1
|
Peng D, Wang Y, Yao Y, Yang Z, Wu S, Zeng K, Hu X, Zhao Y. Long-chain polyunsaturated fatty acids influence colorectal cancer progression via the interactions between the intestinal microflora and the macrophages. Mol Cell Biochem 2024; 479:2895-2906. [PMID: 38217838 DOI: 10.1007/s11010-023-04904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
The metabolism of long-chain polyunsaturated fatty acids (LCPUFAs) is closely associated with the risk and progression of colorectal cancer (CRC). This paper aims to investigate the role of LCPUFA in the crosstalk between intestinal microflora and macrophages, as well as the effects of these three parties on the progression of CRC. The metabolism and function of LCPUFA play important roles in regulating the composition of the human gut microflora and participating in the regulation of inflammation, ultimately affecting macrophage function and polarization, which is crucial in the tumor microenvironment. The effects of LCPUFA on cellular interactions between the two species can ultimately influence the progression of CRC. In this review, we explore the molecular mechanisms and clinical applications of LCPUFA in the interactions between intestinal microflora and intestinal macrophages, as well as its significance for CRC progression. Furthermore, we reveal the role of LCPUFA in the construction of the CRC microenvironment and explore the key nodes of the interactions between intestinal flora and intestinal macrophages in the environment. It provides potential targets for the metabolic diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Duo Peng
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yan Wang
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Yunhong Yao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Zisha Yang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shuang Wu
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Kaijing Zeng
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Xinrong Hu
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China.
| | - Yi Zhao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
2
|
Li L, Fu M, Chen F, Ji H, Zhou G, Chen L, Geng H, Guo J, Pei L, Sun J. The mediating effect of circulating inflammatory proteins on the relationship between gut microbiota and FD: a bidirectional Mendelian randomization study. Sci Rep 2024; 14:23785. [PMID: 39390038 PMCID: PMC11466956 DOI: 10.1038/s41598-024-74717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Functional dyspepsia (FD) is known to be influenced by gut microbiota (GM) and circulating inflammatory proteins (CIPs), however, the causal relationship between GM, CIPs and FD haven't been investigated. This study employed two-sample Mendelian Randomization (TSMR) to investigate their associations using data from Genome-Wide Association Studies (GWAS). In this study, Inverse-variance weighted (IVW) method was employed as the primary analysis, with supplementary approaches including weighted median, weighted mode, simple mode, and MR-Egger. Heterogeneity and pleiotropy were assessed using the Cochrane Q test, MR-Egger intercept test, and MR-PRESSO global test. Totally, 196 GM traits and 91 CIPs were analyzed, and the results uncovered the causal impact of 12 GM taxa and 5 proteins on functional dyspepsia (FD). 9 GM genera were linked to a reduced risk of FD, while 3 GM genera were associated with an increased risk of FD.Additionally, reverse analysis revealed no FD-GM causation. Furthermore, IL-12, IL-10, CXCL10, CXCL9 and VEGFA were significantly correlated with FD, with CXCL9 and VEGFA acting as mediators in the association between GM traits and FD. Taken together, our findings established a link between specific GM and CIPs in the pathogenesis of FD, offering novel insights for its diagnosis and treatment.
Collapse
Affiliation(s)
- Li Li
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Minhan Fu
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Feiyi Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Huijie Ji
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Guowei Zhou
- Department of General Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Lu Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hao Geng
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jing Guo
- College of Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
3
|
Van Hul M, Cani PD, Petitfils C, De Vos WM, Tilg H, El-Omar EM. What defines a healthy gut microbiome? Gut 2024; 73:1893-1908. [PMID: 39322314 PMCID: PMC11503168 DOI: 10.1136/gutjnl-2024-333378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
The understanding that changes in microbiome composition can influence chronic human diseases and the efficiency of therapies has driven efforts to develop microbiota-centred therapies such as first and next generation probiotics, prebiotics and postbiotics, microbiota editing and faecal microbiota transplantation. Central to microbiome research is understanding how disease impacts microbiome composition and vice versa, yet there is a problematic issue with the term 'dysbiosis', which broadly links microbial imbalances to various chronic illnesses without precision or definition. Another significant issue in microbiome discussions is defining 'healthy individuals' to ascertain what characterises a healthy microbiome. This involves questioning who represents the healthiest segment of our population-whether it is those free from illnesses, athletes at peak performance, individuals living healthily through regular exercise and good nutrition or even elderly adults or centenarians who have been tested by time and achieved remarkable healthy longevity.This review advocates for delineating 'what defines a healthy microbiome?' by considering a broader range of factors related to human health and environmental influences on the microbiota. A healthy microbiome is undoubtedly linked to gut health. Nevertheless, it is very difficult to pinpoint a universally accepted definition of 'gut health' due to the complexities of measuring gut functionality besides the microbiota composition. We must take into account individual variabilities, the influence of diet, lifestyle, host and environmental factors. Moreover, the challenge in distinguishing causation from correlation between gut microbiome and overall health is presented.The review also highlights the resource-heavy nature of comprehensive gut health assessments, which hinders their practicality and broad application. Finally, we call for continued research and a nuanced approach to better understand the intricate and evolving concept of gut health, emphasising the need for more precise and inclusive definitions and methodologies in studying the microbiome.
Collapse
Affiliation(s)
- Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Camille Petitfils
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Willem M De Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Wu H, Zhang H, Yan R, Li S, Guo X, Qiu L, Yao Y. Limosilactobacillus Regulating Microbial Communities to Overcome the Hydrolysis Bottleneck with Efficient One-Step Co-Production of H 2 and CH 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406119. [PMID: 39264245 DOI: 10.1002/advs.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The efficient co-production of H2 and CH4 via anaerobic digestion (AD) requires separate stages, as it cannot yet be achieved in one step. Lactic acid bacteria (LAB) (Limosilactobacillus) release H2 and acetate by enhancing hydrolysis, potentially increasing CH4 production with simultaneous H2 accumulation. This study investigated the enhanced effect of one-step co-production of H2 and CH4 in AD by LAB and elucidated its enhancement mechanisms. The results showed that 236.3 times increase in H2 production and 7.1 times increase in CH4 production are achieved, resulting in profits of 469.39 USD. Model substrates lignocellulosic straw, sodium acetate, and H2 confirmes LAB work on the hydrolysis stage and subsequent sustainable volatile fatty acid production during the first 6 days of AD. In this stage, the enrichment of Limosilactobacillus carrying bglB and xynB, the glycolysis pathway, and the high activity of protease, acetate kinase, and [FeFe] hydrogenase, jointly achieved rapid acetate and H2 accumulation, driving hydrogenotrophic methanogenesis dominated. From day 7 to 24, with enriched Methanosarcina, and increased methenyltetrahydromethanopterin hydrogenase activity, continuously produced acetate led to the mainly acetoclastic methanogenesis shift from hydrogenotrophic methanogenesis. The power generation capacity of LAB-enhanced AD is 333.33 times that of China's 24,000 m3 biogas plant.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ruixiao Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Suqi Li
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohui Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ling Qiu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yiqing Yao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
5
|
Handeland K, Wakeman M, Burri L. Krill oil supplementation improves transepidermal water loss, hydration and elasticity of the skin in healthy adults: Results from two randomized, double-blind, placebo-controlled, dose-finding pilot studies. J Cosmet Dermatol 2024. [PMID: 39169540 DOI: 10.1111/jocd.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Dietary marine omega-3 fatty acids and phospholipids have individually shown favorable effects on skin barrier function. Krill oil offers a combination of omega-3 in phospholipid form which might enhance the efficacy in supporting skin health. AIMS The aim was to investigate the impact of two different doses of krill oil on skin transepidermal water loss (TEWL) in healthy adults. Secondary outcomes were skin hydration, elasticity and the omega-3 index. METHODS Two randomized, double-blind, placebo-controlled, pilot studies were conducted in healthy adults with a baseline TEWL of >10 and ≤24.9 g/m2/h. In study 1, 51 participants consumed 1 g of krill oil or placebo daily. In study 2, 50 participants consumed 2 g of krill oil or placebo daily. The outcomes were assessed at baseline, 6 and 12 weeks. RESULTS The krill oil supplemented groups significantly increased their omega-3 index versus placebo in both studies. Furthermore, the krill oil groups in both studies showed statistically significant beneficial reductions in TEWL (from 14.47 ± 3.65 to 13.83 ± 3.78 in study 1 and from 14.25 ± 3.21 to 13.02 ± 2.76 in study 2) and increases in hydration and elasticity when compared to placebo. There were significant linear relationships between changes in the omega-3 index and changes in TEWL, hydration and elasticity in both studies. CONCLUSIONS Daily oral supplementation with 1 and 2 g of krill oil showed significant and dose-dependent improvements in skin TEWL, hydration, and elasticity compared to placebo that correlated with changes in the omega-3 index.
Collapse
Affiliation(s)
| | - Mike Wakeman
- Faculty of Health and Wellbeing, University of Sunderland, Sunderland, UK
| | - Lena Burri
- Aker BioMarine Human Ingredients AS, Lysaker, Norway
| |
Collapse
|
6
|
Duo L, Yang J, Wang X, Zhang G, Zhao J, Zou H, Wang Z, Li Y. Krill oil: nutraceutical potential in skin health and disease. Front Nutr 2024; 11:1388155. [PMID: 39070257 PMCID: PMC11272659 DOI: 10.3389/fnut.2024.1388155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
Krill oil (KO), extracted from the Antarctic marine crustacean Euphausia superba, is a nutrient-dense substance that includes rich profiles of n-3 polyunsaturated fatty acids (n-3 PUFAs), phospholipids (PLs), astaxanthin (ASX), as well as vitamins A and E, minerals, and flavonoids. As a high-quality lipid resource, KO has been widely used as a dietary supplement for its health-protective properties in recent years. KO has various benefits, including antioxidative, anti-inflammatory, metabolic regulatory, neuroprotective, and gut microbiome modulatory effects. Especially, the antioxidant and anti-inflammatory effects make KO have potential in skin care applications. With increasing demands for natural skin anti-aging solutions, KO has emerged as a valuable nutraceutical in dermatology, showing potential for mitigating the effects of skin aging and enhancing overall skin health and vitality. This review provides an overview of existing studies on the beneficial impact of KO on the skin, exploring its functional roles and underlying mechanisms through which it contributes to dermatological health and disease management.
Collapse
Affiliation(s)
- Lan Duo
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhong Yang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Xue Wang
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Wang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Yu Li
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Zeng XB, Yin FW, Zhao GH, Guo C, Li DY, Liu HL, Qin L, Shahidi F, Zhou DY. Mechanism of color change in Antarctic krill oil during storage. Food Chem 2024; 444:138583. [PMID: 38309082 DOI: 10.1016/j.foodchem.2024.138583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Antarctic krill oil (AKO) is reddish-orange in color but undergoes changes during storage. To investigate the color deterioration and potential mechanisms involved, the changes in color, endogenous components (astaxanthin, fatty acids, and phospholipids), and reaction products (aldehydes, α-dicarbonyl compounds, and pyrroles) of AKO upon storage were determined. Although the visual color of AKO tended to darken upon storage, the colorimetric analysis and ultraviolet-visible spectrum analysis both indicated a fading in red and yellow due to the oxidative degradation of astaxanthin. During storage of AKO, lipid oxidation led to the formation of carbonyl compounds such as aldehydes and α-dicarbonyls. In addition, phosphatidylethanolamines (PEs) exhibited a faster loss rate than phosphatidylcholines. Moreover, hydrophobic pyrroles, the Maillard-like reaction products associated with primary amine groups in PEs accumulated. Therefore, it is suggested that the Maillard-like reaction between PEs and carbonyl compounds formed by lipid oxidation contributed to color darkening of AKO during storage.
Collapse
Affiliation(s)
- Xiang-Bo Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fa-Wen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guan-Hua Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chao Guo
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - De-Yang Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hui-Lin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Lei Qin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Da-Yong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
8
|
Zhao L, Tang S, Chen F, Ren X, Han X, Zhou X. Regulation of macrophage polarization by targeted metabolic reprogramming for the treatment of lupus nephritis. Mol Med 2024; 30:96. [PMID: 38914953 PMCID: PMC11197188 DOI: 10.1186/s10020-024-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Lupus nephritis (LN) is a severe and common manifestation of systemic lupus erythematosus (SLE) that is frequently identified with a poor prognosis. Macrophages play an important role in its pathogenesis. Different macrophage subtypes have different effects on lupus-affected kidneys. Based on their origin, macrophages can be divided into monocyte-derived macrophages (MoMacs) and tissue-resident macrophages (TrMacs). During nephritis, TrMacs develop a hybrid pro-inflammatory and anti-inflammatory functional phenotype, as they do not secrete arginase or nitric oxide (NO) when stimulated by cytokines. The infiltration of these mixed-phenotype macrophages is related to the continuous damage caused by immune complexes and exposure to circulating inflammatory mediators, which is an indication of the failure to resolve inflammation. On the other hand, MoMacs differentiate into M1 or M2 cells under cytokine stimulation. M1 macrophages are pro-inflammatory and secrete pro-inflammatory cytokines, while the M2 main phenotype is essentially anti-inflammatory and promotes tissue repair. Conversely, MoMacs undergo differentiation into M1 or M2 cells in response to cytokine stimulation. M1 macrophages are considered pro-inflammatory cells and secrete pro-inflammatory mediators, whereas the M2 main phenotype is primarily anti-inflammatory and promotes tissue repair. Moreover, based on cytokine expression, M2 macrophages can be further divided into M2a, M2b, and M2c phenotypes. M2a and M2c have anti-inflammatory effects and participate in tissue repair, while M2b cells have immunoregulatory and pro-inflammatory properties. Further, memory macrophages also have a role in the advancement of LN. Studies have demonstrated that the polarization of macrophages is controlled by multiple metabolic pathways, such as glycolysis, the pentose phosphate pathway, fatty acid oxidation, sphingolipid metabolism, the tricarboxylic acid cycle, and arginine metabolism. The changes in these metabolic pathways can be regulated by substances such as fish oil, polyenylphosphatidylcholine, taurine, fumaric acid, metformin, and salbutamol, which inhibit M1 polarization of macrophages and promote M2 polarization, thereby alleviating LN.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Fahui Chen
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shuangta East Street No. 29, Yingze District, Taiyuan, Shanxi, 030012, China.
| |
Collapse
|
9
|
Li Y, Huan Y, Qin W, Yu X, Chang Y, Xue C, Tang Q. Fucoidan from Apostichopus japonicus ameliorates alcoholic liver disease by regulating gut-liver axis homeostasis. Int J Biol Macromol 2024; 270:132093. [PMID: 38710247 DOI: 10.1016/j.ijbiomac.2024.132093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Long-term and excessive alcohol consumption can lead to the development of alcoholic liver disease (ALD), characterized by oxidative damage, intestinal barrier injury, and disruption of intestinal microbiota. In this study, we extracted fucoidan (Aj-FUC) from Apostichopus japonicus using enzymatic methods and characterized its structure. The ALD model was established in male Balb/c mice using 56° Baijiu, with silymarin as a positive control. Mice were orally administered 100 mg/kg·bw and 300 mg/kg·bw of Aj-FUC for 28 days to evaluate its effects on liver injury in ALD mice and explore its potential role in modulating the gut-liver axis. The results showed significant improvements in histopathological changes and liver disease in the Aj-FUC group. Aj-FUC treatment significantly increased the levels of glutathione (GSH) and glutathione peroxidase (GSH-Px) while weakly reduced the elevation of malondialdehyde (MDA) induced by ALD. It also regulated the Nrf2/HO-1 signaling pathway, collectively alleviating hepatic oxidative stress. Aj-FUC intervention upregulated the expression of ZO-1 and Occludin, thus contributing to repair the intestinal barrier. Additionally, Aj-FUC increased the content of short-chain fatty acids (SCFAs) and regulated the imbalance in gut microbiota. These results suggested that Aj-FUC alleviates ALD by modulating the gut-liver axis homeostasis. It may prove to be a useful dietary supplement in the treatment of alcoholic liver damage.
Collapse
Affiliation(s)
- Yuan Li
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuchen Huan
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Wanting Qin
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xinyue Yu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yaoguang Chang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
10
|
Mattioli LB, Frosini M, Corazza I, Fiorino S, Zippi M, Micucci M, Budriesi R. Long COVID-19 gastrointestinal related disorders and traditional Chinese medicine: A network target-based approach. Phytother Res 2024; 38:2323-2346. [PMID: 38421118 DOI: 10.1002/ptr.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
The significant number of individuals impacted by the pandemic makes prolonged symptoms after COVID-19 a matter of considerable concern. These are numerous and affect multiple organ systems. According to the World Health Organization (WHO), prolonged gastrointestinal issues are a crucial part of post-COVID-19 syndrome. The resulting disruption of homeostasis underscores the need for a therapeutic approach based on compounds that can simultaneously affect more than one target/node. The present review aimed to check for nutraceuticals possessing multiple molecular mechanisms helpful in relieving Long COVID-19-specific gastrointestinal symptoms. Specific plants used in Keywords Chinese Medicine (TCM) expected to be included in the WHO Global Medical Compendium were selected based on the following criteria: (1) they are widely used in the Western world as natural remedies and complementary medicine adjuvants; (2) their import and trade are regulated by specific laws that ensure quality and safety (3) have the potential to be beneficial in alleviating intestinal issues associated with Long COVID-19. Searches were performed in PubMed, Elsevier, Google Scholar, Scopus, Science Direct, and ResearchGate up to 2023. Cinnamomum cassia, Glycyrrhiza uralensis, Magnolia officinalis, Poria cocos, Salvia miltiorrhiza, Scutellaria baicalensis, and Zingiber officinalis were identified as the most promising for their potential impact on inflammation and oxidative stress. Based on the molecular mechanisms of the phytocomplexes and isolated compounds of the considered plants, their clinical use may lead to benefits in gastrointestinal diseases associated with Long COVID-19, thanks to a multiorgan and multitarget approach.
Collapse
Affiliation(s)
- Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Azienda USL, Budrio Hospital, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Matteo Micucci
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Hu W, Du L, Shao J, Qu Y, Zhang L, Zhang D, Cao L, Chen H, Bi S. Molecular and metabolic responses to immune stress in the jejunum of broiler chickens: transcriptomic and metabolomic analysis. Poult Sci 2024; 103:103621. [PMID: 38507829 PMCID: PMC10966091 DOI: 10.1016/j.psj.2024.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
In the large poultry industry, where farmed chickens are fed at high density, the prevalence of pathogens and repeated vaccinations induce immune stress, which can significantly decrease the production performance and increase the mortality. This study was designed to shed light on the molecular mechanisms and metabolic pathways involved in immune stress through an in-depth analysis of transcriptomic and metabolomic changes in jejunum samples from the broilers. Two groups were established for the experiment: a control group and an LPS group. LPS group received an intraperitoneal injection of LPS solution at a dose of 250 μg per kg at 12, 14, 33, and 35 d of age, whereas the control group received a sterile saline injection. The severity of immune stress was assessed using the Disease Activity Index. A jejunal section was collected to measure the intestinal villus structure (villus length and crypt depth). RNA sequencing and metabolomics data analysis were conducted to reveal differentially expressed genes and metabolites. The results showed that the DAI index was increased and jejunal villus height/crypt depth was decreased in the LPS group. A total of 96 differentially expressed genes and 672 differentially accumulating metabolites were detected in the jejunum by LPS group compared to the control group. The comprehensive analysis of metabolomic and transcriptomic data showed that 23 pathways were enriched in the jejunum and that appetite, nutrient absorption, energy and substance metabolism disorders and ferroptosis play an important role in immune stress in broilers. Our findings provide a deeper understanding of the molecular and metabolic responses in broilers to LPS-induced immune stress, suggesting potential targets for therapeutic strategies to improve the production performance of broiler chickens.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Lin Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jianjian Shao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Yiwen Qu
- Bureau of Agricultural and Rural of Guanghan City, Guanghan, Sichuan, 618399, P. R. China
| | - Li Zhang
- Hanzhong Animal Disease Prevention and Control Center, Hanzhong, Shanxi, 723099, P. R. China
| | - Dezhi Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Hongwei Chen
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China.
| |
Collapse
|
12
|
Liu Y, Robinson AM, Su XQ, Nurgali K. Krill Oil and Its Bioactive Components as a Potential Therapy for Inflammatory Bowel Disease: Insights from In Vivo and In Vitro Studies. Biomolecules 2024; 14:447. [PMID: 38672464 PMCID: PMC11048140 DOI: 10.3390/biom14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Krill oil is extracted from krill, a small crustacean in the Antarctic Ocean. It has received growing attention because of krill oil's unique properties and diverse health benefits. Recent experimental and clinical studies suggest that it has potential therapeutic benefits in preventing the development of a range of chronic conditions, including inflammatory bowel disease (IBD). Krill oil is enriched with long-chain n-3 polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, and the potent antioxidant astaxanthin, contributing to its therapeutic properties. The possible underlying mechanisms of krill oil's health benefits include anti-inflammatory and antioxidant actions, maintaining intestinal barrier functions, and modulating gut microbiota. This review aims to provide an overview of the beneficial effects of krill oil and its bioactive components on intestinal inflammation and to discuss the findings on the molecular mechanisms associated with the role of krill oil in IBD prevention and treatment.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Ainsley M. Robinson
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- School of Rural Health, La Trobe University, Melbourne, VIC 3010, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Xiao Qun Su
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Kulmira Nurgali
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
13
|
Liu F, Smith AD, Wang TTY, Pham Q, Hou P, Cheung L, Yang H, Li RW. Phospholipid-rich krill oil promotes intestinal health by strengthening beneficial gut microbial interactions in an infectious colitis model. Food Funct 2024; 15:2604-2615. [PMID: 38356343 DOI: 10.1039/d3fo04980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Krill oil (KO) is rich in bioactive ingredients including phospholipids, omega-3 fatty acids, and astaxanthin. While health benefits and roles of KO in modulating lipid metabolism are well documented, its ability to alleviate symptoms related to infectious colitis and modulate gut microbial interactions is still largely unknown. Here we used a multi-omics approach, including transcriptome, microbiome, and metabolome analyses, to understand how KO mediates gut microbial interactions and promotes epithelial healing in an infectious colitis model. KO reversed the infection-induced intestinal hyperplasia to baseline. KO dampened intestinal inflammation via multiple targets, mediating several proinflammatory pathways, including IL17 signaling, and reducing luminal histamine levels. KO supplementation enriched butyrate-producing bacteria, including Roseburia and Clostridium, and strengthened beneficial microbial interactions in the gut microbial community. Supplementation with phospholipid-rich KO also increased microbial phylogenetic diversity. KO enhanced mucosal barrier function by increasing the production of Muc6 and the antimicrobial peptide, Leap2. KO played an active role during epithelial healing by inhibiting the expression of granzyme K while increasing the expression of a colitis protective factor, Dclk1. Together, our findings demonstrate that KO rich in omega-3 phospholipids can play a protective role in infectious colitis and should be considered a dietary option for promoting gut health.
Collapse
Affiliation(s)
- Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Allen D Smith
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Thomas T Y Wang
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Quynhchi Pham
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Pengfen Hou
- Affilated Hospital of Qingdao Binhai University, Qingdao, China
| | - Lumei Cheung
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Robert W Li
- USDA-ARS, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| |
Collapse
|
14
|
Ren P, Yue H, Tang Q, Wang Y, Xue C. Astaxanthin exerts an adjunctive anti-cancer effect through the modulation of gut microbiota and mucosal immunity. Int Immunopharmacol 2024; 128:111553. [PMID: 38281337 DOI: 10.1016/j.intimp.2024.111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
This study aimed to investigate the function of gut microbiota in astaxanthin's adjuvant anticancer effects. Our prior research demonstrated that astaxanthin enhanced the antitumor effects of sorafenib by enhancing the body's antitumor immune response; astaxanthin also regulated the intestinal flora composition of tumor-bearing mice. However, it is presently unknown whether this beneficial effect is dependent on the gut microbiota. We first used broad-spectrum antibiotics to eradicate gut microbiota of tumor-bearing mice, followed by the transplantation of fecal microbiota. The results of this study indicate that the beneficial effects of astaxanthin when combined with molecular targeting are dependent on the presence of intestinal microbiota. Astaxanthin facilitates the infiltration of CD8+ T lymphocytes into the tumor microenvironment and increases Granzyme B production by modulating the intestinal flora. Therefore, it strengthens the body's anti-tumor immune response and synergistically boosts the therapeutic efficacy of drugs. Astaxanthin stimulates the production of cuprocytes and mucus in the intestines by promoting the proliferation of Akkermansia. In addition, astaxanthin enhances the intestinal mucosal immunological function. Our research supports the unique ability of astaxanthin to sustain intestinal flora homeostasis and its function as a dietary immune booster for individuals with tumors.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Han Yue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China.
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| |
Collapse
|
15
|
Pu D, Yao Y, Zhou C, Liu R, Wang Z, Liu Y, Wang D, Wang B, Wang Y, Liu Z, Zhang Z, Feng B. FMT rescues mice from DSS-induced colitis in a STING-dependent manner. Gut Microbes 2024; 16:2397879. [PMID: 39324491 PMCID: PMC11441074 DOI: 10.1080/19490976.2024.2397879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Fecal microbiota transplantation (FMT) is currently a promising therapy for inflammatory bowel disease (IBD). However, clinical studies have shown that there is an obvious individual difference in the efficacy of FMT. Therefore, it is a pressing issue to identify the factors that influence the efficacy of FMT and find ways to screen the most suitable patients for this therapy. In this work, we targeted the stimulator of interferon genes (STING), a DNA-sensing protein that regulates host-defense. By comparing the differential efficacy of FMT in mice with different expression level of STING, it is revealed that FMT therapy provides treatment for DSS-induced colitis in a STING-dependent manner. Mechanistically, FMT exerts a regulatory effect on the differentiation of intestinal Th17 cells and macrophages, splenic Th1 and Th2 cells, as well as Th1 cells of the mesenteric lymph nodes via STING, down-regulating the colonic M1/M2 and splenic Th1/Th2 cell ratios, thereby improving the imbalanced immune homeostasis in the inflamed intestine. Meanwhile, based on the 16SrDNA sequencing of mice fecal samples, STING was found to facilitate the donor strain colonization in recipients' gut, mainly Lactobacillales, thereby reshaping the gut microbiota disturbed by colitis. Consequently, we proposed that STING, as a key target of FMT therapy, is potentially a biomarker for screening the most suitable individuals for FMT to optimize treatment regimens and enhance clinical benefit.
Collapse
Affiliation(s)
- Dan Pu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Yao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixian Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Zhanju Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, the Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Dong W, Ricker N, Holman DB, Johnson TA. Meta-analysis reveals the predictable dynamic development of the gut microbiota in commercial pigs. Microbiol Spectr 2023; 11:e0172223. [PMID: 37815394 PMCID: PMC10715009 DOI: 10.1128/spectrum.01722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The swine gut microbiome undergoes an age-dependent assembly pattern with a developmental phase at early ages and a stabilization phase at later ages. Shorter time intervals and a wider range of data sources provided a clearer understanding of the gut microbiota colonization and succession and their associations with pig growth and development. The rapidly changing microbiota of suckling and weaning pigs implies potential time targets for growth and health regulation through gut microbiota manipulation. Since swine gut microbiota development is predictable, swine microbiota age can be calculated and compared between animal treatment groups rather than relying only on static time-matched comparisons.
Collapse
Affiliation(s)
- Wenxuan Dong
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Nicole Ricker
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
17
|
Rajapakse J, Khatiwada S, Akon AC, Yu KL, Shen S, Zekry A. Unveiling the complex relationship between gut microbiota and liver cancer: opportunities for novel therapeutic interventions. Gut Microbes 2023; 15:2240031. [PMID: 37615334 PMCID: PMC10454000 DOI: 10.1080/19490976.2023.2240031] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been linked to the gut microbiota, with recent studies revealing the potential of gut-generated responses to influence several arms of the immune responses relevant to HCC formation. The pro- or anti-tumor effects of specific bacterial strains or gut microbiota-related metabolites, such as bile acids and short-chain fatty acids, have been highlighted in many human and animal studies. The critical role of the gut microbiota in HCC development has spurred interest in modulating the gut microbiota through dietary interventions, probiotics, and fecal microbiota transplantation as a potential strategy to improve liver cancer outcomes. Encouragingly, preclinical and clinical studies have demonstrated that modulation of the gut microbiota can ameliorate liver function, reduce inflammation, and inhibit liver tumor growth, underscoring the potential of this approach to improve HCC outcomes. As research continues to unravel the complex and dynamic mechanisms underlying the gut-liver axis, the development of safe and effective interventions to target this pathway for liver cancer prevention and treatment appears to be on the horizon, heralding a significant advance in our ongoing efforts to combat this devastating disease.
Collapse
Affiliation(s)
- Jayashi Rajapakse
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Saroj Khatiwada
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Anna Camille Akon
- St George Hospital, Gastroenterology and Hepatology Department, Sydney, Australia
| | - Kin Lam Yu
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Sj Shen
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Amany Zekry
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
- St George Hospital, Gastroenterology and Hepatology Department, Sydney, Australia
| |
Collapse
|
18
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Zhang M, Tran NT, Ji P, Zhang Y, Zhang D, Zheng H, Li S. Transcriptome analysis provides insights into the high ability to synthesize fatty acids in "yellow oil" mud crab (Scylla paramamosain). Food Res Int 2023; 172:113213. [PMID: 37689958 DOI: 10.1016/j.foodres.2023.113213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
Yellow oil mud crab (YOC) is a new variant of mud crab (Scylla paramamosain), which was attracted much attention in recent years due to its high level of nutrition. However, the nutritive values and the physiological changes in YOC have not been clearly understood. In this study, we aimed to identify the nutrient compositions (including total carotenoid content (TCC), total lipid content (TLC), total antioxidant capacity (TAC), and fatty acids) and differences in genes related to the biosynthesis of fatty acids using transcriptome analysis in YOC in comparison with those of normal mud crabs. As a result, observations on the morphological characteristics showed that the YOC exhibits a difference in the color of the muscle, gills (orange-yellow), and hemolymph (yellow) compared with the normal female crabs (NFC) (blue or nattier blue). The TCC and TLC (84.96 ± 9.65 μg/g in muscle and 1.39 ± 0.10 μg/mL in hemolymph) or TAC (1.52 ± 0.17 mM in hemolymph) of YOC were higher than that of NFC and normal male crab (NMC). YOC had lower saturated fatty acids, but higher unsaturated fatty acids, as well as the ratio of n-3/n-6 of fatty acids in muscle and hemolymph, compared with those of NFC and NMC. Furthermore, the transcriptome profile revealed that the unigenes in YOC were enriched in the synthesis of n-3 fatty acids. Furthermore, more unigenes related to 'Biosynthesis of unsaturated fatty acids' were identified in muscle and hemocytes, while fewer were in the gonads of YOC. Additionally, the positive (in muscle and hemocytes) and a negative correlation (in gonads) between expressions of unigenes and contents of TLC, TCC, and UFA were found, indicating a better synthesis ability of fatty acids in the muscle and hemocytes of YOC. Overall, compared to NFC and NMC, YOC has higher nutrients and is a better food nutrient source for humans.
Collapse
Affiliation(s)
- Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Peina Ji
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yongsheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Daimeng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
20
|
Ma L, Hou C, Yang H, Chen Q, Lyu W, Wang Z, Wang J, Xiao Y. Multi-omics analysis reveals the interaction of gut microbiome and host microRNAs in ulcerative colitis. Ann Med 2023; 55:2261477. [PMID: 37774039 PMCID: PMC10543339 DOI: 10.1080/07853890.2023.2261477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract that co-occurs with gut microbiota dysbiosis; however, its etiology remains unclear. MicroRNA (miRNA)-microbiome interactions play an essential role in host health and disease. METHODS To investigate the gut microbiome and host miRNA profiles in colitis, we used a Dextran Sulfate Sodium (DSS)-induced ulcerative colitis (UC) model. Metagenomic sequencing and metabolome profiling were performed to explore typical microbiota and metabolite signatures in colitis, whereas mRNA and miRNA sequencing were used to determine differentially expressed miRNAs and their target genes in the inflamed colon. RESULTS A total of 986 miRNAs were identified between the two groups, with 41 upregulated and 21 downregulated miRNAs in colitis mice compared to the control group. Notably, the target genes of these significantly altered miRNAs were primarily enriched in the immune and inflammation-related pathways. Second, LEfSe analysis revealed bacterial biomarkers distinguishing the two groups, with significantly higher levels of commonly encountered pathogens such as Escherichia coli and Shigella flexneri in the UC group, whereas beneficial species such as Bifidobacterium pseudolongum were more abundant in the control group. Microbiota metabolites histamine, N-acetylhistamine, and glycocholic acid were found to be downregulated in colitis mice. Spearman correlation further revealed the potential crosstalk between the microbiota profile and colonic miRNA, revealing the possibility of microbiome-miRNA interactions involved in IBD development. CONCLUSIONS Our data reveal the relationships between multi-omic features during UC and suggest that targeting specific miRNAs may provide new avenues for the development of effective miRNA-based therapeutics.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chenyang Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhen Wang
- Greentown Agricultural Testing Technology Co., Ltd, Hangzhou, China
| | | | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
21
|
Jia X, Hu C, Wu X, Qi H, Lin L, Xu M, Xu Y, Wang T, Zhao Z, Chen Y, Li M, Zheng R, Lin H, Wang S, Wang W, Bi Y, Zheng J, Lu J. Evaluating the Effects of Omega-3 Polyunsaturated Fatty Acids on Inflammatory Bowel Disease via Circulating Metabolites: A Mediation Mendelian Randomization Study. Metabolites 2023; 13:1041. [PMID: 37887366 PMCID: PMC10608743 DOI: 10.3390/metabo13101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Epidemiological evidence regarding the effect of omega-3 polyunsaturated fatty acid (PUFA) supplementation on inflammatory bowel disease (IBD) is conflicting. Additionally, little evidence exists regarding the effects of specific omega-3 components on IBD risk. We applied two-sample Mendelian randomization (MR) to disentangle the effects of omega-3 PUFAs (including total omega-3, α-linolenic acid, eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA)) on the risk of IBD, Crohn's disease (CD) and ulcerative colitis (UC). Our findings indicated that genetically predicted increased EPA concentrations were associated with decreased risk of IBD (odds ratio 0.78 (95% CI 0.63-0.98)). This effect was found to be mediated through lower levels of linoleic acid and histidine metabolites. However, we found limited evidence to support the effects of total omega-3, α-linolenic acid, and DHA on the risks of IBD. In the fatty acid desaturase 2 (FADS2) region, robust colocalization evidence was observed, suggesting the primary role of the FADS2 gene in mediating the effects of omega-3 PUFAs on IBD. Therefore, the present MR study highlights EPA as the predominant active component of omega-3 fatty acids in relation to decreased risk of IBD, potentially via its interaction with linoleic acid and histidine metabolites. Additionally, the FADS2 gene likely mediates the effects of omega-3 PUFAs on IBD risk.
Collapse
Affiliation(s)
- Xiaojing Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongyan Qi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
22
|
Fu S, Wang Z, Han X, Xu Y, Miao J. The therapeutic potential for targeting CSE/H 2S signaling in macrophages against Escherichia coli infection. Vet Res 2023; 54:71. [PMID: 37644526 PMCID: PMC10466716 DOI: 10.1186/s13567-023-01203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Macrophages play a pivotal role in the inflammatory response to the zoonotic pathogen E. coli, responsible for causing enteric infections. While considerable research has been conducted to comprehend the pathogenesis of this disease, scant attention devoted to host-derived H2S. Herein, we reported that E. coli infection enhanced the expression of CSE in macrophages, accompanied by a significantly increased inflammatory response. This process may be mediated by the involvement of excessive autophagy. Inhibition of AMPK or autophagy with pharmacological inhibitors could alleviate the inflammation. Additionally, cell model showed that the mRNA expression of classic inflammatory factors (Il-1β, Il-6), macrophage polarization markers (iNOS, Arg1) and ROS production was significantly down-regulated after employing CSE specific inhibitor PAG. And PAG is capable of inhibiting excessive autophagy through the LKB1-AMPK-ULK1 axis. Interestingly, exogenous H2S could suppress inflammation response. Our study emphasizes the importance of CSE in regulating the macrophage-mediated response to E. coli. Increased CSE in macrophages leads to excessive inflammation, which should be considered a new target for drug development to treat intestinal infection.
Collapse
Affiliation(s)
- Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Rohwer N, Jelleschitz J, Höhn A, Weber D, Kühl AA, Wang C, Ohno RI, Kampschulte N, Pietzner A, Schebb NH, Weylandt KH, Grune T. Prevention of colitis-induced liver oxidative stress and inflammation in a transgenic mouse model with increased omega-3 polyunsaturated fatty acids. Redox Biol 2023; 64:102803. [PMID: 37392516 DOI: 10.1016/j.redox.2023.102803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated gut dysfunction, which might also be associated with an inflammatory phenotype in the liver. It is known that the nutritional intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is inversely correlated to the severity and occurrence of IBD. In order to investigate whether n-3 PUFA can also reduce liver inflammation and oxidative liver damage due to colon inflammation, we explored the dextran sulfate sodium (DSS)-induced colitis model in wild-type and fat-1 mice with endogenously increased n-3 PUFA tissue content. Besides confirming previous data of alleviated DSS-induced colitis in the fat-1 mouse model, the increase of n-3 PUFA also resulted in a significant reduction of liver inflammation and oxidative damage in colitis-affected fat-1 mice as compared to wild-type littermates. This was accompanied by a remarkable increase of established inflammation-dampening n-3 PUFA oxylipins, namely docosahexaenoic acid-derived 19,20-epoxydocosapentaenoic acid and eicosapentaenoic acid-derived 15-hydroxyeicosapentaenoic acid and 17,18-epoxyeicosatetraenoic acid. Taken together, these observations demonstrate a strong inverse correlation between the anti-inflammatory lipidome derived from n-3 PUFA and the colitis-triggered inflammatory changes in the liver by reducing oxidative liver stress.
Collapse
Affiliation(s)
- Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Julia Jelleschitz
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anja A Kühl
- iPATH.Berlin-Immunopathology for Experimental Models, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Chaoxuan Wang
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany; Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rei-Ichi Ohno
- University of Wuppertal, Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Wuppertal, Germany
| | - Nadja Kampschulte
- University of Wuppertal, Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Wuppertal, Germany
| | - Anne Pietzner
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Nils Helge Schebb
- University of Wuppertal, Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Wuppertal, Germany
| | - Karsten-H Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany.
| |
Collapse
|
24
|
Lu K, Liu L, Lin P, Dong X, Ni L, Che H, Xie W. Saccharina japonica Ethanol Extract Ameliorates Dextran Sulfate Sodium-Induced Colitis via Reshaping Intestinal Microenvironment and Alleviating Inflammatory Response. Foods 2023; 12:foods12081671. [PMID: 37107466 PMCID: PMC10138103 DOI: 10.3390/foods12081671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Saccharina japonica belongs to brown macro-alga with various potential health benefits; its antioxidant and anti-inflammatory activities indicate the potential to improve inflammatory bowel diseases. Here, the potential anti-colitis effect of Saccharina japonica extract (SJE) was evaluated on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in C57B/L6 mice. The mice were treated with mesalazine (MES) and various doses of SJE by gavage for 14 days. Results showed that both MES and SJE treatment decreased the disease activity index scores, relieving the short colon. SJE increased the occludin and zonula occludens-1 levels, and the beneficial effects were better than MES. MES and SJE exerted similar effects in decreasing inflammatory cytokines and oxidative stress. Moreover, SJE reshaped the intestinal microbiota by increasing α-diversity and reducing plenty of harmful bacteria. Dietary SJE was significant to relieving the reduction in short-chain fatty acids. The results revealed the protective effect of SJE on colitis and potential mechanisms, which is important for the rational use of SJE in UC prevention.
Collapse
Affiliation(s)
- Kuan Lu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao Keda Future Biotechnology Co., Ltd., Qingdao 266042, China
| | - Lin Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pengcheng Lin
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiufang Dong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Linyi Jinluo Wenrui Food Co., Linyi 276007, China
| | - Laixue Ni
- Linyi Jinluo Wenrui Food Co., Linyi 276007, China
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao Keda Future Biotechnology Co., Ltd., Qingdao 266042, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
25
|
Huang R, Yao J, Zhou L, Li X, Zhu J, Hu Y, Liu J. Protective effect and mechanism insight of purified Antarctic kill phospholipids against mice ulcerative colitis combined with bioinformatics. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:11. [PMID: 37016023 PMCID: PMC10073399 DOI: 10.1007/s13659-023-00375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Antarctic krill oil is functional oil and has a complex phospholipids composition that poses difficulties in elucidating its effect mechanism on ulcerative colitis (UC). The mechanism of UC action was studied by bioinformatics, and the therapeutic effect of Antarctic krill phospholipids (APL) on dextran sulfate sodium (DSS)-induced colitis mice was verified. GO functional enrichment analysis uncovered an enrichment of these genes in the regulation of cell-cell adhesion, membrane region, signaling receptor activator activity, and cytokine activity. Meanwhile, the KEGG results revealed the genes were enriched in the TNF signaling pathway, pathogenic Escherichia coli infection, inflammatory bowel disease and tight junction. Animal experiments showed that APL treatment alleviated the UC symptoms and reduced inflammatory damage. Meanwhile, the expressions of the tight junction (TJ) proteins, ZO-1 and occludin, were restored, and the levels of IL-6 and TNF-α were reduced. Moreover, Firmicutes/Bacteroidetes ratio in the intestinal microbiota was regulated, and the contents of short-chain fatty acids metabolites were raised. These findings would provide an insight for the beneficial effects of APL and dietary therapy strategies for UC.
Collapse
Affiliation(s)
- Rong Huang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
26
|
Yang S, He Q, Shi L, Wu Y. Impact of Antarctic krill oil supplementation on skeletal muscle injury recovery after resistance exercise. Eur J Nutr 2023; 62:1345-1356. [PMID: 36566465 DOI: 10.1007/s00394-022-03077-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/16/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Antarctic krill oil (KO) is a natural source of n-3 polyunsaturated fatty acids (n-3 PUFAs), and is rich in phospholipids, Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA), astaxanthin, flavonoids, vitamins, trace elements, and other bioactive substances. KO has been confirmed to have anti-inflammatory and immunomodulatory effects. n-3 PUFAs also have been purported to improve the recovery of muscular performance. Moreover, the phospholipids present in KO can enhance n-3 PUFA bioavailability because of its higher absorption rate in plasma compared to fish oil. Astaxanthin, found in Antarctic KO, is a red carotenoid and powerful antioxidant that inhibits oxidative stress after intense exercise. Hence, we examined the effect of KO supplementation on the recovery of exercise by measuring muscular performance, oxidant/antioxidant and anti-inflammatory activity, and the markers of muscle damage following a rigorous bout of resistance exercise. METHODS 30 college-aged resistance-trained males (20.4 ± 0.92 years, 74.09 ± 7.23 kg, 180.13 ± 4.72 cm) were randomly supplemented with 3 g/d KO or placebo (PL) for 3 days and continued to consume after resistance exercise for 3 days until the experiment finished. Before supplementation, pre-exercise performance assessments of knee isokinetic strength, 20 m sprint, hexagon test, and blood serum creatine kinase (CK), lactate dehydrogenase (LDH), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), malondialdehyde (MDA), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were completed. Then after 3 days of supplementation, participants completed a bout of muscle-damaging exercise, and subsequently, they performed and repeated the exercise performance assessments and blood-related indicators tests immediately (0 h), as well as at 6, 24, 48, and 72 h post-muscle-damaging exercise. RESULTS Compared to the PL group, the serum CK of KO group was significantly lower at 24 h and 48 h post-exercise; the hexagon test time of the KO group was significantly lower than that of the PL group at 6 h and 24 h post-exercise; the KO group's isokinetic muscle strength showed different degrees of recovery than that of the PL group at 24 h and 48 h, and even over-recovery at 72 h post-exercise; the SOD level of the KO group was significantly higher than that of the PL group at 0, 6, and 24 h after exercise; the T-AOC level of the KO group was significantly higher than that of the PL group at 0, 6, and 72 h after exercise; the MDA level of the KO group was significantly lower than that of the PL group at 6 h; and there was no significant difference in serum IL-2, IL-6, and TNF-α between the two groups. CONCLUSION Our results demonstrated that 3 g/d KO supplementation and continued supplementation after exercise can alleviate exercise-induced muscle damage (EIMD) and promote post-exercise recovery.
Collapse
Affiliation(s)
- Simeng Yang
- Beijing Sport University, Beijing, 100084, China
| | - Qing He
- Aland Health Holding Ltd, Shanghai, 200120, China
| | - Lijun Shi
- Beijing Sport University, Beijing, 100084, China
| | - Ying Wu
- Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
27
|
Liu F, Smith AD, Wang TTY, Pham Q, Yang H, Li RW. Ellagitannin Punicalagin Disrupts the Pathways Related to Bacterial Growth and Affects Multiple Pattern Recognition Receptor Signaling by Acting as a Selective Histone Deacetylase Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5016-5026. [PMID: 36917202 DOI: 10.1021/acs.jafc.2c08738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Punicalagin (PA) is a key ellagitannin abundant in pomegranate with wide-ranging biological activities. In this study, we examined the biological processes by which PA regulates bacterial growth and inflammation in human cells using multiomics and molecular docking approaches. PA promoted macrophage-mediated bacterial killing and inhibited the growth of Citrobacter rodentium by inducing a distinct metabolome pattern. PA acted as a selective regulator of histone deacetylases (HDACs) and affected 37 pathways in macrophages, including signaling mediated by pattern recognition receptors, such as Toll-like and NOD-like receptors. In silico simulation showed that PA can bind with high affinity to HDAC7. PA downregulated HDAC7 at both mRNA and protein levels and resulted in a decrease in the level of histone 3 lysine 27 acetylation. Our findings provide evidence that PA exerts its biological effects via multiple pathways, which can be exploited in the development of this bioactive food ingredient for disease management.
Collapse
Affiliation(s)
- Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Allen D Smith
- Diet, Genomics and Immunology Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Quynhchi Pham
- Diet, Genomics and Immunology Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| |
Collapse
|
28
|
Liu F, Smith AD, Wang TTY, Pham Q, Cheung L, Yang H, Li RW. Biological pathways via which the anthocyanin malvidin alleviated the murine colitis induced by Citrobacter rodentium. Food Funct 2023; 14:1048-1061. [PMID: 36562464 DOI: 10.1039/d2fo02873e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enteropathogenic E. coli (EPEC) is a causal agent for diarrheal diseases and contributes to morbidity and mortality in children under the age of five years. The emergence and rapid spread of antibiotic resistant EPEC strains necessitate the search for novel alternatives to antibiotics. In this study, we used Citrobacter rodentium, a natural mouse pathogen that mimics many aspects of human EPEC infections, to investigate the antimicrobial properties of the blueberry anthocyanin malvidin 3-glucoside (MG) using a multi-omics approach. MG supplementation reversed the bodyweight loss induced by C. rodentium infection and improved colonic hyperplasia and histopathological scores. In the colon tissue, MG supplementation significantly increased the expression of Hace1, a key regulator of TNFα-driven signaling, and impacted multiple pathways, such as TGFβ signaling. MG partially restored C. rodentium-induced microbial dysbiosis and significantly enhanced the abundance of the probiotic Bifidobacterium animalis. Moreover, MG disrupted the interactions of E. coli with other gut microbes. MG significantly mediated several host- and microbiota-derived metabolites, such as cytosine, ureidopropionic acid, and glutaric acid. MG normalized the bioactive lipid oleoylethanolamine, a member of the endocannabinoid system, from the dysregulated level in infected mice, directly contributing to its overall beneficial effects. Our findings provided novel insights into molecular processes via which the flavonoid malvidin exerts its biological effects in the gastrointestinal tract.
Collapse
Affiliation(s)
- Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Allen D Smith
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Thomas T Y Wang
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Quynhchi Pham
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Lumei Cheung
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Robert W Li
- USDA-ARS, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA.
| |
Collapse
|
29
|
Zhang H, Xu Z, Chen W, Huang F, Chen S, Wang X, Yang C. Algal oil alleviates antibiotic-induced intestinal inflammation by regulating gut microbiota and repairing intestinal barrier. Front Nutr 2023; 9:1081717. [PMID: 36726819 PMCID: PMC9884693 DOI: 10.3389/fnut.2022.1081717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/17/2023] Open
Abstract
Introduction Taking antibiotics would interfere with gut microbiota and increase the risk of opportunistic pathogen infection and inflammation. Methods In this study, 36 male C57BL/6 mice were divided into 4 groups (n = 9) to investigate whether two kinds of algal oil could alleviate the intestinal damage induced by CS (Ceftriaxone sodium). These algal oils were obtained from Schizochytrium sp. cultures using Yeast extract (YE) and Rapeseed meal (RSM) as substrate, respectively. All tested mice were administrated with CS for 8 days and then the colon pathological morphology, the expression levels of inflammatory factors and the gut microbial profile were analyzed in mice supplemented with or without algal oil. Results The results showed that both YE and RSM algal oils markedly reduced mucosal damage and intestinal inflammatory response in CS-treated mice by inhibiting the pro-inflammatory cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-6 and myeloperoxidase (MPO) activity. In addition, fluorescence immunohistochemistry showed that the tight junction protein ZO-1 was increased in mice supplemented with YE and RSM algal oil. Furthermore, YE algal oil promoted the beneficial intestinal bacteria such as Lachnospiraceae and S24_7 compared with the CS group, while supplementation with RSM algal oil enriched the Robinsoniella. Spearman's correlation analysis exhibited that Melissococcus and Parabacteroides were positively correlated with IL-6 but negatively correlated with IL-10. Discussion This study suggested that supplementation with algal oil could alleviate intestinal inflammation by regulating gut microbiota and had a protective effect on maintaining intestinal barrier against antibiotic-induced damage in mice.
Collapse
Affiliation(s)
- Huimin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China,State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan, China
| | - Zhenxia Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China,Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Science, Jinan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan, China
| | - Xu Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China,Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Science, Jinan, China,*Correspondence: Chen Yang,
| |
Collapse
|
30
|
Bai S, Chen J, Guo M, Ren N, Zhao X. Vertical-scale spatial influence of radial oxygen loss on rhizosphere microbial community in constructed wetland. ENVIRONMENT INTERNATIONAL 2023; 171:107690. [PMID: 36516673 DOI: 10.1016/j.envint.2022.107690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Complex interactions between plants and microorganisms form the basis of constructed wetlands (CWs) for pollutant removal. In the rhizosphere, radial oxygen loss (ROL) plays a key role in the activity and abundance of functional microorganisms. However, little has been done to explore how ROL would influence the niche differentiation of microbial communities at different vertical spatial scales. We demonstrate that ROL decreases with depth, promoting an oxidation-reduction rhizosphere microecosystem in CWs. The high level of ROL in the upper layer could support the oxygen supply for aerobic bacteria (Haliangium), facilitating the COD (60%) and NH4+-N (50%) removal, whereas the enrichment of denitrifiers (e.g., Hydrogenophaga and Ralstonia) and methanotrophs (Methanobaterium) in the lower layer could stimulate denitrification. The function prediction results further certified that the abundance of genes catalyzing nitrifying and denitrification processes were significantly enhanced in the upper and bottom layers, respectively, which was attributed to the oxygen concentration gradient in the rhizosphere. This study contributes to further unraveling the rhizosphere effect and enables an improved understanding of the decontamination mechanisms of CWs.
Collapse
Affiliation(s)
- Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juntong Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengran Guo
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nanqi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
31
|
Li X, Gui R, Wang X, Ning E, Zhang L, Fan Y, Chen L, Yu L, Zhu J, Li Z, Wei L, Wang W, Li Z, Wei Y, Wang X. Oligosaccharides isolated from Rehmannia glutinosa protect LPS-induced intestinal inflammation and barrier injury in mice. Front Nutr 2023; 10:1139006. [PMID: 36908905 PMCID: PMC9996025 DOI: 10.3389/fnut.2023.1139006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Objectives We investigated the protective effect of Rehmannia glutinosa oligosaccharides (RGO) on lipopolysaccharide (LPS)-induced intestinal inflammation and barrier injury among mice. Methods RGO is prepared from fresh rehmannia glutinosa by water extraction, active carbon decolorization, ion exchange resin impurity removal, macroporous adsorption resin purification, and decompression drying. LPS could establish the model for intestinal inflammation and barrier injury in mice. Three different doses of RGO were administered for three consecutive weeks. Then the weight, feces, and health status of the mice were recorded. After sacrificing the mice, their colon length and immune organ index were determined. The morphological changes of the ileum and colon were observed using Hematoxylin-eosin (H&E) staining, followed by measuring the villus length and recess depth. RT-qPCR was utilized to detect the relative mRNA expression of intestinal zonula occludens-1 (ZO-1) and occludin. The expression of inflammatory factors and oxidation markers within ileum and colon tissues and the digestive enzyme activities in the ileum contents were detected using ELISA. The content of short-chain fatty acids (SCFAs) in the colon was determined with GC. The gut microbial composition and diversity changes were determined with 16S-rRNA high-throughput sequencing. The association between intestinal microorganisms and SCFAs, occludins, digestive enzymes, inflammatory factor contents, and antioxidant indexes was also analyzed. Results RGO significantly increased the weight, pancreatic index, thymus index, and colon length of mice compared with the model group. Moreover, it also improved the intestinal tissue structure and increased the expression of intestinal barrier-related junction proteins ZO-1 and Occludin. The contents of IL-6, IL-17, IL-1β, and TNF-α in the intestinal tissues of mice were significantly reduced. Additionally, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) were elevated. In contrast, the malondialdehyde (MDA) content decreased. Trypsin and pancreatic lipase activities in the ileum enhanced, and the SCFA contents such as acetic acid, propionic acid, and butyric acid in the colon increased. The study on intestinal flora revealed that RGO could enhance the abundance of intestinal flora and improve the flora structure. After RGO intervention, the relative abundance of Firmicutes, Lactobacillus, and Akkermania bacteria in the intestinal tract of mice increased compared with the model group, while that of Actinomycetes decreased. The intestinal microbiota structure changed to the case, with probiotics playing a dominant role. The correlation analysis indicated that Lactobacillus and Ackermann bacteria in the intestinal tract of mice were positively associated with SCFAs, Occludin, ZO-1, pancreatic amylase, SOD, and CAT activities. Moreover, they were negatively correlated with inflammatory factors IL-6, IL-17, IL-1β, and TNF-α. Conclusions RGO can decrease LPS-induced intestinal inflammation and intestinal barrier injury in mice and protect their intestinal function. RGO can ameliorate intestinal inflammation and maintain the intestinal barrier by regulating intestinal flora.
Collapse
Affiliation(s)
- Xiao Li
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Rong Gui
- Biological Center of Henan Academy of Sciences, Zhengzhou, China.,College of Animal Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xuefang Wang
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,College of Animal Medicine, Henan Agricultural University, Zhengzhou, China
| | - Erjuan Ning
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Lixian Zhang
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Yi Fan
- Biological Center of Henan Academy of Sciences, Zhengzhou, China.,Henan High Tech Industry Co., Ltd., Zhengzhou, China
| | - Ling Chen
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Liqin Yu
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Jie Zhu
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Zhining Li
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Lei Wei
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Wei Wang
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Zihong Li
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Yue Wei
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China.,Biological Center of Henan Academy of Sciences, Zhengzhou, China
| | - Xuebing Wang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
32
|
Huang Y, Lu W, Zeng M, Hu X, Su Z, Liu Y, Liu Z, Yuan J, Li L, Zhang X, Huang L, Hu W, Wang X, Li S, Zhang H. Mapping the early life gut microbiome in neonates with critical congenital heart disease: multiomics insights and implications for host metabolic and immunological health. MICROBIOME 2022; 10:245. [PMID: 36581858 PMCID: PMC9801562 DOI: 10.1186/s40168-022-01437-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/25/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND The early life gut microbiome is crucial in maintaining host metabolic and immune homeostasis. Though neonates with critical congenital heart disease (CCHD) are at substantial risks of malnutrition and immune imbalance, the microbial links to CCHD pathophysiology remain poorly understood. In this study, we aimed to investigate the gut microbiome in neonates with CCHD in association with metabolomic traits. Moreover, we explored the clinical implications of the host-microbe interactions in CCHD. METHODS Deep metagenomic sequencing and metabolomic profiling of paired fecal samples from 45 neonates with CCHD and 50 healthy controls were performed. The characteristics of gut microbiome were investigated in three dimensions (microbial abundance, functionality, and genetic variation). An in-depth analysis of gut virome was conducted to elucidate the ecological interaction between gut viral and bacterial communities. Correlations between multilevel microbial features and fecal metabolites were determined using integrated association analysis. Finally, we conducted a subgroup analysis to examine whether the interactions between gut microbiota and metabolites could mediate inflammatory responses and poor surgical prognosis. RESULTS Gut microbiota dysbiosis was observed in neonates with CCHD, characterized by the depletion of Bifidobacterium and overgrowth of Enterococcus, which was highly correlated with metabolomic perturbations. Genetic variations of Bifidobacterium and Enterococcus orchestrate the metabolomic perturbations in CCHD. A temperate core virome represented by Siphoviridae was identified to be implicated in shaping the gut bacterial composition by modifying microbial adaptation. The overgrowth of Enterococcus was correlated with systemic inflammation and poor surgical prognosis in subgroup analysis. Mediation analysis indicated that the overgrowth of Enterococcus could mediate gut barrier impairment and inflammatory responses in CCHD. CONCLUSIONS We demonstrate for the first time that an aberrant gut microbiome associated with metabolomic perturbations is implicated in immune imbalance and adverse clinical outcomes in neonates with CCHD. Our data support the importance of reconstituting optimal gut microbiome in maintaining host metabolic and immunological homeostasis in CCHD. Video Abstract.
Collapse
Affiliation(s)
- Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Wenlong Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Min Zeng
- PICU, Pediatric Cardiac Center, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyue Hu
- Department of Neonatology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Zhanhao Su
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Yiwei Liu
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeye Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Jianhui Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Neonatology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Xiaoling Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Long Huang
- Shanghai Majorbio Bio-Pharm Technology Co, Shanghai, China
| | - Wanjin Hu
- Shanghai Majorbio Bio-Pharm Technology Co, Shanghai, China
| | - Xu Wang
- PICU, Pediatric Cardiac Center, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shoujun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China.
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China.
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
34
|
Dong Y, Huang C, Yang J, Zheng Z, Dai Z. Docosapentaenoic Acid (DPA, 22:5 n-3) Alleviates Ulcerative Colitis via Modification of Gut Microbiota and Their Metabolism. Nutrients 2022; 14:nu14194204. [PMID: 36235856 PMCID: PMC9570819 DOI: 10.3390/nu14194204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3PUFA) are regarded as viable alternatives to aid the treatment of ulcerative colitis (UC). Most research focuses on eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA); little information is available about the effect of docosapentaenoic acid (DPA) on the gut microbiota and their metabolism in UC mice. In this study, the changes in gut microbiota and their metabolism in UC mice were studied through the 16S rRNA sequencing method and untargeted metabolomics. Moreover, the differential bacterial genus and differential metabolites in responding to DPA supplementation were screened through permutation test after orthogonal partial least squares discriminant analysis (OPLS-DA). The results indicated that DPA supplementation increased the diversity and altered the composition of the gut microbiota in UC mice; Akkermansia, Alistipes, Butyricicoccus, and Lactobacillus were selected as the differential bacterial genus. Supplementation of DPA also altered the fecal metabolite profile in the UC mice. Moreover, butyrate, N-carbamylglutamate (NCG), and histamine were screened as the differential metabolites. In conclusion, the regulation effect of DPA on the gut microbiota and their metabolism might be involved in the intervention mechanism of DPA in UC. More research needs to be carried out to elucidate the mechanism systematically.
Collapse
Affiliation(s)
- Ye Dong
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Cheng Huang
- Greentown Agricultural Testing Technology Co., Ltd., Hangzhou 310052, China
| | - Jiacheng Yang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhenxiao Zheng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- Correspondence: ; Tel./Fax: +86-057-187-103-135
| | - Zhiyuan Dai
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
35
|
Local Application of Krill Oil Accelerates the Healing of Artificially Created Wounds in Diabetic Mice. Nutrients 2022; 14:nu14194139. [PMID: 36235791 PMCID: PMC9571309 DOI: 10.3390/nu14194139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Diabetes mellitus (DM) impairs the wound healing process, seriously threatening the health of the diabetic population. To date, few effective approaches have been developed for the treatment of diabetic wounds. Krill oil (KO) contains bioactive components that have potent anti-inflammatory and anti-oxidative activities. As prolonged inflammation is a crucial contributor to DM-impaired wound healing, we speculated that the local application of KO would accelerate diabetic wound healing. Therefore, KO was applied to artificially created wounds of type 2 diabetic mice induced by streptozotocin and high-fat diet. The diabetic mice had a delayed wound healing process compared with the non-diabetic control mice, with excessive inflammation, impaired collagen deposition, and depressed neovascularization in the wound area. These effects were dramatically reversed by KO. In vitro, KO blocked the TNF-α-induced macrophage inflammation, fibroblast dysfunction, and endothelial angiogenic impairment. The present study in mice suggests that KO local application could be a viable approach in the management of diabetic wounds.
Collapse
|
36
|
Song S, Wang C. PUFA-Induced Metabolic Enteritis: Are There Any Different Roles Between Macrophages and Epithelial Cells? Gastroenterology 2022; 163:1120. [PMID: 35390325 DOI: 10.1053/j.gastro.2022.03.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Vitetta L. Can krill oil from small crustaceans be a panacea that alleviates symptoms of knee osteoarthritis? Am J Clin Nutr 2022; 116:621-622. [PMID: 35880815 DOI: 10.1093/ajcn/nqac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
The Effects and Cell Barrier Mechanism of Main Dietary Nutrients on Intestinal Barrier. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Sun X, Yang Y, Sun X, Meng H, Hao W, Yin J, Ma F, Guo X, Du L, Sun L, Wu H. Krill Oil Turns Off TGF-β1 Profibrotic Signaling in the Prevention of Diabetic Nephropathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9865-9876. [PMID: 35916281 DOI: 10.1021/acs.jafc.2c02850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), results in high mortality due to the lack of effective interventions. The current study investigated the preventive effect of krill oil (KO) on DN using a type 2 DM mouse model induced by streptozotocin and high-fat diet for 24 weeks. The diabetic mice developed albuminuria, mesangial matrix accumulation, glomerular hypertrophy, and fibrosis formation, with an increase in renal proinflammatory, oxidative and profibrotic gene expression. KO significantly prevented these effects but did not improve hyperglycemia and glucose intolerance. In high-glucose-treated mesangial cells (MCs), KO preferably modulated TGF-β1 signaling as revealed by RNA-sequencing. In TGF-β1-treated MCs, KO abolished SMAD2/3 phosphorylation and nuclear translocation and activated Smad7 gene expression. The action of KO on the SMADs was confirmed in the diabetic kidneys. Therefore, KO may prevent DN predominantly by suppressing the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Xuechun Sun
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Yu Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Xiaodan Sun
- Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Rd., Jinan, Shandong 250033, China
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Wenhao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Jialin Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, China
| | - Xin Guo
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| |
Collapse
|
40
|
Liu J, Zhao L, Zhao Z, Wu Y, Cao J, Cai H, Yang P, Wen Z. Rubber (Hevea brasiliensis) seed oil supplementation attenuates immunological stress and inflammatory response in lipopolysaccharide-challenged laying hens. Poult Sci 2022; 101:102040. [PMID: 35917674 PMCID: PMC9352553 DOI: 10.1016/j.psj.2022.102040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to investigate the effect of PUFA-enriched rubber (Hevea brasiliensis) seed oil (RSO) supplementation in diets on the productive performance, plasma biochemical parameters, immune response, and inflammation in lipopolysaccharide (LPS)-challenged laying hens. Two hundred and forty 25-wk-old Lohmann Brown laying hens were randomly divided into 5 treatments, each including 4 replicates with 12 birds per replicate. The control group and LPS-challenged group were fed a corn-soybean-basal diet; 3 RSO-supplemented groups were fed experimental diets containing 1, 2, and 4% RSO for a feeding period of 4 wk. On the 15, 18, 21, 24, and 27 d of the RSO supplementation period of 4 wk, hens were injected intraperitoneally with LPS at 1 mg/kg body weight (challenge group and RSO-supplemented groups) or with the same amount of saline (control group). The results showed that the addition of RSO promoted laying performance by increasing egg production, total egg weight, daily egg mass, and feed intake in comparison to the LPS-challenged laying hens (P < 0.05). In addition, compared with laying hens stimulated with LPS, the analysis of blood cell and plasma parameters revealed that hens in RSO-supplemented groups had significantly lower levels (P < 0.05) of white blood cells (WBC), lymphocytes (LYM), aspartate aminotransferase (AST) activity, immunoglobulin A (IgA), triiodothyronine (T3), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α). Further, RSO supplementation significantly reduced the mRNA expression of toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin-6 (IL-6), and interleukin-1β (IL-1β) of the ileum, spleen, and liver in LPS-challenged laying hens (P < 0.05), suggesting that the anti-inflammatory mechanism of RSO is related to the TLR4/NF-κB signaling pathway. In conclusion, RSO supplementation in diets could improve laying performance, attenuate immunological stress, and inhibit the inflammatory response in LPS-challenged laying hens, especially at the dietary inclusion of 4% RSO. This study will provide an insight into the application of RSO to positively contribute to overall health and welfare in laying hens.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lulu Zhao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zitao Zhao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongbao Wu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junting Cao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongying Cai
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peilong Yang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiguo Wen
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
41
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
42
|
Ban QY, Liu M, Ding N, Chen Y, Lin Q, Zha JM, He WQ. Nutraceuticals for the Treatment of IBD: Current Progress and Future Directions. Front Nutr 2022; 9:794169. [PMID: 35734374 PMCID: PMC9207447 DOI: 10.3389/fnut.2022.794169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting inflammatory disease of the gastrointestinal tract. Patients are usually diagnosed in adolescence and early adulthood and need lifelong treatment. In recent years, it has been found that diet plays an important role in the pathogenesis of IBD. Diet can change intestinal barrier function, affect the structure and function of intestinal flora, and promote immune disorder, thus promoting inflammation. Many patients believe that diet plays a role in the onset and treatment of the disease and changes their diet spontaneously. This review provides some insights into how nutraceuticals regulate intestinal immune homeostasis and improve intestinal barrier function. We reviewed the research results of dietary fiber, polyphenols, bioactive peptides, and other nutraceuticals in the prevention and treatment of IBD and sought better alternative or supplementary treatment methods for IBD patients.
Collapse
Affiliation(s)
- Quan-Yao Ban
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Mei Liu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Ning Ding
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Ying Chen
- Department of Gastroenterology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Qiong Lin
- Department of Gastroenterology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Juan-Min Zha
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
- *Correspondence: Juan-Min Zha
| | - Wei-Qi He
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Wei-Qi He
| |
Collapse
|
43
|
Li C, Gao Y, Huan Y, Ren P, Zhi J, Wu A, Xu J, Wei Z, Xue C, Tang Q. Colon and gut microbiota greatly affect the absorption and utilization of astaxanthin derived from Haematococcus pluvialis. Food Res Int 2022; 156:111324. [PMID: 35651077 DOI: 10.1016/j.foodres.2022.111324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022]
Abstract
Astaxanthin has been widely favored as a health food supplement by individuals but its absorption in the body seems not to be satisfactory. In addition, the peak time of astaxanthin derived from Haematococcus pluvialis in the plasma was much longer than other carotenoids found in our previous research. Thus, it is necessary to explore the process that affects the absorption of astaxanthin in order to potentially find a novel approach to improve the absorption in the future. In this study, we confirmed that the colon has an ability to absorb astaxanthin and conducted acute feeding experiments with the treatment of antibiotics in C57BL/6J mice and chronic feeding experiments in germ-free (GF) mice to detect the relationship between the gut microbiota and the absorption of astaxanthin. Our study showed that the decrease of gut microbiota led to a less oral absorbability, which might be related to the decreased expression of SR-BI in the small intestine and the reduction of free form and Z-astaxanthin converted by the gut microbiota found in the vitro culture. The experiments of anaerobic culture also implied that Lactobacillus might play an important role in the absorption of astaxanthin.
Collapse
Affiliation(s)
- Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuchen Huan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pengfei Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jinjin Zhi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Axue Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
44
|
Liu D, Zhao R, Wu Y, Wang Y, Yang R, Ke X. Variation in the Efficacy of Anti-Ulcerative Colitis Treatments Reveals the Conflict Between Precipitating Compatibility of Traditional Chinese Medicine and Modern Technology: A Case of Scutellaria-Coptis. Front Pharmacol 2022; 13:819851. [PMID: 35517805 PMCID: PMC9065555 DOI: 10.3389/fphar.2022.819851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Scutellariae and Coptidis compose a classical drug pair applied in clinical practice to dispel heat, dryness, and dampness, and they are also precipitation compatible drug pairs. With modern technology, Scutellaria-Coptis is mostly prepared by decocting its components separately, while in the traditional method, it is predominantly prepared as a combined decoction. The present study investigated the effects and mechanisms of separate and combined application of Scutellaria-Coptis decoction on ulcerative colitis (UC) in mice induced by the administration of dextran sulfate sodium (DSS). Changes in body weight, colon length, and Disease Activity Index scores were also evaluated. Hematoxylin and eosin staining and other methods were used to evaluate the overall condition of animals in each group. Intestinal microflora was analyzed using 16S rRNA sequencing, while colon inflammation and antioxidant capacity were evaluated based on the levels of interleukin-6 (IL-6), IL-10, IL-1β, tumor necrosis factor-α, superoxide dismutase, malondialdehyde, and reduced glutathione. The results revealed that Scutellaria-Coptis significantly relieved colon inflammation in mice, and the combined decoction of Scutellaria-Coptis exerted a significant effect on UC. Notably, the protective effect of Scutellaria-Coptis against colon inflammation was weakened when the antibiotic mixture was partially consumed by the gut microbiota. The results of 16S rRNA sequencing showed that the group treated with combined decoction of Scutellaria-Coptis exhibited a higher intestinal microbial diversity and intestinal flora composition than the separated decoction group. Treatment of mice with UC by administering Scutellaria-Coptis decoction through intestinal flora removal (ABX) and fecal microbial transplantation (FMT) was closely associated with intestinal flora composition. In conclusion, Scutellaria-Coptis can relieve UC with an excellent effect especially when taken as a combined decoction, alleviating colon inflammation incurred by intestinal microbes to a certain extent.
Collapse
Affiliation(s)
- Dan Liu
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Ran Zhao
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Yajing Wu
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rongping Yang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.,School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| |
Collapse
|
45
|
Chen H, Du G, Yan X, Ye H, Guo Q, Wang Z, Yuan Y, Yue T. Selenium-Enriched Pediococcus acidilactici MRS-7 Alleviates Patulin-Induced Jejunum Injuries in Mice and Its Possible Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4755-4764. [PMID: 35394776 DOI: 10.1021/acs.jafc.2c00949] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Patulin (PAT) is a common mycotoxin. Oral ingestion of PAT could damage the intestinal mucosa. Both selenium and probiotics can alleviate intestinal damage, but there are few reports on selenium-enriched probiotics. Here, we studied the protective effects of a new selenium-enriched Pediococcus acidilactici MRS-7 (SeP) on PAT-induced jejunum injuries in mice. Results show that PAT induced jejunum injuries such as loss of crypts, ulceration of the mucosa, and intestinal epithelial barrier function impairment. However, SeP could protect against PAT-induced jejunum injuries and significantly inhibit the reduction of goblet cell numbers. SeP could not only alleviate PAT-induced oxidative stress by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels in the jejunum tissues but also alleviate the inflammatory response caused by PAT by reducing the levels of inflammatory factors (interleukin (IL)-6 snd IL-1β and tumor necrosis factor-α (TNF-α)) in the serum and jejunum tissues. In addition, SeP also inhibited the expression of nuclear factor-κB (NF-κB) and Toll-like receptor 4 (TLR-4), increased the expression of tight junction proteins (occludin, ZO-1, and claudin-1), and increased the selenium content in the jejunum, thereby antagonizing the jejunum injuries caused by PAT exposure. Finally, SeP rebalanced the intestinal microbiota and improved probiotic abundance such as Turicibacter, Bifidobacterium, Ileibacterium, and Pediococcus in PAT-treated mice. These results support the possibility of SeP as a novel protective agent to mitigate the toxicity of PAT.
Collapse
Affiliation(s)
- Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Huanfeng Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710000, China
| |
Collapse
|
46
|
Tsiantas K, Konteles SJ, Kritsi E, Sinanoglou VJ, Tsiaka T, Zoumpoulakis P. Effects of Non-Polar Dietary and Endogenous Lipids on Gut Microbiota Alterations: The Role of Lipidomics. Int J Mol Sci 2022; 23:ijms23084070. [PMID: 35456888 PMCID: PMC9024800 DOI: 10.3390/ijms23084070] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Advances in sequencing technologies over the past 15 years have led to a substantially greater appreciation of the importance of the gut microbiome to the health of the host. Recent outcomes indicate that aspects of nutrition, especially lipids (exogenous or endogenous), can influence the gut microbiota composition and consequently, play an important role in the metabolic health of the host. Thus, there is an increasing interest in applying holistic analytical approaches, such as lipidomics, metabolomics, (meta)transcriptomics, (meta)genomics, and (meta)proteomics, to thoroughly study the gut microbiota and any possible interplay with nutritional or endogenous components. This review firstly summarizes the general background regarding the interactions between important non-polar dietary (i.e., sterols, fat-soluble vitamins, and carotenoids) or amphoteric endogenous (i.e., eicosanoids, endocannabinoids-eCBs, and specialized pro-resolving mediators-SPMs) lipids and gut microbiota. In the second stage, through the evaluation of a vast number of dietary clinical interventions, a comprehensive effort is made to highlight the role of the above lipid categories on gut microbiota and vice versa. In addition, the present status of lipidomics in current clinical interventions as well as their strengths and limitations are also presented. Indisputably, dietary lipids and most phytochemicals, such as sterols and carotenoids, can play an important role on the development of medical foods or nutraceuticals, as they exert prebiotic-like effects. On the other hand, endogenous lipids can be considered either prognostic indicators of symbiosis or dysbiosis or even play a role as specialized mediators through dietary interventions, which seem to be regulated by gut microbiota.
Collapse
Affiliation(s)
- Konstantinos Tsiantas
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Spyridon J. Konteles
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Eftichia Kritsi
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Vassilia J. Sinanoglou
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Thalia Tsiaka
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| |
Collapse
|
47
|
Li HL, Wei YY, Li XH, Zhang SS, Zhang RT, Li JH, Ma BW, Shao SB, Lv ZW, Ruan H, Zhou HG, Yang C. Diosmetin has therapeutic efficacy in colitis regulating gut microbiota, inflammation, and oxidative stress via the circ-Sirt1/Sirt1 axis. Acta Pharmacol Sin 2022; 43:919-932. [PMID: 34262136 PMCID: PMC8976001 DOI: 10.1038/s41401-021-00726-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Diosmetin (3',5,7 -trihydroxy-4'-methoxy flavone) is a natural flavonoid compound in the citrus species, it exhibits a variety of pharmacological activities, but little is known of its effects on colitis. In this study we evaluated the therapeutic effects of diosmetin on mouse models of chronic and acute colitis. Chronic colitis was induced in mice by drinking water containing 3% dextran sulfate sodium (DSS) from D0 to D8, followed by administration of diosmetin (25, 50 mg · kg-1 · d-1) for another 8 days. Acute colitis was induced by drinking water containing 5% DSS from D0 to D7, the mice concomitantly received diosmetin (25, 50 mg · kg-1 · d-1) from D1 to D7. During the experiments, body weight and disease activity index (DAI) were assessed daily. After the mice were sacrificed, colon tissue and feces samples were collected, and colon length was measured. We showed that in both models, diosmetin administration significantly decreased DAI score and ameliorated microscopic colon tissue damage; increased the expression of tight junction proteins (occludin, claudin-1, and zonula occludens-1), and reduced the secretion of proinflammatory cytokines IL-1β, IL-6, TNF-α, and Cox-2 in colon tissue. We found that diosmetin administration remarkably inhibited colon oxidative damage by adjusting the levels of intracellular and mitochondrial reactive oxygen species, GSH-Px, SOD, MDA and GSH in colon tissue. The protection of diosmetin against intestinal epithelial barrier damage and oxidative stress were also observed in LPS-treated Caco-2 and IEC-6 cells in vitro. Furthermore, we demonstrated that diosmetin markedly increased the expression of Nrf2 and HO-1 and reduced the ratio of acetylated NF-κB and NF-κB by activating the circ-Sirt1/Sirt1 axis, which inhibited oxidative stress and inflammation in vivo and in vitro. Diosmetin reversed the effects of si-circSirt1 and si-Sirt1 in LPS-treated Caco-2 and IEC-6 cells. When the gut microbiota was analyzed in the mouse model of colitis, we found that diosmetin administration modulated the abundance of Bacteroidetes, Actinobacteria, Cyanobacteria and Firmicutes, which were crucial for inflammatory bowel disease. Our results have linked colitis to the circ-Sirt1/Sirt1 signaling pathway, which is activated by diosmetin. The results imply that diosmetin may be a novel candidate to alleviate DSS-induced colitis and can be a lead compound for future optimization and modification.
Collapse
Affiliation(s)
- Hai-long Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Yi-ying Wei
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Xiao-he Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Shan-shan Zhang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Ruo-tong Zhang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Jin-he Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Bo-wei Ma
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Shuai-bo Shao
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Zi-wei Lv
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Hao Ruan
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Hong-gang Zhou
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Cheng Yang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| |
Collapse
|
48
|
O’Mahony C, Amamou A, Ghosh S. Diet-Microbiota Interplay: An Emerging Player in Macrophage Plasticity and Intestinal Health. Int J Mol Sci 2022; 23:3901. [PMID: 35409260 PMCID: PMC8998881 DOI: 10.3390/ijms23073901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract with an increasing prevalence worldwide. Targeted therapies for IBD are limited by several factors, including the therapeutic ceiling and the high incidence of non-responders or loss-of-response. In order to improve therapeutic efficacy, there is critical need to decipher disease pathogenesis, currently not well understood. Macrophages, innate immune cells that exhibit high plasticity, perpetuate inflammatory signalling in IBD through excessive release of inflammatory mediators. In recent years, pioneering research has revealed the importance of the interplay between macrophages and gut microbiota in maintaining intestinal homeostasis. Particular attention is focusing on microbiota-derived metabolites, believed to possess immunomodulatory properties capable of manipulating macrophage plasticity. Microbiota-derived short-chain fatty acids (SCFAs) and indole compounds, along with dietary sourced omega-3 (ω-3) polyunsaturated fatty acids (PUFA), exert anti-inflammatory effects, attributable to interactions with macrophages. Before we can effectively incorporate these metabolites into IBD therapies, a deeper understanding of microbiota-macrophage interactions at a molecular level is necessary. Therefore, the aim of this review is firstly to detail current knowledge regarding how diet and microbiota-derived metabolites modify macrophage plasticity. Later, we discuss the concept of therapeutic strategies directed at microbiota-macrophage interactions, which could be highly valuable for IBD therapies in the future.
Collapse
Affiliation(s)
- Cian O’Mahony
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (A.A.); (S.G.)
| | | | | |
Collapse
|
49
|
Katkar GD, Sayed IM, Anandachar MS, Castillo V, Vidales E, Toobian D, Usmani F, Sawires JR, Leriche G, Yang J, Sandborn WJ, Das S, Sahoo D, Ghosh P. Artificial intelligence-rationalized balanced PPARα/γ dual agonism resets dysregulated macrophage processes in inflammatory bowel disease. Commun Biol 2022; 5:231. [PMID: 35288651 PMCID: PMC8921270 DOI: 10.1038/s42003-022-03168-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
A computational platform, Boolean network explorer (BoNE), has recently been developed to infuse AI-enhanced precision into drug discovery; it enables invariant Boolean Implication Networks of disease maps for prioritizing high-value targets. Here we used BoNE to query an Inflammatory Bowel Disease (IBD)-map and prioritize a therapeutic strategy that involves dual agonism of two nuclear receptors, PPARα/γ. Balanced agonism of PPARα/γ was predicted to modulate macrophage processes, ameliorate colitis, 'reset' the gene expression network from disease to health. Predictions were validated using a balanced and potent PPARα/γ-dual-agonist (PAR5359) in Citrobacter rodentium- and DSS-induced murine colitis models. Using inhibitors and agonists, we show that balanced-dual agonism promotes bacterial clearance efficiently than individual agonists, both in vivo and in vitro. PPARα is required and sufficient to induce the pro-inflammatory cytokines and cellular ROS, which are essential for bacterial clearance and immunity, whereas PPARγ-agonism blunts these responses, delays microbial clearance; balanced dual agonism achieved controlled inflammation while protecting the gut barrier and 'reversal' of the transcriptomic network. Furthermore, dual agonism reversed the defective bacterial clearance observed in PBMCs derived from IBD patients. These findings not only deliver a macrophage modulator for use as barrier-protective therapy in IBD, but also highlight the potential of BoNE to rationalize combination therapy.
Collapse
Affiliation(s)
- Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, San Diego, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Eleadah Vidales
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Fatima Usmani
- Department of Pathology, University of California San Diego, San Diego, USA
| | - Joseph R Sawires
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - William J Sandborn
- Department of Medicine, University of California San Diego, San Diego, USA.
| | - Soumita Das
- Department of Pathology, University of California San Diego, San Diego, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, USA. .,Department of Pediatrics, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA. .,Department of Medicine, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA. .,Veterans Affairs Medical Center, La Jolla, San Diego, USA.
| |
Collapse
|
50
|
Mitrovic M, Sistilli G, Horakova O, Rossmeisl M. Omega-3 phospholipids and obesity-associated NAFLD: Potential mechanisms and therapeutic perspectives. Eur J Clin Invest 2022; 52:e13650. [PMID: 34291454 DOI: 10.1111/eci.13650] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Prevalence of non-alcoholic fatty liver disease (NAFLD) increases in line with obesity and type 2 diabetes, and there is no approved drug therapy. Polyunsaturated fatty acids of n-3 series (omega-3) are known for their hypolipidaemic and anti-inflammatory effects. Existing clinical trials suggest varying effectiveness of triacylglycerol- or ethyl ester-bound omega-3 in the treatment of NAFLD, without affecting advanced stages such as non-alcoholic steatohepatitis. Preclinical studies suggest that the lipid class used to supplement omega-3 may determine the extent and nature of their effects on metabolism. Phospholipids of marine origin represent an alternative source of omega-3. The aim of this review is to summarise the available evidence on the use of omega-3 phospholipids, primarily in obesity-related NAFLD, and to outline perspectives of their use in the prevention/treatment of NAFLD. A PubMed literature search was conducted in May 2021. In total, 1088 articles were identified, but based on selection criteria, 38 original papers were included in the review. Selected articles describing the potential mechanisms of action of omega-3 phospholipids have also been included. Preclinical evidence clearly indicates that omega-3 phospholipids have strong antisteatotic effects in the liver, which are stronger compared to omega-3 administered as triacylglycerols. Multiple mechanisms are likely involved in the overall antisteatotic effects, involving not only the liver but also adipose tissue and the gut. Robust preclinical evidence for strong antisteatotic effects of omega-3 phospholipids in the liver should be confirmed in clinical trials. Further research is needed on the possible effects of omega-3 phospholipids on advanced NAFLD.
Collapse
Affiliation(s)
- Marko Mitrovic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriella Sistilli
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|