1
|
Su P, Lu Q, Wang Y, Mou Y, Jin W. Targeting MELK in tumor cells and tumor microenvironment: from function and mechanism to therapeutic application. Clin Transl Oncol 2024:10.1007/s12094-024-03664-5. [PMID: 39187643 DOI: 10.1007/s12094-024-03664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Maternal embryonic leucine zipper kinase (MELK), a member of the adenosine monophosphate-activated protein kinase (AMPK) protein family, has been reported to be involved in the regulation of many cellular events. The aberrant expression of MELK is associated with tumorigenesis and malignant progression of various tumors. Moreover, MELK plays an essential role in the regulation of tumor microenvironment (TME), which affects the function of immune cells and the responsiveness to immunotherapy. Currently, small molecule inhibitors targeting MELK have been developed and evaluated in clinical trials. A comprehensive understanding of MELK may provide clues and confidence for subsequent basic research and scientific transformation. In this review, we provide a comprehensive overview of the structural features, molecular biological functions, and critical roles of MELK in tumors and TME, as well as the targeted agents under development for the treatment of tumors and discuss the perspective for MELK-targeted therapies for tumors.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Qiliang Lu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China.
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China.
| |
Collapse
|
2
|
Li Q, Wang T, Wang X, Ge X, Yang T, Wang W. DDX56 promotes EMT and cancer stemness via MELK-FOXM1 axis in hepatocellular carcinoma. iScience 2024; 27:109827. [PMID: 38827395 PMCID: PMC11141150 DOI: 10.1016/j.isci.2024.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global cause of death, with epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties contributing to its metastasis. DEAD box helicase 56 (DDX56) is involved in carcinogenesis, but its role in EMT induction and stem phenotype maintenance is unclear. This study assessed the impact of DDX56 absence on HCC cell stemness and EMT. DDX56 was found to be overexpressed in HCC tissues, correlating with disease stage and prognosis. In vitro, DDX56 stimulated tumor cell proliferation, migration, invasion, EMT, and stemness. It also enhanced maternal embryonic leucine-zipper kinase (MELK)-mediated forkhead box protein M1 (FOXM1) expression, regulating cancer stemness and malignant traits. In vivo, DDX56 knockdown in tumor-bearing mice reduced tumorigenicity and lung metastasis by modulating the MELK-FOXM1 signaling pathway. Collectively, DDX56 initiates stem cell-like traits in HCC and promotes EMT via MELK-FOXM1 activation, shedding light on HCC pathogenesis and suggesting a potential anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Qing Li
- Department of Internal Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| | - Tianyi Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Ximin Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - XinYu Ge
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Tao Yang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
3
|
Cheng K, Chen H, Chen B, Li J, Fan C, Yan H, Huang W, Zhao T, Luo Y, Peng L. Hsa_circ_0101050 accelerates the progression of Colon cancer by targeting the miR-140-3 p/MELK axis. Transl Oncol 2024; 44:101890. [PMID: 38579527 PMCID: PMC11004704 DOI: 10.1016/j.tranon.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 01/22/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in the progression of colon cancer (CC). This study aimed to examine the role of a new circRNA circ_0101050 in CC. METHODS Dual-luciferase reporter and RNA immunoprecipitation analyses were performed to validate the target relationships among maternal embryonic leucine zipper kinase (MELK), microRNA (miR)-140-3 p, and circ_0101050. Expression levels were calculated using western blotting and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Western blotting was performed to evaluate the relative expression of Bcl-2 and Bax proteins to determine cell death. Cell Counting Kit-8 (CCK-8) and colony formation assays were performed to determine the proliferative potential of CC cells. The migration rate of CC cells was evaluated using wound healing assays. Tumor formation tests were performed to determine the effect of circ_0101050 on tumor development in vivo. RESULTS Elevated levels of circ_0101050 and MELK were observed in CC. By inhibiting circ 0,101,050 or MELK, CC cell proliferation and migration were inhibited, but CC cell apoptosis was promoted. Silencing circ_0101050 also inhibited CC growth in vivo. We also found that miR-140-3 p was downregulated, which alleviated the repressive effects of circ_0101050 knockdown on proliferating and migrating CC cells, as well as the stimulating effect on apoptosis. In addition, the absence of MELK alleviated the effects of miR-140-3 p downregulation, which enhanced CC cell malignancy. CONCLUSIONS Circ_0101050 exacerbates malignant phenotypes in CC by targeting the miR-140-3 p/MELK axis. These findings suggested that the circ_0101050/miR-140-3 p/MELK network may be a prospective target for CC treatment.
Collapse
Affiliation(s)
- Kuoju Cheng
- Department of Clinical Pharmacy, Dazhou integrated TCM & Western Medicine Hospital, Dazhou 635000, Sichuan, PR China
| | - Hao Chen
- Department of Gastroenterology, Dazhou integrated TCM & Western Medicine Hospital, Dazhou 635000, Sichuan, PR China
| | - Bin Chen
- Department of Gastroenterology, Dazhou integrated TCM & Western Medicine Hospital, Dazhou 635000, Sichuan, PR China
| | - Jing Li
- Department of Gastroenterology, Dazhou integrated TCM & Western Medicine Hospital, Dazhou 635000, Sichuan, PR China
| | - Caibo Fan
- Department of Gastroenterology, Dazhou integrated TCM & Western Medicine Hospital, Dazhou 635000, Sichuan, PR China
| | - Huan Yan
- Department of Gastroenterology, Dazhou integrated TCM & Western Medicine Hospital, Dazhou 635000, Sichuan, PR China
| | - Wei Huang
- Department of Gastroenterology, Dazhou integrated TCM & Western Medicine Hospital, Dazhou 635000, Sichuan, PR China
| | - Ting Zhao
- Department of Gastroenterology, Dazhou integrated TCM & Western Medicine Hospital, Dazhou 635000, Sichuan, PR China
| | - Yun Luo
- Department of Gastroenterology, Dazhou integrated TCM & Western Medicine Hospital, Dazhou 635000, Sichuan, PR China
| | - Lei Peng
- Department of Gastroenterology, Dazhou integrated TCM & Western Medicine Hospital, Dazhou 635000, Sichuan, PR China.
| |
Collapse
|
4
|
Robinson J, Teuliere J, Yoo S, Garriga G. NMY-2, TOE-2 and PIG-1 regulate Caenorhabditis elegans asymmetric cell divisions. PLoS One 2024; 19:e0304064. [PMID: 38787850 PMCID: PMC11125515 DOI: 10.1371/journal.pone.0304064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Asymmetric cell division is an important mechanism that generates cellular diversity during development. Not only do asymmetric cell divisions produce daughter cells of different fates, but many can also produce daughters of different sizes, which we refer to as Daughter Cell Size Asymmetry (DCSA). In Caenorhabditis elegans, apoptotic cells are frequently produced by asymmetric divisions that exhibit DCSA, where the smaller daughter dies. We focus here on the divisions of the Q.a and Q.p neuroblasts, which produce larger surviving cells and smaller apoptotic cells and divide with opposite polarity using both distinct and overlapping mechanisms. Several proteins regulate DCSA in these divisions. Previous studies showed that the PIG-1/MELK and TOE-2 proteins regulate DCSA in both the Q.a and Q.p divisions, and the non-muscle myosin NMY-2 regulates DCSA in the Q.a division but not the Q.p division. In this study, we examined endogenously tagged NMY-2, TOE-2, and PIG-1 reporters and characterized their distribution at the cortex during the Q.a and Q.p divisions. In both divisions, TOE-2 localized toward the side of the dividing cell that produced the smaller daughter, whereas PIG-1 localized toward the side that produced the larger daughter. As previously reported, NMY-2 localized to the side of Q.a that produced the smaller daughter and did not localize asymmetrically in Q.p. We used temperature-sensitive nmy-2 mutants to determine the role of nmy-2 in these divisions and were surprised to find that these mutants only displayed DCSA defects in the Q.p division. We generated double mutant combinations between the nmy-2 mutations and mutations in toe-2 and pig-1. Because previous studies indicate that DCSA defects result in the transformation of cells fated to die into their sister cells, the finding that the nmy-2 mutations did not significantly alter the Q.a and Q.p DCSA defects of toe-2 and pig-1 mutants but did alter the number of daughter cells produced by Q.a and Q.p suggests that nmy-2 plays a role in specifying the fates of the Q.a and Q.p that is independent of its role in DCSA.
Collapse
Affiliation(s)
- Joseph Robinson
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States of America
| | - Jerome Teuliere
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States of America
| | - Shinja Yoo
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States of America
| | - Gian Garriga
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
5
|
Ubaid S, Kashif M, Laiq Y, Nayak AK, Kumar V, Singh V. Targeting HIF-1α in sickle cell disease and cancer: unraveling therapeutic opportunities and risks. Expert Opin Ther Targets 2024; 28:357-373. [PMID: 38861226 DOI: 10.1080/14728222.2024.2367640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION HIF-1α, a key player in medical science, holds immense significance in therapeutic approaches. This review delves into its complex dynamics, emphasizing the delicate balance required for its modulation. HIF-1α stands as a cornerstone in medical research, its role extending to therapeutic strategies. This review explores the intricate interplay surrounding HIF-1α, highlighting its critical involvement and the necessity for cautious modulation. AREAS COVERED In sickle cell disease (SCD), HIF-1α's potential to augment fetal hemoglobin (HbF) production and mitigate symptoms is underscored. Furthermore, its role in cancer is examined, particularly its influence on survival in hypoxic tumor microenvironments, angiogenesis, and metastasis. The discussion extends to the intricate relationship between HIF-1α modulation and cancer risks in SCD patients, emphasizing the importance of balancing therapeutic benefits and potential hazards. EXPERT OPINION Managing HIF-1α modulation in SCD patients requires a nuanced approach, considering therapeutic potential alongside associated risks, especially in exacerbating cancer risks. An evolutionary perspective adds depth, highlighting adaptations in populations adapted to low-oxygen environments and aligning cancer cell metabolism with primitive cells. The role of HIF-1α as a therapeutic target is discussed within the context of complex cancer biology and metabolism, acknowledging varied responses across diverse cancers influenced by intricate evolutionary adaptations.
Collapse
Affiliation(s)
- Saba Ubaid
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Yusra Laiq
- Department of Biotechnology, Era University, Lucknow, India
| | | | - Vipin Kumar
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vivek Singh
- Department of Biochemistry, King George's Medical University, Lucknow, India
| |
Collapse
|
6
|
Stitzlein LM, Adams JT, Stitzlein EN, Dudley RW, Chandra J. Current and future therapeutic strategies for high-grade gliomas leveraging the interplay between epigenetic regulators and kinase signaling networks. J Exp Clin Cancer Res 2024; 43:12. [PMID: 38183103 PMCID: PMC10768151 DOI: 10.1186/s13046-023-02923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Targeted therapies, including small molecule inhibitors directed against aberrant kinase signaling and chromatin regulators, are emerging treatment options for high-grade gliomas (HGG). However, when translating these inhibitors into the clinic, their efficacy is generally limited to partial and transient responses. Recent studies in models of high-grade gliomas reveal a convergence of epigenetic regulators and kinase signaling networks that often cooperate to promote malignant properties and drug resistance. This review examines the interplay between five well-characterized groups of chromatin regulators, including the histone deacetylase (HDAC) family, bromodomain and extraterminal (BET)-containing proteins, protein arginine methyltransferase (PRMT) family, Enhancer of zeste homolog 2 (EZH2), and lysine-specific demethylase 1 (LSD1), and various signaling pathways essential for cancer cell growth and progression. These specific epigenetic regulators were chosen for review due to their targetability via pharmacological intervention and clinical relevance. Several studies have demonstrated improved efficacy from the dual inhibition of the epigenetic regulators and signaling kinases. Overall, the interactions between epigenetic regulators and kinase signaling pathways are likely influenced by several factors, including individual glioma subtypes, preexisting mutations, and overlapping/interdependent functions of the chromatin regulators. The insights gained by understanding how the genome and epigenome cooperate in high-grade gliomas will guide the design of future therapeutic strategies that utilize dual inhibition with improved efficacy and overall survival.
Collapse
Affiliation(s)
- Lea M Stitzlein
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jack T Adams
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Richard W Dudley
- Department of Pharmaceutical Sciences, University of Findlay, Findlay, OH, USA
| | - Joya Chandra
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Liu G, Zhang S, Lin R, Cao X, Yuan L. Anti-tumor target screening of sea cucumber saponin Frondoside A: a bioinformatics and molecular docking analysis. Front Oncol 2023; 13:1307838. [PMID: 38144520 PMCID: PMC10739435 DOI: 10.3389/fonc.2023.1307838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer remains the leading cause of death worldwide. In spite of significant advances in targeted and immunotherapeutic approaches, clinical outcomes for cancer remain poor. The aim of the present study was to investigate the potential mechanisms and therapeutic targets of Frondoside A for the treatment of liver, pancreatic, and bladder cancers. The data presented in our study demonstrated that Frondoside A reduced the viability and migration of HepG2, Panc02, and UM-UC-3 cancer cell in vitro. Moreover, we utilized the GEO database to screen and identify for differentially expressed genes (DEGs) in liver, pancreatic, and bladder cancers, which resulted in the identification of 714, 357, and 101 DEGs, respectively. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation were performed using the Metascape database for DEGs that were significantly associated with cancer development. The protein-protein interaction (PPI) networks of the identified DEGs in liver, pancreatic, and bladder cancers were analyzed using Cytoscape 3.9.0 software, and subsequently identified potential key genes that were associated with these networks. Subsequently, their prognostic values were assessed by gene expression level analysis and Kaplan-Meier survival analysis (GEPIA). Furthermore, we utilized TIMER 2.0 to investigate the correlation between the expression of the identified key gene and cancer immune infiltration. Finally, molecular docking simulations were performed to assess the affinity of Frondoside A and key genes. Our results showed a significant correlation between these DEGs and cancer progression. Combined, these analyses revealed that Frondoside A involves in the regulation of multiple pathways, such as drug metabolism, cell cycle in liver cancer by inhibiting the expression of CDK1, TOP2A, CDC20, and KIF20A, and regulates protein digestion and absorption, receptor interaction in pancreatic cancer by down-regulation of ASPM, TOP2A, DLGAP5, TPX2, KIF23, MELK, LAMA3, and ANLN. While in bladder cancer, Frondoside A regulates muscle contraction, complement and coagulation cascade by increase FLNC expression. In conclusion, the present study offers valuable insights into the molecular mechanism underlying the anticancer effects of Frondoside A, and suggests that Frondoside A can be used as a functional food supplement or further developed as a natural anti-cancer drug.
Collapse
Affiliation(s)
- Guangchun Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shenglin Zhang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruoyan Lin
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xudong Cao
- Deparment of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Lihong Yuan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Daoud S, Alabed SJ, Bardaweel SK, Taha MO. Discovery of potent maternal embryonic leucine zipper kinase (MELK) inhibitors of novel chemotypes using structure-based pharmacophores. Med Chem Res 2023; 32:2574-2586. [DOI: 10.1007/s00044-023-03160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 07/10/2024]
|
9
|
Hu J, Liu J, Zhou S, Luo H. A review on the role of gamma-butyrobetaine hydroxylase 1 antisense RNA 1 in the carcinogenesis and tumor progression. Cancer Cell Int 2023; 23:263. [PMID: 37925403 PMCID: PMC10625699 DOI: 10.1186/s12935-023-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Gamma-butyrobetaine hydroxylase 1 antisense RNA 1 (BBOX1-AS1), located on human chromosome 11 p14, emerges as a critical player in tumorigenesis with diverse oncogenic effects. Aberrant expression of BBOX1-AS1 intricately regulates various cellular processes, including cell growth, epithelial-mesenchymal transition, migration, invasion, metastasis, cell death, and stemness. Notably, the expression of BBOX1-AS1 was significantly correlated with clinical-pathological characteristics and tumor prognoses, and it could also be used for the diagnosis of lung and esophageal cancers. Through its involvement in the ceRNA network, BBOX1-AS1 competitively binds to eight miRNAs in ten different cancer types. Additionally, BBOX1-AS1 can directly modulate downstream protein-coding genes or act as an mRNA stabilizer. The implications of BBOX1-AS1 extend to critical signaling pathways, including Hedgehog, Wnt/β-catenin, and MELK/FAK pathways. Moreover, it influences drug resistance in hepatocellular carcinoma. The present study provides a systematic review of the clinical significance of BBOX1-AS1's aberrant expression in diverse tumor types. It sheds light on the intricate molecular mechanisms through which BBOX1-AS1 influences cancer initiation and progression and outlines potential avenues for future research in this field.
Collapse
Affiliation(s)
- Juan Hu
- Medical Service Division, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Jipeng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China
| | - Siwei Zhou
- Second School of Clinical Medicine, Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China.
| |
Collapse
|
10
|
Hameed Y. Decoding the significant diagnostic and prognostic importance of maternal embryonic leucine zipper kinase in human cancers through deep integrative analyses. J Cancer Res Ther 2023; 19:1852-1864. [PMID: 38376289 DOI: 10.4103/jcrt.jcrt_1902_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/11/2022] [Indexed: 02/21/2024]
Abstract
BACKGROUND Cancer is a multifactorial disease and the second leading cause of human deaths worldwide. So far, the underlying mechanisms of cancer have not been yet fully elucidated. METHODS By using TCGA expression data, we determine the pathogenic roles of the maternal embryonic leucine zipper kinase (MELK) gene in various human cancers in this study. For this purpose, different online databases and tools (UALCAN, Kaplan-Meier (KM) plotter, TNMplot, GENT2, GEPIA, HPA, cBioPortal, STRING, Enrichr, TIMER, Cytoscape, DAVID, MuTarget, and CTD) were used. RESULTS MELK gene expression was analyzed in a total of 24 human cancers and was found notably up-regulated in all the 24 analyzed tumor tissues relative to controls. Moreover, across a few specific cancers, including kidney renal clear cell carcinoma (KIRC), stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD), and liver hepatocellular carcinoma (LIHC) patients, MELK up-regulation was observed to be correlated with the shorter survival duration and metastasis. This valuable information highlighted that MELK plays a significant role in the development and progression of these four cancers. Based on clinical variables, MELK higher expression was also found in KIRC, STAD, LUAD, and LIHC patients with different clinical variables. Gene ontology and pathway analysis outcomes showed that MELK-associated genes notably co-expressed with MELK and belongs to a variety of diverse biological processes, molecular functions, and pathways. MELK expression was also correlated with promoter methylation levels, genetic alterations, other mutant genes, tumor purity, CD8+ T, and CD+4 T immune cells infiltrations in KIRC, STAD, LUAD, and LIHC. CONCLUSION This pan-cancer study revealed the diagnostic and prognostic roles of MELK across four different cancers.
Collapse
Affiliation(s)
- Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
11
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
12
|
Xie X, Chauhan GB, Edupuganti R, Kogawa T, Park J, Tacam M, Tan AW, Mughees M, Vidhu F, Liu DD, Taliaferro JM, Pitner MK, Browning LS, Lee JH, Bertucci F, Shen Y, Wang J, Ueno NT, Krishnamurthy S, Hortobagyi GN, Tripathy D, Van Laere SJ, Bartholomeusz G, Dalby KN, Bartholomeusz C. Maternal Embryonic Leucine Zipper Kinase is Associated with Metastasis in Triple-negative Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1078-1092. [PMID: 37377604 PMCID: PMC10281291 DOI: 10.1158/2767-9764.crc-22-0330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Triple-negative breast cancer (TNBC) has high relapse and metastasis rates and a high proportion of cancer stem-like cells (CSC), which possess self-renewal and tumor initiation capacity. MELK (maternal embryonic leucine zipper kinase), a protein kinase of the Snf1/AMPK kinase family, is known to promote CSC maintenance and malignant transformation. However, the role of MELK in TNBC metastasis is unknown; we sought to address this in the current study. We found that MELK mRNA levels were higher in TNBC tumors [8.11 (3.79-10.95)] than in HR+HER2- tumors [6.54 (2.90-9.26)]; P < 0.001]. In univariate analysis, patients with breast cancer with high-MELK-expressing tumors had worse overall survival (P < 0.001) and distant metastasis-free survival (P < 0.01) than patients with low-MELK-expressing tumors. In a multicovariate Cox regression model, high MELK expression was associated with shorter overall survival after adjusting for other baseline risk factors. MELK knockdown using siRNA or MELK inhibition using the MELK inhibitor MELK-In-17 significantly reduced invasiveness, reversed epithelial-to-mesenchymal transition, and reduced CSC self-renewal and maintenance in TNBC cells. Nude mice injected with CRISPR MELK-knockout MDA-MB-231 cells exhibited suppression of lung metastasis and improved overall survival compared with mice injected with control cells (P < 0.05). Furthermore, MELK-In-17 suppressed 4T1 tumor growth in syngeneic BALB/c mice (P < 0.001). Our findings indicate that MELK supports metastasis by promoting epithelial-to-mesenchymal transition and the CSC phenotype in TNBC. Significance These findings indicate that MELK is a driver of aggressiveness and metastasis in TNBC.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Current Institution: Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, Hawaii, USA
| | - Gaurav B. Chauhan
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ramakrishna Edupuganti
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Takahiro Kogawa
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jihyun Park
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Moises Tacam
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alex W. Tan
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mohd Mughees
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fnu Vidhu
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diane D. Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juliana M. Taliaferro
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Mary Kathryn Pitner
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luke S. Browning
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Ju-Hyeon Lee
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - François Bertucci
- Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Current Institution: Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, Hawaii, USA
| | - Savitri Krishnamurthy
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel N. Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven J. Van Laere
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Antwerp, Wilrijk
- Department Oncology, KU Leuven, Leuven, Belgium
| | - Geoffrey Bartholomeusz
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kevin N. Dalby
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Chandra Bartholomeusz
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
13
|
Szymański Ł, Lieto K, Zdanowski R, Lewicki S, Tassan JP, Kubiak JZ. Differential Effects of Overexpression of Wild Type and Kinase-Dead MELK in Fibroblasts and Keratinocytes, Potential Implications for Skin Wound Healing and Cancer. Int J Mol Sci 2023; 24:ijms24098089. [PMID: 37175795 PMCID: PMC10179274 DOI: 10.3390/ijms24098089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Maternal embryonic leucine-zipper kinase (MELK) plays a significant role in cell cycle progression, mitosis, cell migration, cell renewal, gene expression, embryogenesis, proliferation, apoptosis, and spliceosome assembly. In addition, MELK is known to be overexpressed in multiple types of cancer and is associated with cancer proliferation. Tumorigenesis shares many similarities with wound healing, in which the rate of cell proliferation is a critical factor. Therefore, this study aimed to determine the involvement of MELK in the regulation of cell division in two cell types involved in this process, namely fibroblasts and keratinocytes. We examined how temporal overexpression of wild-type and kinase-dead MELK kinase variants affect the rate of proliferation, viability, cell cycle, and phosphorylation state of other kinases involved in these processes, such as ERK1/2, AKT1, MAPK9, p38, and p53. We explored if MELK could be used as a therapeutic stimulator of accelerated wound healing via increased proliferation. We observed that aberrant expression of MELK results in abnormal proliferation, altered cell cycle distribution, and decreased viability of the cells, which challenge the utility of MELK in accelerated wound healing. Our results indicate that, at least in healthy cells, any deviation from precisely controlled MELK expression is harmful to fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Krystyna Lieto
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Jean-Pierre Tassan
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes (IGDR), CNRS, University Rennes, UMR 6290, 35043 Rennes, France
| | - Jacek Z Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes (IGDR), CNRS, University Rennes, UMR 6290, 35043 Rennes, France
| |
Collapse
|
14
|
Ji L, Shi Y, Bian Q. Comparative genomics analyses reveal sequence determinants underlying interspecies variations in injury-responsive enhancers. BMC Genomics 2023; 24:177. [PMID: 37020217 PMCID: PMC10077677 DOI: 10.1186/s12864-023-09283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Injury induces profound transcriptional remodeling events, which could lead to only wound healing, partial tissue repair, or perfect regeneration in different species. Injury-responsive enhancers (IREs) are cis-regulatory elements activated in response to injury signals, and have been demonstrated to promote tissue regeneration in some organisms such as zebrafish and flies. However, the functional significances of IREs in mammals remain elusive. Moreover, whether the transcriptional responses elicited by IREs upon injury are conserved or specialized in different species, and what sequence features may underlie the functional variations of IREs have not been elucidated. RESULTS We identified a set of IREs that are activated in both regenerative and non-regenerative neonatal mouse hearts upon myocardial ischemia-induced damage by integrative epigenomic and transcriptomic analyses. Motif enrichment analysis showed that AP-1 and ETS transcription factor binding motifs are significantly enriched in both zebrafish and mouse IREs. However, the IRE-associated genes vary considerably between the two species. We further found that the IRE-related sequences in zebrafish and mice diverge greatly, with the loss of IRE inducibility accompanied by a reduction in AP-1 and ETS motif frequencies. The functional turnover of IREs between zebrafish and mice is correlated with changes in transcriptional responses of the IRE-associated genes upon injury. Using mouse cardiomyocytes as a model, we demonstrated that the reduction in AP-1 or ETS motif frequency attenuates the activation of IREs in response to hypoxia-induced damage. CONCLUSIONS By performing comparative genomics analyses on IREs, we demonstrated that inter-species variations in AP-1 and ETS motifs may play an important role in defining the functions of enhancers during injury response. Our findings provide important insights for understanding the molecular mechanisms of transcriptional remodeling in response to injury across species.
Collapse
Affiliation(s)
- Luzhang Ji
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yuanyuan Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
15
|
Tang BF, Yan RC, Wang SW, Zeng ZC, Du SS. Maternal embryonic leucine zipper kinase in tumor cell and tumor microenvironment: Emerging player and promising therapeutic opportunities. Cancer Lett 2023; 560:216126. [PMID: 36933780 DOI: 10.1016/j.canlet.2023.216126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is a member of the AMPK (AMP-activated protein kinase) protein family, which is widely and highly expressed in multiple cancer types. Through direct and indirect interactions with other proteins, it mediates various cascades of signal transduction processes and plays an important role in regulating tumor cell survival, growth, invasion and migration and other biological functions. Interestingly, MELK also plays an important role in the regulation of the tumor microenvironment, which can not only predict the responsiveness of immunotherapy, but also affect the function of immune cells to regulate tumor progression. In addition, more and more small molecule inhibitors have been developed for the target of MELK, which exert important anti-tumor effects and have achieved excellent results in a number of clinical trials. In this review, we outline the structural features, molecular biological functions, potential regulatory mechanisms and important roles of MELK in tumors and tumor microenvironment, as well as substances targeting MELK. Although many molecular mechanisms of MELK in the process of tumor regulation are still unknown, it is worth affirming that MELK is a potential tumor molecular therapeutic target, and its unique superiority and important role provide clues and confidence for subsequent basic research and scientific transformation.
Collapse
Affiliation(s)
- Bu-Fu Tang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Ruo-Chen Yan
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Wei Wang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Shi-Suo Du
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China.
| |
Collapse
|
16
|
Baumgartner C, Yadav AK, Chefetz I. AMPK-like proteins and their function in female reproduction and gynecologic cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:245-270. [PMID: 36858738 DOI: 10.1016/bs.apcsb.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serine-threonine kinase (STK11), also known as liver kinase B1 (LKB1), is a regulator of cellular homeostasis through regulating the cellular ATP-to-ADP ratio. LKB1 is classified as a tumor suppressor and functions as the key activator of AMP-activated protein kinase (AMPK) and a family of serine-threonine kinases called AMPK-like proteins. These proteins include novel (nua) kinase family 1 (NUAK1 and 2), salt inducible kinase (SIK1), QIK (known as SIK2), QSK (known as SIK3 kinase), and maternal embryonic leuzine zipper kinase (MELK) on tightly controlled and specific residual sites. LKB1 also regulates brain selective kinases 1 and 2 (BRSK1 and 2), additional members of AMPK-like protein family, which functions are probably less studied. AMPK-like proteins play a role in variety of reproductive physiology functions such as follicular maturation, menopause, embryogenesis, oocyte maturation, and preimplantation development. In addition, dysfunctional activity of AMPK-like proteins contributes to apoptosis blockade in cancer cells and induction of the epithelial-mesenchymal transition required for metastasis. Dysregulation of these proteins occurs in ovarian, endometrial, and cervical cancers. AMPK-like proteins are still undergoing further classification and may represent novel targets for targeted gynecologic cancer therapies. In this chapter, we describe the AMPK-like family of proteins and their roles in reproductive physiology and gynecologic cancers.
Collapse
Affiliation(s)
| | - Anil Kumar Yadav
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
17
|
Yang H, Zhou H, Wang G, Tian L, Li H, Zhang Y, Xue X. MELK is a prognostic biomarker and correlated with immune infiltration in glioma. Front Neurol 2022; 13:977180. [PMID: 36353126 PMCID: PMC9637824 DOI: 10.3389/fneur.2022.977180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Glioma accounts for the vast majority of primary brain tumors with inevitable recurrence and poor prognosis. Maternal embryonic leucine zipper kinase (MELK) is overexpressed in multiple human tumors and could activate a variety of oncogenic-associated signal pathways. However, its role in the glioma microenvironment is still largely unknown. Methods We collected the RNA sequence data and clinical information of gliomas from the Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) databases, and investigated MELK expression and its correlation with clinicopathologic features and prognosis in glioma. Moreover, the relationship between MELK expression and immune cell infiltration in the tumor microenvironment of gliomas was explored through single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. In addition, gene set enrichment analysis (GSEA) and Metascape online analysis were performed to find out signaling pathways enriched by differentially expressed genes (DEGs) between high- and low-MELK expression groups. Finally, immunohistochemistry was performed to validate our findings. Results Data analysis of CGGA and GEO datasets showed that MELK was significantly upregulated in gliomas than in normal brain tissues, and MELK expression was obviously correlated with clinicopathologic features, including age, WHO grade, histological subtype, IDH mutant status, 1p19q codeletion status, and PRS type. Stratified analysis, Cox regression analysis, and nomogram model revealed that high expression of MELK predicted poor survival; hence, MELK could serve as an independent prognostic biomarker for glioma. Moreover, results from enrichment pathway analysis indicated that the immune system process, angiogenesis, apoptosis, cell cycle, and other oncogenic-related signal pathways were significantly enriched between high- and low-MELK expression groups. Immune infiltration analysis demonstrated that increased MELK expression was significantly correlated with higher immune scores, higher fractions of immunocytes (T cells, NK cells resting, macrophages, resting mast cells, and neutrophils), and higher expression levels of immune checkpoints (B7-H3, CTLA4, LAG3, PD-1, PD-L1, and TIM3). Finally, immunohistochemistry analysis validated our findings that high expression of MELK relates to increased malignancy and poor prognosis of glioma. Conclusion Our findings identified that MELK could act as an independent prognostic indicator and potential immunotherapy target for glioma. In conclusion, these findings suggested that DDOST mediated the immunosuppressive microenvironment of gliomas and could be an important biomarker in diagnosing and treating gliomas.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yufeng Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Yufeng Zhang
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaoying Xue
| |
Collapse
|
18
|
Keshavarz-Rahaghi F, Pleasance E, Kolisnik T, Jones SJM. A p53 transcriptional signature in primary and metastatic cancers derived using machine learning. Front Genet 2022; 13:987238. [PMID: 36134028 PMCID: PMC9483853 DOI: 10.3389/fgene.2022.987238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor gene, TP53, has the highest rate of mutation among all genes in human cancer. This transcription factor plays an essential role in the regulation of many cellular processes. Mutations in TP53 result in loss of wild-type p53 function in a dominant negative manner. Although TP53 is a well-studied gene, the transcriptome modifications caused by the mutations in this gene have not yet been explored in a pan-cancer study using both primary and metastatic samples. In this work, we used a random forest model to stratify tumor samples based on TP53 mutational status and detected a p53 transcriptional signature. We hypothesize that the existence of this transcriptional signature is due to the loss of wild-type p53 function and is universal across primary and metastatic tumors as well as different tumor types. Additionally, we showed that the algorithm successfully detected this signature in samples with apparent silent mutations that affect correct mRNA splicing. Furthermore, we observed that most of the highly ranked genes contributing to the classification extracted from the random forest have known associations with p53 within the literature. We suggest that other genes found in this list including GPSM2, OR4N2, CTSL2, SPERT, and RPE65 protein coding genes have yet undiscovered linkages to p53 function. Our analysis of time on different therapies also revealed that this signature is more effective than the recorded TP53 status in detecting patients who can benefit from platinum therapies and taxanes. Our findings delineate a p53 transcriptional signature, expand the knowledge of p53 biology and further identify genes important in p53 related pathways.
Collapse
Affiliation(s)
- Faeze Keshavarz-Rahaghi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Tyler Kolisnik
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Steven J. M. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, Canada
- *Correspondence: Steven J. M. Jones,
| |
Collapse
|
19
|
Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:850-872. [PMID: 36627897 PMCID: PMC9771762 DOI: 10.20517/cdr.2022.20] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023]
Abstract
Resistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Hardeman AA, Han YJ, Grushko TA, Mueller J, Gomez MJ, Zheng Y, Olopade OI. Subtype-specific expression of MELK is partly due to copy number alterations in breast cancer. PLoS One 2022; 17:e0268693. [PMID: 35749404 PMCID: PMC9231703 DOI: 10.1371/journal.pone.0268693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Maternal embryonic leucine-zipper kinase (MELK) regulates cell cycle progression and is highly expressed in many cancers. The molecular mechanism of MELK dysregulation has not been determined in aggressive forms of breast cancer, such as triple negative breast cancer (TNBC). To evaluate molecular markers of MELK aberrations in aggressive breast cancer, we assessed MELK gene amplification and expression in breast tumors. MELK mRNA expression is highly up-regulated in basal-like breast cancer (BLBC), the major molecular subtype of TNBC, compared to luminal or other subtypes of breast tumors. MELK copy number (CN) gains are significantly associated with BLBC, whereas no significant association of CpG site methylation or histone modifications with breast cancer subtypes was observed. Accordingly, the CN gains appear to contribute to an increase in MELK expression, with a significant correlation between mRNA expression and CN in breast tumors and cell lines. Furthermore, immunohistochemistry (IHC) assays revealed that both nuclear and cytoplasmic staining scores of MELK were significantly higher in invasive ductal carcinoma (IDC) tumors compared to ductal carcinoma in situ (DCIS) and normal breast tissues. Our data showed that upregulation of MELK in BLBC may be in part driven by CN gains, rather than epigenetic modifications, indicating a potential for overexpression and CN gains of MELK to be developed as a diagnostic and prognostic marker to identify patients who have more aggressive breast cancer.
Collapse
Affiliation(s)
- Ashley A. Hardeman
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Yoo Jane Han
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
- * E-mail: (OIO); (YJH)
| | - Tatyana A. Grushko
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
- Abbott Molecular Inc, Des Plaines, IL, United States of America
| | - Jeffrey Mueller
- Department of Pathology, University of Chicago, Chicago, IL, United States of America
| | - Maria J. Gomez
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Yonglan Zheng
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Olufunmilayo I. Olopade
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
- * E-mail: (OIO); (YJH)
| |
Collapse
|
21
|
xCT contributes to colorectal cancer tumorigenesis through upregulation of the MELK oncogene and activation of the AKT/mTOR cascade. Cell Death Dis 2022; 13:373. [PMID: 35440604 PMCID: PMC9019093 DOI: 10.1038/s41419-022-04827-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
AbstractColorectal cancer (CRC) is one of the most commonly diagnosed and deadly malignant tumors globally, and its occurrence and progression are closely related to the poor histological features and complex molecular characteristics among patients. It is urgent to identify specific biomarkers for effective treatment of CRC. In this study, we performed comprehensive experiments to validate the role of xCT expression in CRC tumorigenesis and stemness and confirmed xCT knockdown significantly suppressed the proliferation, migration, and stemness of CRC cells in vitro and effectively inhibited CRC tumorigenesis and metastasis in vivo. In addition, bioinformatic analysis and luciferase assays were used to identify E2F1 as a critical upstream transcription factor of SLC7A11 (the gene encoding for xCT) that facilitated CRC progression and cell stemness. Subsequent RNA sequencing, western blotting, rescue assay, and immunofluorescence assays revealed MELK directly co-expressed with xCT in CRC cells, and its upregulation significantly attenuated E2F1/xCT-mediated tumorigenesis and stemness in CRC. Further molecular mechanism exploration confirmed that xCT knockdown may exert an antitumor effect by controlling the activation of MELK-mediated Akt/mTOR signaling. Erastin, a specific inhibitor of xCT, was also proven to effectively inhibit CRC tumorigenesis and cell stemness. Altogether, our study showed that E2F1/xCT is a promising therapeutic target of CRC that promotes tumorigenesis and cell stemness. Erastin is also an effective antitumoral agent for CRC.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Apoptosis is a major mechanism of cancer cell death. Thus, evasion of apoptosis results in therapy resistance. Here, we review apoptosis modulators in cancer and their recent developments, including MDM2 inhibitors and kinase inhibitors that can induce effective apoptosis. RECENT FINDINGS Both extrinsic pathways (external stimuli through cell surface death receptor) and intrinsic pathways (mitochondrial-mediated regulation upon genotoxic stress) regulate the complex process of apoptosis through orchestration of various proteins such as members of the BCL-2 family. Dysregulation within these complex steps can result in evasion of apoptosis. However, via the combined evolution of medicinal chemistry and molecular biology, omics assays have led to innovative inducers of apoptosis and inhibitors of anti-apoptotic regulators. Many of these agents are now being tested in cancer patients in early-phase trials. We believe that despite a sluggish speed of development, apoptosis targeting holds promise as a relevant strategy in cancer therapeutics.
Collapse
|
23
|
Perez I, Berndt S, Agarwal R, Castro MA, Vishnivetskiy SA, Smith JC, Sanders CR, Gurevich VV, Iverson TM. A Model for the Signal Initiation Complex Between Arrestin-3 and the Src Family Kinase Fgr. J Mol Biol 2022; 434:167400. [PMID: 34902430 PMCID: PMC8752512 DOI: 10.1016/j.jmb.2021.167400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023]
Abstract
Arrestins regulate a wide range of signaling events, most notably when bound to active G protein-coupled receptors (GPCRs). Among the known effectors recruited by GPCR-bound arrestins are Src family kinases, which regulate cellular growth and proliferation. Here, we focus on arrestin-3 interactions with Fgr kinase, a member of the Src family. Previous reports demonstrated that Fgr exhibits high constitutive activity, but can be further activated by both arrestin-dependent and arrestin-independent pathways. We report that arrestin-3 modulates Fgr activity with a hallmark bell-shaped concentration-dependence, consistent with a role as a signaling scaffold. We further demonstrate using NMR spectroscopy that a polyproline motif within arrestin-3 interacts directly with the SH3 domain of Fgr. To provide a framework for this interaction, we determined the crystal structure of the Fgr SH3 domain at 1.9 Å resolution and developed a model for the GPCR-arrestin-3-Fgr complex that is supported by mutagenesis. This model suggests that Fgr interacts with arrestin-3 at multiple sites and is consistent with the locations of disease-associated Fgr mutations. Collectively, these studies provide a structural framework for arrestin-dependent activation of Fgr.
Collapse
Affiliation(s)
- Ivette Perez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Rupesh Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, USA
| | - Manuel A Castro
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | | | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | - T M Iverson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Nashville, TN 37232-0146, USA.
| |
Collapse
|
24
|
Lee Y, Bortolotto ZA, Bradley CA, Sanderson TM, Zhuo M, Kaang BK, Collingridge GL. The GSK-3 Inhibitor CT99021 Enhances the Acquisition of Spatial Learning and the Accuracy of Spatial Memory. Front Mol Neurosci 2022; 14:804130. [PMID: 35153671 PMCID: PMC8829050 DOI: 10.3389/fnmol.2021.804130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a Ser/Thr protein kinase that regulates many cellular processes, including synaptic plasticity. Previously, we reported that inhibition of GSK-3 prevents the induction of one of the major forms of synaptic plasticity, N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD), in hippocampal slices. In the present study, we have investigated the effects of inhibiting GSK-3 on learning and memory in healthy naïve animals. Systemic administration of a highly selective GSK-3 inhibitor, CT99021, reversibly blocked NMDAR-dependent LTD in the CA1 region of the hippocampus in anesthetized adult mice. In behavioral tasks, CT99021 had no effect on locomotor activity, anxiety, hippocampus-dependent contextual fear memory, and hippocampus-dependent reversal learning. However, CT99021 facilitated the rate of learning in the Morris water maze (MWM) and T-maze and enhanced the accuracy of long-term spatial memory in the MWM. These findings suggest that GSK-3 regulates the accuracy of spatial memory acquisition and recall.
Collapse
Affiliation(s)
- Yeseul Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Zuner A. Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clarrisa A. Bradley
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Genes and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Thomas M. Sanderson
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Min Zhuo
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Bong-Kiun Kaang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Bong-Kiun Kaang,
| | - Graham L. Collingridge
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Graham L. Collingridge,
| |
Collapse
|
25
|
Maternal embryonal leucine zipper kinase immunoreactivity in atypical teratoid/rhabdoid tumors: a study of 50 cases. Childs Nerv Syst 2021; 37:3769-3775. [PMID: 34611764 DOI: 10.1007/s00381-021-05335-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are aggressive embryonal neoplasms of the central nervous system that correspond to WHO grade IV and have a dismal prognosis. The latest Central Brain Tumor Registry of the United States data shows that AT/RT constitutes 16.6% of all embryonal tumors in children. The molecular hallmark of this tumor is pathogenic SMARCB1 genetic alterations resulting in the loss of INI-1 immunopositivity, with fewer tumors harboring SMARCA4 (BRG1) variants. Maternal embryonal leucine zipper kinase (MELK) is a member of the Snf1/AMPK family of serine/threonine-protein kinases involved in various processes such as cell cycle regulation, self-renewal of stem cells, apoptosis, and splicing regulation. Recent studies have highlighted the involvement of MELK in AT/RT and its possible therapeutic role. The purpose of this study was to review the histological and immunohistochemical profile of AT/RT with special reference to MELK staining. In this retrospective study conducted over 6 years, all diagnosed cases of AT/RT, defined by loss of INI-1 immunopositivity, were retrieved and studied. Demographic details of patients and microscopic findings were analyzed, with special attention to histological patterns and immunohistochemistry profile including MELK immunoreactivity. There were 50 cases of AT/RT diagnosed in the specified period. Of the cases operated at our institute during this period, embryonal tumors constituted 20.6% of all pediatric brain tumors with AT/RT representing 12.6% of this subset. The median age at presentation was 3.5 years (range: 8 months-22 years) and there were three adult cases. Males outnumbered females by a ratio of 1.94:1. Tumor location was distributed equally between the supratentorial and infratentorial compartments. Characteristic rhabdoid cells were identified in 70% of cases. Areas with epithelial, mesenchymal, and undifferentiated tumor cells were seen in 8%, 20%, and 52% of cases, respectively. Cells with vacuolated cytoplasm were noted in 28% of cases. Immunohistochemistry (IHC) showed a polyimmunophenotypic profile with immunopositivity for GFAP in 70%, Vimentin in 100%, SMA in 68%, and EMA in 88% of cases, indicating the remarkable heterogeneity of the tumor cells. MELK immunopositivity was noted in 83.33% of cases. Thus, atypical teratoid/rhabdoid tumors are rare neoplasms. In line with other studies, we show that these tumors occur predominantly in very young children and display marked variability on histology and IHC with loss of INI-1. MELK is presumed to be an important molecule involved in cell cycle regulation, proliferation, and other critical functions. High expression of MELK in AT/RT may suggest its plausible role in neoplastic transformation of embryonic and postnatal multipotent neural progenitors which in turn could explain the diverse morphological and immunohistochemical characteristics observed in these tumors.
Collapse
|
26
|
Sun H, Ma H, Zhang H, Ji M. Up-regulation of MELK by E2F1 promotes the proliferation in cervical cancer cells. Int J Biol Sci 2021; 17:3875-3888. [PMID: 34671205 PMCID: PMC8495384 DOI: 10.7150/ijbs.62517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is a common gynecologic cancer and a frequent cause of death. In this study, we investigated the role of MELK (maternal embryonic leucine zipper kinase) in cervical cancer. We found that HPV 18 E6/E7 promoted MELK expression by activating E2F1. MELK knockdown blocked cancer cells growth. Furthermore, we used MELK-8A to inhibit the kinase activity of MELK and caused the G2/M phase arrest of cancer cells. Under the treatment of inhibitors, Hela cells formed multipolar spindles and eventually underwent apoptosis. We also found that MELK is involved in protein translation and folding during cell division through the MELK interactome and the temporal proteomic analysis under inhibition with MELK-8A. Altogether, these results suggest that MELK may play a vital role in cancer cell proliferation and indicate a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Hongzhi Sun
- Department of Orthopaedics, Nanjing Jiangbei Hospital affiliated to Nantong University, Nanjing, Jiangsu, 210048, China
| | - Hongmei Ma
- Department of Obstetrics and Gynecology, Ma'anshan People's Hospital, Ma'anshan, Anhui, 243000, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Minjun Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 211166, China
| |
Collapse
|
27
|
Hu F, Gong C, Gai Y, Jiang D, Liu Q, Wang S, Hu M, Pi R, Shu H, Hu J, Lan X. [ 18F]F-ET-OTSSP167 Targets Maternal Embryo Leucine Zipper Kinase for PET Imaging of Triple-Negative Breast Cancer. Mol Pharm 2021; 18:3544-3552. [PMID: 34482695 DOI: 10.1021/acs.molpharmaceut.1c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maternal embryo leucine zipper kinase (MELK) is a serine/threonine kinase and is highly expressed in triple-negative breast cancer (TNBC). This study aimed to develop a 18F-radiolabeled tracer based on the structure of a small-molecule MELK inhibitor OTSSP167 and evaluate its application for PET imaging of MELK expression in TNBC. OTSSP167 was modified with ethylene glycol to adjust its pharmacokinetics and was then radiolabeled with 18F to obtain [18F]F-ET-OTSSP167 at a labeling yield of 7.14 ± 2.19% and a molar activity of 16.23 ± 1.13 MBq/nmol. In vitro binding assays showed differentiated binding affinities of [18F]F-ET-OTSSP167 in different breast cancer cell lines, with high uptake in MDA-MB-231 (mild MELK expression) and low uptake in MCF-7 (negative MELK expression). PET imaging revealed that MDA-MB-231 tumors could be clearly delineated in vivo, while low tracer uptake was observed in MCF-7 tumors. These findings were confirmed by ex vivo biodistribution studies and were consistent with the immunohistochemistry and tissue staining results. Tracer accumulation in MDA-MB-231 tumors was significantly inhibited by excess amounts of OTSSP167, indicating high specificity of the tracer. In summary, [18F]F-ET-OTSSP167, an easily-prepared probe, can be used to visualize MELK positive tumors, demonstrating its promising clinical potential in selecting patients for MELK inhibitor therapy.
Collapse
Affiliation(s)
- Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chengpeng Gong
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Sheng Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengmeng Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Rundong Pi
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hua Shu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jia Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
28
|
Divalent Metal Transporter 1 Knock-Down Modulates IL-1β Mediated Pancreatic Beta-Cell Pro-Apoptotic Signaling Pathways through the Autophagic Machinery. Int J Mol Sci 2021; 22:ijms22158013. [PMID: 34360779 PMCID: PMC8348373 DOI: 10.3390/ijms22158013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Pro-inflammatory cytokines promote cellular iron-import through enhanced divalent metal transporter-1 (DMT1) expression in pancreatic β-cells, consequently cell death. Inhibition of β-cell iron-import by DMT1 silencing protects against apoptosis in animal models of diabetes. However, how alterations of signaling networks contribute to the protective action of DMT1 knock-down is unknown. Here, we performed phosphoproteomics using our sequential enrichment strategy of mRNA, protein, and phosphopeptides, which enabled us to explore the concurrent molecular events in the same set of wildtype and DMT1-silenced β-cells during IL-1β exposure. Our findings reveal new phosphosites in the IL-1β-induced proteins that are clearly reverted by DMT1 silencing towards their steady-state levels. We validated the levels of five novel phosphosites of the potential protective proteins using parallel reaction monitoring. We also confirmed the inactivation of autophagic flux that may be relevant for cell survival induced by DMT1 silencing during IL-1β exposure. Additionally, the potential protective proteins induced by DMT1 silencing were related to insulin secretion that may lead to improving β-cell functions upon exposure to IL-1β. This global profiling has shed light on the signal transduction pathways driving the protection against inflammation-induced cell death in β-cells after DMT1 silencing.
Collapse
|
29
|
Wang M, Cui Y, Cai Y, Jiang Y, Peng Y. Comprehensive Bioinformatics Analysis of mRNA Expression Profiles and Identification of a miRNA-mRNA Network Associated with the Pathogenesis of Low-Grade Gliomas. Cancer Manag Res 2021; 13:5135-5147. [PMID: 34234557 PMCID: PMC8254561 DOI: 10.2147/cmar.s314011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Low-grade glioma is the most common type of primary intracranial tumour, and the overall survival of patients with low-grade glioma (LGG) has shown no significant improvement over the past few decades. Therefore, it is crucial to understand the precise molecular mechanisms involved in the carcinogenesis of LGG. Methods To investigate the regulatory mechanisms of mRNA–miRNA networks related to LGG, in the present study, a comprehensive analysis of the genomic landscape between low-grade gliomas and normal brain tissues from the GEO and TCGA datasets was first conducted to identify differentially expressed genes (DEGs) and differentially expressed miRNAs in LGG. Following a series of analyses, including WGCNA, GO and KEGG analyses, PPI and key model analyses, and survival analysis of the DEGs with clinical phenotypes, the potential key genes were screened and identified, and the related miRNA–mRNA networks were subsequently constructed through miRWalk 3.0. Finally, the potential miRNA–mRNA networks were further validated in CGGA (Chinese Glioma Genome Atlas) datasets and clinical specimens by qRT-PCR. Results In our results, six hub genes, MELK, NCAPG, KIF4A, NUSAP1, CEP55, and TOP2A, were ultimately identified. Two regulatory pathways, miR-495-3p-TOP2A and miR-1224-3p-MELK, that regulate the pathogenesis of LGG were ultimately identified. Furthermore, the expression of miR-495-3p-TOP2A and miR-1224-3p-MELK in solid tissues was validated by qRT-PCR. Conclusion Our study identified hub genes and related miRNA–mRNA regulatory pathways that contribute to the carcinogenesis of LGG, which may help us reveal the mechanisms underlying the development of LGG.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yang Cai
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
30
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A, Zaman MK. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics 2021; 13:120. [PMID: 34051847 PMCID: PMC8164819 DOI: 10.1186/s13148-021-01107-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
At present, after extensive studies in the field of cancer, cancer stem cells (CSCs) have been proposed as a major factor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell-like properties and tumorigenic capabilities, having the abilities of self-renewal and differentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti-tumor treatments. Highly resistant to conventional chemo- and radiotherapy, CSCs have heterogeneity and can migrate to different organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of different epigenetic pathways having effects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifications (DNA methylation, histone modifications, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can offer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors influencing the development thereof, with an emphasis on different types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Khatir Zaman
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| |
Collapse
|
31
|
Arora D, Srikanth K, Lee J, Lee D, Park N, Wy S, Kim H, Park JE, Chai HH, Lim D, Cho IC, Kim J, Park W. Integration of multi-omics approaches for functional characterization of muscle related selective sweep genes in Nanchukmacdon. Sci Rep 2021; 11:7219. [PMID: 33785872 PMCID: PMC8009959 DOI: 10.1038/s41598-021-86683-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/12/2021] [Indexed: 02/01/2023] Open
Abstract
Pig as a food source serves daily dietary demand to a wide population around the world. Preference of meat depends on various factors with muscle play the central role. In this regards, selective breeding abled us to develop "Nanchukmacdon" a pig breeds with an enhanced variety of meat and high fertility rate. To identify genomic regions under selection we performed whole-genome resequencing, transcriptome, and whole-genome bisulfite sequencing from Nanchukmacdon muscles samples and used published data for three other breeds such as Landrace, Duroc, Jeju native pig and analyzed the functional characterization of candidate genes. In this study, we present a comprehensive approach to identify candidate genes by using multi-omics approaches. We performed two different methods XP-EHH, XP-CLR to identify traces of artificial selection for traits of economic importance. Moreover, RNAseq analysis was done to identify differentially expressed genes in the crossed breed population. Several genes (UGT8, ZGRF1, NDUFA10, EBF3, ELN, UBE2L6, NCALD, MELK, SERP2, GDPD5, and FHL2) were identified as selective sweep and differentially expressed in muscles related pathways. Furthermore, nucleotide diversity analysis revealed low genetic diversity in Nanchukmacdon for identified genes in comparison to related breeds and whole-genome bisulfite sequencing data shows the critical role of DNA methylation pattern in identified genes that leads to enhanced variety of meat. This work demonstrates a way to identify the molecular signature and lays a foundation for future genomic enabled pig breeding.
Collapse
Affiliation(s)
- Devender Arora
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - Krishnamoorthy Srikanth
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea ,grid.5386.8000000041936877XDepartment of Animal Science, Cornell University, Ithaca, NY 14853 USA
| | - Jongin Lee
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Daehwan Lee
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Nayoung Park
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Suyeon Wy
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyeonji Kim
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Jong-Eun Park
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - Han-Ha Chai
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - Dajeong Lim
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - In-Cheol Cho
- grid.484502.f0000 0004 5935 1171Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju, 63242 Korea
| | - Jaebum Kim
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Woncheoul Park
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| |
Collapse
|
32
|
Southekal S, Mishra NK, Guda C. Pan-Cancer Analysis of Human Kinome Gene Expression and Promoter DNA Methylation Identifies Dark Kinase Biomarkers in Multiple Cancers. Cancers (Basel) 2021; 13:cancers13061189. [PMID: 33801837 PMCID: PMC8001681 DOI: 10.3390/cancers13061189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Kinases are a group of intracellular signaling molecules that play critical roles in various biological processes. Even though kinases comprise one of the most well-known therapeutic targets, many have been understudied and therefore warrant further investigation. DNA methylation is one of the key epigenetic regulators that modulate gene expression. In this study, the human kinome's DNA methylation and gene expression patterns were analyzed using the level-3 TCGA data for 32 cancers. Unsupervised clustering based on kinome data revealed the grouping of cancers based on their organ level and tissue type. We further observed significant differences in overall kinase methylation levels (hyper- and hypomethylation) between the tumor and adjacent normal samples from the same tissue. Methylation expression quantitative trait loci (meQTL) analysis using kinase gene expression with the corresponding methylated probes revealed a highly significant and mostly negative association (~92%) within 1.5 kb from the transcription start site (TSS). Several understudied (dark) kinases (PKMYT1, PNCK, BRSK2, ERN2, STK31, STK32A, and MAPK4) were also identified with a significant role in patient survival. This study leverages results from multi-omics data to identify potential kinase markers of prognostic and diagnostic importance and further our understanding of kinases in cancer.
Collapse
Affiliation(s)
| | | | - Chittibabu Guda
- Correspondence: (N.K.M.); (C.G.); Tel.: +1-402-559-5954 (C.G.)
| |
Collapse
|
33
|
De Summa S, Palazzo A, Caputo M, Iacobazzi RM, Pilato B, Porcelli L, Tommasi S, Paradiso AV, Azzariti A. Long Non-Coding RNA Landscape in Prostate Cancer Molecular Subtypes: A Feature Selection Approach. Int J Mol Sci 2021; 22:2227. [PMID: 33672425 PMCID: PMC7926489 DOI: 10.3390/ijms22042227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is one of the most common malignancies in men. It is characterized by a high molecular genomic heterogeneity and, thus, molecular subtypes, that, to date, have not been used in clinical practice. In the present paper, we aimed to better stratify prostate cancer patients through the selection of robust long non-coding RNAs. To fulfill the purpose of the study, a bioinformatic approach focused on feature selection applied to a TCGA dataset was used. In such a way, LINC00668 and long non-coding(lnc)-SAYSD1-1, able to discriminate ERG/not-ERG subtypes, were demonstrated to be positive prognostic biomarkers in ERG-positive patients. Furthermore, we performed a comparison between mutated prostate cancer, identified as "classified", and a group of patients with no peculiar genomic alteration, named "not-classified". Moreover, LINC00920 lncRNA overexpression has been linked to a better outcome of the hormone regimen. Through the feature selection approach, it was found that the overexpression of lnc-ZMAT3-3 is related to low-grade patients, and three lncRNAs: lnc-SNX10-87, lnc-AP1S2-2, and ADPGK-AS1 showed, through a co-expression analysis, significant correlation values with potentially druggable pathways. In conclusion, the data mining of publicly available data and robust bioinformatic analyses are able to explore the unknown biology of malignancies.
Collapse
Affiliation(s)
- Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.C.); (B.P.); (S.T.)
| | - Antonio Palazzo
- Laboratory of Nanotechnology, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Mariapia Caputo
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.C.); (B.P.); (S.T.)
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (R.M.I.); (L.P.); (A.A.)
| | - Brunella Pilato
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.C.); (B.P.); (S.T.)
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (R.M.I.); (L.P.); (A.A.)
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.C.); (B.P.); (S.T.)
| | | | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (R.M.I.); (L.P.); (A.A.)
| |
Collapse
|
34
|
Seong HA, Ha H. Ablation of AMPK-Related Kinase MPK38/MELK Leads to Male-Specific Obesity in Aged Mature Adult Mice. Diabetes 2021; 70:386-399. [PMID: 33268463 DOI: 10.2337/db20-0436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK) is implicated in diverse biological processes, including the cell cycle, apoptosis, and tumorigenesis; however, its physiological role is unknown. Using mice lacking MPK38 (MPK38-/-), we found that MPK38-/- male, but not female, mice (7 months of age) became obese while consuming a standard diet, displayed impairments in metabolism and inflammation, became more obese than wild-type mice while consuming a high-fat diet, and exhibited no castration/testosterone replacement-induced metabolic changes. The adenoviral restoration of MPK38 ameliorated the obesity-induced adverse metabolic profile of the obese male, but not female, mice. Seven-month-old MPK38-/- males displayed typical postcastration concentrations of serum testosterone with an accompanying decrease in serum luteinizing hormone (LH) levels, suggesting a role for MPK38 in the age-related changes in serum testosterone in aged mature adult male mice. The stability and activity of MPK38 were increased by dihydrotestosterone but reduced by estradiol (E2). These findings suggest MPK38 as a therapeutic target for obesity-related metabolic disorders in males.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
35
|
Li F, Liu J, Liu W, Gao J, Lei Q, Han H, Yang J, Li H, Cao D, Zhou Y. Genome-wide association study of body size traits in Wenshang Barred chickens based on the specific-locus amplified fragment sequencing technology. Anim Sci J 2021; 92:e13506. [PMID: 33398896 DOI: 10.1111/asj.13506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Chicken body size (BS) is an economically important trait, which has been assessed in many studies for genetic selection. However, previous reports detected functional chromosome mutations or regions using gene chips. The present study used the specific-locus amplified fragment sequencing (SLAF-seq) technology to perform a genome-wide association study (GWAS) of purebred Wenshang Barred chickens. A total of 250 one-day-old male chickens were assessed in this study. Body size in individual birds was measured at 56 days. SLAF-seq was used to genotype and GWAS analysis was carried out using the general linear model (GLM) of the TASSEL program. A total of 1,286,715 single-nucleotide polymorphisms (SNPs) were detected, of which 175,211 were tested as candidate SNPs for genome-wide association analysis using the TASSEL general linear model. Three SNPs markers reached genome-wide significance. Of these, chrZ:81729634, chrZ:81841715, and chrZ:81954149 at 81,729,634, 81,841,715, and 81,954,149 bp of GGA Z were significantly associated with body diagonal length at 56 days (BDL56); and tibia length at 56 days (TL56). These SNPs were close to three genes, including ZCCHC7, PAX5, and MELK. These results open new horizons for studies on BS and should promote the use of Chinese chickens, especially Wenshang Barred chickens.
Collapse
Affiliation(s)
- Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Jinbo Gao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Ji'nan, P. R. China
| | - Huimin Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| |
Collapse
|
36
|
Tang R, Gai Y, Li K, Hu F, Gong C, Wang S, Feng F, Altine B, Hu J, Lan X. A novel carbon-11 radiolabeled maternal embryonic leucine zipper kinase inhibitor for PET imaging of triple-negative breast cancer. Bioorg Chem 2021; 107:104609. [PMID: 33454507 DOI: 10.1016/j.bioorg.2020.104609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/26/2022]
Abstract
Maternal embryonic leucine zipper kinase (MELK) plays an important role in the regulation of tumor cell growth. It is abundant in triple-negative breast cancers (TNBC), making it a promising target for molecular imaging and therapy. Based on the structure of a potent MELK inhibitor (OTSSP167) with high affinity, we developed a novel carbon-11 radiolabeled molecular probe 11C-methoxy-OTSSP167, and evaluated its application in positron emission tomography (PET) imaging of TNBC. 11C-methoxy-OTSSP167 was successfully synthesized and was identical to its non-radiolabeled compound methoxy-OTSSP167 in high-pressure liquid chromatography (HPLC) chromatogram. The obtained tracer had 10 ± 2% radiolabeling yield with a total synthesis time of 40 min. The radiochemical purity of the tracer was more than 95%. The maximum uptake (9.97 ± 0.70%) of 11C-methoxy-OTSSP167 in MELK-overexpressing MDA-MB-231 cells was at 60 min in vitro. On PET, MDA-MB-231 tumors were clearly visible at 30, 60, and 90 min after injection of 11C-methoxy-OTSSP167, while no obvious radioactivity accumulation was found in the low-MELK MCF-7 tumors. In vivo biodistribution data were consistent with the findings of the PET images. However, the radioactive tracer showed high uptake in normal organs such as liver and intestine, which may limit the application of the tracer. In addition, a markedly different MELK expression level in MDA-MBA-231 and MCF-7 tumors was verified via IHC staining. In conclusion, 11C-methoxy-OTSSP167 was successfully developed and exhibited elevated uptake in MELK overexpressed tumor, indicating its potential for noninvasively imaging of MELK overexpressed TNBC.
Collapse
Affiliation(s)
- Rongmei Tang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chengpeng Gong
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Sheng Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fei Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Bouhari Altine
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jia Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
37
|
Tang Q, Li W, Zheng X, Ren L, Liu J, Li S, Wang J, Du G. MELK is an oncogenic kinase essential for metastasis, mitotic progression, and programmed death in lung carcinoma. Signal Transduct Target Ther 2020; 5:279. [PMID: 33262323 PMCID: PMC7708490 DOI: 10.1038/s41392-020-00288-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/28/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the fastest growth rate of morbidity and mortality in nearly a decade, and remains difficult to treat. Furthermore, the molecular mechanisms underlying its development are still unclear. In this study, bioinformatics analysis showed that MELK was highly expressed in lung cancer and negatively correlated to the survival of lung adenocarcinoma (LUAD). Immunohistochemistry analysis of LUAD patient tissues revealed there were a high level of MELK expression in LUAD. Knockdown of MELK expression inhibits the migration and invasion of LUAD cells, which may be mediated by Twist1, Slug, MMP7, and N-catenin. Overexpression of MELK promoted the growth of LUAD cells in medium, 3D Matrigel, and nude mice. Inhibition of MELK by OTSSP167 arrested cycle of LUAD cells at G2/M phase via PLK1-CDC25C-CDK1 pathway, and triggered apoptosis-mediated pyroptosis. Together, these data indicate that MELK is critical for metastasis, mitotic progression, and programmed death of LUAD and may be a promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Qin Tang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
38
|
Xie YH, Hu J. Suppression of long non-coding RNA PCAT19 inhibits glioma cell proliferation and invasion, and increases cell apoptosis through regulation of MELK targeted by miR-142-5p. Genes Genomics 2020; 42:1299-1310. [PMID: 32980991 DOI: 10.1007/s13258-020-01003-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glioma has the chief type of primary brain tumors worldwide. The glioma may be controlled by regulators including some lncRNAs, miRNAs, and proteins. OBJECTIVE Our study aims to discover the underlying mechanism for lncPCAT19/miR-142-5p/MELK axis in glioma progression. METHODS The clinical samples were from patients with gliomas in our Hospital. Hematoxylin-eosin staining (H&E) was applied to determine the clinical pathological changes. Real time PCR was performed to measure the levels of lncPCAT19, miR-142-5p, MELK, and expression of other genes. Western blot was conducted to detect the protein level of MELK. RIP assay was performed to analyze the interaction between lncPCAT19 and miR-142-5p, and dual-luciferase reporter assay was used to determine the binding site between lncPCAT19 and miR-142-5p. CCK-8, colony formation assay, flow cytometry, and trans-well assay were carried out to confirm cell proliferation, colony formation, apoptosis, and invasion, respectively. RESULTS LncPCAT19 was increased in cancer tissues. Then, lncPCAT19 could interact with and down-regulate miR-142-5p. Knockdown of lncPCAT19 distinctly inhibited tumor growth in vivo. Interfering lncPCAT19/overexpression of miR-142-5p decreased glioma cell proliferation, colony formation and invasion, and promoted cell apoptosis by down-regulating expression of Cyclin B1, CDK2, N-cadherin, Bcl-2, and by up-regulating expression of Bax and E-cadherin. Moreover, overexpression of lncPCAT19 overturned tumor-suppressing role of miR-142-5p in cells. Additionally, lncPCAT19 and miR-142-5p synergistically regulated expression of MELK. In conclusion, lncPCAT19 enhanced glioma development via increasing MELK by performing as a sponge of miR-142-5p. CONCLUSIONS LncPCAT19 promotes glioma progression by sponging miR-142-5p to upregulate MELK levels. Thus, lncPCAT19/miR-142-5p/MELK signaling would be a potential target for glioma treatment.
Collapse
Affiliation(s)
- Yu-Hua Xie
- Department of Rehabilitation Medicine, Chenzhou No. 1 People's Hospital, Luo Jia Jin Street, Chenzhou, 423000, Hunan, China
| | - Jiao Hu
- Emergency Department, Chenzhou No. 1 People's Hospital, Luo Jia Jin Street, Chenzhou, 423000, Hunan, China.
| |
Collapse
|
39
|
PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning. PLoS Genet 2020; 16:e1008912. [PMID: 32946434 PMCID: PMC7527206 DOI: 10.1371/journal.pgen.1008912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/30/2020] [Accepted: 07/29/2020] [Indexed: 01/06/2023] Open
Abstract
The mechanism(s) through which mammalian kinase MELK promotes tumorigenesis is not understood. We find that the C. elegans orthologue of MELK, PIG-1, promotes apoptosis by partitioning an anti-apoptotic factor. The C. elegans NSM neuroblast divides to produce a larger cell that differentiates into a neuron and a smaller cell that dies. We find that in this context, PIG-1 MELK is required for partitioning of CES-1 Snail, a transcriptional repressor of the pro-apoptotic gene egl-1 BH3-only. pig-1 MELK is controlled by both a ces-1 Snail- and par-4 LKB1-dependent pathway, and may act through phosphorylation and cortical enrichment of nonmuscle myosin II prior to neuroblast division. We propose that pig-1 MELK-induced local contractility of the actomyosin network plays a conserved role in the acquisition of the apoptotic fate. Our work also uncovers an auto-regulatory loop through which ces-1 Snail controls its own activity through the formation of a gradient of CES-1 Snail protein. Apoptosis is critical for the elimination of ‘unwanted’ cells. What distinguishes wanted from unwanted cells in developing animals is poorly understood. We report that in the C. elegans NSM neuroblast lineage, the level of CES-1, a Snail-family member and transcriptional repressor of the pro-apoptotic gene egl-1, contributes to this process. In addition, we demonstrate that C. elegans PIG-1, the orthologue of mammalian proto-oncoprotein MELK, plays a critical role in controlling CES-1Snail levels. Specifically, during NSM neuroblast division, PIG-1MELK controls partitioning of CES-1Snail into one but not the other daughter cell thereby promoting the making of one wanted and one unwanted cell. Furthermore, we present evidence that PIG-1MELK acts prior to NSM neuroblast division by locally activating the actomyosin network.
Collapse
|
40
|
Wang W, Wang S, Pan L. Identification of key differentially expressed mRNAs and microRNAs in non-small cell lung cancer using bioinformatics analysis. Exp Ther Med 2020; 20:3720-3732. [PMID: 32855723 PMCID: PMC7444408 DOI: 10.3892/etm.2020.9105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of mortality worldwide. However, the pathogenesis of NSCLC remains to be fully elucidated. Therefore, the present study aimed to explore the differential expression of mRNAs and microRNAs (miRNAs/miRs) in NSCLC and to determine how these RNA molecules interact with one another to affect disease progression. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified from the GSE18842, GSE32863 and GSE29250 datasets downloaded from the Gene Expression Omnibus (GEO database). Functional and pathway enrichment analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. STRING, Cytoscape and MCODE were applied to construct a protein-protein interaction (PPI) network and to screen hub genes. The interactions between miRNAs and mRNAs were predicted using miRWalk 3.0 and a miRNA-mRNA regulatory network was constructed. The prognostic value of the identified hub genes was then evaluated via Kaplan-Meier survival analyses using datasets from The Cancer Genome Atlas. A total of 782 DEGs and 46 DEMs were identified from the 3 GEO datasets. The enriched pathways and functions of the DEGs and target genes of the DEMs included osteoclast differentiation, cell adhesion, response to a drug, plasma membrane, extracellular exosome and protein binding. A subnetwork composed of 11 genes was extracted from the PPI network and the genes in this subnetwork were mainly involved in the cell cycle, cell division and DNA replication. A miRNA-gene regulatory network was constructed with 247 miRNA-gene pairs based on 6 DEMs and 210 DEGs. Kaplan-Meier survival analysis indicated that the expression of ubiquitin E2 ligase C, cell division cycle protein 20, DNA topoisomerase IIα, aurora kinase A and B, cyclin B2, maternal embryonic leucine zipper kinase, slit guidance ligand 3, phosphoglucomutase 5, endomucin, cysteine dioxygenase type 1, dihydropyrimidinase-like 2, miR-130b, miR-1181 and miR-127 was significantly associated with overall survival of patients with lung adenocarcinoma. In the present study, a miRNA-mRNA regulatory network in NSCLC was established, which may provide future avenues for scientific exploration and therapeutic targeting of NSCLC.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Shanshan Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
41
|
Jeddo SFA, Wei X, Li K, Li X, Yang Q, Dongol S, Li J. Maternal embryonic leucine zipper kinase serves as a poor prognosis marker and therapeutic target in osteosarcoma. Oncol Rep 2020; 44:1037-1048. [PMID: 32705239 PMCID: PMC7388486 DOI: 10.3892/or.2020.7686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common primary malignancy of bones and frequently affects young children and adolescents. There are several challenges associated with treating osteosarcoma owing to the aggressiveness of the disease, as well as the risk of chemoresistance. Numerous studies are being performed with the aim of identifying improved prognostic and therapeutic markers for this malignancy. Maternal embryonic leucine zipper kinase (MELK) is an oncogene that has been studied in several types of cancer in recent years. In the present study, the expression of MELK in osteosarcoma and normal tissue samples was examined, and the effects of MELK expression on osteosarcoma cellular proliferation, metastasis, the cell cycle and apoptosis were demonstrated using CCK-8, wound healing, migration and invasion and apoptosis assays. The role of MELK in cancer progression in osteosarcoma was determined, revealing the association between MELK expression and prognosis of osteosarcoma. It was demonstrated that knockdown of MELK resulted in reduced proliferation, migration and invasion in vitro along with potentiation of apoptosis and cell cycle arrest. Furthermore, the effect of the targeted MELK inhibitor, OTSSP167, on tumor progression of osteosarcoma in vitro and in vivo was assessed. Mechanistically, it was demonstrated that MELK promoted osteosarcoma proliferation and metastasis by regulating PCNA and MMP9 expression via the PI3K/Akt/mTOR signaling pathway. Thus, the present study revealed the oncogenic role played by MELK, and established MELK as a valuable prognostic and therapeutic marker in osteosarcoma.
Collapse
Affiliation(s)
- Salim F A Jeddo
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xianfu Wei
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ka Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiang Yang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Samina Dongol
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianmin Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
42
|
Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). JOURNAL OF TRANSLATIONAL SCIENCE 2020; 6:341. [PMID: 35330670 PMCID: PMC8941648 DOI: 10.15761/jts.1000341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Human cancers emerge from cancer stem cells (CSCs), which are resistant to cancer chemotherapeutic agents, radiation, and cell death. Moreover, autophagy provides the cytoprotective effect which contributes to drug resistance in these cells. Furthermore, much evidence shows that CSCs cause tumor initiation, progression, metastasis, and cancer recurrence. Various signaling pathways including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin as well as the CSC markers maintain CSC properties. Several mechanisms including overexpression of ABC multidrug resistance transporters, a deficiency in mitochondrial-mediated apoptosis, upregulation of c-FLIP, overexpression of anti-apoptotic Bcl-2 family members and inhibitors of apoptosis proteins (IAPs), and PI3K/AKT signaling contribute to enhancing resistance to chemotherapeutic drugs and cell death induction in CSCs in various cancers. Studying such pathways may help provide detailed understanding of CSC mechanisms of resistance to chemotherapeutic agents and apoptosis and may lead to the development of effective therapeutics to eradicate CSCs.
Collapse
Affiliation(s)
- Ahmad R Safa
- Correspondence to: Ahmad R. Safa, Department of Pharmacology and Toxicology, 635 Barnhill, Dr. MS A416, Indiana University School of Medicine, Indianapolis, IN, USA,
| |
Collapse
|
43
|
Li H, Chen M, Yang Z, Wang Q, Wang J, Jin D, Yang X, Chen F, Zhou X, Luo K. Phillygenin, a MELK Inhibitor, Inhibits Cell Survival and Epithelial-Mesenchymal Transition in Pancreatic Cancer Cells. Onco Targets Ther 2020; 13:2833-2842. [PMID: 32308417 PMCID: PMC7138621 DOI: 10.2147/ott.s238958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction Pancreatic cancer (PC) is one of the leading causes of cancer, with the lowest 5-year survival rate of all cancer types. Given the fast metastasis of PC and its resistance to surgery, radiotherapy, chemotherapy, and combinations thereof, it is imperative to develop more effective anti-PC drugs. Phillygenin (PHI) has been reported to exert anti-cancer, anti-bacterial, and anti‐inflammatory properties. However, the mechanism of PHI in the development of PC is still unclear. Methods The cytotoxicity of PHI in pancreatic cancer cells was evaluated by MTT assay, and clonogenic assay was used to test the anti-proliferation of PHI. The pro-apoptotic effect of PHI was detected by flow cytometry analysis. The changes of epithelial–mesenchymal transition (EMT) in pancreatic cancer cells treated with PHI were determined by Western blot. Transwell assay was used to test the migration and invasion of PC cells after treatment with PHI. Molecular docking was used to predict the potential binding site of candidate target with PHI. Results PHI could inhibit the proliferation, migration, and EMT of PC cells (PANC-1 and SW1990) and induce its apoptosis. Analysis of the Cancer Genome Atlas database indicated that elevated MELK levels correlated with poor overall survival (OS) and disease-free survival (DFS) of PC patients. In addition, molecular modeling showed that PHI may potentially target the catalytic domain of maternal embryonic leucine zipper kinase (MELK). Overexpression of MELK muted the anti-PC effects of PHI. Conclusion PHI holds promise as a potent candidate drug for the treatment of PC via targeted MELK.
Collapse
Affiliation(s)
- Hongchun Li
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Miao Chen
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Zhuying Yang
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Qinxian Wang
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Jiesheng Wang
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Dong Jin
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Xiuyun Yang
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Fuxing Chen
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Xiumin Zhou
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Kexue Luo
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| |
Collapse
|
44
|
Rachman M, Bajusz D, Hetényi A, Scarpino A, Merő B, Egyed A, Buday L, Barril X, Keserű GM. Discovery of a novel kinase hinge binder fragment by dynamic undocking. RSC Med Chem 2020; 11:552-558. [PMID: 33479656 PMCID: PMC7593776 DOI: 10.1039/c9md00519f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
A virtual screening workflow for fragment-sized kinase inhibitors is presented, along with a newly identified and validated hinge binder fragment.
One of the key motifs of type I kinase inhibitors is their interactions with the hinge region of ATP binding sites. These interactions contribute significantly to the potency of the inhibitors; however, only a tiny fraction of the available chemical space has been explored with kinase inhibitors reported in the last twenty years. This paper describes a workflow utilizing docking with rDock and dynamic undocking (DUck) for the virtual screening of fragment libraries in order to identify fragments that bind to the kinase hinge region. We have identified 8-amino-2H-isoquinolin-1-one (MR1), a novel and potent hinge binding fragment, which was experimentally tested on a diverse set of kinases, and is hereby suggested for future fragment growing or merging efforts against various kinases, particularly MELK. Direct binding of MR1 to MELK was confirmed by STD-NMR, and its binding to the ATP-pocket was confirmed by a new competitive binding assay based on microscale thermophoresis.
Collapse
Affiliation(s)
- Moira Rachman
- Facultat de Farmàcia and Institut de Biomedicina , Universitat de Barcelona , Av. Joan XXIII 27-31 , 08028 Barcelona , Spain.,Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary .
| | - Dávid Bajusz
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary .
| | - Anasztázia Hetényi
- Department of Medical Chemistry , University of Szeged , Dóm tér 8 , H-6720 Szeged , Hungary
| | - Andrea Scarpino
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary .
| | - Balázs Merő
- Signal Transduction and Functional Genomics Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary
| | - Attila Egyed
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary .
| | - László Buday
- Signal Transduction and Functional Genomics Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary
| | - Xavier Barril
- Facultat de Farmàcia and Institut de Biomedicina , Universitat de Barcelona , Av. Joan XXIII 27-31 , 08028 Barcelona , Spain.,Catalan Institution for Research and Advanced Studies (ICREA) , Passeig Lluís Companys 23 , 08010 Barcelona , Spain
| | - György M Keserű
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary .
| |
Collapse
|
45
|
Identification of common candidate genes and pathways for progression of ovarian, cervical and endometrial cancers. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
46
|
Mutant P53 induces MELK expression by release of wild-type P53-dependent suppression of FOXM1. NPJ Breast Cancer 2020; 6:2. [PMID: 31909186 PMCID: PMC6941974 DOI: 10.1038/s41523-019-0143-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, and is associated with a poor prognosis due to frequent distant metastasis and lack of effective targeted therapies. Previously, we identified maternal embryonic leucine zipper kinase (MELK) to be highly expressed in TNBCs as compared with ER-positive breast cancers. Here we determined the molecular mechanism by which MELK is overexpressed in TNBCs. Analysis of publicly available data sets revealed that MELK mRNA is elevated in p53-mutant breast cancers. Consistent with this observation, MELK protein levels are higher in p53-mutant vs. p53 wild-type breast cancer cells. Furthermore, inactivation of wild-type p53, by loss or mutation of the p53 gene, increases MELK expression, whereas overexpression of wild-type p53 in p53-null cells reduces MELK promoter activity and MELK expression. We further analyzed MELK expression in breast cancer data sets and compared that with known wild-type p53 target genes. This analysis revealed that MELK expression strongly correlates with genes known to be suppressed by wild-type p53. Promoter deletion studies identified a p53-responsive region within the MELK promoter that did not map to the p53 consensus response elements, but to a region containing a FOXM1-binding site. Consistent with this result, knockdown of FOXM1 reduced MELK expression in p53-mutant TNBC cells and expression of wild-type p53 reduced FOXM1 expression. ChIP assays demonstrated that expression of wild-type p53 reduces binding of E2F1 (a critical transcription factor controlling FOXM1 expression) to the FOXM1 promoter, thereby, reducing FOXM1 expression. These results show that wild-type p53 suppresses FOXM1 expression, and thus MELK expression, through indirect mechanisms. Overall, these studies demonstrate that wild-type p53 represses MELK expression by inhibiting E2F1A-dependent transcription of FOXM1 and that mutation-driven loss of wild-type p53, which frequently occurs in TNBCs, induces MELK expression by suppressing FOXM1 expression and activity in p53-mutant breast cancers.
Collapse
|
47
|
McDonald IM, Grant GD, East MP, Gilbert TSK, Wilkerson EM, Goldfarb D, Beri J, Herring LE, Vaziri C, Cook JG, Emanuele MJ, Graves LM. Mass spectrometry-based selectivity profiling identifies a highly selective inhibitor of the kinase MELK that delays mitotic entry in cancer cells. J Biol Chem 2020; 295:2359-2374. [PMID: 31896573 DOI: 10.1074/jbc.ra119.011083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
The maternal embryonic leucine zipper kinase (MELK) has been implicated in the regulation of cancer cell proliferation. RNAi-mediated MELK depletion impairs growth and causes G2/M arrest in numerous cancers, but the mechanisms underlying these effects are poorly understood. Furthermore, the MELK inhibitor OTSSP167 has recently been shown to have poor selectivity for MELK, complicating the use of this inhibitor as a tool compound to investigate MELK function. Here, using a cell-based proteomics technique called multiplexed kinase inhibitor beads/mass spectrometry (MIB/MS), we profiled the selectivity of two additional MELK inhibitors, NVS-MELK8a (8a) and HTH-01-091. Our results revealed that 8a is a highly selective MELK inhibitor, which we further used for functional studies. Resazurin and crystal violet assays indicated that 8a decreases triple-negative breast cancer cell viability, and immunoblotting revealed that impaired growth is due to perturbation of cell cycle progression rather than induction of apoptosis. Using double-thymidine synchronization and immunoblotting, we observed that MELK inhibition delays mitotic entry, which was associated with delayed activation of Aurora A, Aurora B, and cyclin-dependent kinase 1 (CDK1). Following this delay, cells entered and completed mitosis. Using live-cell microscopy of cells harboring fluorescent proliferating cell nuclear antigen, we confirmed that 8a significantly and dose-dependently lengthens G2 phase. Collectively, our results provide a rationale for using 8a as a tool compound for functional studies of MELK and indicate that MELK inhibition delays mitotic entry, likely via transient G2/M checkpoint activation.
Collapse
Affiliation(s)
- Ian M McDonald
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gavin D Grant
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael P East
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Thomas S K Gilbert
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Emily M Wilkerson
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110; Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Joshua Beri
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Cyrus Vaziri
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jeanette Gowen Cook
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael J Emanuele
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
48
|
Cigliano A, Pilo MG, Mela M, Ribback S, Dombrowski F, Pes GM, Cossu A, Evert M, Calvisi DF, Utpatel K. Inhibition of MELK Protooncogene as an Innovative Treatment for Intrahepatic Cholangiocarcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 56:E1. [PMID: 31861475 PMCID: PMC7023300 DOI: 10.3390/medicina56010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Intrahepatic cholangiocarcinoma (iCCA) is a pernicious tumor characterized by a dismal outcome and scarce therapeutic options. To substantially improve the prognosis of iCCA patients, a better understanding of the molecular mechanisms responsible for development and progression of this disease is imperative. In the present study, we aimed at elucidating the role of the maternal embryonic leucine zipper kinase (MELK) protooncogene in iCCA. Materials and Methods: We analyzed the expression of MELK and two putative targets, Forkhead Box M1 (FOXM1) and Enhancer of Zeste Homolog 2 (EZH2), in a collection of human iCCA by real-time RT-PCR and immunohistochemistry (IHC). The effects on iCCA growth of both the multi-kinase inhibitor OTSSP167 and specific small-interfering RNA (siRNA) against MELK were investigated in iCCA cell lines. Results: Expression of MELK was significantly higher in tumors than in corresponding non-neoplastic liver counterparts, with highest levels of MELK being associated with patients' shorter survival length. In vitro, OTSSP167 suppressed the growth of iCCA cell lines in a dose-dependent manner by reducing proliferation and inducing apoptosis. These effects were amplified when OTSSP167 administration was coupled to the DNA-damaging agent doxorubicin. Similar results, but less remarkable, were obtained when MELK was silenced by specific siRNA in the same cells. At the molecular level, siRNA against MELK triggered downregulation of MELK and its targets. Finally, we found that MELK is a downstream target of the E2F1 transcription factor. Conclusion: Our results indicate that MELK is ubiquitously overexpressed in iCCA, where it may represent a prognostic indicator and a therapeutic target. In particular, the combination of OTSSP167 (or other, more specific MELK inhibitors) with DNA-damaging agents might be a potentially effective therapy for human iCCA.
Collapse
Affiliation(s)
- Antonio Cigliano
- Institut für Pathologie, Universitätsklinikum Regensburg, 93053 Regensburg, Germany; (M.E.); (D.F.C.); (K.U.)
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Maria Giulia Pilo
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Marta Mela
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Silvia Ribback
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Frank Dombrowski
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Giovanni Mario Pes
- Department of Clinical, Surgical, Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.M.P.); (A.C.)
| | - Antonio Cossu
- Department of Clinical, Surgical, Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.M.P.); (A.C.)
| | - Matthias Evert
- Institut für Pathologie, Universitätsklinikum Regensburg, 93053 Regensburg, Germany; (M.E.); (D.F.C.); (K.U.)
| | - Diego Francesco Calvisi
- Institut für Pathologie, Universitätsklinikum Regensburg, 93053 Regensburg, Germany; (M.E.); (D.F.C.); (K.U.)
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Kirsten Utpatel
- Institut für Pathologie, Universitätsklinikum Regensburg, 93053 Regensburg, Germany; (M.E.); (D.F.C.); (K.U.)
| |
Collapse
|
49
|
Maes A, Maes K, Vlummens P, De Raeve H, Devin J, Szablewski V, De Veirman K, Menu E, Moreaux J, Vanderkerken K, De Bruyne E. Maternal embryonic leucine zipper kinase is a novel target for diffuse large B cell lymphoma and mantle cell lymphoma. Blood Cancer J 2019; 9:87. [PMID: 31740676 PMCID: PMC6861269 DOI: 10.1038/s41408-019-0249-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are among the most aggressive B cell non-Hodgkin lymphomas. Maternal embryonic leucine zipper kinase (MELK) plays a role in cancer cell cycle progression and is associated with poor prognosis in several cancer cell types. In this study, the role of MELK in DLBCL and MCL and the therapeutic potential of MELK targeting is evaluated. MELK is highly expressed in DLBCL and MCL patient samples, correlating with a worse clinical outcome in DLBCL. Targeting MELK, using the small molecule OTSSP167, impaired cell growth and survival and induced caspase-mediated apoptosis in the lymphoma cells. Western blot analysis revealed that MELK targeting decreased the phosphorylation of FOXM1 and the protein levels of EZH2 and several mitotic regulators, such as Cdc25B, cyclin B1, Plk-1, and Aurora kinases. In addition, OTSSP167 also sensitized the lymphoma cells to the clinically relevant Bcl-2 inhibitor venetoclax by strongly reducing Mcl1 levels. Finally, OTSSP167 treatment of A20-inoculated mice resulted in a significant prolonged survival. In conclusion, targeting MELK with OTSSP167 induced strong anti-lymphoma activity both in vitro and in vivo. These findings suggest that MELK could be a potential new target in these aggressive B cell malignancies.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Biomarkers, Tumor
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Line, Tumor
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Gene Expression
- Humans
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Mantle-Cell/diagnosis
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/metabolism
- Mice
- Molecular Targeted Therapy
- Naphthyridines/pharmacology
- Naphthyridines/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Anke Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Hendrik De Raeve
- Department of Pathology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie Devin
- Laboratory for Monitoring Innovative Therapies, Institute of Human Genetics, CNRS, Montpellier, France
| | | | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jerome Moreaux
- Laboratory for Monitoring Innovative Therapies, Institute of Human Genetics, CNRS, Montpellier, France
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
50
|
Perry NA, Fialkowski KP, Kaoud TS, Kaya AI, Chen AL, Taliaferro JM, Gurevich VV, Dalby KN, Iverson TM. Arrestin-3 interaction with maternal embryonic leucine-zipper kinase. Cell Signal 2019; 63:109366. [PMID: 31352007 PMCID: PMC6717526 DOI: 10.1016/j.cellsig.2019.109366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/01/2022]
Abstract
Maternal embryonic leucine-zipper kinase (MELK) overexpression impacts survival and proliferation of multiple cancer types, most notably glioblastomas and breast cancer. This makes MELK an attractive molecular target for cancer therapy. Yet the molecular mechanisms underlying the involvement of MELK in tumorigenic processes are unknown. MELK participates in numerous protein-protein interactions that affect cell cycle, proliferation, apoptosis, and embryonic development. Here we used both in vitro and in-cell assays to identify a direct interaction between MELK and arrestin-3. A part of this interaction involves the MELK kinase domain, and we further show that the interaction between the MELK kinase domain and arrestin-3 decreases the number of cells in S-phase, as compared to cells expressing the MELK kinase domain alone. Thus, we describe a new mechanism of regulation of MELK function, which may contribute to the control of cell fate.
Collapse
Affiliation(s)
- Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Kevin P Fialkowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Tamer S Kaoud
- Division of Chemical Biology & Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA; Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Andrew L Chen
- Division of Chemical Biology & Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Juliana M Taliaferro
- Division of Chemical Biology & Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Kevin N Dalby
- Division of Chemical Biology & Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| |
Collapse
|