas and their associated species. Collectively, our results shed light on the genetic diversity and relationship of diverse viral pathogens in 'Giant pandas-Associated animals-Arthropods' and report some cases of possible viral host-switching among these host species living in the same ecosystem.
Collapse
Affiliation(s)
- Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Zijun Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yunli Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Dongsheng Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Ju Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaoyan Su
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Dunwu Qi
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Rui Ma
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Yuqing Xiao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Xia Yan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Lin Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Yanshan Zhou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Jiabin Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Wei Wu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China.
| |
Collapse
|
40
|
Shan T, Yang S, Wang H, Wang H, Zhang J, Gong G, Xiao Y, Yang J, Wang X, Lu J, Zhao M, Yang Z, Lu X, Dai Z, He Y, Chen X, Zhou R, Yao Y, Kong N, Zeng J, Ullah K, Wang X, Shen Q, Deng X, Zhang J, Delwart E, Tong G, Zhang W. Virome in the cloaca of wild and breeding birds revealed a diversity of significant viruses. MICROBIOME 2022; 10:60. [PMID: 35413940 PMCID: PMC9001828 DOI: 10.1186/s40168-022-01246-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/16/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Wild birds may harbor and transmit viruses that are potentially pathogenic to humans, domestic animals, and other wildlife. RESULTS Using the viral metagenomic approach, we investigated the virome of cloacal swab specimens collected from 3182 birds (the majority of them wild species) consisting of > 87 different species in 10 different orders within the Aves classes. The virus diversity in wild birds was higher than that in breeding birds. We acquired 707 viral genomes from 18 defined families and 4 unclassified virus groups, with 265 virus genomes sharing < 60% protein sequence identities with their best matches in GenBank comprising new virus families, genera, or species. RNA viruses containing the conserved RdRp domain with no phylogenetic affinity to currently defined virus families existed in different bird species. Genomes of the astrovirus, picornavirus, coronavirus, calicivirus, parvovirus, circovirus, retrovirus, and adenovirus families which include known avian pathogens were fully characterized. Putative cross-species transmissions were observed with viruses in wild birds showing > 95% amino acid sequence identity to previously reported viruses in domestic poultry. Genomic recombination was observed for some genomes showing discordant phylogenies based on structural and non-structural regions. Mapping the next-generation sequencing (NGS) data respectively against the 707 genomes revealed that these viruses showed distribution pattern differences among birds with different habitats (breeding or wild), orders, and sampling sites but no significant differences between birds with different behavioral features (migratory and resident). CONCLUSIONS The existence of a highly diverse virome highlights the challenges in elucidating the evolution, etiology, and ecology of viruses in wild birds. Video Abstract.
Collapse
Affiliation(s)
- Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Haoning Wang
- School of Geography and Tourism, Harbin University, Harbin, 150886, Heilongjiang, China
- Key Laboratory of Wildlife diseases and Biosecurity Management of Heilongjiang Province, Harbin, 150886, Heilongjiang, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Ju Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Ga Gong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Yuqing Xiao
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Jie Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xiaolong Wang
- Wildlife and Protected Area College/Center of Conservation Medicine and Ecological Safety Northeast Forestry University, Harbin, 150006, Heilongjiang, China
| | - Juan Lu
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Min Zhao
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Zijun Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xiang Lu
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Ziyuan Dai
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Yumin He
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xu Chen
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Rui Zhou
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Yuxin Yao
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jian Zeng
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Kalim Ullah
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, 94118, USA
| | - Jianmin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China.
- International Center for Genomics Research, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
41
|
Witt AA, Alves RS, do Canto Olegário J, de Camargo LJ, Weber MN, da Silva MS, Canova R, Mosena ACS, Cibulski SP, Varela APM, Mayer FQ, Canal CW, da Fontoura Budaszewski R. The virome of the white-winged vampire bat Diaemus youngi is rich in circular DNA viruses. Virus Genes 2022; 58:214-226. [PMID: 35366197 PMCID: PMC8976263 DOI: 10.1007/s11262-022-01897-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022]
Abstract
In the Neotropical region, the white-winged vampire bat (Diaemus youngi) is the rarest of the three species of vampire bats. This bat species feeds preferentially on bird blood, and there is limited information on the viruses infecting D. youngi. Hence, this study aimed to expand the knowledge about the viral diversity associated with D. youngi by sampling and pooling the lungs, liver, kidneys, heart, and intestines of all animals using high-throughput sequencing (HTS) on the Illumina MiSeq platform. A total of three complete and 10 nearly complete circular virus genomes were closely related to gemykrogvirus (Genomoviridae family), smacovirus (Smacoviridae family), and torque teno viruses (TTVs) (Anelloviridae family). In addition, three sequences of bat paramyxovirus were detected and found to be closely related to viruses reported in Pomona roundleaf bats and rodents. The present study provides a snapshot of the viral diversity associated with white-winged vampire bats and provides a baseline for comparison to viruses detected in future outbreaks.
Collapse
Affiliation(s)
- André Alberto Witt
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural (SEAPDR), Porto Alegre, Rio Grande do Sul, Brazil
| | - Raquel Silva Alves
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana do Canto Olegário
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Junqueira de Camargo
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Mariana Soares da Silva
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Raíssa Canova
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Cristina Sbaraini Mosena
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Samuel Paulo Cibulski
- Centro de Biotecnologia (Cbiotec), Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria da Agricultura, Pecuária e Desenvolvimento Rural (SEAPDR), Eldorado Do Sul, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria da Agricultura, Pecuária e Desenvolvimento Rural (SEAPDR), Eldorado Do Sul, Rio Grande do Sul, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Renata da Fontoura Budaszewski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
42
|
Lu J, Yang S, Wang C, Wang H, Gong G, Xi Y, Pan J, Wang X, Zeng J, Zhang J, Li P, Shen Q, Shan T, Zhang W. Gut Virome of the World's Highest-Elevation Lizard Species ( Phrynocephalus erythrurus and Phrynocephalus theobaldi) Reveals Versatile Commensal Viruses. Microbiol Spectr 2022; 10:e0187221. [PMID: 35196818 PMCID: PMC8865479 DOI: 10.1128/spectrum.01872-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/29/2022] [Indexed: 12/27/2022] Open
Abstract
The gut virome is a reservoir of diverse symbiotic and pathogenic viruses coevolving with their hosts, and yet limited research has explored the gut viromes of highland-dwelling rare species. Using viral metagenomic analysis, the viral communities of the Phrynocephalus lizards living in the Qinghai-Tibet Plateau were investigated. Phage-encoded functional genes and antibiotic resistance genes (ARGs) were analyzed. The viral communities of different lizard species were all predominated by bacteriophages, especially the Caudovirales order. The virome of Phrynocephalus erythrurus living around the Namtso Lake possessed a unique structure, with the greatest abundance of the Parvoviridae family and the highest number of exclusive viral species. Several vertebrate-infecting viruses were discovered, including caliciviruses, astroviruses, and parvoviruses. Phylogenetic analyses demonstrated that the virus hallmark genes of bacteriophages possessed high genetic diversity. After functional annotation, the majority of phage-associated functional genes were classified in the energy metabolism category. In addition, plenty of ARGs belonging to the multidrug category were discovered, and five ARGs were exclusive to the virome from Phrynocephalus theobaldi. This study provided the first insight into the structure and function of the virome in highland lizards, contributing to the protection of threatened lizard species. Also, our research is of exemplary significance for the gut virome research of lizard species and other cold-blooded and highland-dwelling animals, prompting a better understanding of the interspecific differences and transmission of commensal viruses. IMPORTANCE The Phrynocephalus lizards inhabiting the Qinghai-Tibet Plateau (QTP) are considered to be the highest-altitude lizard species in the world, and they have been added to the IUCN list of threatened species. Living in the QTP with hypoxic, arid, natural conditions, the lizards presented a unique pattern of gut virome, which could provide both positive and negative effects, such as the enrichment of functional genes and the dissemination of antibiotic resistance genes (ARGs). This work provides the foundation for further research on the gut virome in these endangered lizard species and other cold-blooded and highland-dwelling animals, contributing to the maintenance of ecological balance on the plateau.
Collapse
Affiliation(s)
- Juan Lu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Wang
- The Affiliated Huai’an Hospital, Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Ga Gong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiamin Pan
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jian Zeng
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ju Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
43
|
Peng P, Xu Y, Aurora R, Di Bisceglie AM, Fan X. Within-host quantitation of anellovirus genome complexity from clinical samples. J Virol Methods 2022; 302:114493. [PMID: 35176352 PMCID: PMC8900665 DOI: 10.1016/j.jviromet.2022.114493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Anellovirus (AV) is a ubiquitous and diverse virus in the human population. An individual can be infected with multiple AV genera and species that form a heterogeneous repertoire, called the anellome. Due to its exceptional genetic diversity, efficient evaluation of anellome complexity remains a methodological challenge. In the current study, AV genome was first enriched from patient serum samples through two-phase rolling circle amplification. Following Illumina sequencing, anellome was analyzed with an advanced bioinformatics pipeline, including read extraction at three similarity levels, de novo assembly, species assignment, and determination of relative abundance among AV variants. The method was validated in the mock sample and then applied to 21 hepatitis C virus (HCV) patients with and without hepatocellular carcinoma (HCC). Overall, there was a large variance regarding AV richness, ranging from 2 to 51 AV species. In contrast to HCV patients without HCC, HCC incidence was associated with reduced richness (12.6 ± 14.4 vs. 35.4 ± 13.6, p = 0.001) and Shannon entropy (0.4 ± 0.34 vs. 0.61 ± 0.12, p = 0.095) at the AV species level. Interestingly, AV genus beta and gamma expanded in the anellome in 7 of 10 HCC patients. These observations shed light on the potential association between anellome and HCC incidence in patients with chronic HCV infection. The method presented here represents a valuable tool to investigate the role of anellome in human health and disease.
Collapse
|
44
|
Viral metagenomics reveals diverse viruses in the fecal samples of children with diarrhea. Virol Sin 2022; 37:82-93. [PMID: 35234620 PMCID: PMC8922427 DOI: 10.1016/j.virs.2022.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/06/2021] [Indexed: 01/12/2023] Open
Abstract
Diarrhea is the third leading cause of death in developing countries in children under the age of five. About half a million children die of diarrhea every year, most of which in developing countries. Viruses are the main pathogen of diarrhea. In China, the fecal virome of children with diarrhea has been rarely studied. Using an unbiased viral metagenomics approach, we analyzed the fecal virome in children with diarrhea. Many DNA or RNA viruses associated with diarrhea identified in those fecal samples were mainly from six families of Adenoviridae, Astroviridae, Caliciviridae, Parvoviridae, Picornaviridae, and Reoviridae. Among them, the family of Caliciviridae accounts for the largest proportion of 78.42%, following with Adenoviridae (8.94%) and Picornaviridae (8.36%). In addition to those diarrhea-related viruses that have already been confirmed to cause human diarrhea, the viruses not associated with diarrhea were also identified including anellovirus and picobirnavirus. This study increased our understanding of diarrheic children fecal virome and provided valuable information for the prevention and treatment of viral diarrhea in this area. Many DNA or RNA viruses associated with diarrhea were identified in this study. Viruses belonging to the family of Caliciviridae were the most main pathogen that induced children diarrhea. In addition to those diarrhea-related viruses, the viruses not associated with diarrhea were also identified.
Collapse
|
45
|
Li X, Liu Q, Chen X, Xiao Y, Yang S, Zhang W, Chen J. The virome of bronchoalveolar lavage fluid from patients with fever of unknown origin. Future Virol 2022. [DOI: 10.2217/fvl-2020-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Viral metagenomics, a high-throughput sequencing combined with virus sequence-independent amplification by random PCR, allows for unbiased detection of virtually any viruses present in samples. Materials & methods: In order to investigate the virome of bronchoalveolar lavage fluid from patients with fever of unknown origin, 58 samples collected from diseased patients were characterized and compared. Results: Some representatives of Anelloviridae were identified, we found the torque teno virus (TTV) accounts for the majority of virus communities and were more prevalent in the specimens of febrile patients. Phylogenetic analysis suggested that these anellovirus isolates were close to the previous TTV available in GenBank®. Conclusion: All these data indicate that the human anellovirus species TTV may associated with fever of unknown origin.
Collapse
Affiliation(s)
- Xinlin Li
- Department of Clinical Laboratory, The Affiliated People’s Hospital of Jiangsu University, No. 8 Dian Li Road, Zhenjiang, China
- School of Medicine, Jiangsu University, No. 301 Xue Fu Road, Zhenjiang, China
| | - Qi Liu
- School of Medicine, Jiangsu University, No. 301 Xue Fu Road, Zhenjiang, China
| | - Xu Chen
- School of Medicine, Jiangsu University, No. 301 Xue Fu Road, Zhenjiang, China
| | - Yuqing Xiao
- School of Medicine, Jiangsu University, No. 301 Xue Fu Road, Zhenjiang, China
| | - Shixing Yang
- School of Medicine, Jiangsu University, No. 301 Xue Fu Road, Zhenjiang, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, No. 301 Xue Fu Road, Zhenjiang, China
| | - Jianguo Chen
- Department of Clinical Laboratory, The Affiliated People’s Hospital of Jiangsu University, No. 8 Dian Li Road, Zhenjiang, China
| |
Collapse
|
46
|
Lu J, Yang S, Zhang X, Tang X, Zhang J, Wang X, Wang H, Shen Q, Zhang W. Metagenomic Analysis of Viral Community in the Yangtze River Expands Known Eukaryotic and Prokaryotic Virus Diversity in Freshwater. Virol Sin 2022; 37:60-69. [PMID: 35234628 PMCID: PMC8922420 DOI: 10.1016/j.virs.2022.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Viruses in aquatic ecosystems are characterized by extraordinary abundance and diversity. Thus far, there have been limited studies focused on viral communities in river water systems. Here, we investigated the virome of the Yangtze River Delta using viral metagenomic analysis. The compositions of viral communities from six sampling sites were analyzed and compared. By using library construction and next generation sequencing, contigs and singlet reads similar to viral sequences were classified into 17 viral families, including nine dsDNA viral families, four ssDNA viral families and four RNA viral families. Statistical analysis using Friedman test suggested that there was no significant difference among the six sampling sites (P > 0.05). The viromes in this study were all dominated by the order Caudovirales, and a group of Freshwater phage uvFW species were particularly prevalent among all the samples. The virome from Nanjing presented a unique pattern of viral community composition with a relatively high abundance of family Parvoviridae. Phylogenetic analyses based on virus hallmark genes showed that the Caudovirales order and CRESS-DNA viruses presented high genetic diversity, while viruses in the Microviridae and Parvoviridae families and the Riboviria realm were relatively conservative. Our study provides the first insight into viral community composition in large river ecosystem, revealing the diversity and stability of river water virome, contributing to the proper utilization of freshwater resource. First insight into viral community composition in large river ecosystem. Virus hallmark genes present both diverse and conservative characteristics. The composition of viral communities is similar on the whole. Slight regional variation of virome is existed in individual areas.
Collapse
|
47
|
Tochetto C, Cibulski SP, Muterle Varela AP, Cerva C, Alves de Lima D, Fumaco Teixeira T, Quoos Mayer F, Roehe PM. A variety of highly divergent eukaryotic ssDNA viruses in sera of pigs. J Gen Virol 2021; 102. [PMID: 34928204 DOI: 10.1099/jgv.0.001706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Over the last decade, viral metagenomics has been established as a non-targeted approach for identifying viruses in stock animals, including pigs. This has led to the identification of a vast diversity of small circular ssDNA viruses. The present study focuses on the investigation of eukaryotic circular Rep-encoding single-stranded (CRESS) DNA viral genomes present in serum of commercially reared pigs from southern Brazil. Several CRESS DNA viral genomes were detected, including representatives of the families Smacoviridae (n=5), Genomoviridae (n=3), Redondoviridae (n=1), Nenyaviridae (n=1) and other yet unclassified genomes (n=9), plus a circular DNA molecule, which probably belongs to the phylum Cressdnaviricota. A novel genus within the family Smacoviridae, tentatively named 'Suismacovirus', comprising 21 potential new species, is proposed. Although the reported genomes were recovered from pigs with clinical signs of respiratory disease, further studies should examine their potential role as pathogens. Nonetheless, these findings highlight the diversity of circular ssDNA viruses in serum of domestic pigs, expand the knowledge on CRESS DNA viruses' genetic diversity and distribution and contribute to the global picture of the virome of commercially reared pigs.
Collapse
Affiliation(s)
- Caroline Tochetto
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Samuel Paulo Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristine Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Diane Alves de Lima
- Laboratório de Microbiologia do Centro Clínico Veterinário, Centro Universitário da Serra Gaúcha - FSG, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
48
|
Ning SY, Zhou MM, Yang J, Zeng J, Wang JP. Viral metagenomics reveals two novel anelloviruses in feces of experimental rats. Virol J 2021; 18:252. [PMID: 34930331 PMCID: PMC8686219 DOI: 10.1186/s12985-021-01723-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Rodents are widely distributed and are the natural reservoirs of a diverse group of zoonotic viruses. Thus, analyzing the viral diversity harbored by rodents could assist efforts to predict and reduce the risk of future emergence of zoonotic viral diseases. Rodents are commonly used in animal testing, particularly mice and rats. Experimental rats are important animal models, and a history of pathogenic infections in these animals will directly affect the animal trial results. The pathogenicity of Anellovirus (AV) remains poorly understood due to the lack of a suitable model cell line or animal to support the viral cycle. This study aimed to discover possible anelloviruses from the virome in feces of experimental rats by viral metagenomic technique. METHODS Fecal samples were collected from 10 commercial SD rats and pooled into a sample pool and then subjected to libraries construction which was then sequenced on Illumina MiSeq platform. The sequenced reads were analyzed using viral metagenomic analysis pipeline and two novel anelloviruses (AVs) were identified from fecal sample of experimental rats. The prevalence of these two viruses was investigated by conventional PCR. RESULTS The complete genomic sequence of these two AVs were determined and fully characterized, with strain name ratane153-zj1 and ratane153-zj2. The circular genomes of ratane153-zj1 and ratane153-zj2 are 2785 nt and 1930 nt in length, respectively, and both include three ORFs. Ratane153-zj1 closely clustered with members within the genus Wawtorquevirus and formed a separate branch based on the phylogenetic tree constructed over the amino acid sequence of ORF1 of the two AVs identified in this study and other related AVs. While the complete amino acid sequences of ORF1 of ratane153-zj2 (nt 335 to 1390) had the highest sequence identity with an unclassified AV (GenBank No. ATY37438) from Chinchilla lanigera, and they clustered with one AV (GenBank No. QYD02305) belonging to the genus Etatorquevirus from Lynx rufus. Conventional PCR with two sets of specific primers designed based on the two genomes, respectively, showed that they were detectable at a low frequency in cohorts of experimental rats. CONCLUSION Our study expanded the genome diversity of AVs and provided genetic background information of viruses existed in experimental rats.
Collapse
Affiliation(s)
- Song-Yi Ning
- Joint Institute of Molecular Etiology Diagnosis, Donghai County People's Hospital, Jiangsu University, Donghai, 222300, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Ming-Ming Zhou
- School of Nursing, Taihu University of Wuxi, Wuxi, 214063, Jiangsu, China
| | - Jie Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Jian Zeng
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Jia-Ping Wang
- Department of Clinical Laboratory, Donghai County People's Hospital, Donghai, 222300, Jiangsu, China.
| |
Collapse
|
49
|
Ning S, Lu X, Zhao M, Wang X, Yang S, Shen Q, Wang H, Zhang W. Virome in Fecal Samples From Wild Giant Pandas ( Ailuropoda Melanoleuca). Front Vet Sci 2021; 8:767494. [PMID: 34869737 PMCID: PMC8636094 DOI: 10.3389/fvets.2021.767494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The giant panda (Ailuropoda melanoleuca) is one of the most endangered mammals in the world; anthropogenic habitat loss and poaching still threaten the survival of wild pandas. Viral infection has become one of the potential threats to the health of these animals, but the available information related to these infections is still limited. In order to detect possible vertebrate viruses, the virome in the fecal samples of seven wild giant pandas from Qinling Mountains was investigated by using the method of viral metagenomics. From the fecal virome of wild giant pandas, we determined six nearly complete genomes belonging to the order Picornavirales, two of which may be qualified as a novel virus family or genus. In addition, four complete genomes belonging to the Genomoviridae family were also fully characterized. This virological investigation has increased our understanding of the gut viral community in giant pandas. Whether these viruses detected in fecal samples can really infect giant panda needs further research.
Collapse
Affiliation(s)
- Songyi Ning
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiang Lu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Zhao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
50
|
Identification of a novel circovirus in blood sample of giant pandas (Ailuropoda melanoleuca). INFECTION GENETICS AND EVOLUTION 2021; 95:105077. [PMID: 34506957 DOI: 10.1016/j.meegid.2021.105077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022]
Abstract
The members of the family Circoviridae are considered to be one of the smallest autonomously replicating viruses that are classified into two genera, Circovirus and Cyclovirus. Circoviruses have been found in a variety of vertebrates, but whether they infect endangered protected animals has not been studied in much detail. Here, viral metagenomics and PCR methods were used to detect and verify viral nucleic acid in the blood sample from giant pandas. According to these methods, the complete genome sequence of a novel circovirus, the giant panda associated circovirus (GPCV) from the blood sample of three giant pandas was identified. The GPCV genome is 2090 bp in size and reveals two putative ambisense open-reading frames, encoding the major structural capsid protein and the replication associated protein, respectively, the latter having two predicted introns. Pairwise sequence comparison and phylogenetic analyses indicated GPCV was a putative new species within genus Circovirus based on the species demarcation criteria of the International Committee on the Taxonomy of Viruses. It is the first time that circovirus has been identified from blood sample of giant pandas. These efforts will contribute to future analyses to illuminate the evolutionary relationships between classified and newly identified members of the family Circoviridae.
Collapse
|