1
|
Akter A, Teddleton H, Caldwell M, Pighetti G, Myer PR, Henniger MT, Schneider L, Shepherd E. Prevalence of nasopharyngeal bacteria during naturally occurring bovine respiratory disease in commercial stocker cattle. PeerJ 2025; 13:e18858. [PMID: 39850838 PMCID: PMC11756368 DOI: 10.7717/peerj.18858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Bovine respiratory disease (BRD) is one of the most common economic and health challenges to the beef cattle industry. Prophylactic use of antimicrobial drugs can alter the microbial communities in the respiratory tract. Considering that the bovine upper respiratory tract microbiome has been associated with generalized health, understanding the microenvironment that influences this microbiome may provide insights into the pathogenesis of BRD. This study aimed to determine temporal variation in nasopharyngeal (NP) microbiome in naturally occurring BRD in newly received stocker calves. Mixed breed steers (n = 40) were purchased from an auction market and housed in a commercial stocker farm. Clinical signs were used to identify BRD affected animals, and calves were categorized based on the number of treatments (NumTrt) received (0, 1, 2). On days 0, 7, 14, and 21, NP samples were collected, and subsequent DNA were isolated and sequenced. After sequencing, 16S rRNA V4 gene was amplified and utilized for NP bacterial determination. The difference in relative abundance based on day and NumTrt was measured using repeated measures ANOVA (PROC GLIMMIX; SAS 9.4). Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, and Verrucomicrobiota were the top phyla and Mycoplasma, Histophilus, Geobacillus, Saccharococcus, Lactobacillus, and Pasteurella were the top genera. In healthy calves, the relative abundance of Mycoplasma differed by day (P = 0.01), whereas on day 7, calves had five times greater abundance compared to day 0 (d 0: 0.06 ± 0.05; d 7: 0.30 ± 0.05). No differences were observed in the alpha diversity matrices based on day or NumTrt (P > 0.05). Results of this study suggest compositional variations in NP microbial populations occur during disease conditions.
Collapse
Affiliation(s)
- Afroza Akter
- Department of Animal Science, University of Tennessee-Knoxville, Knoxville, TN-Tennessee, United States
| | - Hannah Teddleton
- Department of Animal Science, University of Tennessee-Knoxville, Knoxville, TN-Tennessee, United States
| | - Marc Caldwell
- Department of Large Animal Clinical Sciences/College of Veterinary Medicine, University of Tennessee-Knoxville, Knoxville, Tennessee, United States
| | - Gina Pighetti
- Department of Animal Science, University of Tennessee-Knoxville, Knoxville, TN-Tennessee, United States
| | - Phillip R. Myer
- Department of Animal Science, University of Tennessee-Knoxville, Knoxville, TN-Tennessee, United States
| | - Madison T. Henniger
- Department of Animal Science, University of Tennessee-Knoxville, Knoxville, TN-Tennessee, United States
| | - Liesel Schneider
- Department of Animal Science, University of Tennessee-Knoxville, Knoxville, TN-Tennessee, United States
| | - Elizabeth Shepherd
- Department of Animal Science, University of Tennessee-Knoxville, Knoxville, TN-Tennessee, United States
| |
Collapse
|
2
|
Sumithra TG, Sharma SRK, Suresh G, Suja G, Prasad V, Gop AP, Patil PK, Gopalakrishnan A. Gut microbes of a high-value marine fish, Snubnose Pompano (Trachinotus blochii) are resilient to therapeutic dosing of oxytetracycline. Sci Rep 2024; 14:27949. [PMID: 39543167 PMCID: PMC11564560 DOI: 10.1038/s41598-024-75319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
Trachinotus blochii is a high-value tropical mariculture species. The present study evaluated the gut microbial impact of therapeutic exposure (80 mg/day/kg biomass for 10 days) to oxytetracycline, the most common aquaculture antibiotic in T. blochii. The cultivable counts, α-diversity measures of taxonomic and functional metagenomics, microbial dysbiosis (MD) index, and microbial taxon abundances showed the resilience of gut microbiota at 16-26 days of treatment. A significant reduction in bacterial abundance, diversity measures, Firmicutes and Actinobacteria and an increase in γ-Proteobacteria was recorded on the 6th and 11th day of treatment. The increased metagenomic stress signatures, decreased beneficial bacterial abundances, decreased abundance of microbial pathways on energy metabolism, and MD index indicated short-term transient stress during the initial days of therapeutic withdrawal, warranting health management measures. Therapeutic exposure reduced the abundance of fish pathogens, including Vibrio spp., kanamycin and ampicillin-resistant bacteria. Strikingly, oxytetracycline treatment did not increase tetracycline-resistant bacterial counts and the predicted abundance of tetracycline resistance encoding genes in the gut, illustrating that therapeutic application would not pose a risk in the context of antimicrobial resistance in short term. Altogether, the present study provides a foundation for oxytetracycline treatment to develop suitable risk minimization tactics in sustainable aquaculture.
Collapse
Affiliation(s)
- T G Sumithra
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - S R Krupesha Sharma
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - Gayathri Suresh
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
- Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - G Suja
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Vishnu Prasad
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Ambarish P Gop
- Vizhinjam Regional Centre of ICAR-CMFRI, Vizhinjam P.O., Thiruvananthapuram, Kerala, 695521, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, MRC Nagar, Chennai, Tamil Nadu, 600028, India
| | - A Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
3
|
Brown BRP, Williams AE, Sabey KA, Onserio A, Ewoi J, Song SJ, Knight R, Ezenwa VO. Social behaviour mediates the microbiome response to antibiotic treatment in a wild mammal. Proc Biol Sci 2024; 291:20241756. [PMID: 39353556 PMCID: PMC11444789 DOI: 10.1098/rspb.2024.1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
High levels of social connectivity among group-living animals have been hypothesized to benefit individuals by creating opportunities to rapidly reseed the microbiome and maintain stability against disruption. We tested this hypothesis by perturbing the microbiome of a wild population of Grant's gazelles with an antibiotic and asking whether microbiome recovery differs between individuals with high versus low levels of social connectivity. We found that after treatment, individuals with high social connectivity experienced a faster increase in microbiome richness than less socially connected individuals. Unexpectedly, the rapid increase in microbiome richness of highly connected individuals that received treatment led to their microbiomes becoming more distinct relative to the background population. Our results suggest that the microbiome of individuals with high social connectivity can be rapidly recolonized after a perturbation event, but this leads to a microbiome that is more distinct from, rather than more similar to the unperturbed state. This work provides new insight into the role of social interactions in shaping the microbiome.
Collapse
Affiliation(s)
- Bianca R. P. Brown
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - Kate A. Sabey
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - John Ewoi
- Mpala Research Centre, Nanyuki, Kenya
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Vanessa O. Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Uddin MS, Ortiz Guluarte J, Waldner M, Alexander TW. The respiratory and fecal microbiota of beef calves from birth to weaning. mSystems 2024; 9:e0023824. [PMID: 38899874 PMCID: PMC11264934 DOI: 10.1128/msystems.00238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
The development and growth of animals coincide with the establishment and maturation of their microbiotas. To evaluate the respiratory and fecal microbiotas of beef calves from birth to weaning, a total of 30 pregnant cows, and their calves at birth, were enrolled in this study. Deep nasal swabs and feces were collected from calves longitudinally, starting on the day of birth and ending on the day of weaning. Nasopharyngeal, vaginal, and fecal samples were also collected from cows, and the microbiotas of all samples were analyzed. The fecal microbiota of calves was enriched with Lactobacillus during the first 8 weeks of life, before being displaced by genera associated with fiber digestion, and then increasing in diversity across time. In contrast, the diversity of calf respiratory microbiota generally decreased with age. At birth, the calf and cow nasal microbiotas were highly similar, indicating colonization from dam contact. This was supported by microbial source-tracking analysis. The structure of the calf nasal microbiota remained similar to that of the cows, until weaning, when it diverged. The changes were driven by a decrease in Lactobacillus and an increase in genera typically associated with bovine respiratory disease, including Mannheimia, Pasteurella, and Mycoplasma. These three genera colonized calves early in life, though Mannheimia was initially transferred from the cow reproductive tract. Path analysis was used to model the interrelationships of calf respiratory and fecal microbiotas. It was observed that respiratory Lactobacillus and fecal Oscillospiraceae UCG-005 negatively affected the abundance of Mannheimia or Pasteurella.IMPORTANCEIn beef cattle production, bovine respiratory disease (BRD) accounts for most of the feedlot morbidities and mortalities. Metaphylaxis is a common management tool to mitigate BRD, however its use has led to increased antimicrobial resistance. Novel methods to mitigate BRD are needed, including microbiota-based strategies. However, information on the respiratory bacteria of beef calves prior to weaning was limited. In this study, it was shown that the microbiota of cows influenced the initial composition of both respiratory and fecal microbiotas in calves. While colonization of the respiratory tract of calves by BRD-associated genera occurred early in life, their relative abundances increased at weaning, and were negatively correlated with respiratory and gut bacteria. Thus, microbiotas of both the respiratory and gastrointestinal tracts have important roles in antagonism of respiratory pathogens and are potential targets for enhancing calf respiratory health. Modulation may be most beneficial, if done prior to weaning, before opportunistic pathogens establish colonization.
Collapse
Affiliation(s)
- Muhammed Salah Uddin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jose Ortiz Guluarte
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Matthew Waldner
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
5
|
Mate L, Alvarez LI, Lloberas M, Imperiale F, Lanusse CE, Liron JP. Interaction between bacterial microbiota and nematode parasite communities in sheep's gastrointestinal tract. PLoS One 2024; 19:e0306390. [PMID: 38935803 PMCID: PMC11210874 DOI: 10.1371/journal.pone.0306390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
The economic impact of gastrointestinal (GI) nematode infections on livestock production is well documented worldwide. Increasing evidence supports the hypothesis that parasite colonization induces significant changes in the GI tract environment and, therefore, in the landscape where the microbiota and parasites occur. Understanding the interactions between bacterial and parasite populations in the digestive tract of livestock may be useful to design parasite control strategies based on microbiota modification. The aims of this work were to investigate the impact of the oxytetracycline-mediated manipulation of the gut microbial community on the composition of GI nematode populations in naturally infected sheep and to explore changes in the GI microbial communities after nematode population treatment with the anthelmintic compound monepantel. Extensive manipulation of the GI microbiota with a therapeutic dose of the long-acting oxytetracycline formulation did not induce significant changes in the GI nematode burden. The gut microbiota of treated animals returned to control levels 17 days after treatment, suggesting strong resilience of the sheep microbial community to antibiotic-mediated microbiota perturbation. A significant decrease of the bacterial Mycoplasmataceae family (Log2FC = -4, Padj = 0.001) and a marked increase of the Methanobacteriaceae family (Log2FC = 2.9, Padj = 0.018) were observed in the abomasum of sheep receiving the monepantel treatment. While a comprehensive evaluation of the interactions among GI mycoplasma, methanobacteria and nematode populations deserves further assessment, the bacteria-nematode population interactions should be included in future control programs in livestock production. Understanding how bacteria and parasites may influence each other in the GI tract environment may substantially contribute to the knowledge of the role of microbiota composition in nematode parasite establishment and the role of the parasites in the microbiota composition.
Collapse
Affiliation(s)
- Laura Mate
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Luis Ignacio Alvarez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Mercedes Lloberas
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce) EEA-INTA, Balcarce, Argentina
| | - Fernanda Imperiale
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Carlos Edmundo Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Juan Pedro Liron
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| |
Collapse
|
6
|
Zhang X, Wang W, Wang Y, Cao Z, Yang H, Li S. Metagenomic and metabolomic analyses reveal differences in rumen microbiota between grass- and grain-fed Sanhe heifers. Front Microbiol 2024; 15:1336278. [PMID: 38803375 PMCID: PMC11128563 DOI: 10.3389/fmicb.2024.1336278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The aim of this study was to investigate the effects of diets on the composition and function of rumen microbiome and metabolites in Sanhe heifers. Methods Metagenomic and metabolomic analyses were performed using rumen fluid samples collected from Sanhe heifers (n = 20) with similar body weights and ages from grass-fed and grain-fed systems. Results The grain-fed group exhibited more intensive rumen fermentation than the grass-fed group. However, the grass-fed group exhibited carbohydrate metabolism and methane production higher than that of the grain-fed group; these increases were observed as a higher abundance of various bacterial phyla (Firmicutes, Bacteroidetes, Actinobacteria, Lentisphaerae, and Verrucomicrobia), families (Lachnospiraceae, Eubacteriaceae, and Eggerthellaceae), and the archaeal family Methanobacteriaceae. A comparison of genes encoding carbohydrate-active enzymes, using Kyoto Encyclopedia of Genes and Genome profiles, revealed noteworthy differences in the functions of rumen microbiota; these differences were largely dependent on the feeding system. Conclusion These results could help manipulate and regulate feed efficiency in Sanhe cattle.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Abi Younes JN, Campbell JR, Otto SJG, Gow SP, Woolums AR, Jelinski M, Lacoste S, Waldner CL. Variation in Pen-Level Prevalence of BRD Bacterial Pathogens and Antimicrobial Resistance Following Feedlot Arrival in Beef Calves. Antibiotics (Basel) 2024; 13:322. [PMID: 38666998 PMCID: PMC11047553 DOI: 10.3390/antibiotics13040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobials are crucial for treating bovine respiratory disease (BRD) in beef feedlots. Evidence is needed to support antimicrobial use (AMU) decisions, particularly in the early part of the feeding period when BRD risk is highest. The study objective was to describe changes in prevalence and antimicrobial susceptibility of BRD bacterial pathogens at feedlot processing (1 day on feed (1DOF)), 12 days later (13DOF), and for a subset at 36DOF following metaphylactic antimicrobial treatment. Mixed-origin steer calves (n = 1599) from Western Canada were managed as 16 pens of 100 calves, receiving either tulathromycin (n = 1199) or oxytetracycline (n = 400) at arrival. Deep nasopharyngeal swabs collected at all time points underwent culture and antimicrobial susceptibility testing (AST). Variability in the pen-level prevalence of bacteria and antimicrobial susceptibility profiles were observed over time, between years, and metaphylaxis options. Susceptibility to most antimicrobials was high, but resistance increased from 1DOF to 13DOF, especially for tetracyclines and macrolides. Simulation results suggested that sampling 20 to 30 calves per pen of 200 reflected the relative pen-level prevalence of the culture and AST outcomes of interest. Pen-level assessment of antimicrobial resistance early in the feeding period can inform the evaluation of AMU protocols and surveillance efforts and support antimicrobial stewardship in animal agriculture.
Collapse
Affiliation(s)
- Jennifer N. Abi Younes
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.N.A.Y.)
| | - John R. Campbell
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.N.A.Y.)
| | - Simon J. G. Otto
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Sheryl P. Gow
- Canadian Integrated Program for Antimicrobial Resistance Surveillance, Public Health Agency of Canada, Saskatoon, SK S7L 0Z2, Canada
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Murray Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.N.A.Y.)
| | - Stacey Lacoste
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.N.A.Y.)
| | - Cheryl L. Waldner
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.N.A.Y.)
| |
Collapse
|
8
|
Li X, Tang X, Chen M, Wang S, Tong C, Xu J, Xie G, Ma B, Zou Y, Wang Y, Wen X, Wu Y. Intramuscular therapeutic doses of enrofloxacin affect microbial community structure but not the relative abundance of fluoroquinolones resistance genes in swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169794. [PMID: 38181963 DOI: 10.1016/j.scitotenv.2023.169794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Livestock manure is a major source of veterinary antibiotics and antibiotic resistance genes (ARGs). Elucidation of the residual characteristics of ARGs in livestock manure following the administration of veterinary antibiotics is critical to assess their ecotoxicological effects and environmental contamination risks. Here, we investigated the effects of enrofloxacin (ENR), a fluoroquinolone antibiotic commonly used as a therapeutic drug in animal husbandry, on the characteristics of ARGs, mobile genetic elements, and microbial community structure in swine manure following its intramuscular administration for 3 days and a withdrawal period of 10 days. The results revealed the highest concentrations of ENR and ciprofloxacin (CIP) in swine manure at the end of the administration period, ENR concentrations in swine manure in groups L and H were 88.67 ± 45.46 and 219.75 ± 88.05 mg/kg DM, respectively. Approximately 15 fluoroquinolone resistance genes (FRGs) and 48 fluoroquinolone-related multidrug resistance genes (F-MRGs) were detected in swine manure; the relative abundance of the F-MRGs was considerably higher than that of the FRGs. On day 3, the relative abundance of qacA was significantly higher in group H than in group CK, and no significant differences in the relative abundance of other FRGs, F-MRGs, or MGEs were observed between the three groups on day 3 and day 13. The microbial community structure in swine manure was significantly altered on day 3, and the altered community structure was restored on day 13. The FRGs and F-MRGs with the highest relative abundance were qacA and adeF, respectively, and Clostridium and Lactobacillus were the dominant bacterial genera carrying these genes in swine manure. In summary, a single treatment of intramuscular ENR transiently increased antibiotic concentrations and altered the microbial community structure in swine manure; however, this treatment did not significantly affect the abundance of FRGs and F-MRGs.
Collapse
Affiliation(s)
- Xianghui Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Majan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyu Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chang Tong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gaomiao Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Collis RM, Biggs PJ, Burgess SA, Midwinter AC, Brightwell G, Cookson AL. Impact of systemic antimicrobial therapy on the faecal microbiome in symptomatic dairy cows. PLoS One 2024; 19:e0296290. [PMID: 38180967 PMCID: PMC10769045 DOI: 10.1371/journal.pone.0296290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
Antimicrobial resistance is a global threat to human and animal health, with the misuse and overuse of antimicrobials suggested as the main drivers of resistance. Antimicrobial therapy can alter the bacterial community composition and the faecal resistome in cattle. Little is known about the impact of systemic antimicrobial therapy on the faecal microbiome in dairy cows in the presence of disease. Therefore, this study aimed to assess the impact of systemic antimicrobial therapy on the faecal microbiome in dairy cows in the pastoral farm environment, by analysing faecal samples from cattle impacted by several different clinically-defined conditions and corresponding antimicrobial treatments. Analysis at the individual animal level showed a decrease in bacterial diversity and richness during antimicrobial treatment but, in many cases, the microbiome diversity recovered post-treatment when the cow re-entered the milking herd. Perturbations in the microbiome composition and the ability of the microbiome to recover were specific at the individual animal level, highlighting that the animal is the main driver of variation. Other factors such as disease severity, the type and duration of antimicrobial treatment and changes in environmental factors may also impact the bovine faecal microbiome. AmpC-producing Escherichia coli were isolated from faeces collected during and post-treatment with ceftiofur from one cow while no third-generation cephalosporin resistant E. coli were isolated from the untreated cow samples. This isolation of genetically similar plasmid-mediated AmpC-producing E. coli has implications for the development and dissemination of antibiotic resistant bacteria and supports the reduction in the use of critically important antimicrobials.
Collapse
Affiliation(s)
- Rose M. Collis
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Sara A. Burgess
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Neal K, Amachawadi RG, White BJ, Shippy TD, Theurer ME, Larson RL, Lubbers BV, Kleinhenz M. Nasopharyngeal Bacterial Prevalence and Microbial Diversity at First Treatment for Bovine Respiratory Disease (BRD) and Its Associations with Health and Mortality Outcomes in Feedyard Cattle. Microorganisms 2023; 12:33. [PMID: 38257861 PMCID: PMC10818627 DOI: 10.3390/microorganisms12010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Bovine respiratory disease (BRD) is an economically important disease in feedyards influencing both animal welfare and antimicrobial utilization. Major pathogens associated with BRD have been identified in previous research, but little information is available on the relationship between nasopharyngeal microbiota and health outcomes. The objective of this study was to identify potential associations between nasopharyngeal microbiota and antimicrobial resistance patterns of clinical cases that lived or died compared to non-diseased controls. Enrolled animals were subdivided based on clinical disease status and case outcome (subsequent mortality). Deep nasopharyngeal swabs were collected on enrolled animals and submitted for bacterial isolation, antimicrobial susceptibility determination, and metagenomics analysis. Enrolled cattle were represented in three groups: animals at first treatment for BRD that subsequently died (BRDM, n = 9), animals at first treatment for BRD that subsequently lived (BRDL, n = 15), and animals that were never treated for BRD during the feeding phase (CONT, n = 11). Antimicrobial resistance patterns for Pasteurella multocida illustrated cattle in each outcome category had isolates that were pan-susceptible or only showed resistance to oxytetracycline. The relative abundance of species and genera illustrated few differences among the three outcomes. Higher alpha diversity was identified in BRDL compared to CONT at the species level, and both BRDL and BRDM showed increased alpha diversity compared to CONT at the general level. Overall, this work illustrated nasopharyngeal microbiota showed relatively few differences among BRD cases that lived or died compared to animals without BRD.
Collapse
Affiliation(s)
- Kyndall Neal
- Beef Cattle Institute, Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (K.N.); (B.J.W.); (R.L.L.); (B.V.L.)
| | - Raghavendra G. Amachawadi
- Beef Cattle Institute, Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (K.N.); (B.J.W.); (R.L.L.); (B.V.L.)
| | - Brad J. White
- Beef Cattle Institute, Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (K.N.); (B.J.W.); (R.L.L.); (B.V.L.)
| | - Teresa D. Shippy
- Data Science Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| | - Miles E. Theurer
- Veterinary Research and Consulting Services LLC, Hays, KS 67601, USA;
| | - Robert L. Larson
- Beef Cattle Institute, Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (K.N.); (B.J.W.); (R.L.L.); (B.V.L.)
| | - Brian V. Lubbers
- Beef Cattle Institute, Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (K.N.); (B.J.W.); (R.L.L.); (B.V.L.)
| | - Michael Kleinhenz
- Veterinary Education, Research and Outreach, Texas A&M University, Canyon, TX 79015, USA;
| |
Collapse
|
11
|
Lee C, Zaheer R, Munns K, Holman DB, Van Domselaar G, Zovoilis A, McAllister TA. Effect of Antimicrobial Use in Conventional Versus Natural Cattle Feedlots on the Microbiome and Resistome. Microorganisms 2023; 11:2982. [PMID: 38138126 PMCID: PMC10745953 DOI: 10.3390/microorganisms11122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial use (AMU) in the livestock industry has been associated with increased levels of antimicrobial resistance. Recently, there has been an increase in the number of "natural" feedlots in the beef cattle sector that raise cattle without antibiotics. Shotgun metagenomics was employed to characterize the impact of AMU in feedlot cattle on the microbiome, resistome, and mobilome. Sequenced fecal samples identified a decline (q < 0.01) in the genera Methanobrevibacter and Treponema in the microbiome of naturally vs. conventionally raised feedlot cattle, but this difference was not (q > 0.05) observed in catch basin samples. No differences (q > 0.05) were found in the class-level resistome between feedlot practices. In fecal samples, decreases from conventional to natural (q < 0.05) were noted in reads for the antimicrobial-resistant genes (ARGs) mefA, tet40, tetO, tetQ, and tetW. Plasmid-associated ARGs were more common in feces from conventional than natural feedlot cattle. Interestingly, more chromosomal- than plasmid-associated macrolide resistance genes were observed in both natural and conventional feedlots, suggesting that they were more stably conserved than the predominately plasmid-associated tetracycline resistance genes. This study suggests that generationally selected resistomes through decades of AMU persist even after AMU ceases in natural production systems.
Collapse
Affiliation(s)
- Catrione Lee
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (C.L.); (R.Z.); (K.M.)
- Southern Alberta Genomic Sciences Centre, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada;
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (C.L.); (R.Z.); (K.M.)
| | - Krysty Munns
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (C.L.); (R.Z.); (K.M.)
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada;
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Government of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada;
| | - Athanasios Zovoilis
- Southern Alberta Genomic Sciences Centre, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada;
| | - Tim A. McAllister
- Southern Alberta Genomic Sciences Centre, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
12
|
Centeno-Martinez RE, Klopp RN, Koziol J, Boerman JP, Johnson TA. Dynamics of the nasopharyngeal microbiome of apparently healthy calves and those with clinical symptoms of bovine respiratory disease from disease diagnosis to recovery. Front Vet Sci 2023; 10:1297158. [PMID: 38033643 PMCID: PMC10687565 DOI: 10.3389/fvets.2023.1297158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Bovine respiratory disease (BRD) is a multifactorial disease complex in which bacteria in the upper respiratory tract play an important role in disease development. Previous studies have related the presence of four BRD-pathobionts (Mycoplasma bovis, Histophilus somni, Pasteurella multocida, and Mannheimia haemolytica) in the upper respiratory tract to BRD incidence and mortalities in the dairy and beef cattle industry, but these studies typically only use one time point to compare the abundance of BRD-pathobionts between apparently healthy and BRD-affected cattle. The objective of this study was to characterize the longitudinal development of the nasopharyngeal (NP) microbiome from apparently healthy calves, and in calves with clinical signs of BRD, the microbiota dynamics from disease diagnosis to recovery. Methods Deep nasopharyngeal swabs were taken from all calves immediately after transport (day 0). If a calf was diagnosed with BRD (n = 10), it was sampled, treated with florfenicol or tulathromycin, and sampled again 1, 5, and 10 days after antibiotic administration. Otherwise, healthy calves (n = 20) were sampled again on days 7 and 14. Bacterial community analysis was performed through 16S rRNA gene amplicon sequencing. Results The NP microbiome of the healthy animals remained consistent throughout the study, regardless of time. The NP microbiota beta diversity and community composition was affected by tulathromycin or florfenicol administration. Even though BRD-pathobionts were identified by 16S rRNA gene sequencing in BRD-affected animals, no difference was observed in their relative abundance between the BRD-affected and apparently healthy animals. The abundance of BRD-pathobionts was not predictive of disease development while the relative abundance of BRD pathobionts was unique to each BRD-affected calf. Interestingly, at the end of the study period, the genera Mycoplasma was the most abundant genus in the healthy group, while Lactobacillus was the most abundant genus in the animals that recovered from BRD. Discussion This study highlights that injected antibiotics seem to improve the NP microbiome composition (higher abundance of Lactobacillus and lower abundance of Mycoplasma), and that the relative abundance of BRD-pathobionts differs between individual calves but is not strongly predictive of BRD clinical signs, indicating that additional factors are likely important in the clinical progression of BRD.
Collapse
Affiliation(s)
| | - Rebecca N. Klopp
- Department of Animal Science, Purdue University, West Lafayette, IN, United States
| | - Jennifer Koziol
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Jacquelyn P. Boerman
- Department of Animal Science, Purdue University, West Lafayette, IN, United States
| | - Timothy A. Johnson
- Department of Animal Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
13
|
Zhang Z, Zhang C, Zhong Y, Yang S, Deng F, Li Y, Chai J. The spatial dissimilarities and connections of the microbiota in the upper and lower respiratory tract of beef cattle. Front Cell Infect Microbiol 2023; 13:1269726. [PMID: 38029262 PMCID: PMC10660669 DOI: 10.3389/fcimb.2023.1269726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bovine respiratory disease (BRD) causes morbidity and mortality in cattle. The critical roles of the respiratory microbiota in BRD have been widely studied. The nasopharynx was the most popular sampling niche for BRD pathogen studies. The oral cavity and other niches within the respiratory tract, such as nostrils and lung, are less assessed. In this study, oropharyngeal swabs (OS), nasal swabs (NS), nasopharyngeal swabs (NP), and bronchoalveolar lavage (BAL) were collected from calves located in four countries and analyzed for investigation of the dissimilarities and connections of the respiratory microbiota. The results showed that the microbial diversity, structure, and composition in the upper and lower respiratory tract in beef cattle from China, the USA, Canada, and Italy were significantly different. The microbial taxa for each sampling niche were specific and associated with their local physiology and geography. The signature microbiota for OS, NS, NP, and BAL were identified using the LEfSe algorithm. Although the spatial dissimilarities among the respiratory niches existed, the microbial connections were observed in beef cattle regardless of geography. Notably, the nostril and nasopharynx had more similar microbiomes compared to lung communities. The major bacterial immigration patterns in the bovine respiratory tract were estimated and some of them were associated with geography. In addition, the contribution of oral microbiota to the nasal and lung ecosystems was confirmed. Lastly, microbial interactions were characterized to reveal the correlation between the commercial microbiota and BRD-associated pathogens. In conclusion, shared airway microbiota among niches and geography provides the possibility to investigate the common knowledge for bovine respiratory health and diseases. In spite of the dissimilarities of the respiratory microbiota in cattle, the spatial connections among these sampling niches not only allow us to deeply understand the airway ecosystem but also benefit the research and development of probiotics for BRD.
Collapse
Affiliation(s)
- Zhihao Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Chengqian Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Yikai Zhong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
14
|
Sultana R, Cordeiro RP, Timsit E, McAllister TA, Alexander TW. Prevalence and antimicrobial susceptibility of Mycoplasma bovis from the upper and lower respiratory tracts of healthy feedlot cattle and those diagnosed with bovine respiratory disease. Vet Microbiol 2023; 285:109838. [PMID: 37690145 DOI: 10.1016/j.vetmic.2023.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023]
Abstract
Mycoplasma bovis is an important respiratory pathogen of cattle. In this study, the prevalence and antimicrobial susceptibility of M. bovis were evaluated from two Cohorts of feedlot cattle spanning an 8-year period. In the first study conducted in 2008-2009, nasopharyngeal swabs from cattle sampled at feedlot entry and after 60 days on feed were collected (Cohort 1). In a second study conducted in 2015-2016, nasopharyngeal and trans-tracheal samples were collected from cattle diagnosed with bovine respiratory disease (BRD) and matching healthy controls (Cohort 2). For Cohort 1, the prevalence of M. bovis was lower in cattle at entry compared to when the same individuals were sampled ≥60 days later (P < 0.05). For Cohort 2, the prevalence of M. bovis was greater in both nasopharyngeal and tracheal samples from cattle diagnosed with BRD, compared to controls (P < 0.05). In both Cohorts, almost all isolates were resistant to tilmicosin. Compared to M. bovis from Cohort 1, isolates of Cohort 2 exhibited increased resistance to clindamycin, enrofloxacin, florfenicol, tylosin, and tulathromycin, with the latter showing resistance levels >90 %. These data suggest that antimicrobials used to prevent and treat BRD selected for resistance in M. bovis over the 8-year period. For macrolides, cross-resistance occurred and M. bovis can retain resistance even when antimicrobial selection pressure is removed. Within 9 years of commercial availability of tulathromycin, the majority of M. bovis displayed resistance. Therefore, longitudinal evaluation of resistance in respiratory pathogens is important to ensure efficacious treatment of BRD.
Collapse
Affiliation(s)
- Razia Sultana
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada; Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Roniele P Cordeiro
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Edouard Timsit
- Department of Pharma Innovation, Ceva Santé Animale, Libourne, France
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada.
| |
Collapse
|
15
|
Uddin MS, Schwartzkopf-Genswein KS, Waldner M, Meléndez DM, Niu YD, Alexander TW. Auction market placement and a rest stop during transportation affect the respiratory bacterial microbiota of beef cattle. Front Microbiol 2023; 14:1192763. [PMID: 37808284 PMCID: PMC10556482 DOI: 10.3389/fmicb.2023.1192763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Background Bovine respiratory disease (BRD) is a significant health problem in beef cattle production, resulting in considerable economic losses due to mortalities, cost of treatment, and reduced feed efficiency. The onset of BRD is multifactorial, with numerous stressors being implicated, including transportation from farms to feedlots. In relation to animal welfare, regulations or practices may require mandatory rest times during transportation. Despite this, there is limited information on how transportation and rest stops affect the respiratory microbiota. Results This study evaluated the effect of cattle source (ranch-direct or auction market-derived) and rest stop duration (0 or 8 h of rest) on the upper respiratory tract microbiota and its relationship to stress response indicators (blood cortisol and haptoglobin) of recently weaned cattle transported for 36 h. The community structure of bacteria was altered by feedlot placement. When cattle were off-loaded for a rest, several key bacterial genera associated with BRD (Mannheimia, Histophilus, Pasteurella) were increased for most sampling times after feedlot placement for the ranch-direct cattle group, compared to animals given no rest stop. Similarly, more sampling time points had elevated levels of BRD-associated genera when auction market cattle were compared to ranch-direct. When evaluated across time and treatments several genera including Mannheimia, Moraxella, Streptococcus and Corynebacterium were positively correlated with blood cortisol concentrations. Conclusion This is the first study to assess the effect of rest during transportation and cattle source on the respiratory microbiota in weaned beef calves. The results suggest that rest stops and auction market placement may be risk factors for BRD, based solely on increased abundance of BRD-associated genera in the upper respiratory tract. However, it was not possible to link these microbiota to disease outcome, due to low incidence of BRD in the study populations. Larger scale studies are needed to further define how transportation variables impact cattle health.
Collapse
Affiliation(s)
- Muhammed Salah Uddin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | - Matthew Waldner
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniela M. Meléndez
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Yan D. Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
16
|
Jin Y, Li W, Ba X, Li Y, Wang Y, Zhang H, Li Z, Zhou J. Gut microbiota changes in horses with Chlamydia. BMC Microbiol 2023; 23:246. [PMID: 37660043 PMCID: PMC10474637 DOI: 10.1186/s12866-023-02986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Zoonotic diseases pose a significant threat to public health. Chlamydia, as an intracellular pathogen, can colonize the intestinal tract of humans and animals, changing the gut microbiota. However, only a few studies have evaluated alterations in the gut microbiota of horses infected with Chlamydia. Therefore, this study aimed to investigate gut microbiota and serum biochemical indicators in horses with Chlamydial infection (IG) and healthy horses (HG). Fecal and blood samples were collected from 16 horses (IG: 10; HG: 6) before morning feeding for the determination of gut microbiota and serum biochemical parameters. RESULTS The results showed that total globulin (GLB), alanine aminotransferase (ALT), and creatine kinase (CK) levels were significantly increased in IG compared with HG. Notably, the gut microbial diversity increased in IG compared with HG. Furthermore, Moraxellaceae and Akkermanisa abundance decreased in IG, while Streptococcus, Treponema, Prevotella, and Paraprevotella abundances (13 genera of bacterial species) increased. Compared with HG, carbohydrate metabolism increased in IG while amino acid metabolism decreased. In addition, the abundance of 18 genera of bacteria was associated with the level of five serum biochemical indicators. CONCLUSIONS In summary, this study elucidated the influence of Chlamydia infection in horses on the gut microbiota, unraveling consequential alterations in its composition and metabolic profile. Therefore, this study improves the understanding of Chlamydia-induced intestinal infections.
Collapse
Affiliation(s)
- Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xuli Ba
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yunhui Li
- Animal Pathology Laboratory, College of Veterinary Medicine, Northwest A&F University, Xianyang, 712100, China
| | - Yanyan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Huaiyu Zhang
- Animal Pathology Laboratory, College of Veterinary Medicine, Northwest A&F University, Xianyang, 712100, China
| | - Zhaocai Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Liang X, Zhang Z, Wang H, Lu X, Li W, Lu H, Roy A, Shen X, Irwin DM, Shen Y. Early-life prophylactic antibiotic treatment disturbs the stability of the gut microbiota and increases susceptibility to H9N2 AIV in chicks. MICROBIOME 2023; 11:163. [PMID: 37496083 PMCID: PMC10369819 DOI: 10.1186/s40168-023-01609-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Antibiotics are widely used for prophylactic therapy and for improving the growth performance of chicken. The problem of bacterial drug resistance caused by antibiotic abuse has previously attracted extensive attention; however, the influence of early-day use of prophylactic antibiotics on the gut microflora and on the disease resistance ability in chicks has not been explored. Here, we comprehensively evaluate the growth performance, gut microbial dynamics, level of antibiotic resistance genes (ARGs) in the gut microbial community, and resistance to H9N2 avian influenza virus (AIV) in chickens following long-term and short-term early-day prophylactic antibiotic treatment. RESULTS Unexpectedly, long-term prophylactic enrofloxacin treatment slowed the growth rate of chickens, whereas short-term antibiotics treatments were found to increase the growth rate, but these changes were not statistically significant. Strikingly, expansions of Escherichia-Shigella populations were observed in early-life prophylactic antibiotics-treated groups of chickens, which is in contrast to the general perception that antibiotics should control their pathogenicity in chicks. The gut microbiota composition of chickens treated long term with antibiotics or received early-day antibiotics treatment tend to be more dramatically disturbed compared to the gut microbiome of chickens treated with antibiotics for a short term at a later date, especially after H9N2 AIV infection. CONCLUSIONS Our data provide evidence that early-day and long-term antibiotic treatments have a more adverse effect on the intestinal microbiome of chickens, compared to short-term late age antibiotic treatment. Furthermore, our metagenomic data reveal that both long-term and short-term antibiotic treatment increase the relative abundance of ARGs. Our findings highlight the adverse effects of prophylactic antibiotic treatment and provide a theoretical basis for the cautious administration of antibiotics in food-producing animal management. Video Abstract.
Collapse
Affiliation(s)
- Xianghui Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhipeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xingbang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Lu
- School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ayan Roy
- Mailman School of Public Health, Columbia University, New York, 10032, USA
| | - Xuejuan Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Amat S, Timsit E, Workentine M, Schwinghamer T, van der Meer F, Guo Y, Alexander TW. A Single Intranasal Dose of Bacterial Therapeutics to Calves Confers Longitudinal Modulation of the Nasopharyngeal Microbiota: a Pilot Study. mSystems 2023; 8:e0101622. [PMID: 36971568 PMCID: PMC10134831 DOI: 10.1128/msystems.01016-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Bovine respiratory disease (BRD) remains the most significant health challenge affecting the North American beef cattle industry and results in $3 billion in economic losses yearly. Current BRD control strategies mainly rely on antibiotics, with metaphylaxis commonly employed to mitigate BRD incidence in commercial feedlots.
Collapse
|
19
|
Despotovic M, de Nies L, Busi SB, Wilmes P. Reservoirs of antimicrobial resistance in the context of One Health. Curr Opin Microbiol 2023; 73:102291. [PMID: 36913905 DOI: 10.1016/j.mib.2023.102291] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
The emergence and spread of antimicrobial resistance (AMR) and resistant bacteria, are a global public health challenge. Through horizontal gene transfer, potential pathogens can acquire antimicrobial resistance genes (ARGs) that can subsequently be spread between human, animal, and environmental reservoirs. To understand the dissemination of ARGs and linked microbial taxa, it is necessary to map the resistome within different microbial reservoirs. By integrating knowledge on ARGs in the different reservoirs, the One Health approach is crucial to our understanding of the complex mechanisms and epidemiology of AMR. Here, we highlight the latest insights into the emergence and spread of AMR from the One Health perspective, providing a baseline of understanding for future scientific investigations into this constantly growing global health threat.
Collapse
Affiliation(s)
- Milena Despotovic
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Laura de Nies
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L-4367, Luxembourg.
| |
Collapse
|
20
|
Rovira P. Short-Term Impact of Oxytetracycline Administration on the Fecal Microbiome, Resistome and Virulome of Grazing Cattle. Antibiotics (Basel) 2023; 12:antibiotics12030470. [PMID: 36978337 PMCID: PMC10044027 DOI: 10.3390/antibiotics12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Antimicrobial resistance (AMR) is an important public health concern around the world. Limited information exists about AMR in grasslands-based systems where antibiotics are seldom used in beef cattle. The present study investigated the impacts of oxytetracycline (OTC) on the microbiome, antibiotic resistance genes (ARGs), and virulence factor genes (VFGs) in grazing steers with no previous exposure to antibiotic treatments. Four steers were injected with a single dose of OTC (TREAT), and four steers were kept as control (CONT). The effects of OTC on fecal microbiome, ARGs, and VFGs were assessed for 14 days using 16S rRNA sequencing and shotgun metagenomics. Alpha and beta microbiome diversities were significantly affected by OTC. Following treatment, less than 8% of bacterial genera had differential abundance between CONT and TREAT samples. Seven ARGs conferring resistance to tetracycline (tet32, tet40, tet44, tetO, tetQ, tetW, and tetW/N/W) increased their abundance in the post-TREAT samples compared to CONT samples. In addition, OTC use was associated with the enrichment of macrolide and lincosamide ARGs (mel and lnuC, respectively). The use of OTC had no significant effect on VFGs. In conclusion, OTC induced short-term alterations of the fecal microbiome and enrichment of ARGs in the feces of grazing beef cattle.
Collapse
Affiliation(s)
- Pablo Rovira
- Instituto Nacional de Investigación Agropecuaria (INIA Uruguay), Treinta y Tres 33000, Uruguay
| |
Collapse
|
21
|
Tomazi ACCH, Tomazi T, Bringhenti L, Vinhal APA, Rodrigues MX, Bilby TR, Huson HJ, Bicalho RC. Treatment with 2 commercial antibiotics reduced clinical and systemic signs of pneumonia and the abundance of pathogenic bacteria in the upper respiratory tract of preweaning dairy calves. J Dairy Sci 2023; 106:2750-2771. [PMID: 36797182 DOI: 10.3168/jds.2022-22451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 02/16/2023]
Abstract
The aim of this study was to evaluate the effect of therapeutically administered tildipirosin or florfenicol + flunixin meglumine for the treatment of bovine respiratory disease (BRD) accompanied by fever in calves before weaning compared with diseased and untreated animals. As specific objectives, we evaluated the composition of the bacterial microbiota of the upper respiratory tract (URT) and blood and health parameters of the animals. Preweaning Holstein female calves diagnosed with naturally acquired pneumonia were randomly assigned to one of the following experimental groups on the day of diagnosis (d 0): (1) TLD (n = 36): single subcutaneous injection with 4 mg/kg tildipirosin; (2) FLF (n = 33): single subcutaneous injection with an antimicrobial (40 mg/kg florfenicol) combined with a nonsteroidal anti-inflammatory drug (2.2 mg/kg flunixin meglumine); and (3) NEG (n = 35): no treatment within the first 5 d following enrollment. The NEG treatment group was closely monitored for 5 d, and calves were removed from the study following a standardized late treatment protocol, when necessary, to minimize health concerns. Healthy untreated calves (CTR; n = 31) were also selected for the study and used as controls. Blood samples used for biochemical analysis and nasopharyngeal swabs used for evaluation of URT microbiota were collected daily from d 0 until d 5 and then weekly until weaning. Next-generation sequencing of the 16S rRNA gene was used to assess the URT microbiota at the phylum and genus levels. Clinical signs associated with pneumonia and otitis media were assessed daily, as was the need for antibiotic interventions. Calves in the TLD and FLF groups had faster recovery from fever within the first 5 d after enrollment. In addition, antibiotic-treated calves reached the same serum haptoglobin levels as healthy calves on d 2 after diagnosis, whereas calves in the NEG group had higher haptoglobin levels than the CTR group until at least d 5 after BRD diagnosis. Calves in the TLD and FLF groups had a lower risk of treatment for pneumonia (FLF = 22.8%; TLD = 27.7%) from d 5 to weaning than calves in the NEG group (54.7%). Furthermore, FLF treatment had a significantly lower risk of nasal discharge, otitis media, and treatment failure compared with the NEG group, but did not differ from the TLD group. Differences in the composition of the URT microbiota were found between groups, and the genus Mycoplasma was the most abundant in samples collected from the URT of calves with and without pneumonia. Both drugs were effective in reducing the mean relative abundance (MRA) of important genera associated with pneumonia (Mannheimia and Pasteurella), although an increase in Mycoplasma MRA was observed for tildipirosin-treated calves. In conclusion, both drugs were effective in reducing the inflammatory signs of pneumonia and the need for antimicrobial treatment after enrollment compared with no treatment. In addition, both TLD and FLF were effective in reducing the MRA of important bacterial genera associated with pneumonia; however, TLD treatment was associated with increased Mycoplasma MRA compared with healthy and untreated calves.
Collapse
Affiliation(s)
- A C C H Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - T Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; Merck Animal Health, Madison, NJ 07940.
| | - L Bringhenti
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; FERA Animal Health LLC, College Station, TX 77845
| | - A P A Vinhal
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - M X Rodrigues
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; FERA Animal Health LLC, College Station, TX 77845
| | - T R Bilby
- Merck Animal Health, Madison, NJ 07940
| | - H J Huson
- Department of Animal Sciences, Cornell University, Ithaca, NY 14853
| | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; FERA Animal Health LLC, College Station, TX 77845
| |
Collapse
|
22
|
Jin X, Liu S, Zhang Z, Liu T, Li N, Liang Y, Zheng J, Peng N. Enrofloxacin-induced transfer of multiple-antibiotic resistance genes and emergence of novel resistant bacteria in red swamp crayfish guts and pond sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130261. [PMID: 36356515 DOI: 10.1016/j.jhazmat.2022.130261] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) can be transferred from environmental microbes to human pathogens, thus leading to bacterial infection treatment failures. The aquaculture polluted by over-used antibiotics is considered as a notorious reservoir of ARGs. However, the origin, diachronic changes, and mobility of ARGs under antibiotic exposure in aquaculture systems remain elusive. Our findings showed that enrofloxacin application also increased the relative abundance of various ARGs in addition to quinolone-resistance genes and induced ARG dissemination in crayfish gut and sediment bacteria. Further investigation indicated that the transposase-mediated recombination was the major driver of horizontal gene transfer (HGT) of ARGs under antibiotic stress. Notably, enrofloxacin application also induced the generation of some metagenome-assembled genomes (MAGs) carrying multiple ARGs, which were identified as novel species. Additionally, Enterobacteriaceae constituted a mobile ARG pool in aquaculture. Therefore, aquaculture provides potential wide environmental pathways for generation and spread of antibiotic resistance. Our findings of ARG temporal variations and dissemination pattern in aquaculture with artificial use of antibiotics are critical to the management of antibiotic resistance, which is of great ecosystem and health implications.
Collapse
Affiliation(s)
- Xuexia Jin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Sizhen Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Tong Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Na Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Runge College of Bioengineering, Mianzhu, 618200 Deyang, Sichuan, PR China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
23
|
Zhang X, Wang W, Cao Z, Yang H, Wang Y, Li S. Effects of altitude on the gut microbiome and metabolomics of Sanhe heifers. Front Microbiol 2023; 14:1076011. [PMID: 36910192 PMCID: PMC10002979 DOI: 10.3389/fmicb.2023.1076011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Extreme environments at high altitudes pose a significant physiological challenge to animals. We evaluated the gut microbiome and fecal metabolism in Sanhe heifers from different altitudes. Methods Twenty Sanhe heifers (body weight: 334.82 ± 13.22 kg, 15-month-old) selected from two regions of China: the Xiertala Cattle Breeding Farm in Hulunbeier, Inner Mongolia [119°57' E, 47°17' N; approximately 700 m altitude, low altitude (LA)] and Zhizhao Dairy Cow Farm in Lhasa, Tibet [91°06' E, 29°36' N; approximately 3,650 m altitude, high altitude (HA)], were used in this study. Fecal samples were collected and differences in the gut microbiota and metabolomics of Sanhe heifers were determined using 16S rRNA gene sequencing and metabolome analysis. Results and discussion The results showed that altitude did not significantly affect the concentrations of fecal volatile fatty acids, including acetate, propionate, butyrate, and total volatile fatty acids (p > 0.05). However, 16S rRNA gene sequencing showed that altitude significantly affected gut microbial composition. Principal coordinate analysis based on Bray-Curtis dissimilarity analysis revealed a significant difference between the two groups (p = 0.001). At the family level, the relative abundances of Peptostreptococcaceae, Christensenellaceae, Erysipelotrichaceae, and Family_XIII were significantly lower (p < 0.05) in LA heifers than in HA heifers. In addition, the relative abundances of Lachnospiraceae, Domibacillus, Bacteroidales_S24-7_group, Bacteroidales_RF16_group, Porphyromonadaceae, and Spirochaetaceae were significantly higher in HA heifers than in LA heifers (p < 0.05). Metabolomic analysis revealed the enrichment of 10 metabolic pathways, including organismal systems, metabolism, environmental information processing, genetic information processing, and disease induction. The genera Romboutsia, Paeniclostridium, and g_unclassified_f_Lachnospiraceae were strongly associated with the 28 differential metabolites. This study is the first to analyze the differences in the gut microbiome and metabolome of Sanhe heifers reared at different altitudes and provides insights into the adaptation mechanism of Sanhe heifers to high-altitude areas.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Pansri P, Svensmark B, Liu G, Thamsborg SM, Kudirkiene E, Nielsen HV, Goecke NB, Olsen JE. Evaluation of a novel multiplex qPCR method for rapid detection and quantification of pathogens associated with calf diarrhoea. J Appl Microbiol 2022; 133:2516-2527. [PMID: 35858716 PMCID: PMC9796748 DOI: 10.1111/jam.15722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023]
Abstract
AIMS Diarrhoea is a common health problem in calves and a main reason for use of antimicrobials. It is associated with several bacterial, viral and parasitic pathogens, most of which are commonly present in healthy animals. Methods, which quantify the causative agents, may therefore improve confidence in associating a pathogen to the disease. This study evaluated a novel commercially available, multiplex quantitative polymerase chain reaction (qPCR) assay (Enterit4Calves) for detection and quantification of pathogens associated with calf-diarrhoea. METHODS AND RESULTS Performance of the method was first evaluated under laboratory conditions. Then it was compared with current routine methods for detection of pathogens in faecal samples from 65 calves with diarrhoea and in 30 spiked faecal samples. The qPCR efficiencies were between 84%-103% and detection limits of 100-1000 copies of nucleic acids per sample were observed. Correct identification was obtained on 42 strains of cultured target bacteria, with only one false positive reaction from 135 nontarget bacteria. Kappa values for agreement between the novel assay and current routine methods varied between 0.38 and 0.83. CONCLUSION The novel qPCR method showed good performance under laboratory conditions and a fair to good agreement with current routine methods when used for testing of field samples. SIGNIFICANCE AND IMPACT OF STUDY In addition to having fair to good detection abilities, the novel qPCR method allowed quantification of pathogens. In the future, use of quantification may improve diagnosis and hence treatment of calf diarrhoea.
Collapse
Affiliation(s)
| | | | - Gang Liu
- Department of Veterinary and Animal SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Egle Kudirkiene
- Department of Veterinary and Animal SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Vedel Nielsen
- Department of Microbiology and Infection ControlStatens Serum InstitutCopenhagenDenmark
| | | | - John Elmerdahl Olsen
- Department of Veterinary and Animal SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
25
|
Temporal Changes in the Faecal Microbiota of Beef Cattle on Feedlot Placement. Animals (Basel) 2022; 12:ani12192500. [PMID: 36230241 PMCID: PMC9559285 DOI: 10.3390/ani12192500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022] Open
Abstract
The microbial communities that inhabit the intestinal tract play an important role in modulating health and productivity. Environmental stressors can impact microbial communities, which can significantly influence host physiology. Cattle are subjected to several environmental stressors when placed on feedlots, such as transportation stress, exposure to feedlot environments and change in diet and management. Exposure to these stressors could influence host gut microbiota, which in turn, could potentially influence host health and performance. The aim of the current study was to characterise the temporal changes that occur in intestinal microbiota as a consequence of feedlot placement by profiling 16s rRNA sequences in rectal faecal samples. When faecal microbiome profiles were compared in terms of relative abundances and alpha diversity metrics, the results showed significant, observable changes in profiles 2 days post-feedlot induction. Furthermore, beta-diversity analysis indicated that the phylogenetic similarity between samples significantly decreased on day 2 (PERMANOVA, p < 0.001). These trends were suggestive of a short-term reduction in microbial diversity coupled with decreased similarity between animals. These changes warrant further investigation and could provide opportunities for improved performance, health and even welfare of feedlot cattle in future.
Collapse
|
26
|
Chai J, Liu X, Usdrowski H, Deng F, Li Y, Zhao J. Geography, niches, and transportation influence bovine respiratory microbiome and health. Front Cell Infect Microbiol 2022; 12:961644. [PMID: 36171758 PMCID: PMC9510686 DOI: 10.3389/fcimb.2022.961644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine respiratory disease (BRD), one of the most common and infectious diseases in the beef industry, is associated with the respiratory microbiome and stressors of transportation. The impacts of the bovine respiratory microbiota on health and disease across different geographic locations and sampling niches are poorly understood, resulting in difficult identification of BRD causes. In this study, we explored the effects of geography and niches on the bovine respiratory microbiome and its function by re-analyzing published metagenomic datasets and estimated the main opportunistic pathogens that changed after transportation. The results showed that diversity, composition, structure, and function of the bovine nasopharyngeal microbiota were different across three worldwide geographic locations. The lung microbiota also showed distinct microbial composition and function compared with nasopharyngeal communities from different locations. Although different signature microbiota for each geographic location were identified, a module with co-occurrence of Mycoplasma species was observed in all bovine respiratory communities regardless of geography. Moreover, transportation, especially long-distance shipping, could increase the relative abundance of BRD-associated pathogens. Lung microbiota from BRD calves shaped clusters dominated with different pathogens. In summary, geography, sampling niches, and transportation are important factors impacting the bovine respiratory microbiome and disease, and clusters of lung microbiota by different bacterial species may explain BRD pathogenesis, suggesting the importance of a deeper understanding of bovine respiratory microbiota in health.
Collapse
Affiliation(s)
- Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, China
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Xinting Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hunter Usdrowski
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
27
|
Impact of Raised without Antibiotics Measures on Antimicrobial Resistance and Prevalence of Pathogens in Sow Barns. Antibiotics (Basel) 2022; 11:antibiotics11091221. [PMID: 36139998 PMCID: PMC9495050 DOI: 10.3390/antibiotics11091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The growing concern over the emergence of antimicrobial resistance (AMR) in animal production as a result of extensive and inappropriate antibiotic use has prompted many swine farmers to raise their animals without antibiotics (RWA). In this study, the impact of implementing an RWA production approach in sow barns on actual on-farm antibiotic use, the emergence of AMR, and the abundance of pathogens was investigated. Over a 13-month period, fecal and nasopharynx samples were collected at 3-month intervals from sows raised in RWA barns and sows in conventional barns using antibiotics in accordance with the new regulations (non-RWA). Whole genome sequencing (WGS) was used to determine the prevalence of AMR and the presence of pathogens in those samples. Records of all drug use from the 13-month longitudinal study indicated a significant reduction in antimicrobial usage in sows from RWA barns compared to conventional non-RWA barns. Antifolates were commonly administered to non-RWA sows, whereas β-lactams were widely used to treat sows in RWA barns. Metagenomic analyses demonstrated an increased abundance of pathogenic Actinobacteria, Firmicutes, and Proteobacteria in the nasopharynx microbiome of RWA sows relative to non-RWA sows. However, WGS analyses revealed that the nasal microbiome of sows raised under RWA production exhibited a significant increase in the frequency of resistance genes coding for β-lactams, MDR, and tetracycline.
Collapse
|
28
|
Kang J, Liu Y, Chen X, Xu F, Xiong W, Li X. Shifts of Antibiotic Resistomes in Soil Following Amendments of Antibiotics-Contained Dairy Manure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10804. [PMID: 36078515 PMCID: PMC9517759 DOI: 10.3390/ijerph191710804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Dairy manure is a nutrition source for cropland soils and also simultaneously serves as a contamination source of antibiotic resistance genes (ARGs). In this study, five classes of antibiotics including aminoglycosides, beta-lactams, macrolides, sulfonamides, and tetracyclines, were spiked in dairy manure and incubated with soil for 60 days. The high throughput qPCR and 16S rRNA amplicon sequencing were used to detect temporal shifts of the soil antibiotic resistomes and bacterial community. Results indicated dairy manure application increased the ARG abundance by 0.5-3.7 times and subtype numbers by 2.7-3.7 times and changed the microbial community structure in soils. These effects were limited to the early incubation stage. Selection pressure was observed after the addition of sulfonamides. Bacterial communities played an important role in the shifts of ARG profiles and accounted for 44.9% of the resistome variation. The incubation period, but not the different antibiotic treatments, has a strong impact on the bacteria community. Firmicutes and Bacteroidetes were the dominant bacterial hosts for individual ARGs. This study advanced our understanding of the effect of dairy manure and antibiotics on the antibiotic resistome in soils and provided a reference for controlling ARG dissemination from dairy farms to the environment.
Collapse
Affiliation(s)
- Jijun Kang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiming Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojie Chen
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Xu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutic Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiubo Li
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
29
|
Crosby WB, Pinnell LJ, Richeson JT, Wolfe C, Castle J, Loy JD, Gow SP, Seo KS, Capik SF, Woolums AR, Morley PS. Does swab type matter? Comparing methods for Mannheimia haemolytica recovery and upper respiratory microbiome characterization in feedlot cattle. Anim Microbiome 2022; 4:49. [PMID: 35964128 PMCID: PMC9375289 DOI: 10.1186/s42523-022-00197-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Bovine respiratory disease (BRD) is caused by interactions among host, environment, and pathogens. One standard method for antemortem pathogen identification in cattle with BRD is deep-guarded nasopharyngeal swabbing, which is challenging, costly, and waste generating. The objective was to compare the ability to recover Mannheimia haemolytica and compare microbial community structure using 29.5 inch (74.9 cm) deep-guarded nasopharyngeal swabs, 16 inch (40.6 cm) unguarded proctology swabs, or 6 inch (15.2 cm) unguarded nasal swabs when characterized using culture, real time-qPCR, and 16S rRNA gene sequencing. Samples for aerobic culture, qPCR, and 16S rRNA gene sequencing were collected from the upper respiratory tract of cattle 2 weeks after feedlot arrival.
Results There was high concordance of culture and qPCR results for all swab types (results for 77% and 81% of sampled animals completely across all 3 swab types for culture and qPCR respectively). Microbial communities were highly similar among samples collected with different swab types, and differences identified relative to treatment for BRD were also similar. Positive qPCR results for M. haemolytica were highly concordant (81% agreed completely), but samples collected by deep-guarded swabbing had lower amounts of Mh DNA identified (Kruskal–Wallis analysis of variance on ranks, P < 0.05; Dunn-test for pairwise comparison with Benjamini–Hochberg correction, P < 0.05) and lower frequency of positive compared to nasal and proctology swabs (McNemar’s Chi-square test, P < 0.05). Conclusions Though differences existed among different types of swabs collected from individual cattle, nasal swabs and proctology swabs offer comparable results to deep-guarded nasopharyngeal swabs when identifying and characterizing M. haemolytica by culture, 16S rRNA gene sequencing, and qPCR. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00197-6.
Collapse
|
30
|
Cooper RO, Tjards S, Rischling J, Nguyen DT, Cressler CE. Multiple generations of antibiotic exposure and isolation influence host fitness and the microbiome in a model zooplankton species. FEMS Microbiol Ecol 2022; 98:6648098. [PMID: 35862853 DOI: 10.1093/femsec/fiac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/04/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Chronic antibiotic exposure impacts host health through changes to the microbiome. The detrimental effects of antibiotic perturbation on microbiome structure and function after one host generation of exposure have been well-studied, but less is understood about multigenerational effects of antibiotic exposure and subsequent recovery. In this study, we examined microbiome composition and host fitness across five generations of exposure to antibiotics in the model zooplankton host Daphnia magna. By utilizing a split-brood design where half of the offspring from antibiotic-exposed parents were allowed to recover and half were maintained in antibiotics, we examined recovery and resilience of the microbiome. Unexpectedly, we discovered that isolation of single host individuals across generations exerted a strong effect on microbiome composition, with microbiome diversity decreasing over generations regardless of treatment while host body size and cumulative reproduction increased across generations. Though antibiotics did cause substantial changes to microbiome composition within a generation, recovery generally occurred in one generation regardless of the number of prior generations spent in antibiotics. Our results demonstrate that isolation of individual hosts leads to stochastic extinction of less abundant taxa in the microbiome, suggesting that these taxa are likely maintained via transmission in host populations.
Collapse
Affiliation(s)
- Reilly O Cooper
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sarah Tjards
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jessica Rischling
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David T Nguyen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Clayton E Cressler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
31
|
Credille B. High-Risk Cattle Management and Stocker Calf Health: Modulation of the Bovine Respiratory Microbiome from a Systems Perspective. Vet Clin North Am Food Anim Pract 2022; 38:229-243. [PMID: 35691626 DOI: 10.1016/j.cvfa.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Bovine respiratory disease (BRD) affects animals in all segments of the North American beef industry. The segmented nature of the beef industry results in the marketing of cattle that are considered to be at high risk of developing BRD. The microbiota is the complex microbial ecosystem that exists in and on the body of all animals. The respiratory tract has its unique microbiota that is shaped by many factors. Stress reduction, appropriate nutritional management, strategic use of vaccines, and antimicrobial administration targeted to the highest risk individuals have the potential to stabilize an inherently unstable microbial population and enhance calf health.
Collapse
Affiliation(s)
- Brent Credille
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Veterinary Medical Center, 2200 College Station Road, Athens, GA 30602, USA.
| |
Collapse
|
32
|
Zhong Z, Zhang Y, Li X, Li L, Zhang R, Zhang S. Differential Responses of Digesta- and Mucosa-Associated Jejunal Microbiota of Hu Sheep to Pelleted and Non-Pelleted High-Grain Diets. Animals (Basel) 2022; 12:ani12131695. [PMID: 35804593 PMCID: PMC9264909 DOI: 10.3390/ani12131695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
In the present study, we utilized 16S rRNA sequencing to uncover the impacts of non-pelleted (HG) or high-grain pelleted (HP) diets on the microbial structure and potential functions of digesta- and mucosa-associated microbiota in the jejunum of Hu sheep. Here, we randomly assigned 15 healthy male Hu sheep into three groups and fed the control diets (CON), HG, and HP diets, respectively. The experiment period was 60 days. The HP diets had the same nutritional ingredients as the HG diets but in pelleted form. At the finish of the experiment, the jejunal digesta and mucosa were gathered for microbial sequencing. The results of PCoA and PERMANOVA showed that different dietary treatments had significant impact (p < 0.05) on digesta- and mucosa-associated microbiota in the jejunum of Hu sheep. For specific differences, HG diets significantly increased (p < 0.05) the abundance of some acid-producing bacteria in both jejunal digesta (Bifidobacterium, OTU151, and OTU16) and mucosa (Rikenellaceae RC9 gut group, and Bifidobacterium) of Hu sheep compared with the CON diets. Besides the similar effects of the HG diets (increased the acid-producing bacteria such as Olsenella, Pseudoramibacter, and Shuttleworthia), our results also showed that the HP diets significantly decreased (p < 0.05) the abundance of some pro-inflammatory bacteria in the jejunal digesta (Mogibacterium, and Marvinbryantia) and mucosa (Chitinophaga, and Candidatus Saccharimonas) of Hu sheep compared with the HG diets. Collectively, these findings contributed to enriching the knowledge about the effects of HG diets on the structure and function of intestinal microbiota in ruminants.
Collapse
|
33
|
Freeman CN, Herman EK, Abi Younes J, Ramsay DE, Erikson N, Stothard P, Links MG, Otto SJG, Waldner C. Evaluating the potential of third generation metagenomic sequencing for the detection of BRD pathogens and genetic determinants of antimicrobial resistance in chronically ill feedlot cattle. BMC Vet Res 2022; 18:211. [PMID: 35655189 PMCID: PMC9161498 DOI: 10.1186/s12917-022-03269-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bovine respiratory disease (BRD) is an important cause of morbidity and mortality and is responsible for most of the injectable antimicrobial use in the feedlot industry. Traditional bacterial culture can be used to diagnose BRD by confirming the presence of causative pathogens and to support antimicrobial selection. However, given that bacterial culture takes up to a week and early intervention is critical for treatment success, culture has limited utility for informing rapid therapeutic decision-making. In contrast, metagenomic sequencing has the potential to quickly resolve all nucleic acid in a sample, including pathogen biomarkers and antimicrobial resistance genes. In particular, third-generation Oxford Nanopore Technology sequencing platforms provide long reads and access to raw sequencing data in real-time as it is produced, thereby reducing the time from sample collection to diagnostic answer. The purpose of this study was to compare the performance of nanopore metagenomic sequencing to traditional culture and sensitivity methods as applied to nasopharyngeal samples from segregated groups of chronically ill feedlot cattle, previously treated with antimicrobials for nonresponsive pneumonia or lameness.
Results
BRD pathogens were isolated from most samples and a variety of different resistance profiles were observed across isolates. The sequencing data indicated the samples were dominated by Moraxella bovoculi, Mannheimia haemolytica, Mycoplasma dispar, and Pasteurella multocida, and included a wide range of antimicrobial resistance genes (ARGs), encoding resistance for up to seven classes of antimicrobials. Genes conferring resistance to beta-lactams were the most commonly detected, while the tetH gene was detected in the most samples overall. Metagenomic sequencing detected the BRD pathogens of interest more often than did culture, but there was limited concordance between phenotypic resistance to antimicrobials and the presence of relevant ARGs.
Conclusions
Metagenomic sequencing can reduce the time from sampling to results, detect pathogens missed by bacterial culture, and identify genetically encoded determinants of resistance. Increasing sequencing coverage of target organisms will be an essential component of improving the reliability of this technology, such that it can be better used for the surveillance of pathogens of interest, genetic determinants of resistance, and to inform diagnostic decisions.
Collapse
|
34
|
Raabis SM, Holschbach CL, Skarlupka JH, Suen G, Ollivett TL. Assessing the effects of experimental bacterial challenge with Pasteurella multocida and ampicillin on the respiratory microbiota of pre-weaned Holstein calves. Vet Microbiol 2022; 269:109428. [PMID: 35427993 PMCID: PMC11215343 DOI: 10.1016/j.vetmic.2022.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
The association between changes in the respiratory microbiota and Bovine Respiratory Disease (BRD) in dairy calves is not well understood. We investigated characteristics of the nasopharyngeal (NP) microbiota associated with BRD following Pasteurella multocida infection. We also evaluated the effect of ampicillin on the respiratory microbiota. Calves (n = 30) were inoculated with P. multocida and randomly allocated into an antibiotic group (AMP; n = 17) or placebo group (PLAC; n = 11) when lung lesions developed. Deep NP swabs (DNPS) were collected before and after challenge. Monitoring was performed daily until euthanasia at day 14. Swabs and tissue samples were collected for analysis. The V4 hypervariable region of the 16 S rRNA gene was amplified and sequenced on an Illumina MiSeq. Increased species abundance in the pre-challenge DNPS was associated with a decrease in cumulative respiratory disease over 14 days post-infection. While NP beta diversity was affected by infection, antibiotic therapy showed no effect on the alpha and beta diversity nor the relative abundance (RA) of genera in the NP tonsil, lymph node and lung microbiota. Antibiotic therapy was associated with an increased RA of NP Pasteurella spp. and a decreased RA of NP Prevotella spp. Common taxa among all samples included GIT-associated bacteria, which suggests a possible link between the GIT microbiota and respiratory microbiota in dairy calves.
Collapse
Affiliation(s)
- Sarah M Raabis
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Chelsea L Holschbach
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Joseph H Skarlupka
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Theresa L Ollivett
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
35
|
Sumithra TG, Sharma KSR, Gangadharan S, Suresh G, Prasad V, Amala PV, Sayooj P, Gop AP, Anil MK, Patil PK, Achamveetil G. Dysbiosis and Restoration Dynamics of the Gut Microbiome Following Therapeutic Exposure to Florfenicol in Snubnose Pompano (Trachinotus blochii) to Aid in Sustainable Aquaculture Production Strategies. Front Microbiol 2022; 13:881275. [PMID: 35707172 PMCID: PMC9189426 DOI: 10.3389/fmicb.2022.881275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Information on unintended effects of therapeutic exposure of antibiotics on the fish gut microbiome is a vital prerequisite for ensuring fish and environmental health during sustainable aquaculture production strategies. The present study forms the first report on the impact of florfenicol (FFC), a recommended antibiotic for aquaculture, on the gut microbiome of snubnose pompano (Trachinotus blochii), a high-value marine aquaculture candidate. Both culture-dependent and independent techniques were applied to identify the possible dysbiosis and restoration dynamics, pointing out the probable risks to the host and environment health. The results revealed the critical transient dysbiotic events in the taxonomic and functional metagenomic profiles and significant reductions in the bacterial load and diversity measures. More importantly, there was a complete restoration of gut microbiome density, diversity, functional metagenomic profiles, and taxonomic composition (up to class level) within 10–15 days of antibiotic withdrawal, establishing the required period for applying proper management measures to ensure animal and environment health, following FFC treatment. The observed transient increase in the relative abundance of opportunistic pathogens suggested the need to apply proper stress management measures and probiotics during the period. Simultaneously, the results demonstrated the inhibitory potential of FFC against marine pathogens (vibrios) and ampicillin-resistant microbes. The study pointed out the possible microbial signatures of stress in fish and possible probiotic microbes (Serratia sp., Methanobrevibacter sp., Acinetobacter sp., and Bacillus sp.) that can be explored to design fish health improvisation strategies. Strikingly, the therapeutic exposure of FFC neither caused any irreversible increase in antibiotic resistance nor promoted the FFC resistant microbes in the gut. The significant transient increase in the numbers of kanamycin-resistant bacteria and abundance of two multidrug resistance encoding genes (K03327 and K03585) in the treated fish gut during the initial 10 days post-withdrawal suggested the need for implementing proper aquaculture effluent processing measures during the period, thus, helps to reduce the spillover of antibiotic-resistant microbes from the gut of the treated fish to the environment. In brief, the paper generates interesting and first-hand insights on the implications of FFC treatment in the gut microbiome of a marine aquaculture candidate targeting its safe and efficient application in unavoidable circumstances. Implementation of mitigation strategies against the identified risks during the initial 15 days of withdrawal period is warranted to ensure cleaner and sustainable aquaculture production from aquatic animal and ecosystem health perspectives.
Collapse
Affiliation(s)
- T. G. Sumithra
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Krupesha S. R. Sharma
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
- *Correspondence: Krupesha S. R. Sharma,
| | - Suja Gangadharan
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Gayathri Suresh
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Vishnu Prasad
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - P. V. Amala
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - P. Sayooj
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Ambarish P. Gop
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, India
| | - M. K. Anil
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Gopalakrishnan Achamveetil
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| |
Collapse
|
36
|
Andrés-Lasheras S, Jelinski M, Zaheer R, McAllister TA. Bovine Respiratory Disease: Conventional to Culture-Independent Approaches to Studying Antimicrobial Resistance in North America. Antibiotics (Basel) 2022; 11:antibiotics11040487. [PMID: 35453238 PMCID: PMC9025279 DOI: 10.3390/antibiotics11040487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous antimicrobial resistance (AMR) surveillance studies have been conducted in North American feedlot cattle to investigate the major bacterial pathogens of the bovine respiratory disease (BRD) complex, specifically: Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. While most bacterial isolates recovered from healthy cattle are susceptible to a repertoire of antimicrobials, multidrug resistance is common in isolates recovered from cattle suffering from BRD. Integrative and conjugative elements (ICE) have gained increasing notoriety in BRD-Pasteurellaceae as they appear to play a key role in the concentration and dissemination of antimicrobial resistant genes. Likewise, low macrolide susceptibility has been described in feedlot isolates of M. bovis. Horizontal gene transfer has also been implicated in the spread of AMR within mycoplasmas, and in-vitro experiments have shown that exposure to antimicrobials can generate high levels of resistance in mycoplasmas via a single conjugative event. Consequently, antimicrobial use (AMU) could be accelerating AMR horizontal transfer within all members of the bacterial BRD complex. While metagenomics has been applied to the study of AMR in the microbiota of the respiratory tract, the potential role of the respiratory tract microbiome as an AMR reservoir remains uncertain. Current and prospective molecular tools to survey and characterize AMR need to be adapted as point-of-care technologies to enhance prudent AMU in the beef industry.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Murray Jelinski
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
- Correspondence: ; Tel.: +1-403-317-2240
| |
Collapse
|
37
|
Galyean ML, Duff GC, Rivera JD. Galyean Appreciation Club Review: Revisiting nutrition and health of newly received cattle - What have we learned in the last 15 years? J Anim Sci 2022; 100:6542850. [PMID: 35246687 PMCID: PMC9030209 DOI: 10.1093/jas/skac067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Our objective was to review the literature related to the health and management of newly received cattle published since a previous review by Duff and Galyean (2007). Bovine respiratory disease (BRD) continues to be a major challenge for the beef industry. Depending on disease severity, animals treated for BRD have decreased performance and lowered carcass value. Diagnosis of BRD is less effective than desired, and progress on developing real-time, chute-side methods to diagnose BRD has been limited. Systems that combine lung auscultation with temperature and BW data show promise. Assessment of blood metabolites and behavior monitoring offer potential for early identification of morbid animals. Vaccination and metaphylaxis continue to be important tools for prevention and control of BRD, but antimicrobial resistance is a concern with antibiotic use. Dietary energy concentration and roughage source/level continue to be important topics. Mineral supplementation has received considerable attention, particularly the use of organic vs. inorganic sources and injectable minerals or drenches given on arrival. Use of probiotics and prebiotics for newly received cattle has shown variable results, but further research is warranted. Health and nutrition of newly received cattle will continue to be an important research area in the years to come.
Collapse
Affiliation(s)
- M L Galyean
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409 USA
| | - G C Duff
- New Mexico State University, Clayton Livestock Research Center, Clayton, NM 88415 USA
| | - J D Rivera
- University of Arkansas, Southwest Research and Extension Center, Hope, AR 71801 USA
| |
Collapse
|
38
|
Dong L, Meng L, Liu H, Wu H, Schroyen M, Zheng N, Wang J. Effect of Cephalosporin Treatment on the Microbiota and Antibiotic Resistance Genes in Feces of Dairy Cows with Clinical Mastitis. Antibiotics (Basel) 2022; 11:antibiotics11010117. [PMID: 35052994 PMCID: PMC8773067 DOI: 10.3390/antibiotics11010117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotics are frequently used to treat dairy cows with mastitis. However, the potential effects of β-lactam antibiotics, such as cephalosporins, on the fecal microbiome is unknown. The objective was to investigate the effects of ceftiofur and cefquinome on the fecal microbiota and antibiotic resistance genes of dairy cows with mastitis. The fecal samples were collected from 8 dairy cows at the following periods: the start day (Day 0), medication (Days 1, 2, and 3), withdrawal (Days 4, 6, 7, and 8), and recovery (Days 9, 11, 13, and 15). 16S rRNA gene sequencing was applied to explore the changes in microbiota, and qPCR was used to investigate the antibiotic resistance genes. The cephalosporin treatment significantly decreased the microbial diversity and richness, indicated by the decreased Shannon and Chao 1 indexes, respectively (p < 0.05). The relative abundance of Bacteroides, Bacteroidaceae, Bacteroidales, and Bacteroidia increased, and the relative abundance of Clostridia, Clostridiales, Ethanoligenens, and Clostridium IV decreased at the withdrawal period. The cephalosporin treatment increased the relative abundance of β-lactam resistance genes (blaTEM and cfxA) at the withdrawal period (p < 0.05). In conclusion, the cephalosporin treatment decreased the microbial diversity and richness at the medication period, and increased the relative abundance of two β-lactam resistance genes at the withdrawal period.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Lu Meng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoming Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (N.Z.); (J.W.); Tel.: +86-10-62816069 (J.W.)
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (N.Z.); (J.W.); Tel.: +86-10-62816069 (J.W.)
| |
Collapse
|
39
|
Chai J, Capik SF, Kegley B, Richeson JT, Powell JG, Zhao J. Bovine respiratory microbiota of feedlot cattle and its association with disease. Vet Res 2022; 53:4. [PMID: 35022062 PMCID: PMC8756723 DOI: 10.1186/s13567-021-01020-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Bovine respiratory disease (BRD), as one of the most common and costly diseases in the beef cattle industry, has significant adverse impacts on global food security and the economic stability of the industry. The bovine respiratory microbiome is strongly associated with health and disease and may provide insights for alternative therapy when treating BRD. The niche-specific microbiome communities that colonize the inter-surface of the upper and the lower respiratory tract consist of a dynamic and complex ecological system. The correlation between the disequilibrium in the respiratory ecosystem and BRD has become a hot research topic. Hence, we summarize the pathogenesis and clinical signs of BRD and the alteration of the respiratory microbiota. Current research techniques and the biogeography of the microbiome in the healthy respiratory tract are also reviewed. We discuss the process of resident microbiota and pathogen colonization as well as the host immune response. Although associations between the microbiota and BRD have been revealed to some extent, interpreting the development of BRD in relation to respiratory microbial dysbiosis will likely be the direction for upcoming studies, which will allow us to better understand the importance of the airway microbiome and its contributions to animal health and performance.
Collapse
Affiliation(s)
- Jianmin Chai
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Sarah F Capik
- Texas A&M AgriLife Research and Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, Canyon, TX, 79015, USA
| | - Beth Kegley
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - John T Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, 79016, USA
| | - Jeremy G Powell
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
40
|
Finn DR, Maldonado J, de Martini F, Yu J, Penton CR, Fontenele RS, Schmidlin K, Kraberger S, Varsani A, Gile GH, Barker B, Kollath DR, Muenich RL, Herckes P, Fraser M, Garcia-Pichel F. Agricultural practices drive biological loads, seasonal patterns and potential pathogens in the aerobiome of a mixed-land-use dryland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149239. [PMID: 34325138 DOI: 10.1016/j.scitotenv.2021.149239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Air carries a diverse load of particulate microscopic biological matter in suspension, either aerosolized or aggregated with dust particles, the aerobiome, which is dispersed by winds from sources to sinks. The aerobiome is known to contain microbes, including pathogens, as well as debris or small-sized propagules from plants and animals, but its variability and composition has not been studied comprehensibly. To gain a dynamic insight into the aerobiome existing over a mixed-use dryland setting, we conducted a biologically comprehensive, year-long survey of its composition and dynamics for particles less than 10 μm in diameter based on quantitative analyses of DNA content coupled to genomic sequencing. Airborne biological loads were more dependent on seasonal events than on meteorological conditions and only weakly correlated with dust loads. Core aerobiome species could be understood as a mixture of high elevation (e.g. Microbacteriaceae, Micrococcaceae, Deinococci), and local plant and soil sources (e.g. Sphingomonas, Streptomyces, Acinetobacter). Despite the mixed used of the land surrounding the sampling site, taxa that contributed to high load events were largely traceable to proximal agricultural practices like cotton and livestock farming. This included not only the predominance of specific crop plant signals over those of native vegetation, but also that of their pathogens (bacterial, viral and eukaryotic). Faecal bacterial loads were also seasonally important, possibly sourced in intensive animal husbandry or manure fertilization activity, and this microbial load was enriched in tetracycline resistance genes. The presence of the native opportunistic pathogen, Coccidioides spp., by contrast, was detected only with highly sensitive techniques, and only rarely. We conclude that agricultural activity exerts a much stronger influence that the native vegetation as a mass loss factor to the land system and as an input to dryland aerobiomes, including in the dispersal of plant, animal and human pathogens and their genetic resistance characteristics.
Collapse
Affiliation(s)
- Damien R Finn
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA
| | - Juan Maldonado
- Knowledge Enterprise Genomics Core, Arizona State University, Tempe 85287-5001, AZ, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA
| | - Francesca de Martini
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Julian Yu
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - C Ryan Penton
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Kara Schmidlin
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Simona Kraberger
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Center for Evolution and Medicine, Arizona State University, Tempe 85287-5001, AZ, USA
| | - Gillian H Gile
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Bridget Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff 86011-4073, AZ, USA
| | - Daniel R Kollath
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff 86011-4073, AZ, USA
| | - Rebecca L Muenich
- School of Sustainable Engineering, Arizona State University, Tempe 85287-3005, AZ, USA
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe 85287-1604, AZ, USA
| | - Matthew Fraser
- School of Sustainable Engineering, Arizona State University, Tempe 85287-3005, AZ, USA
| | - Ferran Garcia-Pichel
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| |
Collapse
|
41
|
In-vitro antibiotic resistance phenotypes of respiratory and enteric bacterial isolates from weaned dairy heifers in California. PLoS One 2021; 16:e0260292. [PMID: 34818352 PMCID: PMC8612539 DOI: 10.1371/journal.pone.0260292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial drug (AMD) use for bovine respiratory disease (BRD) continues to be concerning for development of antimicrobial resistance (AMR) in respiratory and enteric bacteria of cattle. This study aimed to provide data regarding AMR in respiratory isolates, and identify relationships between respiratory and enteric AMD susceptibility, in weaned dairy heifers. A cross-sectional study was performed between June of 2019 and February 2020, on 6 calf rearing facilities in California. Deep nasopharyngeal and rectal swabs were collected from 341 weaned heifers and submitted for selective bacterial culture and AMR testing. Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni were selectively isolated from respiratory samples; Escherichia coli and Enterococcus spp. were selectively isolated from rectal swabs. Minimum inhibitory concentrations (MIC) were determined for selected isolates against 19 AMD. The proportion of resistant isolates was calculated using Clinical Laboratory Standards Institute (respiratory) or USDA NARMS (enteric) breakpoints; when no applicable breakpoint was available, the distribution of MIC was described and compared. Association between AMR in a calf’s respiratory isolate and a higher or lower MIC of the matched enteric isolates was determined. More than 50% of P. multocida isolates were resistant to each of 7 AMD commonly used to treat BRD (florfenicol, gamithromycin, tildipirosin, tilmicosin, danofloxacin, enrofloxacin and tetracycline). Resistance in respiratory isolates was only associated with higher matched enteric MIC for gamithromycin and tulathromycin. Multidrug resistance was reported in >70% of P. multocida and M. haemolytica isolates. Antimicrobial resistance, including multidrug resistance, in respiratory isolates appears to be widespread in weaned dairy heifers; this finding has not previously been reported and raises concern for the future efficacy of AMD used to treat respiratory diseases in weaned dairy heifers. Enteric bacterial MIC appear to have limited direct association with respiratory isolate AMR classification.
Collapse
|
42
|
Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota. Animals (Basel) 2021; 11:ani11113280. [PMID: 34828011 PMCID: PMC8614244 DOI: 10.3390/ani11113280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are major disruptors of the gastrointestinal microbiota, depleting bacterial species beneficial for the host health and favoring the emergence of potential pathogens. Furthermore, the intestine is a reactor of antibiotic resistance emergence, and the presence of antibiotics exacerbates the selection of resistant bacteria that can disseminate in the environment and propagate to further hosts. We reviewed studies analyzing the effect of antibiotics on the intestinal microbiota and antibiotic resistance conducted on animals, focusing on the main food-producing and companion animals. Irrespective of antibiotic classes and animal hosts, therapeutic dosage decreased species diversity and richness favoring the bloom of potential enteropathogens and the selection of antibiotic resistance. These negative effects of antibiotic therapies seem ineluctable but often were mitigated when an antibiotic was administered by parenteral route. Sub-therapeutic dosages caused the augmentation of taxa involved in sugar metabolism, suggesting a link with weight gain. This result should not be interpreted positively, considering that parallel information on antibiotic resistance selection was rarely reported and selection of antibiotic resistance is known to occur also at low antibiotic concentration. However, studies on the effect of antibiotics as growth promoters put the basis for understanding the gut microbiota composition and function in this situation. This knowledge could inspire alternative strategies to antibiotics, such as probiotics, for improving animal performance. This review encompasses the analysis of the main animal hosts and all antibiotic classes, and highlights the future challenges and gaps of knowledge that should be filled. Further studies are necessary for elucidating pharmacodynamics in animals in order to improve therapy duration, antibiotic dosages, and administration routes for mitigating negative effects of antibiotic therapies. Furthermore, this review highlights that studies on aminoglycosides are almost inexistent, and they should be increased, considering that aminoglycosides are the first most commonly used antibiotic family in companion animals. Harmonization of experimental procedures is necessary in this research field. In fact, current studies are based on different experimental set-up varying for antibiotic dosage, regimen, administration, and downstream microbiota analysis. In the future, shotgun metagenomics coupled with long-reads sequencing should become a standard experimental approach enabling to gather comprehensive knowledge on GIM in terms of composition and taxonomic functions, and of ARGs. Decorticating GIM in animals will unveil revolutionary strategies for medication and improvement of animals' health status, with positive consequences on global health.
Collapse
|
43
|
Enrofloxacin Alters Fecal Microbiota and Resistome Irrespective of Its Dose in Calves. Microorganisms 2021; 9:microorganisms9102162. [PMID: 34683483 PMCID: PMC8537546 DOI: 10.3390/microorganisms9102162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022] Open
Abstract
Enrofloxacin is a fluoroquinolone drug used to prevent and control bovine respiratory disease (BRD) complex in multiple or single doses, ranging from 7.5 to 12.5 mg/kg body weight. Here, we examined the effects of high and low doses of a single subcutaneously injected enrofloxacin on gut microbiota and resistome in calves. Thirty-five calves sourced for this study were divided into five groups: control (n = 7), two low dose groups (n = 14, 7.5 mg/kg), and two high dose groups (n = 14, 12.5 mg/kg). One group in the low and high dose groups was challenged with Mannheimia haemolytica to induce BRD. Both alpha and beta diversities were significantly different between pre- and post-treatment microbial communities (q < 0.05). The high dose caused a shift in a larger number of genera than the low dose. Using metagenomic ProxiMeta Hi-C, 32 unique antimicrobial resistance genes (ARGs) conferring resistance to six antibiotic classes were detected with their reservoirs, and the high dose favored clonal expansion of ARG-carrying bacterial hosts. In conclusion, enrofloxacin treatment can alter fecal microbiota and resistome irrespective of its dose. Hi-C sequencing provides significant benefits for unlocking new insights into the ARG ecology of complex samples; however, limitations in sample size and sequencing depth suggest that further work is required to validate the findings.
Collapse
|
44
|
Investigating the Effect of an Oxytetracycline Treatment on the Gut Microbiome and Antimicrobial Resistance Gene Dynamics in Nile Tilapia ( Oreochromis niloticus). Antibiotics (Basel) 2021; 10:antibiotics10101213. [PMID: 34680794 PMCID: PMC8532870 DOI: 10.3390/antibiotics10101213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Antibiotics play a vital role in aquaculture where they are commonly used to treat bacterial diseases. However, the impact of antibiotic treatment on the gut microbiome and the development of antimicrobial resistance in Nile tilapia (Oreochromis niloticus) over time remains to be fully understood. In this study, fish were fed a single treatment of oxytetracycline (100 mg/kg/day) for eight days, followed by a 14-day withdrawal period. Changes in the distal gut microbiome were measured using 16S rRNA sequencing. In addition, the abundance of antimicrobial resistance genes was quantified using real-time qPCR methods. Overall, the gut microbiome community diversity and structure of Nile tilapia was resilient to oxytetracycline treatment. However, antibiotic treatment was associated with an enrichment in Plesiomonas, accompanied by a decline in other bacteria taxa. Oxytetracycline treatment increased the proportion of tetA in the distal gut of fish and tank biofilms of the treated group. Furthermore, the abundance of tetA along with other tetracycline resistance genes was strongly correlated with a number of microbiome members, including Plesiomonas. The findings from this study demonstrate that antibiotic treatment can exert selective pressures on the gut microbiome of fish in favour of resistant populations, which may have long-term impacts on fish health.
Collapse
|
45
|
Danofloxacin Treatment Alters the Diversity and Resistome Profile of Gut Microbiota in Calves. Microorganisms 2021; 9:microorganisms9102023. [PMID: 34683343 PMCID: PMC8538188 DOI: 10.3390/microorganisms9102023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Fluoroquinolones, such as danofloxacin, are used to control bovine respiratory disease complex in beef cattle; however, little is known about their effects on gut microbiota and resistome. The objectives were to evaluate the effect of subcutaneously administered danofloxacin on gut microbiota and resistome, and the composition of Campylobacter in calves. Twenty calves were injected with a single dose of danofloxacin, and ten calves were kept as a control. The effects of danofloxacin on microbiota and the resistome were assessed using 16S rRNA sequencing, quantitative real-time PCR, and metagenomic Hi-C ProxiMeta. Alpha and beta diversities were significantly different (p < 0.05) between pre-and post-treatment samples, and the compositions of several bacterial taxa shifted. The patterns of association between the compositions of Campylobacter and other genera were affected by danofloxacin. Antimicrobial resistance genes (ARGs) conferring resistance to five antibiotics were identified with their respective reservoirs. Following the treatment, some ARGs (e.g., ant9, tet40, tetW) increased in frequencies and host ranges, suggesting initiation of horizontal gene transfer, and new ARGs (aac6, ermF, tetL, tetX) were detected in the post-treatment samples. In conclusion, danofloxacin induced alterations of gut microbiota and selection and enrichment of resistance genes even against antibiotics that are unrelated to danofloxacin.
Collapse
|
46
|
Wang Y, Lyu N, Liu F, Liu WJ, Bi Y, Zhang Z, Ma S, Cao J, Song X, Wang A, Zhang G, Hu Y, Zhu B, Gao GF. More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. ENVIRONMENT INTERNATIONAL 2021; 153:106534. [PMID: 33799229 DOI: 10.1016/j.envint.2021.106534] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Poultry farms and LPMs are a reservoir of antimicrobial resistant bacteria and resistance genes from feces. The LPM is an important interface between humans, farm animals, and environments in a typical urban environment, and it is considered a reservoir for ARGs and viruses. However, the antibiotic resistomes shared between chicken farms and LPMs, and that of LPM workers and people who have no contact with the LPMs remains unknown. METHODS We characterized the resistome and bacterial microbiome of farm chickens and LPMs and LPM workers and control subjects. The mobile ARGs identified in chickens and the distribution of the mcr-family genes in publicly bacterial genomes and chicken gut metagenomes was analyzed, respectively. In addition, the prevalence of mcr-1 in LPMs following the ban on colistin-positive additives in China was explored. RESULTS By profiling the microbiomes and resistomes in chicken farms, LPMs, LPM workers, and LPM environments, we found that the bacterial community composition and resistomes were significantly different between the farms and the LPMs, and the LPM samples possessed more diversified ARGs (59 types) than the farms. Some mobile ARGs, such as mcr-1 and tet(X3), identified in chicken farms, LPMs, LPM workers, and LPM environments were also harbored by human clinical pathogens. Moreover, we found that the resistomes were significantly different between the LPM workers and those who have no contact with the LPMs, and more diversified ARGs (188 types) were observed in the LPM workers. It is also worth noting that mcr-10 was identified in both human (5.2%, 96/1,859) and chicken (1.5%, 14/910) gut microbiomes. Although mcr-1 prevalence decreased significantly in the LPMs across the eight provinces in China, from 190/333 (57.1%) samples in September 2016-March 2017 to 208/544 (38.2%) samples in August 2018-May 2019, it is widespread and continuous in the LPMs. CONCLUSION Live poultry trade has a significant effect on the diversity of ARGs in LPM workers, chickens, and environments in China, driven by human selection with the live poultry trade. Our findings highlight the live poultry trade as ARG disseminators into LPMs, which serve as an interface of LPM environments even LPM workers, and that could urge Government to have better control of LPMs in China. Further studies on the factors that promote antibiotic resistance exchange between LPM environments, human commensals, and pathogens, are warranted.
Collapse
Affiliation(s)
- Yanan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Lyu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Zewu Zhang
- Dongguan Municipal Center for Disease Control and Prevention, Dongguan 523129, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Song
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing 100101, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Medjigbodo AA, Sonounameto EG, Djihinto OY, Abbey E, Salavi EB, Djossou L, Badolo A, Djogbénou LS. Interplay Between Oxytetracycline and the Homozygote kdr (L1014F) Resistance Genotype on Fecundity in Anopheles gambiae (Diptera: Culicidae) Mosquitoes. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:13. [PMID: 34379759 PMCID: PMC8356962 DOI: 10.1093/jisesa/ieab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 06/13/2023]
Abstract
The insecticide resistance in Anopheles gambiae mosquitoes has remained the major threat for vector control programs but the fitness effects conferred by these mechanisms are poorly understood. To fill this knowledge gap, the present study aimed at testing the hypothesis that antibiotic oxytetracycline could have an interaction with insecticide resistance genotypes and consequently inhibit the fecundity in An. gambiae. Four strains of An. gambiae: Kisumu (susceptible), KisKdr (kdr (L1014F) resistant), AcerKis (ace-1 (G119S) resistant) and AcerKdrKis (both kdr (L1014F) and ace-1 (G119S) resistant) were used in this study. The different strains were allowed to bloodfeed on a rabbit previously treated with antibiotic oxytetracycline at a concentration of 39·10-5 M. Three days later, ovarian follicles were dissected from individual mosquito ovaries into physiological saline solution (0.9% NaCl) under a stereomicroscope and the eggs were counted. Fecundity was substantially lower in oxytetracycline-exposed KisKdr females when compared to that of the untreated individuals and oxytetracycline-exposed Kisumu females. The exposed AcerKis females displayed an increased fecundity compared to their nontreated counterparts whereas they had reduced fecundity compared to that of oxytetracycline-exposed Kisumu females. There was no substantial difference between the fecundity in the treated and untreated AcerKdrKis females. The oxytetracycline-exposed AcerKdrKis mosquitoes had an increased fecundity compared to that of the exposed Kisumu females. Our data indicate an indirect effect of oxytetracycline in reducing fecundity of An. gambiae mosquitoes carrying kdrR (L1014F) genotype. These findings could be useful for designing new integrated approaches for malaria vector control in endemic countries.
Collapse
Affiliation(s)
- Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
- Laboratory of Fundamental and Applied Entomology, University Joseph KI-ZERBO, BP 7021, Ouagadougou 03, Burkina Faso, West Africa
| | - Eric G Sonounameto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Emmanuella Abbey
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Esther B Salavi
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Laurette Djossou
- Regional Institute of Public Health, University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, University Joseph KI-ZERBO, BP 7021, Ouagadougou 03, Burkina Faso, West Africa
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
- Regional Institute of Public Health, University of Abomey-Calavi, BP 384, Ouidah, Benin
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
48
|
Andrés-Lasheras S, Ha R, Zaheer R, Lee C, Booker CW, Dorin C, Van Donkersgoed J, Deardon R, Gow S, Hannon SJ, Hendrick S, Anholt M, McAllister TA. Prevalence and Risk Factors Associated With Antimicrobial Resistance in Bacteria Related to Bovine Respiratory Disease-A Broad Cross-Sectional Study of Beef Cattle at Entry Into Canadian Feedlots. Front Vet Sci 2021; 8:692646. [PMID: 34277758 PMCID: PMC8280473 DOI: 10.3389/fvets.2021.692646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
A broad, cross-sectional study of beef cattle at entry into Canadian feedlots investigated the prevalence and epidemiology of antimicrobial resistance (AMR) in Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis, bacterial members of the bovine respiratory disease (BRD) complex. Upon feedlot arrival and before antimicrobials were administered at the feedlot, deep nasopharyngeal swabs were collected from 2,824 feedlot cattle in southern and central Alberta, Canada. Data on the date of feedlot arrival, cattle type (beef, dairy), sex (heifer, bull, steer), weight (kg), age class (calf, yearling), source (ranch direct, auction barn, backgrounding operations), risk of developing BRD (high, low), and weather conditions at arrival (temperature, precipitation, and estimated wind speed) were obtained. Mannheimia haemolytica, P. multocida, and H. somni isolates with multidrug-resistant (MDR) profiles associated with the presence of integrative and conjugative elements were isolated more often from dairy-type than from beef-type cattle. Our results showed that beef-type cattle from backgrounding operations presented higher odds of AMR bacteria as compared to auction-derived calves. Oxytetracycline resistance was the most frequently observed resistance across all Pasteurellaceae species and cattle types. Mycoplasma bovis exhibited high macrolide minimum inhibitory concentrations in both cattle types. Whether these MDR isolates establish and persist within the feedlot environment, requires further evaluation.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Reuben Ha
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Catrione Lee
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Craig Dorin
- Veterinary Agri-Health Systems, Airdrie, AB, Canada
| | | | - Rob Deardon
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
| | - Sheryl Gow
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Public Health Agency of Canada, Saskatoon, SK, Canada
| | | | | | - Michele Anholt
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,POV Inc., Airdrie, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
49
|
Gamal M, Naguib IA, Abdelfatah RM. Simultaneous analysis of oxytetracycline hydrochloride, lidocaine, and bromhexine hydrochloride in the presence of many interfering excipients. Arch Pharm (Weinheim) 2021; 354:e2100131. [PMID: 34131945 DOI: 10.1002/ardp.202100131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 11/07/2022]
Abstract
A gradient elution high-performance liquid chromatographic method with a diode array detector is introduced for the first time for the simultaneous estimation of three drugs, namely, oxytetracycline hydrochloride (OXT), lidocaine (LDC), and bromhexine hydrochloride (BRH), in a veterinary formulation (OxyClear® solution) that contains many interfering additives. The method used a C-8 column. The chromatographic eluting solution included acidified water (0.1% trifluoroacetic acid in water) and acetonitrile at a 1-ml/min flow rate and 254 nm as a nominated detection wavelength. The chromatographic process was assessed in terms of linearity, precision, accuracy, LOD, and LOQ. OXT, LDC, and BRH were linear in the range of 1-60, 5-100, and 1-60 μg/ml, respectively. The three drugs were determined successfully without the interference of three excipients having UV absorbances. Furthermore, the purities of the peaks of the three drugs were confirmed by comparing the UV spectra of investigated peaks to the UV reference spectra in Clarke's Analysis of Drugs and Poisons. The greenness value of the method was 0.69 with a faint green-colored pictogram using the AGREE tool. These merits recommend the application of the planned method in QC laboratories for purity testing and concentration assays for the pure drugs and commercial formulations.
Collapse
Affiliation(s)
- Mohammed Gamal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia.,Pharmaceutical Analytical Chemistry Department, Beni-Suef University, Beni-Suef, Egypt
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, Taif University, Taif, Saudi Arabia
| | - Rehab M Abdelfatah
- Pharmaceutical Analytical Chemistry Department, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
50
|
Mach N, Baranowski E, Nouvel LX, Citti C. The Airway Pathobiome in Complex Respiratory Diseases: A Perspective in Domestic Animals. Front Cell Infect Microbiol 2021; 11:583600. [PMID: 34055660 PMCID: PMC8160460 DOI: 10.3389/fcimb.2021.583600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Respiratory infections in domestic animals are a major issue for veterinary and livestock industry. Pathogens in the respiratory tract share their habitat with a myriad of commensal microorganisms. Increasing evidence points towards a respiratory pathobiome concept, integrating the dysbiotic bacterial communities, the host and the environment in a new understanding of respiratory disease etiology. During the infection, the airway microbiota likely regulates and is regulated by pathogens through diverse mechanisms, thereby acting either as a gatekeeper that provides resistance to pathogen colonization or enhancing their prevalence and bacterial co-infectivity, which often results in disease exacerbation. Insight into the complex interplay taking place in the respiratory tract between the pathogens, microbiota, the host and its environment during infection in domestic animals is a research field in its infancy in which most studies are focused on infections from enteric pathogens and gut microbiota. However, its understanding may improve pathogen control and reduce the severity of microbial-related diseases, including those with zoonotic potential.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Eric Baranowski
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Laurent Xavier Nouvel
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Christine Citti
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|