1
|
Jumbam B, Toro M, Hu M. Comparative analysis of grape berry microbiota uncovers sour rot associates from a Maryland vineyard. PLoS One 2025; 20:e0314397. [PMID: 39913420 PMCID: PMC11801560 DOI: 10.1371/journal.pone.0314397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/08/2024] [Indexed: 02/09/2025] Open
Abstract
Grape sour rot (GSR) is a disease complex involving fungi and bacteria that can cause significant yield losses of susceptible varieties. It is widely spread in the eastern U.S. and other grape-growing regions globally. Previous studies suggest that damaged fruit skin and feeding insects like Drosophila spp. are required for the disease to occur. Current control strategies for the management of sour rot are not sustainable, and research on the implications of chemical management of the disease on microbiome diversity is scarce. Our aim was to: i) investigate the effect of insecticide application and netting treatment on the microbiota of GSR-susceptible and tolerant grape varieties; and ii) identify the core microbial assemblages potentially associated with grape sour rot development in Maryland. Using a combined analysis of culture-dependent and independent data, we found that microbiota diversity of healthy grape berries did not change with netting, insecticide application, and between varieties. There was a significant difference in bacterial diversity between healthy and sour rot-affected berries. Komagataeibacter was consistently associated with infected berries followed by Acetobacter and Gluconobacter. This is the first study to report the association of Komagataeibacter with GSR-infected berries. It is thus imperative to investigate its role alongside that of other identified core microbiomes in sour rot development. Candida and Pichia were also consistent genera in infected berries. Several unidentified Candida, Pichia, and other fungal species from infected berries formed the core mycobiomes and it would be worth investigating their involvement in GSR development in Mid-Atlantic vineyards.
Collapse
Affiliation(s)
- Blaise Jumbam
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, United States of America
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, Maryland, United States of America
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
2
|
Li C, Sun L, Jia Z, Tang Y, Liu X, Zhang J, Müller C. Microbial Inoculants Drive Changes in Soil and Plant Microbiomes and Improve Plant Functions in Abandoned Mine Restoration. PLANT, CELL & ENVIRONMENT 2025; 48:1162-1178. [PMID: 39420635 DOI: 10.1111/pce.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
The application of microbial inoculants holds promise for the sustainable restoration of abandoned mine sites by affecting soil nutrients and microbial communities. However, the responses of plant microbial communities to microbial inoculants in mine restoration remain largely unknown. To bridge this knowledge gap, we conducted a 4-year field experiment at an abandoned carbonate mine site to assess the impacts of microbial inoculants on the soil-plant microbiome. Our findings revealed that microbial inoculants significantly changed roots, fine root bacterial and fungal communities. Further, no significant correlations were observed between the soil-plant nutrient content (Z-score) and microbial alpha diversity. However, a significantly positive correlation was found between the relative abundance of the keystone ecological cluster (Module #1) and soil-plant nutrient content. The application of microbial inoculants also increased complexity, albeit decreased stability of plant microbiome networks, alongside a reduction in stochastic assembly. Conversely, they decreased the complexity but increased the stability of soil microbiome networks, accompanied by an increase in stochastic assembly. Notably, the number of specifically enriched microbiome functional traits of roots and root nodules under the microbial inoculant treatments surpassed that of the control. In summary, our findings underscored the potential of microbial inoculants to enhance soil-plant functionality at abandoned mine restoration sites.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Lianhao Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | | | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Gießen, Germany
| |
Collapse
|
3
|
Qingshan L, Ruizhe Y, Lingying X, Yulong P, Qianyuan D, Xian W, Yue L, Yongbo X, Xingwang W, Mengqian X. Rhizosphere microbial community assembly as influenced by reductive soil disinfestation to resist successive cropping obstacle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1760-1770. [PMID: 39390738 DOI: 10.1002/jsfa.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Reductive soil disinfestation (RSD), which involves creating anaerobic conditions and incorporating large amounts of organic materials into the soil, has been identified as a reliable strategy for reducing soilborne diseases in successive cropping systems. However, limited research exists on the connections between soil microorganism composition and plant diseases under various types of organic material applications. This study aimed to evaluate the effects of distinct RSD strategies (control without soil amendment; RSD with 1500 kg ha-1 molasses powder; RSD with 3000 kg ha-1 molasses powder; RSD with 3000 kg ha-1 molasses powder and 37.5-41.3 kg ha-1 microbial agent) on the plant disease index, bacterial community composition and network structure in rhizosphere soil. RESULTS RSD treatments significantly reduced the occurrence of black shank disease in tobacco and increased soil bacterial diversity. High amounts of molasses powder in RSD treatments further enhanced disease inhibition and reduced fungal abundance and Shannon index. RSD also increased the relative abundance of bacterial phylum Firmicutes and fungal phylum Ascomycota, while decreasing the relative abundance of bacterial phyla Chloroflexi and Acidobacteriota and fungal phylum Basidiomycota in rhizosphere soil. A multiple regression model identified bacterial positive cohesion as the primary factor influencing the plant disease index, with a greater impact than bacterial negative cohesion and community stability. The competition among beneficial bacteria for creating a healthy rhizosphere environment is likely a key factor in the success of RSD in reducing plant disease risk. CONCLUSION RSD, especially with higher rates of molasses powder, is a viable strategy for controlling black shank disease in tobacco and promoting soil health by fostering beneficial microbial communities. This study provides guidelines for soil management and plant disease prevention. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Qingshan
- School of Environments and Resource, Anqing Normal University, Anqing, China
| | - Yang Ruizhe
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Xu Lingying
- Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Peng Yulong
- Zunyi Tobacco Company of Guizhou Tobacco Corporation, Zunyi, China
| | - Duan Qianyuan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Wu Xian
- Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Luo Yue
- Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Xu Yongbo
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Wu Xingwang
- School of Environments and Resource, Anqing Normal University, Anqing, China
| | - Xu Mengqian
- School of Environments and Resource, Anqing Normal University, Anqing, China
| |
Collapse
|
4
|
Zhou Y, Jiang P, Ding Y, Zhang Y, Yang S, Liu X, Cao C, Luo G, Ou L. Deciphering the Distinct Associations of Rhizospheric and Endospheric Microbiomes with Capsicum Plant Pathological Status. MICROBIAL ECOLOGY 2025; 88:1. [PMID: 39890664 PMCID: PMC11785608 DOI: 10.1007/s00248-025-02499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Exploring endospheric and rhizospheric microbiomes and their associations can help us to understand the pathological status of capsicum (Capsicum annuum L.) for implementing appropriate management strategies. To elucidate the differences among plants with distinct pathological status in the communities and functions of the endospheric and rhizospheric microbiomes, the samples of healthy and diseased capsicum plants, along with their rhizosphere soils, were collected from a long-term cultivation field. The results indicated a higher bacterial richness in the healthy rhizosphere than in the diseased rhizosphere (P < 0.05), with rhizospheric bacterial diversity surpassing endospheric bacterial diversity. The community assemblies of both the endospheric and rhizospheric microbiomes were driven by a combination of stochastic and deterministic processes, with the stochastic processes playing a primary role. The majority of co-enriched taxa in the healthy endophyte and rhizosphere mainly belonged to bacterial Proteobacteria, Actinobacteria, and Firmicutes, as well as fungal Ascomycota. Most of the bacterial indicators, primarily Alphaproteobacteria and Actinobacteria, were enriched in the healthy rhizosphere, but not in the diseased rhizosphere. In addition, most of the fungal indicators were enriched in both the healthy and diseased endosphere. The diseased endophyte constituted a less complex and stable microbial community than the healthy endophyte, and meanwhile, the diseased rhizosphere exhibited a higher complexity but lower stability than the healthy rhizosphere. Notably, only a microbial function, namely biosynthesis of other secondary metabolites, was higher in the healthy endophytes than in the diseased endophyte. These findings indicated the distinct responses of rhizospheric and endospheric microbiomes to capsicum pathological status, and in particular, provided a new insight into leveraging soil and plant microbial resources to enhance agriculture production.
Collapse
Affiliation(s)
- Yingying Zhou
- Hunan Agricultural University, Changsha, 410128, China
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China
| | - Pan Jiang
- Hunan Agricultural University, Changsha, 410128, China
| | - Yuanyuan Ding
- Hunan Agricultural University, Changsha, 410128, China
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China
| | - Yuping Zhang
- Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Sha Yang
- Hunan Agricultural University, Changsha, 410128, China
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China
| | - Xinhua Liu
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Chunxin Cao
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Gongwen Luo
- Hunan Agricultural University, Changsha, 410128, China.
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China.
| | - Lijun Ou
- Hunan Agricultural University, Changsha, 410128, China.
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China.
| |
Collapse
|
5
|
Miebach J, Green D, Strittmatter M, Mallinger C, Le Garrec L, Zhang QY, Foucault P, Kunz C, Gachon CMM. Importance, structure, cultivability, and resilience of the bacterial microbiota during infection of laboratory-grown Haematococcus spp. by the blastocladialean pathogen Paraphysoderma sedebokerense: evidence for a domesticated microbiota and its potential for biocontrol. FEMS Microbiol Ecol 2025; 101:fiaf011. [PMID: 39832809 PMCID: PMC11797010 DOI: 10.1093/femsec/fiaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
Industrial production of the unicellular green alga Haematococcus lacustris is compromised by outbreaks of the fungal pathogen Paraphysoderma sedebokerense (Blastocladiomycota). Here, using axenic algal and fungal cultures and antibiotic treatments, we show that the bacterial microbiota of H. lacustris is necessary for the infection by P. sedebokerense and that its modulation affects the outcome of the interaction. We combined metagenomics and laboratory cultivation to investigate the diversity of the bacterial microbiota associated to three Haematococcus species and monitor its change upon P. sedebokerense infection. We unveil three types of distinct, reduced bacterial communities, which likely correspond to keystone taxa in the natural Haematococcus spp. microbiota. Remarkably, the taxonomic composition and functionality of these communities remained stable during infection. The major bacterial taxa identified in this study have been cultivated by us or others, paving the way to developing synthetic communities to experimentally explore interactions within this tripartite system. We discuss our results in the light of emerging evidence concerning the structuring and domestication of plant and animal microbiota, thus providing novel experimental tools and a new conceptual framework necessary to enable the engineering of Haematococcus spp. microbiota toward the biocontrol of P. sedebokerense.
Collapse
Affiliation(s)
- Jeanne Miebach
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 927, 75005 Paris, France
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - David Green
- Scottish Association for Marine Science, Oban PA37 1QA, United Kingdom
| | | | - Claire Mallinger
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - Lucie Le Garrec
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - Qian Yi Zhang
- Scottish Association for Marine Science, Oban PA37 1QA, United Kingdom
| | - Pierre Foucault
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
- UMR7618 iEES-Paris, Sorbonne Université, 75005 Paris, France
| | - Caroline Kunz
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 927, 75005 Paris, France
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - Claire M M Gachon
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
- Scottish Association for Marine Science, Oban PA37 1QA, United Kingdom
| |
Collapse
|
6
|
Li D, Chen W, Luo W, Zhang H, Liu Y, Shu D, Wei G. Seed microbiomes promote Astragalus mongholicus seed germination through pathogen suppression and cellulose degradation. MICROBIOME 2025; 13:23. [PMID: 39856709 PMCID: PMC11761781 DOI: 10.1186/s40168-024-02014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Seed-associated microorganisms play crucial roles in maintaining plant health by providing nutrients and resistance to biotic and abiotic stresses. However, their functions in seed germination and disease resistance remain poorly understood. In this study, we investigated the microbial community assembly features and functional profiles of the spermosphere and endosphere microbiomes related to germinated and ungerminated seeds of Astragalus mongholicus by using amplicon and shotgun metagenome sequencing techniques. Additionally, we aimed to elucidate the relationship between beneficial microorganisms and seed germination through both in vitro and in vivo pot experiments. RESULTS Our findings revealed that germination significantly enhances the diversity of microbial communities associated with seeds. This increase in diversity is driven through environmental ecological niche differentiation, leading to the enrichment of potentially beneficial probiotic bacteria such as Pseudomonas and Pantoea. Conversely, Fusarium was consistently enriched in ungerminated seeds. The co-occurrence network patterns revealed that the microbial communities within germinated and ungerminated seeds presented distinct structures. Notably, germinated seeds exhibit more complex and interconnected networks, particularly for bacterial communities and their interactions with fungi. Metagenome analysis showed that germinated seed spermosphere soil had more functions related to pathogen inhibition and cellulose degradation. Through a combination of culture-dependent and germination experiments, we identified Fusarium solani as the pathogen. Consistent with the metagenome analysis, germination experiments further demonstrated that bacteria associated with pathogen inhibition and cellulose degradation could promote seed germination and vigor. Specifically, Paenibacillus sp. significantly enhanced A. mongholicus seed germination and plant growth. CONCLUSIONS Our study revealed the dynamics of seed-associated microorganisms during seed germination and confirmed their ecological role in promoting A. mongholicus seed germination by suppressing pathogens and degrading cellulose. This study offers a mechanistic understanding of how seed microorganisms facilitate successful seed germination, highlighting the potential for leveraging these microbial communities to increase plant health. Video Abstract.
Collapse
Affiliation(s)
- Da Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Weimin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Wen Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Haofei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Duntao Shu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
7
|
Sakhabutdinov IT, Chastukhina IB, Ryazanov EA, Ponomarev SN, Gogoleva OA, Balkin AS, Korzun VN, Ponomareva ML, Gorshkov VY. Variability of microbiomes in winter rye, wheat, and triticale affected by snow mold: predicting promising microorganisms for the disease control. ENVIRONMENTAL MICROBIOME 2025; 20:3. [PMID: 39799378 PMCID: PMC11724586 DOI: 10.1186/s40793-025-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Snow mold caused by different psychrophilic phytopathogenic fungi is a devastating disease of winter cereals. The variability of the snow mold pathocomplex (the quantitative composition of snow mold fungi) has not been evaluated across different crops or different agrocenoses, and no microbial taxa have been predicted at the whole-microbiome level as potential effective snow mold control agents. Our study aimed to assess the variability of the snow mold pathocomplex in different winter cereal crops (rye, wheat, and triticale) in different agrocenoses following the peak disease progression and to arrange a hierarchical list of microbial taxa predicted to be the main candidates to prevent or, conversely, stimulate the development of snow mold pathogens. RESULTS The variability of microbiomes between different crops within a particular agrocenosis was largely determined by fungal communities, whereas the variability of microbiomes of a particular crop in different agrocenoses was largely determined by bacterial communities. The snow mold pathocomplex was the most "constant" in rye, with the lowest level of between-replicate variability and between-agrocenoses variability and (similar to the triticale snow mold pathocomplex) strong dominance of Microdochium over other snow mold fungi. The wheat snow mold pathocomplex was represented by different snow mold fungi, including poorly investigated Phoma sclerotioides. To predict snow mold-control microorganisms, a conveyor of statistical methods was formed and applied; this conveyor enables considering not only the correlation between the abundance of target taxa and a phytopathogen but also the stability and fitness of taxa within plant-associated communities and the reproducibility of the predicted effect of taxa under different conditions. This conveyor can be widely used to search for biological agents against various plant infectious diseases. CONCLUSIONS The top indicator microbial taxa for winter wheat and rye following the winter period were Ph. sclerotioides and Microdochium, respectively, both of which are causal agents of snow mold disease. Bacteria from the Cellulomonas, Lechevalieria, and Pseudoxanthomonas genera and fungi from the Cladosporium, Entimomentora, Pseudogymnoascus, and Cistella genera are prime candidates for testing their plant-protective properties against Microdochium-induced snow mold disease and for further use in agricultural practice.
Collapse
Affiliation(s)
- Ildar T Sakhabutdinov
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Inna B Chastukhina
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Egor A Ryazanov
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Sergey N Ponomarev
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Olga A Gogoleva
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Alexander S Balkin
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Viktor N Korzun
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555, Einbeck, Germany
| | - Mira L Ponomareva
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Vladimir Y Gorshkov
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia.
| |
Collapse
|
8
|
Jiang H, Xu X, Lv L, Huang X, Ahmed T, Tian Y, Hu S, Chen J, Li B. Host Metabolic Alterations Mediate Phyllosphere Microbes Defense upon Xanthomonas oryzae pv oryzae Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:249-259. [PMID: 39690815 DOI: 10.1021/acs.jafc.4c09178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Rice bacterial leaf blight, caused by Xanthomonas oryzae pv oryzae (Xoo), is a significant threat to global food security. Although the microbiome plays an important role in protecting plant health, how the phyllosphere microbiome is recruited and the underlying disease resistance mechanism remain unclear. This study investigates how rice phyllosphere microbiomes respond to pathogen invasion through a comprehensive multiomics approach, exploring the mechanisms of microbial defense and host resistance. We discovered that Xoo infection significantly reshapes the physicosphere microbial community. The bacterial network became more complex, with increased connectivity and interactions following infection. Metabolite profiling revealed that l-ornithine was a key compound to recruiting three keystone microbes, Brevundimonas (YB12), Pantoea (YN26), and Stenotrophomonas (YN10). These microbes reduced the disease index by up to 67.6%, and these microbes demonstrated distinct defense mechanisms. Brevundimonas directly antagonized Xoo by disrupting cell membrane structures, while Pantoea and Stenotrophomonas enhanced plant immune responses by significantly increasing salicylic acid and jasmonic acid levels and activating defense-related enzymes. Our findings provide novel insights into plant-microbe interactions, demonstrating how host metabolic changes recruit and activate beneficial phyllosphere microbes to combat pathogenic invasion. This research offers promising strategies for sustainable agricultural practices and disease management.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqiong Lv
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Life Sciences, Western Caspian University, Baku AZ1000, Azerbaijan
| | - Ye Tian
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shiqi Hu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Wang L, Zhang X, Lu J, Huang L. Microbial diversity and interactions: Synergistic effects and potential applications of Pseudomonas and Bacillus consortia. Microbiol Res 2025; 293:128054. [PMID: 39799763 DOI: 10.1016/j.micres.2025.128054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Microbial diversity and interactions in the rhizosphere play a crucial role in plant health and ecosystem functioning. Among the myriads of rhizosphere microbes, Pseudomonas and Bacillus are prominent players known for their multifaceted functionalities and beneficial effects on plant growth. The molecular mechanism of interspecies interactions between natural isolates of Bacillus and Pseudomonas in medium conditions is well understood, but the interaction between the two in vivo remains unclear. This paper focuses on the possible synergies between Pseudomonas and Bacillus associated in practical applications (such as recruiting beneficial microbes, cross-feeding and niche complementarity), and looks forward to the application prospects of the consortium in agriculture, human health and bioremediation. Through in-depth understanding of the interactions between Pseudomonas and Bacillus as well as their application prospects in various fields, this study is expected to provide a new theoretical basis and practical guidance for promoting the research and application of rhizosphere microbes.
Collapse
Affiliation(s)
- Lixue Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xinyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahui Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
10
|
Gu Y, Liu T, Al-Ansi W, Qian H, Fan M, Li Y, Wang L. Functional microbiome assembly in food environments: addressing sustainable development challenges. Compr Rev Food Sci Food Saf 2025; 24:e70074. [PMID: 39791452 DOI: 10.1111/1541-4337.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025]
Abstract
The global food system faces numerous challenges, creating an urgent need for sustainable reform. Functional microbiome assemblies offer transformative potential by endowing microbial foods with diverse, beneficial characteristics. These assemblies can dynamically influence specific food systems, positioning them as a promising approach for reshaping food production. However, the current applications and types of microbiome assemblies in foods remain limited, with a lack of effective screening and regulatory methods. This review introduces the functions and practical approaches for implementing microbiome assemblies in food systems alongside future directions for enhancing their applications. Several ecological studies evaluated how to regulate functional output and revealed that environmental conditions, which shape the niche for species survival, significantly influenced the functional output of microbiomes. Building on this theoretical foundation, this review presents a model for functional output comprising niche conditions, functional gene codes, and corresponding functional outputs. This model is illustrated with examples to explore sustainable applications and regulatory mechanisms for functional microbiome assemblies. By highlighting the roles of functional outputs in food systems and examining the potential for food environments to induce and modulate microbiome functions, this review provides a roadmap to address emerging challenges in food sustainability.
Collapse
Affiliation(s)
- Yao Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Tingting Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Tao Y, Zhou G, Zhang X, Feng M, Li L, Qian X. Effects of saffron-grape intercropping on saffron flower number and rhizosphere microbial community. BMC Microbiol 2024; 24:551. [PMID: 39736513 DOI: 10.1186/s12866-024-03716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/14/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Saffron (Crocus sativus L.) is a valuable herb. With the increasing demand for saffron, people are starting to focus on how to increase its yields. Intercropping and microbial interactions have a positive effect on plant yield, including enhanced soil fertility, enriched microbial diversity, reduced pest and disease incidences, and improved plant growth. However, the impact of intercropping saffron with other plants on saffron yields and soil microbial community diversity remains unclear. In our study, we counted the number of saffron flowers in two cropping patterns (saffron monoculture and saffron-grape intercropping), and analyzed the microbial community diversity and composition using Illumina high-throughput sequencing methods based on 16 S and ITS amplicons. RESULTS The results showed that saffron-grape intercropping significantly increased number of flowers compared to saffron monoculture (P < 0.01). Saffron-grape intercropping influenced rhizosphere soil chemical properties and altered rhizosphere microbial communities. The pH of intercropped rhizosphere soil increased significantly from 5.84 to 6.43. Spearman's correlation revealed a significantly positive correlation between pH and Bacillus, Sphingomonas, Sphingobacterium, Halomonas, Pseudolabrys, and Dongia. Conversely, it showed a significant negative correlation with Pedobacter, Achromobacter, Tumebacillus, and Sphingopyxis in bacteria. In fungi, a significant negative correlation was observed. Although there was no significant difference in diversity, intercropping increased the observed richness and biodiversity of both bacteria and fungi compared to monoculture. The intercropping led to a higher relative abundance of bacterial genera such as Sphingomonas and Streptomyces, as well as fungal genera including Acremonium, Llyonectria, Penicillium, Cadophora, Plectosphaerella, and Tetracladium. Intercropping decreased the dominance of certain microbial taxa, including Fictibacillus, Microbacterium, and Glutamicibacter among bacterial genera, as well as Fusarium and Arthrographis among fungal genera. Additionally, functional analysis revealed that intercropping was significantly higher (P < 0.01) than monoculture in dark hydrogen oxidation, denitrification, nitrate denitrification, nitrous oxide denitrification, nitrite denitrification, and manganese oxidation. Plant pathogens decreased from 6.13% in monoculture to 2.46% in intercropping. CONCLUSION This study found that saffron-grape intercropping positively affected saffron yield. Based on the existing data, intercropping resulted in an increase in microbial communities, including some taxa previously identified as beneficial for other plants. These findings establish the foundation for the widespread application of saffron-grape intercropping and offer a promising strategy for increasing saffron yield.
Collapse
Affiliation(s)
- Yuanyuan Tao
- TCM (Traditional Chinese Medicine), Huzhou Central Hospital, Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Guifen Zhou
- Department of Chinese Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xingchang Zhang
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Mengqing Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liqin Li
- TCM (Traditional Chinese Medicine), Huzhou Central Hospital, Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China.
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China.
| | - Xiaodong Qian
- TCM (Traditional Chinese Medicine), Huzhou Central Hospital, Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China.
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China.
| |
Collapse
|
12
|
Feng T, Meng Z, Li H, Chen G, Liu C, Tang K, Chen J. Industrial hemp (Cannabis sativa L.) adapts to cadmium stress by reshaping rhizosphere fungal community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177851. [PMID: 39631339 DOI: 10.1016/j.scitotenv.2024.177851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Increasing evidence indicates that plants under environmental stress can actively seek the help of microbes ('cry-for-help' hypothesis). However, empirical evidence underlying this strategy is limited under metal-stress conditions. Here, we employed integrated microbial community profiling in cadmium (Cd) polluted soil and culture-based methods to investigate the three-way interactions between the industrial hemp (Cannabis Sativa L.), rhizospheric microbes, and Cd stress. Results from the pot and three cycles of the successful hemp planting experiments showed that Cd stress significantly affected the composition of rhizosphere fungi in industrial hemp and induced enrichment of the fungal operational taxonomic unit (OTU)3 (Cladosporium). A representative of OTU3 (strain DM-2) was successfully isolated. In a hydroponic experiment, inoculation of DM-2 significantly increased the shoot length (by 25.84 %) and fresh weight (by 92.66 %) of hemp seedlings when compared to the absence of DM-2 under the Cd stress. The findings indicate that DM-2 inoculation could effectively alleviate the Cd stress in hemp seedlings. Metabolomic analysis of spent media with or without DM-2 revealed the association of DM-2 with the transformation of root exudates to melatonin, which may be a key chemical in plant-microbe interactions against abiotic stresses. The findings will inform efforts to manipulate the root microbiome to enhance plant growth in polluted environments.
Collapse
Affiliation(s)
- Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhuang Meng
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Huifen Li
- Zhonglan lianhai Design and Research Institute Co. LTD, 222000, Jiangsu, China
| | - Guohui Chen
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Kailei Tang
- School of Agriculture, Yunnan University, Kunming 650091, China.
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
13
|
Olanrewaju OS, Glick BR, Babalola OO. Beyond correlation: Understanding the causal link between microbiome and plant health. Heliyon 2024; 10:e40517. [PMID: 39669148 PMCID: PMC11636107 DOI: 10.1016/j.heliyon.2024.e40517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Understanding the causal link between the microbiome and plant health is crucial for the future of crop production. Established studies have shown a symbiotic relationship between microbes and plants, reshaping our knowledge of plant microbiomes' role in health and disease. Addressing confounding factors in microbiome study is essential, as standardization enables precise identification of microbiome features that influence outcomes. The microbiome significantly impacts plant development, necessitating holistic investigation for maintaining plant health. Mechanistic studies have deepened our understanding of microbiome structure and function related to plant health, though much research still needs to be carried out. This review, therefore, discusses current challenges and proposes advancing studies from correlation to causation and translation. We explore current knowledge on the microbiome and plant health, emphasizing multi-omics approaches and hypothesis-driven research. Future studies should focus on developing translational research for producing probiotics and prebiotics from biomarkers that regulate the microbiome-plant health connection, promoting sustainable crop production through microbiome applications.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Buckhurst road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
14
|
Shao Q, Dong C, Han Y, Zhang Y. Microbiota dynamics and source tracing during the growing, aging, and decomposing processes of Eucommia ulmoides leaves. Front Microbiol 2024; 15:1470450. [PMID: 39691911 PMCID: PMC11649662 DOI: 10.3389/fmicb.2024.1470450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Eucommia ulmoides, an important tree, faces serious threat to its growth from environmental stress, particularly climate change. Using plant microbes to enhance host adaptation to respond climate change challenges has been recognized as a viable and sustainable strategy. However, it is still unclear how the perennial tree microbiota varies across phenological stages and the links between respective changes in aboveground and belowground niches. Here, we sequenced 27 root and 27 leaf samples of E. ulmoides using 16S rRNA and ITS amplicon sequencing techniques. These samples were obtained from the three main phenological stages of leaves, including leaf growing, aging and decomposing stages. Results showed that the diversity, composition, and function of the leaf microbiota of E. ulmoides showed more obvious changes at three phenological time points compared to roots. Regarding alpha diversity, the root microbiota showed no difference across three sampling stages, while the leaf microbiota varied with sampling stages. Regarding beta diversity, the root microbiota clustered from different sampling stages, while the leaf microbiota exhibited distinct separation. Regarding composition and function, the dominant taxa and main functions of the root microbiota were the same in three sampling stages, while the leaf microbiota in the decomposing stage was obviously different from the remaining two stages. Additionally, taxa overlap and source-sink relationship existed between E. ulmoides microbiota. Specifically, the degree of overlap among root microbiota was higher than that of leaf microbiota in three sampling stages. The bidirectional source-sink relationship that existed between the root and leaf niches varied with sampling stage. During the leaf growing and aging stages, the proportion of microbial members migrating from roots to leaves was higher than the proportion of members migrating from leaves to roots. During the leaf decomposing stage, the migration characteristics of the fungal community between the root and leaf niches maintained the same as in the remaining two stages, but the proportion of bacterial members migrating from leaves to roots was significantly higher than that of members migrating from roots to leaves. Our findings provide crucial foundational information for utilizing E. ulmoides microbiota to benefit their host under climate change challenges.
Collapse
Affiliation(s)
- Qiuyu Shao
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province/Key Laboratory of Ecology and Management on Forest Fire in Higher Education Institutions of Guizhou Province, Guizhou Education University, Guiyang, China
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Chunbo Dong
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yanfeng Han
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yanwei Zhang
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province/Key Laboratory of Ecology and Management on Forest Fire in Higher Education Institutions of Guizhou Province, Guizhou Education University, Guiyang, China
| |
Collapse
|
15
|
Liu X, Zhang X, Dong T, Bao Y, Xu B, Shen Y, Yuan X. Sustainable use of agricultural residues to improve corn silage quality: Co-ensiling with oregano oil residues. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123172. [PMID: 39531776 DOI: 10.1016/j.jenvman.2024.123172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The study aimed to evaluate the effect of oregano essential oil extraction residues (ORES) on the fermentation quality of corn silage. Non-fungal infected (NFI) and fungal infected (FI) corn were ensiled with 20% (wet weight) of ORES for 180 d. The inclusion of ORES delayed pH decline regardless of fungal infection. The inclusion of ORES did not adversely affect lactic acid (LA) production in NFI silages but retarded the initial LA fermentation of FI silages. Co-ensiling corn with ORES significantly decreased ethanol content. Co-ensiling FI corn with ORES significantly increased the fungal Chao1 and Shannon indices compared to FI-CON silages but did not affect the bacterial Chao1 and Shannon indices. The fungal infection aggravated the risk of Paenibacillus and Clostridium contamination, which was mitigated by co-ensiling with ORES. In conclusion, fungal infection suppressed ensiling fermentation, and heightened the risk of proliferation of undesirable bacteria, while ORES relieved these risks. Ensiling ORES with corn as forages is a potential and promising strategy for the efficient reusing of agro-industrial waste.
Collapse
Affiliation(s)
- Xinbao Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianyi Dong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhong Bao
- Institute of Grass Science, TAR Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Bin Xu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yixin Shen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianjun Yuan
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Peng X, Wang H, Zhou X. The Phyllosphere Microbial Community Structure of Three Camellia Species upon Anthracnose. FORESTS 2024; 15:2080. [DOI: 10.3390/f15122080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Anthracnose of Camellia plants is caused by the Colletotrichum species. The fungal pathogens mainly infect the leaves of plants and lead to serious economic losses. However, knowledge of Camellia phyllosphere microbial community after Colletotrichum infection has not been explored which limited our understanding of the relationship between the Camellia anthracnose outbreak and interacting microorganisms. In this study, three economically and ecologically important Camellia species with anthracnose symptoms were collected and subjected to bacterial and fungal composition analysis, diversity, co-occurrence characteristics, isolation of key strains, and tie-back pathogenicity test. The results indicated that Sphingomonas and Methylobacterium were the dominant bacterial genera over the three Camellia species and Pallidocercospora, Colletotrichum, and Pichia were the dominant fungal genera. The co-occurrence analysis showed that Methylobacterium, Sphingomonas, Massilia, and Allorhizobium were the key bacterial taxa and Colletotrichum, Pallidocercospora, Pichia, Septophoma, and Septoria were the key fungal taxa over the three infected plants. The hub taxa, including the species significantly associated with the Colletotrichum abundance, were mostly beneficial bacteria over the three Camellia species. Further co-culture and tie-back pathogenicity tests verified that the hub taxa associated with pathogenic Colletotrichum in the microbial networks may play promoting/inhibiting roles on Colletotrichum infection. The results highlight the importance of phytopathological conditions for the interactions between microbial members of foliar fungal and bacterial communities.
Collapse
Affiliation(s)
- Xiaojie Peng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Haonan Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Xudong Zhou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
17
|
Luo C, He Y, Chen Y. Rhizosphere microbiome regulation: Unlocking the potential for plant growth. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100322. [PMID: 39678067 PMCID: PMC11638623 DOI: 10.1016/j.crmicr.2024.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Rhizosphere microbial communities are essential for plant growth and health maintenance, but their recruitment and functions are affected by their interactions with host plants. Finding ways to use the interaction to achieve specific production purposes, so as to reduce the use of chemical fertilizers and pesticides, is an important research approach in the development of green agriculture. To demonstrate the importance of rhizosphere microbial communities and guide practical production applications, this review summarizes the outstanding performance of rhizosphere microbial communities in promoting plant growth and stress tolerance. We also discuss the effect of host plants on their rhizosphere microbes, especially emphasizing the important role of host plant species and genes in the specific recruitment of beneficial microorganisms to improve the plants' own traits. The aim of this review is to provide valuable insights into developing plant varieties that can consistently recruit specific beneficial microorganisms to improve crop adaptability and productivity, and thus can be applied to green and sustainable agriculture in the future.
Collapse
Affiliation(s)
- Chenghua Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yijun He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
18
|
Sun X, Liu Y, He L, Kuang Z, Dai S, Hua L, Jiang Q, Wei T, Ye P, Zeng H. Response of Yields, Soil Physiochemical Characteristics, and the Rhizosphere Microbiome to the Occurrence of Root Rot Caused by Fusarium solani in Ligusticum chuanxiong Hort. Microorganisms 2024; 12:2350. [PMID: 39597739 PMCID: PMC11596405 DOI: 10.3390/microorganisms12112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Ligusticum chuanxiong Hort. is considered an important medicinal herb with extremely high economic value and medicinal value due to its various effects, including anti-oxidation, sedative action, hepatoprotection, and invigorating blood circulation. However, L. chuanxiong cultivation is hampered by various plant diseases, especially the root rot caused by Fusarium solani, hindering the sustainable development of the L. chuanxiong industry. The occurrence of soil-borne diseases is closely linked to imbalances in the microbial community structure. Here, we studied the yields, rhizosphere microbiota, and soil physiochemical characteristics of healthy and diseased L. chuanxiong plants affected by root rot with high-throughput sequencing and microbial network analysis, aiming to explore the relationships between soil environmental factors, microbiomes, and plant health of L. chuanxiong. According to the results, L. chuanxiong root rot significantly decreased the yields, altered microbial community diversity and composition, enriched more pathogenic fungi, recruited some beneficial bacteria, and reduced microbial interaction network stability. The Mantel test showed that soil organic matter and pH were the major environmental factors modulating plant microbiome assembly. The root rot severity was significantly affected by soil physiochemical properties, including organic matter, cation exchange capacity, available nitrogen, phosphorus, potassium, and pH. Furthermore, two differential microbes that have great potential in the biocontrol of L. chuanxiong root rot were dug out in the obtained results, which were the genera Trichoderma and Bacillus. This study provided a theoretical basis for further studies revealing the microecological mechanism of L. chuanxiong root rot and the ecological prevention and control of L. chuanxiong root rot from a microbial ecology perspective.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hualan Zeng
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China; (X.S.); (Y.L.); (L.H.); (Z.K.); (S.D.); (L.H.); (Q.J.); (T.W.); (P.Y.)
| |
Collapse
|
19
|
Cheng Y, Zhao J, Liu Y, Zhang T, Hsiang T, Yu Z, Qin W. Response of the Endophytic Microbiome in Cotinus coggygria Roots to Verticillium Wilt Infection. J Fungi (Basel) 2024; 10:792. [PMID: 39590711 PMCID: PMC11595824 DOI: 10.3390/jof10110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Verticillium wilt caused by Verticillium dahliae Kleb. is a lethal soil-borne fungal disease of Cotinus coggygria. The plant endophytic microbiome plays an important role in maintaining plant health and disease resistance, but it is unclear how the endophytic microbiome of C. coggygria roots varies in response to Verticillium wilt occurrence. In this study, the endophytic microbial diversity, community composition, dominant species, and co-occurrence network of C. coggygria under Verticillium wilt-affected and healthy conditions were assessed using Illumina sequencing. Compared with healthy plants, the bacterial alpha diversity indices of Verticillium wilt-affected plants decreased significantly, while the fungal alpha diversity indices showed obvious increases. The relative abundance of dominant taxa including Proteobacteria, Actinobacteriota, Ascomycota, and Basidiomycota at the phylum level, as well as Gammaproteobacteria, Thermoleophilia, Dothideomycetes, and Agaricomycetes at the class level, differed significantly between Verticillium wilt-affected and healthy plants. Co-occurrence networks revealed that the fungal network of Verticillium wilt-affected roots was denser with more negative interactions, which may be relevant to functional changes from reciprocity to competition in the microbial community, in response to V. dahliae infection. The results enhanced our understanding on the relationships between the endophytic microbiome and Verticillium wilt, which could provide information for the management of this disease in C. coggygria.
Collapse
Affiliation(s)
- Yanli Cheng
- College of Life Sciences, Yangtze University, Jingzhou 434025, China;
- Institute of Plant Protection, Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (Y.L.); (T.Z.)
| | - Juan Zhao
- Institute of Plant Protection, Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (Y.L.); (T.Z.)
| | - Yayong Liu
- Institute of Plant Protection, Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (Y.L.); (T.Z.)
| | - Taotao Zhang
- Institute of Plant Protection, Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (Y.L.); (T.Z.)
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Zhihe Yu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China;
| | - Wentao Qin
- Institute of Plant Protection, Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (Y.L.); (T.Z.)
| |
Collapse
|
20
|
Liu H, Zhang Y, Li H, Chen S, Zhang J, Ding W. Characteristics of soil microbial community assembly patterns in fields with serious occurrence of tobacco Fusarium wilt disease. Front Microbiol 2024; 15:1482952. [PMID: 39606108 PMCID: PMC11600729 DOI: 10.3389/fmicb.2024.1482952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Fusarium wilt disease (FWD) of tobacco is a destructive disease caused by Fusarium spp. in tobacco-growing regions worldwide. The Fusarium spp. infection may alter the composition and structure of the tobacco root microbial community; however, the relationship between these factors under large-scale geographical conditions in China remains underexplored. Methods In the context of this investigation, soil samples from the rhizosphere of tobacco plants were procured from fields afflicted with FWD and those devoid of the disease in the Hanzhong region of Shaanxi province, as well as in the Sanmenxia and Nanyang regions of Henan province. These regions are recognized for the commercial cultivation of tobacco. The examination focused on discerning the influence of tobacco FWD on the composition and configuration of the rhizosphere microbial community, along with their co-occurrence patterns. This scrutiny was underpinned by targeted PCR amplification and high-throughput sequencing (amplicon sequencing) of the 16S rRNA gene and the ITS1 region. Results The amplicon data analyses showed that FWD influenced the microbial structure and composition of the tobacco rhizosphere soil. FWD had a greater impact on the microbiome of the tobacco fungal community than on the microbiome of the bacterial community. Healthy plants had the ability to recruit potential beneficial bacteria. Diseased plants were more susceptible to colonization by other pathogenic fungi, but they still had the capacity to recruit potential beneficial bacteria. The analysis of microbial intra- and inter-kingdom networks further indicated that FWD destabilized microbial networks. In the overall microbial interaction, microorganisms primarily interacted within their boundaries, but FWD increased the proportion of interactions occurring across boundaries. In addition, FWD could disrupt the interactions within microbial network modules. Discussion This study provides evidence that FWD can cause changes in the composition and network of microbial communities, affecting the interactions among various microorganisms, including bacteria and fungi. These findings contribute to our understanding of how plant microbiomes change due to disease. Furthermore, they add to our knowledge of the mechanisms that govern the assembly and interactions of microbial communities under the influence of FWD.
Collapse
Affiliation(s)
- Huidi Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yongfeng Zhang
- Shangluo Prefecture Branch of Shaanxi Tobacco Corporation, Shangluo, China
| | - Hongchen Li
- Sanmenxia Tobacco Corporation of Henan Province, Sanmenxia, China
| | - Shilu Chen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jingze Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Fang W, Zhu Y, Liang C, Shao S, Chen J, Qing H, Xu Q. Deciphering differences in microbial community characteristics and main factors between healthy and root rot-infected Carya cathayensis rhizosphere soils. Front Microbiol 2024; 15:1448675. [PMID: 39588107 PMCID: PMC11586369 DOI: 10.3389/fmicb.2024.1448675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Fusarium-induced root rot of Carya cathayensis (C. cathayensis) is a typical soil-borne disease that has severely damaged the Carya cathayensis industry in China. Understanding the interaction among soil microbial communities, soil characteristics, and pathogenic bacteria is very important for the ecological prevention and control of Carya cathayensis root rot. Methods We used Miseq Illumina high-throughput sequencing technology to study the microbial community in the rhizosphere soil of healthy and diseased C. cathayensis, quantified the abundance of bacteria, fungi, and pathogenic fungi, and combined these with soil chemistry and enzyme activity indicators to analyze the characteristics of healthy and diseased rhizosphere soils. Results We found that the pH, soil organic carbon(SOC), available nitrogen (AN), available phosphorus (AP), available potassium (AK),N-acetyl-β-D-glucosaminidase (NAG) β-glucosidase (BG), fungal gene copy number, bacterial community diversity and network complexity of the diseased soil were significantly lower (p < 0.05), while Fusarium graminearum copies number levels increased (p < 0.05). Additionally, the study found that healthy soils were enriched with beneficial bacteria such as Subgroup_7 (0.08%), MND1 (0.29%), SWB02 (0.08%), and Bradyrhizobium (0.09%), as well as potential pathogen-suppressing fungi such as Mortierella (0.13%), Preussia (0.03%), and Humicol (0.37%), were found to be associated with the growth and development of C. cathayensis. Discussion In summary, this research comprehensively reveals the differences in environmental and biological factors between healthy and diseased soils, as well as their correlations. It provides a theoretical basis for optimal soil environmental regulation and the construction of healthy microbial communities. This foundation facilitates the development of multifaceted strategies for the prevention and control of C. cathayensis root rot.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yiyang Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Chenfei Liang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shuai Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Hua Qing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Qiufang Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
22
|
Guo R, Li B, Zhao Y, Tang C, Klosterman SJ, Wang Y. Rhizobacterial Bacillus enrichment in soil enhances smoke tree resistance to Verticillium wilt. PLANT, CELL & ENVIRONMENT 2024; 47:4086-4100. [PMID: 38894696 DOI: 10.1111/pce.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
Verticillium wilt, caused by the soilborne fungus Verticillium dahliae, poses a serious threat to the health of more than 200 plant species worldwide. Although plant rhizosphere-associated microbiota can influence plant resistance to V. dahliae, empirical evidence underlying Verticillium wilt resistance of perennial trees is scarce. In this study, we systemically investigated the effect of the soil microbiota on the resistance of smoke trees (Cotinus coggygria) to Verticillium wilt using field, greenhouse and laboratory experiments. Comparative analysis of the soil microbiota in the two stands of smoke trees suggested that Bacillus represented the most abundant and key microbial genus related to potential disease suppression. Smoke tree seedlings were inoculated with isolated Bacillus strains, which exhibited disease suppressiveness and plant growth-promoting properties. Furthermore, repletion of Bacillus agents to disease conducive soil significantly resulted in reduced incidence of smoke tree wilt and increased resistance of the soil microbiota to V. dahliae. Finally, we explored a more effective combination of Bacillus agents with the fungicide propiconazole to combat Verticillium wilt. The results establish a foundation for the development of an effective control for this disease. Overall, this work provides a direct link between Bacillus enrichment and disease resistance of smoke trees, facilitating the development of green control strategies and measurements of soil-borne diseases.
Collapse
Affiliation(s)
- Ruifeng Guo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Bimeng Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yize Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chen Tang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, California, USA
| | - Yonglin Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
Fu M, Chen Y, Liu YX, Chang X, Zhang L, Yang X, Li L, Zhang L. Genotype-associated core bacteria enhance host resistance against kiwifruit bacterial canker. HORTICULTURE RESEARCH 2024; 11:uhae236. [PMID: 39507700 PMCID: PMC11539023 DOI: 10.1093/hr/uhae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 11/08/2024]
Abstract
Both the phyllosphere and rhizosphere are inhabited by different kinds of microorganisms that are closely related to plant growth and health. However, it is not clear whether disease-resistant cultivars shape the microbiome to facilitate disease resistance. In this study, significant differences were found in the aboveground and belowground bacterial communities of disease-resistant and disease-susceptible cultivars grown in the same kiwifruit orchard. The phyllosphere of the resistant cultivar 'Wanjin' showed greater enrichment of Pseudomonas spp. and Sphingomonas spp. than the susceptible cultivar 'Donghong'. The rhizosphere microbes of 'Wanjin' were less affected by field location, with significantly greater bacterial abundance than those of 'Donghong' and more bacteria with potential biocontrol properties. Pseudomonas syringae pv. actinidiae (Psa) infection significantly affected the microbiome of the phyllosphere of kiwifruit plants, especially that of 'Donghong'. Resistant and susceptible kiwifruit cultivars exhibit distinct beneficial microbial recruitment strategies under Psa challenge. The phyllosphere of 'Donghong' in Jinzhai was enriched with Sphingomonas spp. and Pantoea spp. under Psa infection, while the rhizosphere of 'Wanjin' was enriched with Sphingomonas spp. and Novosphingobium spp. We further identified five key biomarkers within the microbial community associated with Psa infection. Inoculation experiments showed that Lysobacter sp. R34, Stenotrophomonas sp. R31, Pseudomonas sp. R10 and RS54, which were isolated from belowground compartments of 'Wanjin', could positively affect plant performance under Psa challenge. The combination use of Pseudomonas sp. R10 and Stenotrophomonas sp. R31 significantly improve the management of kiwifruit canker. Our findings provided novel insights into soil-microbe-plant interactions and the role of microbes in plant disease resistance and susceptibility.
Collapse
Affiliation(s)
- Min Fu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yunhe Chen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xiaoxi Chang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xinyi Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Li Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, CAS Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lixin Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
24
|
Trenk NK, Pacheco-Moreno A, Arora S. Understanding the root of the problem for tackling pea root rot disease. Front Microbiol 2024; 15:1441814. [PMID: 39512933 PMCID: PMC11540676 DOI: 10.3389/fmicb.2024.1441814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Pea (Pisum sativum), a crop historically significant in the field of genetics, is regaining momentum in sustainable agriculture due to its high protein content and environmental benefits. However, its cultivation faces significant challenges from root rot, a complex disease caused by multiple soil-borne pathogens prevalent across most pea growing regions. This disease leads to substantial yield losses, further complicated by the dynamic interactions among pathogens, soil conditions, weather, and agricultural practices. Recent advancements in molecular diagnostics provide promising tools for the early and precise detection of these pathogens, which is critical for implementing effective disease management strategies. In this review, we explore how the availability of latest pea genomic resources and emerging technologies, such as CRISPR and cell-specific transcriptomics, will enable a deeper understanding of the molecular basis underlying host-pathogen interactions. We emphasize the need for a comprehensive approach that integrates genetic resistance, advanced diagnostics, cultural practices and the role of the soil microbiome in root rot. By leveraging these strategies, it is possible to develop pea varieties that can withstand root rot, ensuring the crop's resilience and its continued importance in global agriculture.
Collapse
Affiliation(s)
| | | | - Sanu Arora
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
25
|
Ren H, Huang X, Wang Z, Abdallah Y, Ayoade SO, Qi X, Yu Z, Wang Q, Mohany M, Al-Rejaie SS, Li B, Li G. The epidemic occurrence of decline disease in bayberry trees altered plant and soil related microbiome and metabolome. ENVIRONMENTAL MICROBIOME 2024; 19:79. [PMID: 39449039 PMCID: PMC11515357 DOI: 10.1186/s40793-024-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND In China, decline disease with unknown etiology appeared as an epidemic among bayberry trees in the southern area of the Yangtze River. Furthermore, the use of beneficial microbes has been reported to be able to reduce the incidence of this disease, emphasizing the association of this disease with microorganisms. Therefore, it has become critical to uncover the microbiome's function and related metabolites in remodeling the immunity of bayberry trees under biotic or abiotic stresses. RESULTS The amplicon sequencing data revealed that decline disease significantly altered bacterial and fungal communities, and their metabolites in the four distinct niches, especially in the rhizosphere soils and roots. Furthermore, the microbial communities in the four niches correlated with the metabolites of the corresponding niches of bayberry plants, and the fungal and bacterial networks of healthy trees were shown to be more complex than those of diseased trees. In addition, the role of microbiome in the resistance of bayberry trees to the occurrence of decline disease was justified by the isolation, identification, and characterization of important microorganisms such as significantly enriched Bacillus ASV804, Pseudomonas ASV815 in healthy plants, and significantly enriched Stenotrophomonas ASV719 in diseased plants. CONCLUSION Overall, our study revealed that the occurrence of decline disease altered the microbiome and its metabolites in four ecological niches in particular rhizosphere soils and roots of bayberry, which provides new insight into the control of bayberry decline disease.
Collapse
Affiliation(s)
- Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenshuo Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Solabomi Olaitan Ayoade
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qi Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Gang Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
26
|
Wang F, Zhang H, Liu H, Wu C, Wan Y, Zhu L, Yang J, Cai P, Chen J, Ge T. Combating wheat yellow mosaic virus through microbial interactions and hormone pathway modulations. MICROBIOME 2024; 12:200. [PMID: 39407339 PMCID: PMC11481568 DOI: 10.1186/s40168-024-01911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/17/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The rhizosphere microbiome is critical for promoting plant growth and mitigating soil-borne pathogens. However, its role in fighting soil-borne virus-induced diseases, such as wheat yellow mosaic virus (WYMV) transmitted by Polymyxa graminis zoospores, remains largely underexplored. In this study, we hypothesized that during viral infections, plant microbiomes engage in critical interactions with plants, with key microbes playing vital roles in maintaining plant health. Our research aimed to identify microbial taxa that not only suppress the disease but also boost wheat yield by using a blend of techniques, including field surveys, yield assessments, high-throughput sequencing of plant and soil microbiomes, microbial isolation, hydroponic experiments, and transcriptome sequencing. RESULTS We found that, compared with roots and leaves, the rhizosphere microbiome showed a better performance in predicting wheat yield and the prevalence of P. graminis and WYMV across the three WYMV-impacted regions in China. Using machine learning, we found that healthy rhizospheres were marked with potentially beneficial microorganisms, such as Sphingomonas and Allorhizobium-Neorhizobium-Parararhizobium-Rhizobium, whereas diseased rhizospheres were associated with a higher prevalence of potential pathogens, such as Bipolaris and Fusicolla. Structural equation modeling showed that these biomarkers both directly and indirectly impacted wheat yield by modulating the rhizosphere microbiome and P. graminis abundance. Upon re-introduction of two key healthy rhizosphere biomarkers, Sphingomonas azotifigens and Rhizobium deserti, into the rhizosphere, wheat growth and health were enhanced. This was attributed to the up-regulation of auxin and cytokinin signaling pathways and the regulation of jasmonic acid and salicylic acid pathways during infections. CONCLUSIONS Overall, our study revealed the critical role of the rhizosphere microbiome in combating soil-borne viral diseases, with specific rhizosphere microbes playing key roles in this process. Video Abstract.
Collapse
Affiliation(s)
- Fangyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haoqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Chuanfa Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lifei Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
27
|
Wu N, Shi W, Zhang L, Wang H, Liu W, Ren Y, Li X, Gao Z, Wang X. Dynamic alterations and ecological implications of rice rhizosphere bacterial communities induced by an insect-transmitted reovirus across space and time. MICROBIOME 2024; 12:189. [PMID: 39363340 PMCID: PMC11448278 DOI: 10.1186/s40168-024-01910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/17/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Cereal diseases caused by insect-transmitted viruses are challenging to forecast and control because of their intermittent outbreak patterns, which are usually attributed to increased population densities of vector insects due to cereal crop rotations and indiscriminate use of pesticides, and lack of resistance in commercial varieties. Root microbiomes are known to significantly affect plant health, but there are significant knowledge gaps concerning epidemics of cereal virus diseases at the microbiome-wide scale under a variety of environmental and biological factors. RESULTS Here, we characterize the diversity and composition of rice (Oryza sativa) root-associated bacterial communities after infection by an insect-transmitted reovirus, rice black-streaked dwarf virus (RBSDV, genus Fijivirus, family Spinareoviridae), by sequencing the bacterial 16S rRNA gene amplified fragments from 1240 samples collected at a consecutive 3-year field experiment. The disease incidences gradually decreased from 2017 to 2019 in both Langfang (LF) and Kaifeng (KF). BRSDV infection significantly impacted the bacterial community in the rice rhizosphere, but this effect was highly susceptible to both the rice-intrinsic and external conditions. A greater correlation between the bacterial community in the rice rhizosphere and those in the root endosphere was found after virus infection, implying a potential relationship between the rice-intrinsic conditions and the rhizosphere bacterial community. The discrepant metabolites in rhizosphere soil were strongly and significantly correlated with the variation of rhizosphere bacterial communities. Glycerophosphates, amino acids, steroid esters, and triterpenoids were the metabolites most closely associated with the bacterial communities, and they mainly linked to the taxa of Proteobacteria, especially Rhodocyclaceae, Burkholderiaceae, and Xanthomonadales. In addition, the greenhouse pot experiments demonstrated that bulk soil microbiota significantly influenced the rhizosphere and endosphere communities and also regulated the RBSDV-mediated variation of rhizosphere bacterial communities. CONCLUSIONS Overall, this study reveals unprecedented spatiotemporal dynamics in rhizosphere bacterial communities triggered by RBSDV infection with potential implications for disease intermittent outbreaks. The finding has promising implications for future studies exploring virus-mediated plant-microbiome interactions. Video Abstract.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Wenchong Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P. R. China.
| | - Xiangdong Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| |
Collapse
|
28
|
Zhang B, Ma Y, Duan W, Fan Q, Sun J. Pinewood nematode induced changes in the assembly process of gallery microbiomes benefit its vector beetle's development. Microbiol Spectr 2024; 12:e0141224. [PMID: 39258937 PMCID: PMC11448173 DOI: 10.1128/spectrum.01412-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/03/2024] [Indexed: 09/12/2024] Open
Abstract
Microbiomes play crucial roles in insect adaptation, especially under stress such as pathogen invasion. Yet, how beneficial microbiomes assemble remains unclear. The wood-boring beetle Monochamus alternatus, a major pest and vector of the pine wilt disease (PWD) nematode, offers a unique model. We conducted controlled experiments using amplicon sequencing (16S rRNA and ITS) within galleries where beetles and microbes interact. PWD significantly altered bacterial and fungal communities, suggesting distinct assembly processes. Deterministic factors like priority effects, host selection, and microbial interactions shaped microbiome composition, distinguishing healthy from PWN-infected galleries. Actinobacteria, Firmicutes, and Ophiostomataceae emerged as potentially beneficial, aiding beetle's development and pathogen resistance. This study unveils how nematode-induced changes in gallery microbiomes influence beetle's development, shedding light on microbiome assembly amid insect-pathogen interactions. Insights gleaned enhance understanding of PWD spread and suggest novel management strategies via microbiome manipulation.IMPORTANCEThis study explores the assembly process of gallery microbiomes associated with a wood-boring beetles, Monochamus alternatus, a vector of the pine wilt disease (PWD). By conducting controlled comparison experiments and employing amplicon approaches, the study reveals significant changes in taxonomic composition and functional adaptation of bacterial and fungal communities induced by PWD. It identifies deterministic processes, including priority effects, host selection, and microbial interactions, as major drivers in microbiome assembly. Additionally, the study highlights the presence of potentially beneficial microbes such as Actinobacteria, Firmicutes, and Ophiostomataceae, which could enhance beetle development and resistance to pathogens. These findings shed light on the intricate interplay among insects, microbiomes, and pathogens, contributing to a deeper understanding of PWD prevalence and suggesting innovative management strategies through microbiome manipulation.
Collapse
Affiliation(s)
- Bin Zhang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yafei Ma
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Wenzhao Duan
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Qi Fan
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jianghua Sun
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Huang K, Sun X, Li Y, Xu P, Li N, Wu X, Pang M, Sui Y. Fusarium as potential pathogenic fungus of Ginger (Zingiber officinale Roscoe) wilt disease. NPJ Sci Food 2024; 8:72. [PMID: 39358372 PMCID: PMC11446917 DOI: 10.1038/s41538-024-00312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The wilt disease of ginger, caused by various Fusarium species, imperils the cultivation of this valuable crop. However, the pathogenic mechanisms and epidemiology of ginger wilt remain elusive. Here, we investigate the association between ginger rhizome health and the prevalence of Fusarium conidia, as well as examine fungal community composition in symptomatic and asymptomatic ginger tissues. Our findings show that diseased rhizomes have reduced tissue firmness, correlating negatively with Fusarium conidia counts. Pathogenicity assays confirmed that both Fusarium oxysporum and Fusarium solani are capable of inducing wilt symptoms in rhizomes and sterile seedlings. Furthermore, Fungal community profiling revealed Fusarium to be the dominant taxon across all samples, yet its relative abundance was significantly different between symptomatic and asymptomatic tissues. Specifically, there is a higher incidence of Fusarium amplicon sequence variants (ASVs) in symptomatic above-ground parts. Our results unequivocally implicate F. oxysporum or F. solani as the etiological agents responsible for ginger wilt and demonstrate that Fusarium is the principal fungal pathogen associated with this disease. These findings provide critical insights for efficacious disease management practices within the ginger industry.
Collapse
Affiliation(s)
- Ke Huang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Xiangcheng Sun
- West China Biopharm Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yujing Li
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, 404120, China
| | - Panpan Xu
- West China Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Na Li
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Xuehong Wu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ming Pang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China.
| | - Yuan Sui
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China.
| |
Collapse
|
30
|
Cao Y, Yang N, Gu J, Zhang X, Ye J, Chen J, Li H. Distinct biogeographic patterns for bacteria and fungi in association with Bursaphelenchus xylophilus nematodes and infested pinewood. Microbiol Spectr 2024; 12:e0077824. [PMID: 39162557 PMCID: PMC11448397 DOI: 10.1128/spectrum.00778-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Pinewood nematodes (PWN, Bursaphelenchus xylophilus) are destructive plant parasitic nematodes that cause pine wilt disease (PWD) by attacking the vascular systems of pine trees, resulting in widespread tree mortality. Research has shown that there are connections between nematode-associated microbes and PWD. Yet the variations in microbial communities across different geographic regions are not well-understood. In this study, we examined the bacterial and fungal communities associated with nematodes and infested wood collected from 34 sites across three vegetation zones in China, as well as samples from the United States, using 16S rRNA and internal transcribed spacer (ITS) gene amplicon sequencing. The predominant genera Pseudomonas and Rhodococcus were found in nematodes, and Acinetobacter was present in the wood of PWD-infected pine trees across China. Network analysis revealed that core bacterial taxa belonged to the Pseudomonadota and Actinomycetota phyla for the nematodes, whereas the Pseudomonadota and Bacteroidota phyla were dominant in the infested wood. Identification of enriched key microbial taxa in nematodes and infested wood across vegetation zones indicates distinct biogeographic microbial community structures and key bacterial species. Although the nematode-associated bacterial community showed consistency across geographic distances, the similarity of the PWD pine trees' bacterial community decreased with distance, suggesting a spatial correlation with environmental variables. Our findings enhance our understanding of the microbiota associated with pinewood nematode (PWN) and offer valuable insights into PWD management. IMPORTANCE Our research uncovered specific bacteria and fungi linked to pinewood nematode (PWN) and infested wood in three different vegetation zones in China, as well as samples from the United States. This sheds light on the critical roles of certain microbial groups, such as Pseudomonas, Acinetobacter, and Stenotrophomonas, in influencing PWN fitness. Understanding these patterns provides valuable insights into the dynamics of PWN-associated microbiomes, offering potential strategies for managing pine wilt disease (PWD). We found significant correlations between geographic distance and similarity in bacterial communities in the infested wood, indicating a spatial influence on wood-associated microbial communities due to limited dispersal and localized environmental conditions. Further investigations of these spatial patterns and driving forces are crucial for understanding the ecological processes that shape microbial communities in complex ecosystems and, ultimately, for mitigating the transmission of PWN in forests.
Collapse
Affiliation(s)
- Yuyu Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Nan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianfeng Gu
- Ningbo Key Laboratory of Port Biological and Food Safety Testing (Technical Centre of Ningbo Customs/Ningbo Inspection and Quarantine Science Technology Academy), No. 8, Huikang Road, Ningbo, Zhejiang 315100, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianren Ye
- Co-Innovation Centre for Sustainable Forestry in Southern China, Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
31
|
Qing Z, Jida Y, Chengxiu F, Yanli Y, Xia L, Sihe D. Ralstonia solanacearum Infection Drives the Assembly and Functional Adaptation of Potato Rhizosphere Microbial Communities. THE PLANT PATHOLOGY JOURNAL 2024; 40:498-511. [PMID: 39397304 PMCID: PMC11471926 DOI: 10.5423/ppj.oa.06.2024.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a destructive disease that affects potato production, leading to severe yield losses. Currently, little is known about the changes in the assembly and functional adaptation of potato rhizosphere microbial communities during different stages of R. solanacearum infection. In this study, using amplicon and metagenomic sequencing approaches, we analyzed the changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere across four stages of R. solanacearum infection. The results showed that R. solanacearum infection led to significant changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere, with various microbial properties (including α,β-diversity, species composition, and community ecological functions) all being driven by R. solanacearum infection. The relative abundance of some beneficial microorganisms in the potato rhizosphere, including Firmicutes, Bacillus, Pseudomonas, and Mortierella, decreased as the duration of infection increased. Moreover, the related microbial communities played a significant role in basic metabolism and signal transduction; however, the functions involved in soil C, N, and P transformation weakened. This study provides new insights into the dynamic changes in the composition and functions of potato rhizosphere microbial communities at different stages of R. solanacearum infection to adapt to the growth promotion or disease suppression strategies of host plants, which may provide guidance for formulating future strategies to regulate microbial communities for the integrated control of soil-borne plant diseases.
Collapse
Affiliation(s)
- Zhang Qing
- Yunnan Agricultural University, Plant Protection College, Kunming, Yunnan 650000, China
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| | - Yang Jida
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| | - Fu Chengxiu
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| | - Yang Yanli
- Yunnan Agricultural University, Plant Protection College, Kunming, Yunnan 650000, China
| | - Liu Xia
- Yunnan Agricultural University, Plant Protection College, Kunming, Yunnan 650000, China
| | - Deng Sihe
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| |
Collapse
|
32
|
Fu X, Ma Y, Yang T, He S, Wang D, Jin L, Zhan L, Guo Z, Fan K, Li J, Chu H. Bacterial community composition of wheat aboveground compartments correlates with yield during the reproductive phase. Appl Environ Microbiol 2024; 90:e0107824. [PMID: 39212378 PMCID: PMC11409648 DOI: 10.1128/aem.01078-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Plant-associated microbial communities play important roles in agricultural productivity, and their composition has been shown to vary across plant compartments and developmental stages. However, the response of microbial communities within different plant compartments and at different developmental stages to diverse long-term fertilization treatments, as well as their linkages with crop yields, remains underexplored. This study analyzed wheat-associated bacterial communities within various soil and plant compartments under three fertilization treatments throughout the vegetative and reproductive phases. The variance in bacterial community was primarily attributed to compartments, followed by fertilization treatments and developmental stages. The composition of belowground bacterial communities (bulk soil, rhizosphere soil, and root) exhibited stronger responses to fertilization treatments than aboveground compartments (stem and leaf). The composition of belowground bacterial communities responded to fertilization treatments at all developmental stages, and it was significantly correlated with crop yields during the vegetative phase, whereas the aboveground community composition only showed a response to fertilization during the reproductive phase, at which point it was significantly correlated with crop yields. Moreover, during this reproductive phase, the co-occurrence network of aboveground bacterial communities exhibited enhanced complexity, and it contained an increased number of keystone species associated with crop yields, such as Sphingomonas spp., Massilia spp., and Frigoribacterium spp. Structural equation modeling indicated that augmenting total phosphorus levels in aboveground compartments could enhance crop yields by increasing the relative abundance of these keystone species during the reproductive phase. These findings highlight the pivotal role of aboveground bacterial communities in wheat production during the reproductive phase. IMPORTANCE The developmental stage significantly influences crop-associated bacterial communities, but the relative importance of bacterial communities in different compartments to crop yields across various stages is still not well understood. This study reveals that belowground bacterial communities during the vegetative phase are significantly correlated with crop yields. Notably, during the reproductive phase, the composition of aboveground bacterial communities was significantly correlated with crop yields. During this phase, the complexity and enriched keystone species within the aboveground co-occurrence network underscore their role in boosting crop production. These results provide a foundation for developing microbiome-based products that are phase-specific and promote sustainable agricultural practices.
Collapse
Affiliation(s)
- Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuobing He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Daozhong Wang
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Lin Jin
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Linchuan Zhan
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhibin Guo
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiasui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Zhang J, Fan B, Zhao L, Zhao C, Yang F. Biochar promotes compost humification by regulating bacterial and fungal communities. Front Microbiol 2024; 15:1470930. [PMID: 39360319 PMCID: PMC11445164 DOI: 10.3389/fmicb.2024.1470930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Humus can be formed during composting through biological pathways, nonetheless, the mechanisms through which bacterial and fungal communities govern the development of humus in compost with the addition of biochar remain uncertain. Methods In this study, compost with cow dung and maize stover as feedstock was employed as a control group, and compost with 10% biochar added on top of the feedstock was adopted as a treatment group to investigate the effect of bacterial and fungal communities on humus formation during biochar composting. Results and Discussion The results demonstrated that the humic acid content increased by 24.82 and 25.10% at the cooling and maturation stages, respectively, after adding biochar. Besides, the degree of polymerization content in the maturation stage was elevated by 90.98%, which accelerated the humification process of the compost. During the thermophilic and maturity stages, there was a respective increase of 51.34 and 31.40% in reducing sugar content, suggesting that the inclusion of biochar could furnish ample reducing sugar substrate for the Maillard reaction. The addition of biochar reduced the number of humus precursor-associated genera by 35, increased the number of genera involved in humus synthesis by two, and enhanced the stability of the cross-domain network between bacteria and fungi, which confirms that microorganisms contribute to the humification process by decreasing humus precursor consumption as well as increasing humus synthesis with the addition of biochar. Additionally, adding biochar could enhance the humification capacity of the compost pile by dominating the Maillard reaction with reducing sugars as the substrate and strengthening the function of humus synthesis-associated genera. This study enhances our comprehension of the regulatory pathways of biochar in the humification process during composting.
Collapse
Affiliation(s)
- Junying Zhang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, Heilongjiang, China
| | - Bowen Fan
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, Heilongjiang, China
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liqin Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changjiang Zhao
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, Heilongjiang, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
34
|
Wang H, Zhang F, Zhang Y, Wang M, Zhang Y, Zhang J. Enrichment of novel entomopathogenic Pseudomonas species enhances willow resistance to leaf beetles. MICROBIOME 2024; 12:169. [PMID: 39252132 PMCID: PMC11382411 DOI: 10.1186/s40168-024-01884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/27/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Plants have evolved various defense mechanisms against insect herbivores, including the formation of physical barriers, the synthesis of toxic metabolites, and the activation of phytohormone responses. Although plant-associated microbiota influence plant growth and health, whether they play a role in plant defense against insect pests in natural ecosystems is unknown. RESULTS Here, we show that leaves of beetle-damaged weeping willow (Salix babylonica) trees are more resistant to the leaf beetle Plagiodera versicolora (Coleoptera) than those of undamaged leaves. Bacterial community transplantation experiments demonstrated that plant-associated microbiota from the beetle-damaged willow contribute to the resistance of the beetle-damaged willow to P. versicolora. Analysis of the composition and abundance of the microbiome revealed that Pseudomonas spp. is significantly enriched in the phyllosphere, roots, and rhizosphere soil of beetle-damaged willows relative to undamaged willows. From a total of 49 Pseudomonas strains isolated from willows and rhizosphere soil, we identified seven novel Pseudomonas strains that are toxic to P. versicolora. Moreover, re-inoculation of a synthetic microbial community (SynCom) with these Pseudomonas strains enhances willow resistance to P. versicolora. CONCLUSIONS Collectively, our data reveal that willows can exploit specific entomopathogenic bacteria to enhance defense against P. versicolora, suggesting that there is a complex interplay among plants, insects, and plant-associated microbiota in natural ecosystems.
Collapse
Affiliation(s)
- Haitao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yali Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Mengnan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yiqiu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jiang Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
35
|
Wang W, Portal-Gonzalez N, Wang X, Li J, Li H, Portieles R, Borras-Hidalgo O, He W, Santos-Bermudez R. Metabolome-driven microbiome assembly determining the health of ginger crop (Zingiber officinale L. Roscoe) against rhizome rot. MICROBIOME 2024; 12:167. [PMID: 39244625 PMCID: PMC11380783 DOI: 10.1186/s40168-024-01885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/27/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Plant-associated microorganisms can be found in various plant niches and collectively comprise the plant microbiome. The plant microbiome assemblages have been extensively studied, primarily in model species. However, a deep understanding of the microbiome assembly associated with plant health is still needed. Ginger rhizome rot has been variously attributed to multiple individual causal agents. Due to its global relevance, we used ginger and rhizome rot as a model to elucidate the metabolome-driven microbiome assembly associated with plant health. RESULTS Our study thoroughly examined the biodiversity of soilborne and endophytic microbiota in healthy and diseased ginger plants, highlighting the impact of bacterial and fungal microbes on plant health and the specific metabolites contributing to a healthy microbial community. Metabarcoding allowed for an in-depth analysis of the associated microbial community. Dominant genera represented each microbial taxon at the niche level. According to linear discriminant analysis effect size, bacterial species belonging to Sphingomonas, Quadrisphaera, Methylobacterium-Methylorubrum, Bacillus, as well as the fungal genera Pseudaleuria, Lophotrichus, Pseudogymnoascus, Gymnoascus, Mortierella, and Eleutherascus were associated with plant health. Bacterial dysbiosis related to rhizome rot was due to the relative enrichment of Pectobacterium, Alcaligenes, Klebsiella, and Enterobacter. Similarly, an imbalance in the fungal community was caused by the enrichment of Gibellulopsis, Pyxidiophorales, and Plectosphaerella. Untargeted metabolomics analysis revealed several metabolites that drive microbiome assembly closely related to plant health in diverse microbial niches. At the same time, 6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol was present at the level of the entire healthy ginger plant. Lipids and lipid-like molecules were the most significant proportion of highly abundant metabolites associated with ginger plant health versus rhizome rot disease. CONCLUSIONS Our research significantly improves our understanding of metabolome-driven microbiome structure to address crop protection impacts. The microbiome assembly rather than a particular microbe's occurrence drove ginger plant health. Most microbial species and metabolites have yet to be previously identified in ginger plants. The indigenous microbial communities and metabolites described can support future strategies to induce plant disease resistance. They provide a foundation for further exploring pathogens, biocontrol agents, and plant growth promoters associated with economically important crops. Video Abstract.
Collapse
Affiliation(s)
- Wenbo Wang
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China
| | - Nayanci Portal-Gonzalez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China
| | - Xia Wang
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China
| | - Jialin Li
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China
| | - Roxana Portieles
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, Shandong, 276826, People's Republic of China
| | - Orlando Borras-Hidalgo
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, Shandong, 276826, People's Republic of China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China.
| | - Ramon Santos-Bermudez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China.
| |
Collapse
|
36
|
Estêvão C, Rodrigues L, Rato AE, Garcia R, Cardoso H, Campos C. Applicability of metabolomics to improve sustainable grapevine production. Front Mol Biosci 2024; 11:1395677. [PMID: 39310375 PMCID: PMC11413592 DOI: 10.3389/fmolb.2024.1395677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Metabolites represent the end product of gene expression, protein interaction and other regulatory mechanisms. The metabolome reflects a biological system's response to genetic and environmental changes, providing a more accurate description of plants' phenotype than the transcriptome or the proteome. Grapevine (Vitis vinifera L.), established for the production of wine grapes, table grapes, and raisins, holds immense agronomical and economic significance not only in the Mediterranean region but worldwide. As all plants, grapevines face the adverse impact of biotic and abiotic stresses that negatively affect multiple stages of grape and wine industry, including plant and berry development pre- and post-harvest, fresh grapes processing and consequently wine quality. In the present review we highlight the applicability of metabolome analysis in the understanding of the mechanisms involved in grapevine response and acclimatization upon the main biotic and abiotic constrains. The metabolome of induced morphogenic processes such as adventitious rooting and somatic embryogenesis is also explored, as it adds knowledge on the physiological and molecular phenomena occurring in the explants used, and on the successfully propagation of grapevines with desired traits. Finally, the microbiome-induced metabolites in grapevine are discussed in view of beneficial applications derived from the plant symbioses.
Collapse
Affiliation(s)
- Catarina Estêvão
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Lénia Rodrigues
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Ana Elisa Rato
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Raquel Garcia
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| |
Collapse
|
37
|
Liu W, Zhang Z, Zhang B, Zhu Y, Zhu C, Chen C, Zhang F, Liu F, Ai J, Wang W, Kong W, Xiang H, Wang W, Gong D, Meng D, Zhu L. Role of bacterial pathogens in microbial ecological networks in hydroponic plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1403226. [PMID: 39290732 PMCID: PMC11405252 DOI: 10.3389/fpls.2024.1403226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/15/2024] [Indexed: 09/19/2024]
Abstract
Plant-associated microbial communities are crucial for plant growth and health. However, assembly mechanisms of microbial communities and microbial interaction patterns remain elusive across vary degrees of pathogen-induced diseases. By using 16S rRNA high-throughput sequencing technology, we investigated the impact of wildfire disease on the microbial composition and interaction network in plant three different compartments. The results showed that pathogen infection significantly affect the phyllosphere and rhizosphere microbial community. We found that the primary sources of microbial communities in healthy and mildly infected plants were from the phyllosphere and hydroponic solution community. Mutual exchanges between phyllosphere and rhizosphere communities were observed, but microbial species migration from the leaf to the root was rarely observed in severely infected plants. Moreover, wildfire disease reduced the diversity and network complexity of plant microbial communities. Interactions among pathogenic bacterial members suggested that Caulobacter and Bosea might be crucial "pathogen antagonists" inhibiting the spread of wildfire disease. Our study provides deep insights into plant pathoecology, which is helpful for the development of novel strategies for phyllosphere disease prediction or prevention.
Collapse
Affiliation(s)
- Wenyi Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhihua Zhang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Bin Zhang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Yi Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Chongwen Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Chaoyong Chen
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Fangxu Zhang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Feng Liu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Jixiang Ai
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Wei Wang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Wuyuan Kong
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Haoming Xiang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Weifeng Wang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Daoxin Gong
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Delong Meng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Li Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| |
Collapse
|
38
|
Leveau JHJ. Re-Envisioning the Plant Disease Triangle: Full Integration of the Host Microbiota and a Focal Pivot to Health Outcomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:31-47. [PMID: 38684078 DOI: 10.1146/annurev-phyto-121423-042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The disease triangle is a structurally simple but conceptually rich model that is used in plant pathology and other fields of study to explain infectious disease as an outcome of the three-way relationship between a host, a pathogen, and their environment. It also serves as a guide for finding solutions to treat, predict, and prevent such diseases. With the omics-driven, evidence-based realization that the abundance and activity of a pathogen are impacted by proximity to and interaction with a diverse multitude of other microorganisms colonizing the same host, the disease triangle evolved into a tetrahedron shape, which features an added fourth dimension representing the host-associated microbiota. Another variant of the disease triangle emerged from the recently formulated pathobiome paradigm, which deviates from the classical "one pathogen" etiology of infectious disease in favor of a scenario in which disease represents a conditional outcome of complex interactions between and among a host, its microbiota (including microbes with pathogenic potential), and the environment. The result is a version of the original disease triangle where "pathogen" is substituted with "microbiota." Here, as part of a careful and concise review of the origin, history, and usage of the disease triangle, I propose a next step in its evolution, which is to replace the word "disease" in the center of the host-microbiota-environment triad with the word "health." This triangle highlights health as a desirable outcome (rather than disease as an unwanted state) and as an emergent property of host-microbiota-environment interactions. Applied to the discipline of plant pathology, the health triangle offers an expanded range of targets and approaches for the diagnosis, prediction, restoration, and maintenance of plant health outcomes. Its applications are not restricted to infectious diseases only, and its underlying framework is more inclusive of all microbial contributions to plant well-being, including those by mycorrhizal fungi and nitrogen-fixing bacteria, for which there never was a proper place in the plant disease triangle. The plant health triangle also may have an edge as an education and communication tool to convey and stress the importance of healthy plants and their associated microbiota to a broader public and stakeholdership.
Collapse
Affiliation(s)
- Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, California, USA;
| |
Collapse
|
39
|
Fang K, Kou YP, Tang N, Liu J, Zhang XY, He HL, Xia RX, Zhao WQ, Li DD, Liu Q. Differential responses of soil bacteria, fungi and protists to root exudates and temperature. Microbiol Res 2024; 286:127829. [PMID: 39018940 DOI: 10.1016/j.micres.2024.127829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/19/2024]
Abstract
The impact of climate warming on soil microbes has been well documented, with studies revealing its effects on diversity, community structure and network dynamics. However, the consistency of soil microbial community assembly, particularly in response to diverse plant root exudates under varying temperature conditions, remains an unresolved issue. To address this issue, we employed a growth chamber to integrate temperature and root exudates in a controlled experiment to examine the response of soil bacteria, fungi, and protists. Our findings revealed that temperature independently regulated microbial diversity, with distinct patterns observed among bacteria, fungi, and protists. Both root exudates and temperature significantly influenced microbial community composition, yet interpretations of these factors varied among prokaryotes and eukaryotes. In addition to phototrophic bacteria and protists, as well as protistan consumers, root exudates determined to varying degrees the enrichment of other microbial functional guilds at specific temperatures. The effects of temperature and root exudates on microbial co-occurrence patterns were interdependent; root exudates primarily simplified the network at low and high temperatures, while responses to temperature varied between single and mixed exudate treatments. Moreover, temperature altered the composition of keystone species within the microbial network, while root exudates led to a decrease in their number. These results emphasize the substantial impact of plant root exudates on soil microbial community responses to temperature, underscoring the necessity for future climate change research to incorporate additional environmental variables.
Collapse
Affiliation(s)
- Kai Fang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; College of Agriculture and Biological Sciences, Dali University, Dali 671003, China
| | - Yong-Ping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| | - Na Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Jia Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Xiao-Ying Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - He-Liang He
- College of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644007, China
| | - Rui-Xue Xia
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Wen-Qiang Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Dan-Dan Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
40
|
Spooren J, van Bentum S, Thomashow LS, Pieterse CMJ, Weller DM, Berendsen RL. Plant-Driven Assembly of Disease-Suppressive Soil Microbiomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:1-30. [PMID: 38857541 DOI: 10.1146/annurev-phyto-021622-100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants have coevolved together with the microbes that surround them and this assemblage of host and microbes functions as a discrete ecological unit called a holobiont. This review outlines plant-driven assembly of disease-suppressive microbiomes. Plants are colonized by microbes from seed, soil, and air but selectively shape the microbiome with root exudates, creating microenvironment hot spots where microbes thrive. Using plant immunity for gatekeeping and surveillance, host-plant genetic properties govern microbiome assembly and can confer adaptive advantages to the holobiont. These advantages manifest in disease-suppressive soils, where buildup of specific microbes inhibits the causal agent of disease, that typically develop after an initial disease outbreak. Based on disease-suppressive soils such as take-all decline, we developed a conceptual model of how plants in response to pathogen attack cry for help and recruit plant-protective microbes that confer increased resistance. Thereby, plants create a soilborne legacy that protects subsequent generations and forms disease-suppressive soils.
Collapse
Affiliation(s)
- Jelle Spooren
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Sietske van Bentum
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
41
|
Yuan QS, Gao Y, Wang L, Wang X, Wang L, Ran J, Ou X, Wang Y, Xiao C, Jiang W, Guo L, Zhou T, Huang L. Pathogen-driven Pseudomonas reshaped the phyllosphere microbiome in combination with Pseudostellaria heterophylla foliar disease resistance via the release of volatile organic compounds. ENVIRONMENTAL MICROBIOME 2024; 19:61. [PMID: 39182153 PMCID: PMC11344943 DOI: 10.1186/s40793-024-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Continuous monocropping obstacles are common in plants, especially medicinal plants, resulting in disease outbreaks and productivity reductions. Foliar disease, mainly caused by Fusarium oxysporum, results in a severe decrease in the yield of Pseudostellaria heterophylla annually. Determining an effective biomethod to alleviate this disease is urgently needed to improve its productivity and quality. RESULTS This study screened thirty-two keystone bacterial genera induced by pathogens in P. heterophylla rhizosphere soil under continuous monocropping conditions. Pseudomonas, Chryseobacterium, and Flavobacterium, referred to as the beneficial microbiota, were significantly attracted by pathogen infection. The P. palleroniana strain B-BH16-1 can directly inhibit the growth and spore formation of seven primary pathogens of P. heterophylla foliar disease by disrupting fusaric acid production via the emission of volatile organic compounds (VOCs). In addition, strain B-BH16-1 enhances the disease resistance of P. heterophylla by obliterating the pathogen and assembling beneficial microbiota. CONCLUSION Pathogen-induced Pseudomonas reshaped phyllosphere microbial communities via direct antagonism of pathogens and indirect disruption of the pathogen virulence factor biosynthesis to enhance disease suppression and improve yields. These results show that inhibiting pathogen virulence biosynthesis to reshape the plant microbial community using disease-induing probiotics will be an innovative strategy for managing plant disease, especially under continuous monoculture conditions.
Collapse
Affiliation(s)
- Qing-Song Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yanping Gao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaoai Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lingling Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jiayue Ran
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaohong Ou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanhong Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Weike Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lanping Guo
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Luqi Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
42
|
Xia X, Wei Q, Wu H, Chen X, Xiao C, Ye Y, Liu C, Yu H, Guo Y, Sun W, Liu W. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot. MICROBIOME 2024; 12:156. [PMID: 39180084 PMCID: PMC11342587 DOI: 10.1186/s40168-024-01887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Microbes colonizing each compartment of terrestrial plants are indispensable for maintaining crop health. Although corn stalk rot (CSR) is a severe disease affecting maize (Zea mays) worldwide, the mechanisms underlying host-microbe interactions across vertical compartments in maize plants, which exhibit heterogeneous CSR-resistance, remain largely uncharacterized. RESULTS Here, we investigated the microbial communities associated with CSR-resistant and CSR-susceptible maize cultivars using multi-omics analysis coupled with experimental verification. Maize cultivars resistant to CSR reshaped the microbiota and recruited Bacillus species with three phenotypes against Fusarium graminearum including niche pre-emption, potential secretion of antimicrobial compounds, and no inhibition to alleviate pathogen stress. By inducing the expression of Tyrosine decarboxylase 1 (TYDC1), encoding an enzyme that catalyzes the production of tyramine and dopamine, Bacillus isolates that do not directly suppress pathogen infection induced the synthesis of berberine, an isoquinoline alkaloid that inhibits pathogen growth. These beneficial bacteria were recruited from the rhizosphere and transferred to the stems but not grains of the CSR-resistant plants. CONCLUSIONS The current study offers insight into how maize plants respond to and interact with their microbiome and lays the foundation for preventing and treating soil-borne pathogens. Video Abstract.
Collapse
Affiliation(s)
- Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Plant Pathology, Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qiuhe Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hanxiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinyu Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunxia Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yiping Ye
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaotian Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haiyue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuanwen Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
43
|
Awais M, Xiang Y, Yang D, Lai Y, Cai F, Shah N, Khan M, Li H. The Mechanisms of Cadmium Stress Mitigation by Fungal Endophytes from Maize Grains. J Fungi (Basel) 2024; 10:581. [PMID: 39194906 DOI: 10.3390/jof10080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Maize is a crucial staple crop that ensures global food security by supplying essential nutrients. However, heavy metal (HM) contamination inhibits maize growth, reduces output, and affects food security. Some endophytic fungi (EFs) in maize seeds have the potential to enhance growth and increase dry biomass, offering a solution to mitigate the negative effect of HM contamination. Using these functional EFs could help maintain crop production and ensure food safety in HM-contaminated areas. In the present study, the diversity of EFs in corn grains from various HM-contaminated areas in China was studied through culture-dependent and culture-independent methods. We tested the plant growth-promoting (PGP) traits of several dominant culturable isolates and evaluated the growth-promoting effects of these twenty-one isolates through pot experiments. Both studies showed that HM contamination increased the diversity and richness of corn grain EFs and affected the most dominant endophytes. Nigrospora and Fusarium were the most prevalent culturable endophytes in HM-contaminated areas. Conversely, Cladosporium spp. were the most isolated endophytes in non-contaminated areas. Different from this, Saccharomycopsis and Fusarium were the dominant EFs in HM-contaminated sites, while Neofusicoccum and Sarocladium were dominant in non-contaminated sites, according to a culture-independent analysis. PGP trait tests indicated that 70% of the tested isolates (forty-two) exhibited phosphorus solubilization, IAA production, or siderophore production activity. Specifically, 90% of the tested isolates from HM-contaminated sites showed better PGP results than 45% of the isolates from non-contaminated sites. The benefit of the twenty-one isolates on host plant growth was further studied through pot experiments, which showed that all the isolates could improve host plant growth. Among them, strains derived from HM-contaminated sites, including AK18 (Nigrospora), AK32 (Beauveria), SD93 (Gibberellia), and SD64 (Fusarium), had notable effects on enhancing the dry biomass of shoots and roots of maize under Cd stress. We speculate that the higher ratio of PGP EFs in corn grains from HM-contaminated areas may explain their competitiveness in such extreme environments. Fusarium and Cladosporium isolates show high PGP properties, but they can also be phytopathogenic. Therefore, it is essential to evaluate their pathogenic properties and safety for crops before considering their practical use in agriculture.
Collapse
Affiliation(s)
- Muhammad Awais
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingying Xiang
- The Affiliated Yanan Hospital of Kunming Medical University, Kunming 650051, China
| | - Dian Yang
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yibin Lai
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fenglian Cai
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Naila Shah
- Department of Botany, Gardan Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Majid Khan
- Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang 455000, China
| | - Haiyan Li
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
44
|
Flores-Nunez VM, Stukenbrock EH. The impact of filamentous plant pathogens on the host microbiota. BMC Biol 2024; 22:175. [PMID: 39148076 PMCID: PMC11328434 DOI: 10.1186/s12915-024-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
When a pathogen invades a plant, it encounters a diverse microbiota with some members contributing to the health and growth of the plant host. So far, the relevance of interactions between pathogens and the plant microbiota are poorly understood; however, new lines of evidence suggest that pathogens play an important role in shaping the microbiome of their host during invasion. This review aims to summarize recent findings that document changes in microbial community composition during the invasion of filamentous pathogens in plant tissues. We explore the known mechanisms of interaction between plant pathogens and the host microbiota that underlie these changes, particularly the pathogen-encoded traits that are produced to target specific microbes. Moreover, we discuss the limitations of current strategies and shed light on new perspectives to study the complex interaction networks between filamentous pathogens and the plant microbiome.
Collapse
Affiliation(s)
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University, 24118, Kiel, Germany.
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| |
Collapse
|
45
|
Chen Y, Li X, Zhou D, Wei Y, Feng J, Cai B, Qi D, Zhang M, Zhao Y, Li K, Pan Z, Wang W, Xie J. Streptomyces-Secreted Fluvirucin B6 as a Potential Bio-Fungicide for Managing Banana Fusarium Wilt and Mycotoxins and Modulating the Soil Microbial Community Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17890-17902. [PMID: 39083645 DOI: 10.1021/acs.jafc.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc TR4) is the most destructive soil-borne fungal disease. Until now, there has been a lack of effective measures to control the disease. It is urgent to explore biocontrol agents to control Foc TR4 and the secretion of mycotoxin. In this study, fluvirucin B6 was screened from Streptomyces solisilvae using an activity-guided method. Fluvirucin B6 exhibited strong antifungal activity against Foc TR4 (0.084 mM of EC50 value) and significantly inhibited mycelial growth and spore germination. Further studies demonstrated that fluvirucin B6 could cause the functional loss of mitochondria, the disorder of metabolism of Foc TR4 cells, and the decrease of enzyme activities in the tricarboxylic acid cycle and electron transport chain, ultimately inhibiting mycotoxin metabolism. In a pot experiment, the application of fluvirucin B6 significantly decreased the incidence of banana Fusarium wilt and the amount of Foc TR4 and controlled fungal toxins in the soil. Additionally, fluvirucin B6 could positively regulate the changes in the structure of the banana rhizosphere microbial community, significantly enriching beneficial microbes associated with disease resistance. In summary, this study identifies fluvirucin B6, which plays versatile roles in managing fungal diseases and mycotoxins.
Collapse
Affiliation(s)
- Yufeng Chen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - XiaoJuan Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengbo Zhou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongzan Wei
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Junting Feng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingyu Cai
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengfeng Qi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Miaoyi Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yankun Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kai Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiqiang Pan
- Agricultural Research Service, Natural Products Utilization Research Unit, U.S. Department of Agriculture, University of Mississippi, University, Mississippi 38677, United States
| | - Wei Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianghui Xie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
46
|
Wang D, Wan Y, Liu D, Wang N, Wu J, Gu Q, Wu H, Gao X, Wang Y. Immune-enriched phyllosphere microbiome in rice panicle exhibits protective effects against rice blast and rice false smut diseases. IMETA 2024; 3:e223. [PMID: 39135691 PMCID: PMC11316918 DOI: 10.1002/imt2.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
Activation of immune responses leads to an enrichment of beneficial microbes in rice panicle. We therefore selected the enriched operational taxonomy units (OTUs) exhibiting direct suppression effects on fungal pathogens, and established a simplified synthetic community (SynCom) which consists of three beneficial microbes. Application of this SynCom exhibits protective effect against fungal pathogen infection in rice.
Collapse
Affiliation(s)
- Dacheng Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Yingqiao Wan
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Dekun Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Ning Wang
- Research Center for Functional MicrobiologyOrganic Recycling Research Institute (Suzhou) of China Agricultural UniversitySuzhouChina
| | - Jingni Wu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Qin Gu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Huijun Wu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Xuewen Gao
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Yiming Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
47
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
48
|
Ferreira P, Benabderrahim MA, Hamza H, Marchesini A, Rejili M, Castro J, Tavares RM, Costa D, Sebastiani F, Lino-Neto T. Exploring the Influence of Date Palm Cultivars on Soil Microbiota. MICROBIAL ECOLOGY 2024; 87:103. [PMID: 39088119 PMCID: PMC11294395 DOI: 10.1007/s00248-024-02415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Plants thrive in diverse environments, where root-microbe interactions play a pivotal role. Date palm (Phoenix dactylifera L.), with its genetic diversity and resilience, is an ideal model for studying microbial adaptation to different genotypes and stresses. This study aimed to analyze the bacterial and fungal communities associated with traditional date palm cultivars and the widely cultivated "Deglet Nour" were explored using metabarcoding approaches. The microbial diversity analysis identified a rich community with 13,189 bacterial and 6442 fungal Amplicon Sequence Variants (ASVs). Actinobacteriota, Proteobacteria, and Bacteroidota dominated bacterial communities, while Ascomycota dominated fungal communities. Analysis of the microbial community revealed the emergence of two distinct clusters correlating with specific date palm cultivars, but fungal communities showed higher sensitivity to date palm genotype variations compared to bacterial communities. The commercial cultivar "Deglet Nour" exhibited a unique microbial composition enriched in pathogenic fungal taxa, which was correlated with its genetic distance. Overall, our study contributes to understanding the complex interactions between date palm genotypes and soil microbiota, highlighting the genotype role in microbial community structure, particularly among fungi. These findings suggest correlations between date palm genotype, stress tolerance, and microbial assembly, with implications for plant health and resilience. Further research is needed to elucidate genotype-specific microbial interactions and their role in enhancing plant resilience to environmental stresses.
Collapse
Affiliation(s)
- Pedro Ferreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Mohamed Ali Benabderrahim
- Faculty of Sciences of Tunis, Department of Biology, University of Tunis EL Manar, 2092, Tunis, Tunisia
- Drylands and Oases Cropping Laboratory. Arid Areas Institute (IRA), 4119, Medenine, Tunisia
| | - Hammadi Hamza
- Drylands and Oases Cropping Laboratory. Arid Areas Institute (IRA), 4119, Medenine, Tunisia
| | - Alexis Marchesini
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
- Research Institute On Terrestrial Ecosystems, National Research Council, Porano, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Mokhtar Rejili
- Department of Life Sciences, Al Imam Mohamed Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Joana Castro
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Rui M Tavares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Daniela Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
49
|
Lin YM, Li MH, Dai CY, Liu Y, Zhang WP, Yang Q, Cui XM, Yang Y. Dazomet fumigation modification of the soil microorganism community and promotion of Panax notoginseng growth. Front Microbiol 2024; 15:1443526. [PMID: 39132142 PMCID: PMC11309993 DOI: 10.3389/fmicb.2024.1443526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Panax notoginseng, a medicinal herb in China, is attacked by several pathogens during its cultivation. Dazomet (DZ) is a soil fumigant that is effective in controlling soil-borne pathogens, but its long-term effects on P. notoginseng growth and soil properties are unknown. Methods We conducted field experiments over two consecutive years to assess the impact of three concentrations of DZ fumigation (35 kg/666.7 m2, 40 kg/666.7 m2, and 45 kg/666.7 m2) on soil physicochemical properties, microbial diversity, and P. notoginseng growth. Correlation analyses were performed between microbial community changes and soil properties, and functional predictions for soil microorganisms were conducted. Results DZ fumigation increased total nitrogen, total phosphorus, total potassium, available phosphorus, available potassium, and ammonia nitrogen levels in the soil. DZ fumigation promoted the nutrient accumulation and improvement of agronomic traits of P. notoginseng, resulted in a 2.83-3.81X yield increase, with the highest total saponin content increasing by 24.06%. And the 40 kg/666.7 m2 treatment had the most favorable impact on P. notoginseng growth and saponin accumulation. After DZ fumigation, there was a decrease in the relative abundance of pathogenic fungi such as Fusarium, Plectosphaerella, and Ilyonectria, while beneficial bacteria such as Ramlibacter, Burkholderia, and Rhodanobacteria increased. The effects of fumigation on soil microorganisms and soil physicochemical properties persisted for 18 months post-fumigation. DZ fumigation enhanced the relative abundance of bacteria involved in the biosynthesis of secondary metabolites and arbuscular mycorrhizal fungi, reduced the relative abundance of plant-animal pathogenic fungi, reduced the occurrence of soil-borne diseases. Conclusion In conclusion, DZ fumigation enhanced soil physicochemical properties, increased the proportion of beneficial bacteria in the soil, and rebalanced soil microorganism populations, consequently improving the growth environment of P. notoginseng and enhancing its growth, yield, and quality. This study offers a theoretical foundation for DZ fumigation as a potential solution to the continuous cropping issue in perennial medicinal plants such as P. notoginseng.
Collapse
Affiliation(s)
- Ya-meng Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Ming-hua Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Chun-yan Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Wen-ping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Xiu-ming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| |
Collapse
|
50
|
Siegieda D, Panek J, Frąc M. Ecological processes of bacterial microbiome assembly in healthy and dysbiotic strawberry farms. BMC PLANT BIOLOGY 2024; 24:692. [PMID: 39030484 PMCID: PMC11264780 DOI: 10.1186/s12870-024-05415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The bacterial microbiome plays crucial role in plants' resistance to diseases, nutrient uptake and productivity. We examined the microbiome characteristics of healthy and unhealthy strawberry farms, focusing on soil (bulk soil, rhizosphere soil) and plant (roots and shoots). The relative abundance of most abundant taxa were correlated with the chemical soil properties and shoot niche revealed the least amount of significant correlations between the two. While alpha and beta diversities did not show differences between health groups, we identified a number of core taxa (16-59) and marker bacterial taxa for each healthy (Unclassified Tepidisphaerales, Ohtaekwangia, Hydrocarboniphaga) and dysbiotic (Udaeobacter, Solibacter, Unclassified Chitinophagales, Unclassified Nitrosomonadaceae, Nitrospira, Nocardioides, Tardiphaga, Skermanella, Pseudomonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Curtobacterium) niche. We also revealed selective pressure of strawberry rhizosphere soil and roots plants in unhealthy plantations increased stochastic ecological processes of bacterial microbiome assembly in shoots. Our findings contribute to understanding sustainable agriculture and plant-microbiome interactions.
Collapse
Affiliation(s)
- Dominika Siegieda
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, Lublin, 20-290, Poland
| | - Jacek Panek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, Lublin, 20-290, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, Lublin, 20-290, Poland.
| |
Collapse
|