1
|
Wang X, Xue Y, Hao K, Peng B, Chen H, Liu H, Wang J, Cao J, Dong W, Zhang S, Yang Q, Li J, Lei W, Feng Y. Sustained therapeutic effects of self-assembled hyaluronic acid nanoparticles loaded with α-Ketoglutarate in various osteoarthritis stages. Biomaterials 2025; 314:122845. [PMID: 39326362 DOI: 10.1016/j.biomaterials.2024.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease characterized by irreversible destruction of articular cartilage, for which no current drugs are known to modify its progression. While intra-articular (IA) injections of hyaluronic acid (HA) offer temporary relief, their effectiveness and long-term benefits are debated. Alpha-ketoglutarate (αKG) has potential chondroprotective properties, but its use is limited by a short half-life and poor cartilage-targeting efficiency. Here, we developed self-assembled HA-αKG nanoparticles (NPs) to combine the benefits of both HA and αKG, showing stability, bioavailability, and sustained pH-responsive release in the knee joint. In both early and advanced OA stages in mice, HA, αKG, and HA-αKG NPs could relieve pain, enhance mobility, and reduce cartilage damage, with HA-αKG NPs demonstrating the best efficacy. Mechanistically, αKG not only promotes cartilage matrix synthesis but also inhibits degradation by activating the PERK-ATF4 signaling pathway to reduce endoplasmic reticulum stress (ERS) in chondrocytes. This study highlights the therapeutic potential of HA-αKG NPs for treating various OA stages, with efficient and sustained effects, suggesting rapid clinical adoption and high acceptability among clinicians and patients.
Collapse
Affiliation(s)
- Xinli Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kaili Hao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongli Chen
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jiahao Cao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wengang Dong
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China; Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Siqi Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Yang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710000, China; Key Lab of Hazard Assessment and Control in Special Operational Environment, Ministry of Education, Fourth Military Medical University, Xi'an, 710000, China; Department of Health Statistics, School of Public Health, Fourth Military Medical University, Xi'an, 710000, China.
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Weber P, Asadikorayem M, Zenobi-Wong M. Zwitterionic Poly-Carboxybetaine Polymers Restore Lubrication of Inflamed Articular Cartilage. Adv Healthc Mater 2024; 13:e2401623. [PMID: 39007282 DOI: 10.1002/adhm.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis is a degenerative joint disease that is associated with decreased synovial fluid viscosity and increased cartilage friction. Though viscosupplements are available for decades, their clinical efficacy is limited and there is ample need for more effective joint lubricants. This study first evaluates the tribological and biochemical properties of bovine articular cartilage explants after stimulation with the inflammatory cytokine interleukin-1β. This model is then used to investigate the tribological potential of carboxybetaine (CBAA)-based zwitterionic polymers of linear and bottlebrush architecture. Due to their affinity for cartilage tissue, these polymers form a highly hydrated surface layer that decreases friction under high load in the boundary lubrication regime. For linear pCBAA, these benefits are retained over several weeks and the relaxation time of cartilage explants under compression is furthermore decreased, thereby potentially boosting the weeping lubrication mechanism. Bottlebrush bb-pCBAA shows smaller benefits under boundary lubrication but is more viscous than linear pCBAA, therefore providing better lubrication under low load in the fluid-film regime and enabling a longer residence time to bind to the cartilage surface. Showing how CBAA-based polymers restore the lost lubrication mechanisms during inflammation can inspire the next steps toward more effective joint lubricants in the future.
Collapse
Affiliation(s)
- Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, ETH Zurich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, ETH Zurich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, ETH Zurich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
3
|
Tang Y, Wang Z, Cao J, Tu Y. Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions. Trends Mol Med 2024:S1471-4914(24)00260-0. [PMID: 39438197 DOI: 10.1016/j.molmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Osteoarthritis (OA) is a prevalent articular disorder characterized by joint degeneration and persistent pain; it imposes a significant burden on both individuals and society. While OA has traditionally been viewed as a localized peripheral disorder, recent preclinical and clinical studies have revealed the crucial interconnections between the bone and the brain, highlighting the systemic nature of OA. The neuronal pathway, molecular signaling, circadian rhythms, and genetic underpinnings within the bone-brain axis play vital roles in the complex interplay that contributes to OA initiation and progression. This review explores emerging evidence of the crosstalk between the bone and brain in OA progression, and discusses the potential contributions of the bone-brain axis to the development of effective interventions for managing OA.
Collapse
Affiliation(s)
- Yilan Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Ma Y, Pang Y, Cao R, Zheng Z, Zheng K, Tian Y, Peng X, Liu D, Du D, Du L, Zhong Z, Yao L, Zhang C, Gao J. Targeting Parkin-regulated metabolomic change in cartilage in the treatment of osteoarthritis. iScience 2024; 27:110597. [PMID: 39220257 PMCID: PMC11363567 DOI: 10.1016/j.isci.2024.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Articular cartilage degeneration may lead to osteoarthritis (OA) during the aging process, but its underlying mechanism remains unknown. Here, we found that chondrocytes exhibited an energy metabolism shift from glycolysis to oxidative phosphorylation (OXPHOS) during aging. Parkin regulates various cellular metabolic processes. Reprogrammed cartilage metabolism by Parkin ablation decreased OXPHOS and increased glycolysis, with ameliorated aging-related OA. Metabolomics analysis indicated that lauroyl-L-carnitine (LLC) was decreased in aged cartilage, but increased in Parkin-deficient cartilage. In vitro, LLC improved the cartilage matrix synthesis of aged chondrocytes. In vivo, intra-articular injection of LLC in mice with anterior cruciate ligament transaction (ACLT) ameliorated OA progression. These results suggest that metabolic changes are regulated by Parkin-impaired cartilage during aging, and targeting this metabolomic changes by supplementation with LLC is a promising treatment strategy for ameliorating OA.
Collapse
Affiliation(s)
- Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ruomu Cao
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi 710004, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kaiwen Zheng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaoyuan Peng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dajiang Du
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lin Du
- Orthopedics Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Sports Medicine Institute, Shantou University Medical College, Shantou 515041, China
| | - Zhigang Zhong
- Orthopedics Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Sports Medicine Institute, Shantou University Medical College, Shantou 515041, China
| | - Lufeng Yao
- Department of Orthopaedic Surgery, Ningbo No.6 Hospital, No.1059 East Zhongshan Road, Yinzhou District, Ningbo, Zhejiang 315040, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
5
|
Horváth ÁI, Bölcskei K, Szentes N, Borbély É, Tékus V, Botz B, Rusznák K, Futácsi A, Czéh B, Mátyus P, Helyes Z. Novel multitarget analgesic candidate SZV-1287 demonstrates potential disease-modifying effects in the monoiodoacetate-induced osteoarthritis mouse model. Front Pharmacol 2024; 15:1377081. [PMID: 39351091 PMCID: PMC11439770 DOI: 10.3389/fphar.2024.1377081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Monoiodoacetate (MIA)-induced osteoarthritis (OA) is the most commonly used rodent model for testing anti-OA drug candidates. Herein, we investigated the effects of our patented multitarget drug candidate SZV-1287 (3-(4,5-diphenyl-1,3-oxazol-2-yl) propanal oxime) that is currently under clinical development for neuropathic pain and characterized the mouse model through complex functional, in vivo imaging, and morphological techniques. Methods Knee OA was induced by intraarticular MIA injection (0.5 and 0.8 mg). Spontaneous pain was assessed based on weight distribution, referred pain by paw mechanonociception (esthesiometry), edema by caliper, neutrophil myeloperoxidase activity by luminescence, matrix metalloproteinase activity, vascular leakage and bone remodeling by fluorescence imaging, bone morphology by micro-CT, histopathological alterations by semiquantitative scoring, and glia activation by immunohistochemistry. Then, SZV-1287 (20 mg/kg/day) or its vehicle was injected intraperitoneally over a 21-day period. Results MIA induced remarkably decreased thresholds of weight bearing and paw withdrawal, alterations in the tibial and femoral structures (reactive sclerosis, increased trabeculation, and cortical erosions), histopathological damage (disorganized cartilage structure, hypocellularity, decreased matrix staining and tidemark integrity, and increased synovial hyperplasia and osteophyte formation), and changes in the astrocyte and microglia density in the lumbar spinal cord. There were no major differences between the two MIA doses in most outcome measures. SZV-1287 inhibited MIA-induced weight bearing reduction, hyperalgesia, edema, myeloperoxidase activity, histopathological damage, and astrocyte and microglia density. Conclusion SZV-1287 may have disease-modifying potential through analgesic, anti-inflammatory, and chondroprotective effects. The MIA mouse model is valuable for investigating OA-related mechanisms and testing compounds in mice at an optimal dose of 0.5 mg.
Collapse
Affiliation(s)
- Ádám István Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, HUN-REN-PTE Chronic Pain Research Group, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Research Network, HUN-REN-PTE Chronic Pain Research Group, Pécs, Hungary
- Department of Laboratory Diagnostics, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Kitti Rusznák
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Neurobiology of Stress Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Anett Futácsi
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Neurobiology of Stress Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Neurobiology of Stress Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Mátyus
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, HUN-REN-PTE Chronic Pain Research Group, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
- ALGONIST Biotechnologies GmBH, Vienna, Austria
| |
Collapse
|
6
|
Raju R R, AlSawaftah NM, Husseini GA. Modeling of brain tumors using in vitro, in vivo, and microfluidic models: A review of the current developments. Heliyon 2024; 10:e31402. [PMID: 38807869 PMCID: PMC11130649 DOI: 10.1016/j.heliyon.2024.e31402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Brain cancers are some of the most complex diseases to treat, despite the numerous advances science has made in cancer chemotherapy and research. One of the key obstacles to identifying potential cures for this disease is the difficulty in emulating the complexity of the brain and the surrounding microenvironment to understand potential therapeutic approaches. This paper discusses some of the most important in vitro, in vivo, and microfluidic brain tumor models that aim to address these challenges.
Collapse
Affiliation(s)
- Richu Raju R
- Biosciences and Bioengineering PhD Program at the American University of Sharjah, Sharjah, United Arab Emirates
| | - Nour M. AlSawaftah
- Material Science and Engineering Program at the American University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb A. Husseini
- Biosciences and Bioengineering PhD Program at the American University of Sharjah, Sharjah, United Arab Emirates
- Material Science and Engineering Program at the American University of Sharjah, Sharjah, United Arab Emirates
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Chen N, Wei X, Zhao G, Jia Z, Fu X, Jiang H, Xu X, Zhao Z, Singh P, Lessard S, Otero M, Goldring MB, Goldring SR, Wang D. Single dose thermoresponsive dexamethasone prodrug completely mitigates joint pain for 15 weeks in a murine model of osteoarthritis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102735. [PMID: 38295913 PMCID: PMC11229676 DOI: 10.1016/j.nano.2024.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
In this study, we aimed to assess the analgesic efficacy of a thermoresponsive polymeric dexamethasone (Dex) prodrug (ProGel-Dex) in a mouse model of osteoarthritis (OA). At 12 weeks post model establishment, the OA mice received a single intra-articular (IA) injection of ProGel-Dex, dose-equivalent Dex, or Saline. Comparing to Saline and Dex controls, ProGel-Dex provided complete and sustained pain relief for >15 weeks according to incapacitance tests. In vivo optical imaging confirmed the continuous presence of ProGel-Dex in joints for 15 weeks post-injection. According to micro-CT analysis, ProGel-Dex treated mice had significantly lower subchondral bone thickness and medial meniscus bone volume than Dex and Saline controls. Except for a transient delay of body weight increase and slightly lower endpoint liver and spleen weights, no other adverse effect was observed after ProGel-Dex treatment. These findings support ProGel-Dex's potential as a potent and safe analgesic candidate for management of OA pain.
Collapse
Affiliation(s)
- Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gang Zhao
- Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xin Fu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haochen Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaoke Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhifeng Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Purva Singh
- Hospital for Special Surgery, New York, NY 10021, USA
| | | | - Miguel Otero
- Hospital for Special Surgery, New York, NY 10021, USA; Weill Cornell Medical College, New York, NY 10021, USA
| | - Mary B Goldring
- Hospital for Special Surgery, New York, NY 10021, USA; Weill Cornell Medical College, New York, NY 10021, USA
| | - Steven R Goldring
- Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA; Hospital for Special Surgery, New York, NY 10021, USA; Weill Cornell Medical College, New York, NY 10021, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA; Department of Orthopaedic Surgery & Rehabilitation, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
8
|
Jiang T, Zhang J, Ruan B, Xi X, Yang Z, Liu J, Zhao H, Xu X, Jiang M. Trachelogenin alleviates osteoarthritis by inhibiting osteoclastogenesis and enhancing chondrocyte survival. Chin Med 2024; 19:37. [PMID: 38429848 PMCID: PMC10905921 DOI: 10.1186/s13020-024-00909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent global health concern associated with the loss of articular cartilage and subchondral bone. The lack of disease-modifying drugs for OA necessitates the exploration of novel therapeutic options. Our previous study has demonstrated that traditional Chinese medical herb Trachelospermum jasminoides (Lindl.) Lem. extract suppressed osteoclastogenesis and identified trachelogenin (TCG) as a representative compound. Here, we delved into TCG's potential to alleviate OA. METHODS We initially validated the in vivo efficacy of TCG in alleviating OA using a rat OA model. Subsequently, we isolated primary bone marrow-derived macrophages in vitro to investigate TCG's impact on osteoclastogenesis. We further employed a small molecule pull-down assay to verify TCG's binding target within osteoclasts. Finally, we isolated primary mouse chondrocytes in vitro to study TCG's regulatory effects and mechanisms on chondrocyte survival. RESULTS TCG preserved subchondral bone integrity and protected articular cartilage in a rat OA model. Subsequently, in vitro experiments unveiled TCG's capability to inhibit osteoclastogenesis and function through binding to Ras association proximate 1 (Rap1) and inhibiting its activation. Further study demonstrated that TCG inhibited Rap1/integrin αvβ3/c-Src/Pyk2 signaling cascade, and consequently led to failed F-actin ring formation. Besides, TCG promoted the proliferation of mouse primary chondrocytes while suppressing apoptosis in vitro. This is attributed to TCG's ability to upregulate HIF1α, thereby promoting glycolysis. CONCLUSION TCG exerted inhibitory effects on osteoclastogenesis through binding to Rap1 and inhibiting Rap1 activation, consequently preventing subchondral bone loss. Moreover, TCG enhanced chondrocyte survival by upregulating HIF1α and promoting glycolysis. These dual mechanisms collectively provide a novel approach to prevented against cartilage degradation.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beite Ruan
- The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobing Xi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuo Yang
- Chemical Biology Core Facility, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xing Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Dias de Oliveira FB, Antonioli E, Dias OFM, de Souza JG, Agarwal S, Chudzinski-Tavassi AM, Ferretti M. Comparative Effects of Intra-Articular versus Intravenous Mesenchymal Stromal Cells Therapy in a Rat Model of Osteoarthritis by Destabilization of Medial Meniscus. Int J Mol Sci 2023; 24:15543. [PMID: 37958526 PMCID: PMC10649289 DOI: 10.3390/ijms242115543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Transplanted mesenchymal stromal cells (MSCs) exhibit a robust anti-inflammatory and homing capacity in response to high inflammatory signals, as observed in studies focused on rheumatic diseases that target articular cartilage (AC) health. However, AC degradation in osteoarthritis (OA) does not necessarily coincide with a highly inflammatory joint profile. Often, by the time patients seek medical attention, they already have damaged AC. In this study, we examined the therapeutic potential of a single bone marrow MSC transplant (2 × 106 cells/kgbw) through two different routes: intra-articular (MSCs-IAt) and intravenous (MSCs-IVt) in a preclinical model of low-grade inflammatory OA with an established AC degeneration. OA was induced through the destabilization of the medial meniscus (DMM) in female Wistar Kyoto rats. The animals received MSCs 9 weeks after surgery and were euthanized 4 and 12 weeks post-transplant. In vivo and ex vivo tracking of MSCs were analyzed via bioluminescence and imaging flow cytometry, respectively. Cytokine/chemokine modulation in serum and synovial fluid was measured using a multiplex panel. AC degeneration was quantified through histology, and hindlimb muscle balance was assessed with precision weighing. To our knowledge, we are the first group to show the in vivo (8 h) and ex vivo (12 h) homing of cells to the DMM-OA joint following MSCs-IVt. In the case of MSCs-IAt, the detection of cellular bioluminescence at the knee joint persisted for up to 1 week. Intriguingly, intra-articular saline injection (placebo-IAt) resulted in a worse prognosis of OA when compared to a non-invasive control (placebo-IVt) without joint injection. The systemic cytokines/chemokines profile exhibited a time-dependent variation between transplant routes, displaying a transient anti-inflammatory systemic response for both MSCs-IVt and MSCs-IAt. A single injection of MSCs, whether administered via the intra-articular or intravenous route, performed 9 weeks after DMM surgery, did not effectively inhibit AC degeneration when compared to a non-invasive control.
Collapse
Affiliation(s)
| | - Eliane Antonioli
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.B.D.d.O.)
| | | | - Jean Gabriel de Souza
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA;
- CENTD Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo 05503-900, Brazil
| | - Sudha Agarwal
- Division of Rheumatology and Immunology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | - Ana Marisa Chudzinski-Tavassi
- CENTD Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo 05503-900, Brazil
- Laboratório de Desenvolvimento e Inovação, Butantan Institute, São Paulo 05503-900, Brazil
| | - Mario Ferretti
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.B.D.d.O.)
- Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| |
Collapse
|
10
|
Obeidat AM, Kim SY, Burt KG, Hu B, Li J, Ishihara S, Xiao R, Miller RE, Little C, Malfait AM, Scanzello CR. Recommendations For a Standardized Approach to Histopathologic Evaluation of Synovial Membrane in Murine Models of Experimental Osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562259. [PMID: 37904981 PMCID: PMC10614774 DOI: 10.1101/2023.10.14.562259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for synovial histopathology in mouse models of OA. Methods Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue) and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations in the medial and lateral compartments. Inter-reader reliability of each feature was determined. Results There was acceptable to very good agreement between raters. After DMM, increased hyperplasia and cellularity and a trend towards increased fibrosis were observed 6 weeks after DMM in the medial locations, and persisted up to 16 weeks. In the PMX model, cellularity and hyperplasia were evident in both medial and lateral compartments while fibrotic changes were largely seen on the medial side. Synovial changes were consistent from section to section in the mid-joint area mice. H&E, T-blue, and Saf-O stains resulted in comparable reliability. Conclusions To allow for a standard evaluation that can be implemented and compared across labs and studies, we recommend using 3 readers to evaluate a minimum set of 3 pathological features at standardized anatomic areas. Pre-defining areas to be scored, and reliability for each pathologic feature should be considered.
Collapse
Affiliation(s)
- Alia M Obeidat
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Sung Yeon Kim
- University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia PA 19104
| | - Kevin G Burt
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Department of Orthopaedic Surgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| | - Baofeng Hu
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pediatrics Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Christopher Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
11
|
He L, Xu Z, Niu X, Li R, Wang F, You Y, Gao J, Zhao L, Shah KM, Fan J, Liu M, Luo J. GPRC5B protects osteoarthritis by regulation of autophagy signaling. Acta Pharm Sin B 2023; 13:2976-2989. [PMID: 37521864 PMCID: PMC10372909 DOI: 10.1016/j.apsb.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 08/01/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic diseases in the world. However, current treatment modalities mainly relieve pain and inhibit cartilage degradation, but do not promote cartilage regeneration. In this study, we show that G protein-coupled receptor class C group 5 member B (GPRC5B), an orphan G-protein-couple receptor, not only inhibits cartilage degradation, but also increases cartilage regeneration and thereby is protective against OA. We observed that Gprc5b deficient chondrocytes had an upregulation of cartilage catabolic gene expression, along with downregulation of anabolic genes in vitro. Furthermore, mice deficient in Gprc5b displayed a more severe OA phenotype in the destabilization of the medial meniscus (DMM) induced OA mouse model, with upregulation of cartilage catabolic factors and downregulation of anabolic factors, consistent with our in vitro findings. Overexpression of Gprc5b by lentiviral vectors alleviated the cartilage degeneration in DMM-induced OA mouse model by inhibiting cartilage degradation and promoting regeneration. We also assessed the molecular mechanisms downstream of Gprc5b that may mediate these observed effects and identify the role of protein kinase B (AKT)-mammalian target of rapamycin (mTOR)-autophagy signaling pathway. Thus, we demonstrate an integral role of GPRC5B in OA pathogenesis, and activation of GPRC5B has the potential in preventing the progression of OA.
Collapse
Affiliation(s)
- Liang He
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Ziwei Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Niu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rong Li
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Fanhua Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Yu You
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jingduo Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Zhao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Karan M. Shah
- Department of Oncology and Metabolism, the Medical School, the University of Sheffield, Sheffield S10 2TN, UK
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| |
Collapse
|
12
|
Kim SJ, Kim JE, Choe G, Song DH, Kim SJ, Kim TH, Yoo J, Kim SH, Jung Y. Self-assembled peptide-substance P hydrogels alleviate inflammation and ameliorate the cartilage regeneration in knee osteoarthritis. Biomater Res 2023; 27:40. [PMID: 37143133 PMCID: PMC10161637 DOI: 10.1186/s40824-023-00387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Self-assembled peptide (SAP)-substance P (SP) hydrogels can be retained in the joint cavity longer than SP alone, and they can alleviate inflammation and ameliorate cartilage regeneration in knee osteoarthritis (OA). We conducted a preclinical study using diverse animal models of OA and an in vitro study using human synoviocytes and patient-derived synovial fluids to demonstrate the effect of SAP-SP complex on the inflammation and cartilage regeneration. METHODS Surgical induction OA model was prepared with New Zealand white female rabbits and chemical induction, and naturally occurring OA models were prepared using Dunkin Hartely female guinea pigs. The SAP-SP complex or control (SAP, SP, or saline) was injected into the joint cavities in each model. We performed micro-computed tomography (Micro-CT) analysis, histological evaluation, immunofluorescent analysis, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling (TUNEL) assay and analyzed the recruitment of intrinsic mesenchymal stem cells (MSCs), macrophage activity, and inflammatory cytokine in each OA model. Human synoviocytes were cultured in synovial fluid extracted from human OA knee joints injected with SAP-SP complexes or other controls. Proliferative capacity and inflammatory cytokine levels were analyzed. RESULTS Alleviation of inflammation, inhibition of apoptosis, and enhancement of intrinsic MSCs have been established in the SAP-SP group in diverse animal models. Furthermore, the inflammatory effects on human samples were examined in synoviocytes and synovial fluid from patients with OA. In this study, we observed that SAP-SP showed anti-inflammatory action in OA conditions and increased cartilage regeneration by recruiting intrinsic MSCs, inhibiting progression of OA. CONCLUSIONS These therapeutic effects have been validated in diverse OA models, including rabbits, Dunkin Hartley guinea pigs, and human synoviocytes. Therefore, we propose that SAP-SP may be an effective injectable therapeutic agent for treating OA. In this manuscript, we report a preclinical study of novel self-assembled peptide (SAP)-substance P (SP) hydrogels with diverse animal models and human synoviocytes and it displays anti-inflammatory effects, apoptosis inhibition, intrinsic mesenchymal stem cells recruitments and cartilage regeneration.
Collapse
Affiliation(s)
- Sang Jun Kim
- Department of Physical and Rehabilitation Medicine, Seoul Jun Rehabilitation Clinic and Research Center, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Eun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Goeun Choe
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Da Hyun Song
- Department of Physical and Rehabilitation Medicine, Seoul Jun Rehabilitation Clinic and Research Center, Seoul, Republic of Korea
| | - Sun Jeong Kim
- Stem Cell Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Tae Hee Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Chung MK, Wang S, Alshanqiti I, Hu J, Ro JY. The degeneration-pain relationship in the temporomandibular joint: Current understandings and rodent models. FRONTIERS IN PAIN RESEARCH 2023; 4:1038808. [PMID: 36846071 PMCID: PMC9947567 DOI: 10.3389/fpain.2023.1038808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Temporomandibular disorders (TMD) represent a group of musculoskeletal conditions involving the temporomandibular joints (TMJ), the masticatory muscles and associated structures. Painful TMD are highly prevalent and conditions afflict 4% of US adults annually. TMD include heterogenous musculoskeletal pain conditions, such as myalgia, arthralgia, and myofascial pain. A subpopulations of TMD patients show structural changes in TMJ, including disc displacement or degenerative joint diseases (DJD). DJD is a slowly progressing, degenerative disease of the TMJ characterized by cartilage degradation and subchondral bone remodeling. Patients with DJD often develop pain (TMJ osteoarthritis; TMJ OA), but do not always have pain (TMJ osteoarthrosis). Therefore, pain symptoms are not always associated with altered TMJ structures, which suggests that a causal relationship between TMJ degeneration and pain is unclear. Multiple animal models have been developed for determining altered joint structure and pain phenotypes in response to various TMJ injuries. Rodent models of TMJOA and pain include injections to induce inflammation or cartilage destruction, sustained opening of the oral cavity, surgical resection of the articular disc, transgenic approaches to knockout or overexpress key genes, and an integrative approach with superimposed emotional stress or comorbidities. In rodents, TMJ pain and degeneration occur during partially overlapping time periods in these models, which suggests that common biological factors may mediate TMJ pain and degeneration over different time courses. While substances such as intra-articular pro-inflammatory cytokines commonly cause pain and joint degeneration, it remains unclear whether pain or nociceptive activities are causally associated with structural degeneration of TMJ and whether structural degeneration of TMJ is necessary for producing persistent pain. A thorough understanding of the determining factors of pain-structure relationships of TMJ during the onset, progression, and chronification by adopting novel approaches and models should improve the ability to simultaneously treat TMJ pain and TMJ degeneration.
Collapse
Affiliation(s)
- Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | | | | | | | | |
Collapse
|
14
|
Xu L, Hu YJ, Peng Y, Wang Z, Wang J, Lu WW, Tang B, Guo XE. Early zoledronate treatment inhibits subchondral bone microstructural changes in skeletally-mature, ACL-transected canine knees. Bone 2023; 167:116638. [PMID: 36464243 DOI: 10.1016/j.bone.2022.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Anterior cruciate ligament (ACL) tear leads to post-traumatic osteoarthritis (PTOA), a significant clinical burden worldwide that currently has no cure. Recent studies suggest a role of subchondral bone adaptations in the development of PTOA. Particularly, microstructural changes in the rod-and-plate microstructure of subchondral bone may precede and contribute to OA progression. In this study, we quantified microstructural changes in subchondral trabecular rods and plates after ACL-transection for the first time in the well-established preclinical canine model of PTOA and investigated the therapeutic potentials of a bisphosphonate (zoledronate) and NSAID treatment (meloxicam). Unilateral hindlimb ACL transection was performed on skeletally-mature (2-year-old, N = 20) and juvenile (10-month-old, N = 20) male beagles. Animals were assigned to 4 groups (N = 5): ACLT, un-operated control, ACLT with zoledronate, and ACLT with meloxicam treatment. Subchondral bone microstructure was evaluated by micro-computed tomography and cartilage integrity was evaluated histologically. We found that ACL-induced subchondral bone changes depended on skeletal maturity of animals. In mature animals, significant loss of trabecular plates that resulted in reduced PR ratio occurred at Month 1 and persisted until Month 8. Zoledronate treatment prevented trabecular plate loss while meloxicam treatment did not. Whether cartilage degeneration is also attenuated warrants further investigation. In juvenile animals that have not reached skeletal maturity, transient changes in trabecular plate and rod microstructure occurred at Month 3 but not Month 9. Neither zoledronate nor meloxicam treatment attenuated bone microstructural changes or cartilage damages. Findings from this study suggest that early inhibition of bone resorption by bisphosphonate after injury may be a promising therapeutic approach to prevent alterations in subchondral bone microstructure associated with PTOA. Our results further demonstrate that pathogenesis of PTOA may differ between adolescent and adult patients and therefore require distinct management strategies.
Collapse
Affiliation(s)
- Lei Xu
- Department of Biomedical Engineering, the Southern University of Science and Technology, Shenzhen, PR China; Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong; Department of Orthopeadics and Traumatology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, PR China
| | - Yizhong Jenny Hu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ying Peng
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zexi Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jingyi Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - W William Lu
- Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Bin Tang
- Department of Biomedical Engineering, the Southern University of Science and Technology, Shenzhen, PR China
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Dou H, Wang S, Hu J, Song J, Zhang C, Wang J, Xiao L. Osteoarthritis models: From animals to tissue engineering. J Tissue Eng 2023; 14:20417314231172584. [PMID: 37223125 PMCID: PMC10201005 DOI: 10.1177/20417314231172584] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative osteoarthropathy. Although it has been revealed that a variety of factors can cause or aggravate the symptoms of OA, the pathogenic mechanisms of OA remain unknown. Reliable OA models that accurately reflect human OA disease are crucial for studies on the pathogenic mechanism of OA and therapeutic drug evaluation. This review first demonstrated the importance of OA models by briefly introducing the OA pathological features and the current limitations in the pathogenesis and treatment of OA. Then, it mainly discusses the development of different OA models, including animal and engineered models, highlighting their advantages and disadvantages from the perspective of pathogenesis and pathology analysis. In particular, the state-of-the-art engineered models and their potential were emphasized, as they may represent the future direction in the development of OA models. Finally, the challenges in obtaining reliable OA models are also discussed, and possible future directions are outlined to shed some light on this area.
Collapse
Affiliation(s)
- Hongyuan Dou
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Shuhan Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, China
| | - Jiawei Hu
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
16
|
Derue H, Ribeiro-da-Silva A. Therapeutic exercise interventions in rat models of arthritis. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100130. [PMID: 37179770 PMCID: PMC10172998 DOI: 10.1016/j.ynpai.2023.100130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Arthritis is the leading cause of musculoskeletal pain and disability worldwide. Nearly 50% of individuals over the age of 65 have arthritis, which contributes to limited function, articular pain, physical inactivity, and diminished quality of life. Therapeutic exercise is often recommended in clinical settings for patients experiencing arthritic pain, however, there is little practical guidance regarding the use of therapeutic exercise to alleviate arthritic musculoskeletal pain. Rodent models of arthritis allow researchers to control experimental variables, which cannot be done with human participants, providing an opportunity to test therapeutic approaches in preclinical models. This literature review provides a summary of published findings in therapeutic exercise interventions in rat models of arthritis as well as gaps in the existing literature. We reveal that preclinical research in this field has yet to adequately investigate the impact of experimental variables in therapeutic exercise including their modality, intensity, duration, and frequency on joint pathophysiology and pain outcomes.
Collapse
Affiliation(s)
- Hannah Derue
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Corresponding author at: Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
17
|
Hart DA. Osteoarthritis as an Umbrella Term for Different Subsets of Humans Undergoing Joint Degeneration: The Need to Address the Differences to Develop Effective Conservative Treatments and Prevention Strategies. Int J Mol Sci 2022; 23:ijms232315365. [PMID: 36499704 PMCID: PMC9736942 DOI: 10.3390/ijms232315365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) of joints such as the knee and hip are very prevalent, and the number of individuals affected is expected to continue to rise. Currently, conservative treatments after OA diagnosis consist of a series of increasingly invasive interventions as the degeneration and pain increase, leading very often to joint replacement surgery. Most interventions are focused on alleviating pain, and there are no interventions currently available that stop and reverse OA-associated joint damage. For many decades OA was considered a disease of cartilage, but it is now considered a disease of the whole multi-tissue joint. As pain is the usual presenting symptom, for most patients, it is not known when the disease process was initiated and what the basis was for the initiation. The exception is post-traumatic OA which results from an overt injury to the joint that elevates the risk for OA development. This scenario leads to very long wait lists for joint replacement surgery in many jurisdictions. One aspect of why progress has been so slow in addressing the needs of patients is that OA has been used as an umbrella term that does not recognize that joint degeneration may arise from a variety of mechanistic causes that likely need separate analysis to identify interventions unique to each subtype (post-traumatic, metabolic, post-menopausal, growth and maturation associated). A second aspect of the slow pace of progress is that the bulk of research in the area is focused on post-traumatic OA (PTOA) in preclinical models that likely are not clearly relevant to human OA. That is, only ~12% of human OA is due to PTOA, but the bulk of studies investigate PTOA in rodents. Thus, much of the research community is failing the patient population affected by OA. A third aspect is that conservative treatment platforms are not specific to each OA subset, nor are they integrated into a coherent fashion for most patients. This review will discuss the literature relevant to the issues mentioned above and propose some of the directions that will be required going forward to enhance the impact of the research enterprise to affect patient outcomes.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
18
|
Induced inactivation of Wnt16 in young adult mice has no impact on osteoarthritis development. PLoS One 2022; 17:e0277495. [DOI: 10.1371/journal.pone.0277495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common disorder and a major cause of disability in the elderly population. WNT16 has been suggested to play important roles in joint formation, bone homeostasis and OA development, but the mechanism of action is not clear. Transgenic mice lacking Wnt16 expression (Wnt16-/-) have a more severe experimental OA than control mice. In addition, Wnt16-/- mice have a reduced cortical thickness and develop spontaneous fractures. Herein, we have used Cre-Wnt16flox/flox mice in which Wnt16 can be conditionally ablated at any age through tamoxifen-inducible Cre-mediated recombination. Wnt16 deletion was induced in 7-week-old mice to study if the Cre-Wnt16flox/flox mice have a more severe OA phenotype after destabilizing the medial meniscus (DMM surgery) than littermate controls with normal Wnt16 expression (Wnt16flox/flox). WNT16 deletion was confirmed in articular cartilage and cortical bone in Cre-Wnt16flox/flox mice, shown by immunohistochemistry and reduced cortical bone area compared to Wnt16flox/flox mice. After DMM surgery, there was no difference in OA severity in the articular cartilage in the knee joint between the Cre-Wnt16flox/flox and Wnt16flox/flox mice in neither female nor male mice. In addition, there was no difference in osteophyte size in the DMM-operated tibia between the genotypes. In conclusion, inactivation of Wnt16 in adult mice do not result in a more severe OA phenotype after DMM surgery. Thus, presence of WNT16 in adult mice does not have an impact on experimental OA development. Taken together, our results from Cre-Wnt16flox/flox mice and previous results from Wnt16-/- mice suggest that WNT16 is crucial during synovial joint establishment leading to limited joint degradation also later in life, after onset of OA. This may be important when developing new therapeutics for OA treatment.
Collapse
|
19
|
Sanada Y, Ikuta Y, Ding C, Shinohara M, Yimiti D, Ishitobi H, Nagira K, Lee M, Akimoto T, Shibata S, Ishikawa M, Nakasa T, Matsubara K, Lotz MK, Adachi N, Miyaki S. Senescence-accelerated mice prone 8 (SAMP8) in male as a spontaneous osteoarthritis model. Arthritis Res Ther 2022; 24:235. [PMID: 36258202 PMCID: PMC9578281 DOI: 10.1186/s13075-022-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Animal models of spontaneous osteoarthritis (OA) are sparse and not well characterized. The purpose of the present study is to examine OA-related changes and mechanisms in senescence-accelerated mouse prone 8 (SAMP8) that displays a phenotype of accelerated aging. METHODS: Knees of male SAMP8 and SAM-resistant 1 (SAMR1) mice as control from 6 to 33 weeks of age were evaluated by histological grading systems for joint tissues (cartilage, meniscus, synovium, and subchondral bone), and µCT analysis. Gene expression patterns in articular cartilage were analyzed by real-time PCR. Immunohistochemistry was performed for OA-related factors, senescence markers, and apoptosis. RESULTS Starting at 14 weeks of age, SAMP8 exhibited mild OA-like changes such as proteoglycan loss and cartilage fibrillation. From 18 to 33 weeks of age, SAMP8 progressed to partial or full-thickness defects with exposure of subchondral bone on the medial tibia and exhibited synovitis. Histological scoring indicated significantly more severe OA in SAMP8 compared with SAMR1 from 14 weeks [median (interquartile range): SAMR1: 0.89 (0.56-1.81) vs SAMP8: 1.78 (1.35-4.62)] to 33 weeks of age [SAMR1: 1.67 (1.61-1.04) vs SAMP8: 13.03 (12.26-13.57)]. Subchondral bone sclerosis in the medial tibia, bone mineral density (BMD) loss of femoral metaphysis, and meniscus degeneration occurred much earlier than the onset of cartilage degeneration in SAMP8 at 14 weeks of age. CONCLUSIONS SAMP8 are a spontaneous OA model that is useful for investigating the pathogenesis of primary OA and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Yohei Sanada
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, National Rehabilitation Center for Persons With Disabilities, Saitama, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Ishitobi
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keita Nagira
- Department of Orthopaedic Surgery, Tottori University, Tottori, Japan
| | - Minjung Lee
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | | - Sachi Shibata
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, San Diego, CA, USA
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan.
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
20
|
Qin L, Yang J, Su X, Xilan li, Lei Y, Dong L, Chen H, Chen C, Zhao C, Zhang H, Deng J, Hu N, Huang W. The miR-21-5p enriched in the apoptotic bodies of M2 macrophage-derived extracellular vesicles alleviates osteoarthritis by changing macrophage phenotype. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Hu W, Lin J, Wei J, Yang Y, Fu K, Zhu T, Zhu H, Zheng X. Modelling osteoarthritis in mice via surgical destabilization of the medial meniscus with or without a stereomicroscope. Bone Joint Res 2022; 11:518-527. [PMID: 35909337 PMCID: PMC9396921 DOI: 10.1302/2046-3758.118.bjr-2021-0575.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims To evaluate inducing osteoarthritis (OA) by surgical destabilization of the medial meniscus (DMM) in mice with and without a stereomicroscope. Methods Based on sample size calculation, 70 male C57BL/6 mice were randomly assigned to three surgery groups: DMM aided by a stereomicroscope; DMM by naked eye; or sham surgery. The group information was blinded to researchers. Mice underwent static weightbearing, von Frey test, and gait analysis at two-week intervals from eight to 16 weeks after surgery. Histological grade of OA was determined with the Osteoarthritis Research Society International (OARSI) scoring system. Results Surgical DMM with or without stereomicroscope led to decrease in the mean of weightbearing percentages (-20.64% vs -21.44%, p = 0.792) and paw withdrawal response thresholds (-21.35% vs -24.65%, p = 0.327) of the hind limbs. However, the coefficient of variation (CV) of weight-bearing percentages and paw withdrawal response thresholds in naked-eye group were significantly greater than that in the microscope group (19.82% vs 6.94%, p < 0.001; 21.85% vs 9.86%, p < 0.001). The gait analysis showed a similar pattern. Cartilage degeneration was observed in both DMM-surgery groups, evidenced by increased OARSI scores (summed score: 11.23 vs 11.43, p = 0.842), but the microscope group showed less variation in OARSI score than the naked-eye group (CV: 21.03% vs 32.44%; p = 0.032). Conclusion Although surgical DMM aided by stereomicroscope is technically difficult, it produces a relatively more homogeneous OA model in terms of the discrete degree of pain behaviours and histopathological grading when compared with surgical DMM without stereomicroscope. Cite this article: Bone Joint Res 2022;11(8):518–527.
Collapse
Affiliation(s)
- Wencheng Hu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junqing Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jiabao Wei
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yunlong Yang
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Kai Fu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Tianhao Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xianyou Zheng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
22
|
Veronesi F, Salamanna F, Martini L, Fini M. Naturally Occurring Osteoarthritis Features and Treatments: Systematic Review on the Aged Guinea Pig Model. Int J Mol Sci 2022; 23:ijms23137309. [PMID: 35806306 PMCID: PMC9266929 DOI: 10.3390/ijms23137309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022] Open
Abstract
To date, several in vivo models have been used to reproduce the onset and monitor the progression of osteoarthritis (OA), and guinea pigs represent a standard model for studying naturally occurring, age-related OA. This systematic review aims to characterize the guinea pig for its employment in in vivo, naturally occurring OA studies and for the evaluation of specific disease-modifying agents. The search was performed in PubMed, Scopus, and Web of Knowledge in the last 10 years. Of the 233 records screened, 49 studies were included. Results showed that within a relatively short period of time, this model develops specific OA aspects, including cartilage degeneration, marginal osteophytes formation, and subchondral bone alterations. Disease severity increases with age, beginning at 3 months with mild OA and reaching moderate–severe OA at 18 months. Among the different strains, Dunkin Hartley develops OA at a relatively early age. Thus, disease-modifying agents have mainly been evaluated for this strain. As summarized herein, spontaneous development of OA in guinea pigs represents an excellent model for studying disease pathogenesis and for evaluating therapeutic interventions. In an ongoing effort at standardization, a detailed characterization of specific OA models is necessary, even considering the main purpose of these models, i.e., translatability to human OA.
Collapse
|
23
|
Alves-Simões M. Rodent models of knee osteoarthritis for pain research. Osteoarthritis Cartilage 2022; 30:802-814. [PMID: 35139423 DOI: 10.1016/j.joca.2022.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability worldwide. Pain is the main symptom, yet no current treatment can halt disease progression or effectively provide symptomatic relief. Numerous animal models have been described for studying OA and some for the associated OA pain. This review aims to update on current models used for studying OA pain, focusing on mice and rats. These models include surgical, chemical, mechanical, and spontaneous OA models. The impact of sex and age will also be addressed in the context of OA modelling. Although no single animal model has been shown ideal for studying OA pain, increased efforts to phenotype OA will likely impact the choice of models for pre-clinical and basic research studies.
Collapse
Affiliation(s)
- M Alves-Simões
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
24
|
Induction of Accelerated Aging in a Mouse Model. Cells 2022; 11:cells11091418. [PMID: 35563724 PMCID: PMC9102583 DOI: 10.3390/cells11091418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. This review will discuss some of the common and emerging mouse models of accelerated aging and related chronic diseases in recent years, with the aim of serving as a reference for future application in fundamental and translational research.
Collapse
|
25
|
Drevet S, Favier B, Lardy B, Gavazzi G, Brun E. New imaging tools for mouse models of osteoarthritis. GeroScience 2022; 44:639-650. [PMID: 35129777 PMCID: PMC9135906 DOI: 10.1007/s11357-022-00525-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by a disruption of articular joint cartilage homeostasis. Mice are the most commonly used models to study OA. Despite recent reviews, there is still a lack of knowledge about the new development in imaging techniques. Two types of modalities are complementary: those that assess structural changes in joint tissues and those that assess metabolism and disease activity. Micro MRI is the most important imaging tool for OA research. Automated methodologies for assessing periarticular bone morphology with micro-CT have been developed allowing quantitative assessment of tibial surface that may be representative of the whole OA joint changes. Phase-contrast X-ray imaging provides in a single examination a high image precision with good differentiation between all anatomical elements of the knee joint (soft tissue and bone). Positron emission tomography, photoacoustic imaging, and fluorescence reflectance imaging provide molecular and functional data. To conclude, innovative imaging technologies could be an alternative to conventional histology with greater resolution and more efficiency in both morphological analysis and metabolism follow-up. There is a logic of permanent adjustment between innovations, 3R rule, and scientific perspectives. New imaging associated with artificial intelligence may add to human clinical practice allowing not only diagnosis but also prediction of disease progression to personalized medicine.
Collapse
Affiliation(s)
- S. Drevet
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
- University Hospital Grenoble Alpes, Orthogeriatric Unit, Clinic of Geriatric Medicine, 38 000 Grenoble, France
| | - B. Favier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - B. Lardy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
- Laboratoire de Biochimie des Enzymes et des Protéines, Centre Hospitalier Universitaire Grenoble Alpes, 38 000 Grenoble, France
| | - G. Gavazzi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
- University Hospital Grenoble Alpes, Clinic of Geriatric Medicine, 38 000 Grenoble, France
| | - E. Brun
- Univ. Grenoble Alpes, Inserm, UA7, STROBE Laboratory, 38 000 Grenoble, France
| |
Collapse
|
26
|
Dedek A, Hildebrand ME. Advances and Barriers in Understanding Presynaptic N-Methyl-D-Aspartate Receptors in Spinal Pain Processing. Front Mol Neurosci 2022; 15:864502. [PMID: 35431805 PMCID: PMC9008455 DOI: 10.3389/fnmol.2022.864502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
For decades, N-methyl-D-aspartate (NMDA) receptors have been known to play a critical role in the modulation of both acute and chronic pain. Of particular interest are NMDA receptors expressed in the superficial dorsal horn (SDH) of the spinal cord, which houses the nociceptive processing circuits of the spinal cord. In the SDH, NMDA receptors undergo potentiation and increases in the trafficking of receptors to the synapse, both of which contribute to increases in excitability and plastic increases in nociceptive output from the SDH to the brain. Research efforts have primarily focused on postsynaptic NMDA receptors, despite findings that presynaptic NMDA receptors can undergo similar plastic changes to their postsynaptic counterparts. Recent technological advances have been pivotal in the discovery of mechanisms of plastic changes in presynaptic NMDA receptors within the SDH. Here, we highlight these recent advances in the understanding of presynaptic NMDA receptor physiology and their modulation in models of chronic pain. We discuss the role of specific NMDA receptor subunits in presynaptic membranes of nociceptive afferents and local SDH interneurons, including their modulation across pain modalities. Furthermore, we discuss how barriers such as lack of sex-inclusive research and differences in neurodevelopmental timepoints have complicated investigations into the roles of NMDA receptors in pathological pain states. A more complete understanding of presynaptic NMDA receptor function and modulation across pain states is needed to shed light on potential new therapeutic treatments for chronic pain.
Collapse
Affiliation(s)
- Annemarie Dedek
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Neuroscience Department, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael E. Hildebrand
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Neuroscience Department, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- *Correspondence: Michael E. Hildebrand,
| |
Collapse
|
27
|
Weissmann T, Rückert M, Zhou JG, Seeling M, Lettmaier S, Donaubauer AJ, Nimmerjahn F, Ott OJ, Hecht M, Putz F, Fietkau R, Frey B, Gaipl US, Deloch L. Low-Dose Radiotherapy Leads to a Systemic Anti-Inflammatory Shift in the Pre-Clinical K/BxN Serum Transfer Model and Reduces Osteoarthritic Pain in Patients. Front Immunol 2022; 12:777792. [PMID: 35046940 PMCID: PMC8763318 DOI: 10.3389/fimmu.2021.777792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is the leading degenerative joint disease in the western world and leads, if left untreated, to a progressive deterioration of joint functionality, ultimately reducing quality of life. Recent data has shown, that especially OA of the ankle and foot are among the most frequently affected regions. Current research in OA points towards a complex involvement of various cell and tissue types, often accompanied by inflammation. Low-dose radiotherapy (LDRT) is widely used for the treatment of degenerative and inflammatory diseases. While the reported analgesic effects are well known, the underlying molecular mechanisms are only poorly understood. We therefore correlated a clinical approach, looking at pain reduction in 196 patients treated with LDRT with a pre-clinical approach, utilizing the K/BxN serum transfer mouse model using flow cytometry and multiplex ELISA for analysis. While an improvement of symptoms in the majority of patients was found, patients suffering from symptoms within the tarsi transversa show a significantly lower level of improvement. Further, a significant impact of therapy success was detected depending on whether only one or both feet were affected. Further, patients of younger age showed a significantly better outcome than older ones while needing fewer treatment series. When looking on a cellular level within the mouse model, a systemic alteration of immune cells namely a shift from CD8+ to CD4+ T cells and reduced numbers of DCs was observed. A general reduction of inflammatory cytokines was detected, with significant alterations in IL-4 and IL-17 levels, all of which could potentially be responsible for the highly effective clinical improvement in patients. Taken together our data indicate that LDRT can be regarded as a highly effective treatment option for patients suffering from OA of the foot and ankle, in terms of analgesic effects, especially in younger patients. Furthermore, the observed effects are mediated by an interplay of cellular and soluble immune factors, as observed in the K/BxN serum transfer model. With this interdisciplinary approach we aim to encourage the usage of LDRT as an additive treatment strategy not only as a last resort, but also earlier in the course of disease.
Collapse
Affiliation(s)
- Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jian-Guo Zhou
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Michaela Seeling
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna-Jasmina Donaubauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
28
|
IκB-ζ signaling promotes chondrocyte inflammatory phenotype, senescence, and erosive joint pathology. Bone Res 2022; 10:12. [PMID: 35145063 PMCID: PMC8831569 DOI: 10.1038/s41413-021-00183-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is a joint disease characterized by a poorly-defined inflammatory response that does not encompass a massive immune cell infiltration yet contributes to cartilage degradation and loss of joint mobility, suggesting a chondrocyte intrinsic inflammatory response. Using primary chondrocytes from joints of osteoarthritic mice and patients, we first show that these cells express ample pro-inflammatory markers and RANKL in an NF-κB dependent manner. The inflammatory phenotype of chondrocytes was recapitulated by exposure of chondrocytes to IL-1β and bone particles, which were used to model bone matrix breakdown products revealed to be present in synovial fluid of OA patients, albeit their role was not defined. We further show that bone particles and IL-1β can promote senescent and apoptotic changes in primary chondrocytes due to oxidative stress from various cellular sources such as the mitochondria. Finally, we provide evidence that inflammation, oxidative stress and senescence converge upon IκB-ζ, the principal mediator downstream of NF-κB, which regulates expression of RANKL, inflammatory, catabolic, and SASP genes. Overall, this work highlights the capacity and mechanisms by which inflammatory cues, primarily joint degradation products, i.e., bone matrix particles in concert with IL-1β in the joint microenvironment, program chondrocytes into an "inflammatory phenotype" which inflects local tissue damage.
Collapse
|
29
|
D'Agnelli S, Amodeo G, Franchi S, Verduci B, Baciarello M, Panerai AE, Bignami EG, Sacerdote P. Frailty and pain, human studies and animal models. Ageing Res Rev 2022; 73:101515. [PMID: 34813977 DOI: 10.1016/j.arr.2021.101515] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/01/2022]
Abstract
The hypothesis that pain can predispose to frailty development has been recently investigated in several clinical studies suggesting that frailty and pain may share some mechanisms. Both pain and frailty represent important clinical and social problems and both lack a successful treatment. This circumstance is mainly due to the absence of in-depth knowledge of their pathological mechanisms. Evidence of shared pathways between frailty and pain are preliminary. Indeed, many clinical studies are observational and the impact of pain treatment, and relative pain-relief, on frailty onset and progression has never been investigated. Furthermore, preclinical research on this topic has yet to be performed. Specific researches on the pain-frailty relation are needed. In this narrative review, we will attempt to point out the most relevant findings present in both clinical and preclinical literature on the topic, with particular attention to genetics, epigenetics and inflammation, in order to underline the existing gaps and the potential future interventional strategies. The use of pain and frailty animal models discussed in this review might contribute to research in this area.
Collapse
|
30
|
Sulaiman SZS, Tan WM, Radzi R, Shafie INF, Ajat M, Mansor R, Mohamed S, Ng AMH, Lau SF. Comparison of bone and articular cartilage changes in osteoarthritis: a micro-computed tomography and histological study of surgically and chemically induced osteoarthritic rabbit models. J Orthop Surg Res 2021; 16:663. [PMID: 34749769 PMCID: PMC8577030 DOI: 10.1186/s13018-021-02781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a multifaceted condition that affects both the subchondral bones and the articular cartilage. Animal models are widely used as an effective supplement and simulation for human OA studies in investigating disease mechanisms and pathophysiology. This study is aimed to evaluate the temporal changes of bone and cartilage in surgically and chemically induced osteoarthritis using micro-computed tomography and histology. METHODS Thirty rabbits underwent either anterior cruciate ligament transection (ACLT) procedure or injected intraarticularly with monosodium iodoacetate (MIA, 8 mg) at the right knee joint. The subchondral bones were scanned via micro-CT, and articular cartilage was assessed histologically at 4-, 8- and 12-week post-induction. RESULTS Based on bone micro-architecture parameters, the surgically induced group revealed bone remodelling processes, indicated by increase bone volume, thickening of trabeculae, reduced trabecular separation and reduced porosity. On the other hand, the chemically induced group showed active bone resorption processes depicted by decrease bone volume, thinning of trabeculae, increased separation of trabecular and increased porosity consistently until week 12. Histologically, the chemically induced group showed more severe articular cartilage damage compared to the surgically induced group. CONCLUSIONS It can be concluded that in the ACLT group, subchondral bone remodelling precedes articular cartilage damage and vice versa in the MIA group. The findings revealed distinct pathogenic pathways for both induction methods, providing insight into tailored therapeutic strategies, as well as disease progression and treatment outcomes monitoring.
Collapse
Affiliation(s)
- Sharifah Zakiah Syed Sulaiman
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wei Miao Tan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rozanaliza Radzi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Intan Nur Fatiha Shafie
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rozaihan Mansor
- Department of Farm and Exotic Animals Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Suhaila Mohamed
- UPM-Makna Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Angela Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Seng Fong Lau
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- UPM-Makna Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
31
|
Esdaille CJ, Ude CC, Laurencin CT. Regenerative Engineering Animal Models for Knee Osteoarthritis. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:284-297. [PMID: 35958163 PMCID: PMC9365239 DOI: 10.1007/s40883-021-00225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Osteoarthritis (OA) of the knee is the most common synovial joint disorder worldwide, with a growing incidence due to increasing rates of obesity and an aging population. A significant amount of research is currently being conducted to further our understanding of the pathophysiology of knee osteoarthritis to design less invasive and more effective treatment options once conservative management has failed. Regenerative engineering techniques have shown promising preclinical results in treating OA due to their innovative approaches and have emerged as a popular area of study. To investigate these therapeutics, animal models of OA have been used in preclinical trials. There are various mechanisms by which OA can be induced in the knee/stifle of animals that are classified by the etiology of the OA that they are designed to recapitulate. Thus, it is essential to utilize the correct animal model in studies that are investigating regenerative engineering techniques for proper translation of efficacy into clinical trials. This review discusses the various animal models of OA that may be used in preclinical regenerative engineering trials and the corresponding classification system.
Lay Summary
Osteoarthritis (OA) of the knee is the most common synovial joint disease worldwide, with high rates of occurrence due to an increase in obesity and an aging population. A great deal of research is currently underway to further our understanding of the causes of osteoarthritis, to design more effective treatments. The emergence of regenerative engineering has provided physicians and investigators with unique opportunities to join ideas in tackling human diseases such as OA. Once the concept is proven to work, the initial procedure for the evaluation of a treatment solution begins with an animal model. Thus, it is essential to utilize a suitable animal model that reflects the particular ailment in regenerative engineering studies for proper translation to human patients as each model has associated advantages and disadvantages. There are various ways by which OA can occur in the knee joint, which are classified according to the particular cause of the OA. This review discusses the various animal models of OA that may be used in preclinical regenerative engineering investigations and the corresponding classification system.
Collapse
|
32
|
Sura R, Hutt J, Morgan S. Opinion on the Use of Animal Models in Nonclinical Safety Assessment: Pros and Cons. Toxicol Pathol 2021; 49:990-995. [PMID: 33827334 DOI: 10.1177/01926233211003498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nonclinical evaluation of human safety risks for new chemical entities (NCEs) is primarily conducted in conventional healthy animals (CHAs); however, in certain instances, animal models of diseases (AMDs) can play a critical role in the understanding of human health risks. Animal models of diseases may be especially important when there is a need to understand how disease conditions associated with the intended indication might impact risk assessment of NCEs or when CHAs lack the human-specific target of interest (receptor, etc). Although AMDs have potential benefits over CHAs, they also have limitations. Understanding these limitations and optimizing the AMDs of interest should be done prior to proceeding with studies that will guide development of NCE. The purpose of this manuscript is to provide an overview of the major pros and cons of utilization of AMDs in nonclinical safety assessment.
Collapse
Affiliation(s)
| | - Julie Hutt
- Greenfield Pathology Services, Inc., Greenfield, IN, USA
| | | |
Collapse
|
33
|
Sanada Y, Tan SJO, Adachi N, Miyaki S. Pharmacological Targeting of Heme Oxygenase-1 in Osteoarthritis. Antioxidants (Basel) 2021; 10:antiox10030419. [PMID: 33803317 PMCID: PMC8001640 DOI: 10.3390/antiox10030419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) is a common aging-associated disease that clinically manifests as joint pain, mobility limitations, and compromised quality of life. Today, OA treatment is limited to pain management and joint arthroplasty at the later stages of disease progression. OA pathogenesis is predominantly mediated by oxidative damage to joint cartilage extracellular matrix and local cells such as chondrocytes, osteoclasts, osteoblasts, and synovial fibroblasts. Under normal conditions, cells prevent the accumulation of reactive oxygen species (ROS) under oxidatively stressful conditions through their adaptive cytoprotective mechanisms. Heme oxygenase-1 (HO-1) is an iron-dependent cytoprotective enzyme that functions as the inducible form of HO. HO-1 and its metabolites carbon monoxide and biliverdin contribute towards the maintenance of redox homeostasis. HO-1 expression is primarily regulated at the transcriptional level through transcriptional factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), specificity protein 1 (Sp1), transcriptional repressor BTB-and-CNC homology 1 (Bach1), and epigenetic regulation. Several studies report that HO-1 expression can be regulated using various antioxidative factors and chemical compounds, suggesting therapeutic implications in OA pathogenesis as well as in the wider context of joint disease. Here, we review the protective role of HO-1 in OA with a focus on the regulatory mechanisms that mediate HO-1 activity.
Collapse
Affiliation(s)
- Yohei Sanada
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 7348551, Japan;
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
| | - Sho Joseph Ozaki Tan
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 7348551, Japan;
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
- Correspondence: ; Tel.: +81-82-257-5231
| |
Collapse
|
34
|
Reed KSM, Ulici V, Kim C, Chubinskaya S, Loeser RF, Phanstiel DH. Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype. Osteoarthritis Cartilage 2021; 29:235-247. [PMID: 33248223 PMCID: PMC7870543 DOI: 10.1016/j.joca.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fibronectin is a matrix protein that is fragmented during cartilage degradation in osteoarthritis (OA). Treatment of chondrocytes with fibronectin fragments (FN-f) has been used to model OA in vitro, but the system has not been fully characterized. This study sought to define the transcriptional response of chondrocytes to FN-f, and directly compare it to responses traditionally observed in OA. DESIGN Normal human femoral chondrocytes isolated from tissue donors were treated with either FN-f or PBS (control) for 3, 6, or 18 h. RNA-seq libraries were compared between time-matched FN-f and control samples in order to identify changes in gene expression over time. Differentially expressed genes were compared to a published OA gene set and used for pathway, transcription factor motif, and kinome analysis. RESULTS FN-f treatment resulted in 3,914 differentially expressed genes over the time course. Genes that are up- or downregulated in OA were significantly up- (P < 0.00001) or downregulated (P < 0.0004) in response to FN-f. Early response genes were involved in proinflammatory pathways, whereas many late response genes were involved in ferroptosis. The promoters of upregulated genes were enriched for NF-κB, AP-1, and IRF motifs. Highly upregulated kinases included CAMK1G, IRAK2, and the uncharacterized kinase DYRK3, while growth factor receptors TGFBR2 and FGFR2 were downregulated. CONCLUSIONS FN-f treatment of normal human articular chondrocytes recapitulated many key aspects of the OA chondrocyte phenotype. This in vitro model is promising for future OA studies, especially considering its compatibility with genomics and genome-editing techniques.
Collapse
Affiliation(s)
- K S M Reed
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - V Ulici
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - C Kim
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - S Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - R F Loeser
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - D H Phanstiel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Huang HT, Cheng TL, Yang CD, Chang CF, Ho CJ, Chuang SC, Li JY, Huang SH, Lin YS, Shen HY, Yu TH, Kang L, Lin SY, Chen CH. Intra-Articular Injection of (-)-Epigallocatechin 3-Gallate (EGCG) Ameliorates Cartilage Degeneration in Guinea Pigs with Spontaneous Osteoarthritis. Antioxidants (Basel) 2021; 10:178. [PMID: 33530594 PMCID: PMC7910837 DOI: 10.3390/antiox10020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease that causes an enormous burden of disease worldwide. (-)-Epigallocatechin 3-gallate (EGCG) has been reported to reduce post-traumatic OA progression through its anti-inflammatory property. Aging is the most crucial risk factor of OA, and the majority of OA incidences are related to age and not trauma. In this study, we assess whether EGCG can ameliorate cartilage degradation in primary OA. In an in-vitro study, real-time PCR was performed to assess the expression of genes associated with human articular chondrocyte homeostasis. A spontaneously occurring OA model in guinea pigs was used to investigate the effect of EGCG in vivo. OA severity was evaluated using Safranin O staining and Osteoarthritis Research Society International (OARSI) scores, as well as by immunohistochemical (IHC) analysis to determine the protein level of type II collagen (Col II), matrix metalloproteinase 13 (MMP-13), and p16 ink4a in articular cartilage. In the in-vitro study, EGCG increased the gene expression of aggrecan and Col II and decreased the expression of interleukin-1, cyclooxygenase 2, MMP-13, alkaline phosphatase, Col X, and p16 Ink4a; EGCG treatment also attenuated the degraded cartilage with a lower OARSI score. Meanwhile, IHC results showed that EGCG exerted an anti-OA effect by reducing ECM degradation, cartilage inflammation, and cell senescence with a less-immunostained Col II, MMP-13, and p16 Ink4a. In conclusion, these findings suggest that EGCG may be a potential disease-modifying OA drug for the treatment of primary OA.
Collapse
Affiliation(s)
- Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Jhong-You Li
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Shih-Hao Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Hsin-Yi Shen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
| | - Tsung-Han Yu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
36
|
Laitner MH, Erickson LC, Ortman E. Understanding the Impact of Sex and Gender in Osteoarthritis: Assessing Research Gaps and Unmet Needs. J Womens Health (Larchmt) 2020; 30:634-641. [PMID: 33325792 DOI: 10.1089/jwh.2020.8828] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) affects more than 300 million individuals globally, with higher prevalence in women than in men. In addition, OA affects women and men differently, with women demonstrating both increased disease severity and disability. The Society for Women's Health Research (SWHR) convened an interdisciplinary group of expert researchers and clinicians for a roundtable meeting to review the current state of the science on OA and to identify knowledge gaps in the scientific literature, especially as they relate to the topics of sex and gender. The current review summarizes discussions from the roundtable and prioritizes areas of need that warrant further attention in OA research, diagnosis, care, and education. Improvements in basic and clinical research, clinical practice, patient education, and policy are needed to allow for better understanding as to the pathogenesis of sex- and gender-related disparities in OA.
Collapse
Affiliation(s)
- Melissa H Laitner
- The Society for Women's Health Research, Washington, District of Columbia, USA
| | | | - Emily Ortman
- The Society for Women's Health Research, Washington, District of Columbia, USA
| |
Collapse
|
37
|
Huang K, Cai HL, Zhang PL, Wu LD. Comparison between two rabbit models of posttraumatic osteoarthritis: A longitudinal tear in the medial meniscus and anterior cruciate ligament transection. J Orthop Res 2020; 38:2721-2730. [PMID: 32129514 DOI: 10.1002/jor.24645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Animal osteoarthritis (OA) models have been developed to understand OA progression and evaluate new OA therapies. However, individual variations in joint lesions remain a critical problem in most current OA models. We established a novel rabbit model by creating a longitudinal tear in the medial meniscus body that was reproducible and similar to posttraumatic biomechanical disturbances in human OA. New Zealand rabbits underwent surgery and were assessed for 9 weeks. The rabbits were randomized into the sham control, medial meniscal tear (MMT), and anterior cruciate ligament transection (ACLT) groups. The animals were sacrificed at 4, 6, and 9 weeks posttreatment. The knee joints were harvested for histological and gene expression assessments. Both the MMT and ACLT procedures led to time-dependent degenerative changes in the femoral condyle cartilage. At each time point, the MMT group cartilage showed more severe degenerative changes than did the ACLT group cartilage. Consistently, inflammatory cytokine and catabolic gene expression were significantly higher, and anabolic gene expression was significantly lower in the MMT group than in the ACLT group. MMT treatment caused more severe structural damage to the cartilage and higher catabolic gene expression levels than the ACLT model at each time point. The MMT model may be highly beneficial in investigating posttraumatic OA (PTOA) development, especially PTOA from a meniscal injury. The MMT model replicated key features of human PTOA, including meniscal lesions, inflammatory responses, and the progression to osteoarthritic cartilage degeneration, thereby providing an exciting new avenue for translating promising treatments to clinical practice.
Collapse
Affiliation(s)
- Kai Huang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hai-Li Cai
- Department of Ultrasound, The 903rd Hospital of PLA, Hangzhou, China
| | - Peng-Li Zhang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Li-Dong Wu
- Department of Orthopedic Surgery, The Second Hospital of Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Shah S, Otsuka T, Bhattacharjee M, Laurencin CT. Minimally Invasive Cellular Therapies for Osteoarthritis Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00184-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Allas L, Brochard S, Rochoux Q, Ribet J, Dujarrier C, Veyssiere A, Aury-Landas J, Grard O, Leclercq S, Vivien D, Ea HK, Maubert E, Cohen-Solal M, Boumediene K, Agin V, Baugé C. EZH2 inhibition reduces cartilage loss and functional impairment related to osteoarthritis. Sci Rep 2020; 10:19577. [PMID: 33177650 PMCID: PMC7658239 DOI: 10.1038/s41598-020-76724-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Histone methyltransferase EZH2 is upregulated during osteoarthritis (OA), which is the most widespread rheumatic disease worldwide, and a leading cause of disability. This study aimed to assess the impact of EZH2 inhibition on cartilage degradation, inflammation and functional disability. In vitro, gain and loss of EZH2 function were performed in human articular OA chondrocytes stimulated with IL-1β. In vivo, the effects of EZH2 inhibition were investigated on medial meniscectomy (MMX) OA mouse model. The tissue alterations were assayed by histology and the functional disabilities of the mice by actimetry and running wheel. In vitro, EZH2 overexpression exacerbated the action of IL-1β in chondrocytes increasing the expression of genes involved in inflammation, pain (NO, PGE2, IL6, NGF) and catabolism (MMPs), whereas EZH2 inhibition by a pharmacological inhibitor, EPZ-6438, reduced IL-1β effects. Ex vivo, EZH2 inhibition decreased IL-1β-induced degradation of cartilage. In vivo, intra-articular injections of the EZH2 inhibitor reduced cartilage degradation and improved motor functions of OA mice. This study demonstrates that the pharmacological inhibition of the histone methyl-transferase EZH2 slows the progression of osteoarthritis and improves motor functions in an experimental OA model, suggesting that EZH2 could be an effective target for the treatment of OA by reducing catabolism, inflammation and pain.
Collapse
Affiliation(s)
- Lyess Allas
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Sybille Brochard
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Quitterie Rochoux
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Rhumatologie, CHU, Caen, France
| | - Jules Ribet
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Rhumatologie, CHU, Caen, France
| | - Cleo Dujarrier
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
| | - Alexis Veyssiere
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Chirurgie Maxillo-Faciale, CHU, Caen, France
| | | | - Ophélie Grard
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Sylvain Leclercq
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Chirurgie Orthopédique, Clinique Saint-Martin, Caen, France
| | - Denis Vivien
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
- Department of Clinical Research, CHU Caen-Normandie, Caen, France
| | - Hang-Korng Ea
- UMR-1132 BIOSCAR, INSERM, Université de Paris, Paris, France
| | - Eric Maubert
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
| | | | - Karim Boumediene
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Véronique Agin
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
| | - Catherine Baugé
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France.
| |
Collapse
|
40
|
Oláh T, Michaelis JC, Cai X, Cucchiarini M, Madry H. Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part II: Small animals. Ann Anat 2020; 234:151630. [PMID: 33129976 DOI: 10.1016/j.aanat.2020.151630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Small animal models are critical to model the complex disease mechanisms affecting a functional joint leading to articular cartilage disorders. They are advantageous for several reasons and significantly contributed to the understanding of the mechanisms of cartilage diseases among which osteoarthritis. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant anatomical structural and functional characteristics of the knee (stifle) joints of the major small animal species, including mice, rats, guinea pigs, and rabbits compared with humans. Specific characteristics of each species, including kinematical gait parameters are provided and compared with the human situation. When placed in a proper context respecting their challenges and limitations, small animal models are important and appropriate models for articular cartilage disorders.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
41
|
Soul J, Barter MJ, Little CB, Young DA. OATargets: a knowledge base of genes associated with osteoarthritis joint damage in animals. Ann Rheum Dis 2020; 80:376-383. [PMID: 33077471 PMCID: PMC7892386 DOI: 10.1136/annrheumdis-2020-218344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Objectives To collate the genes experimentally modulated in animal models of osteoarthritis (OA) and compare these data with OA transcriptomics data to identify potential therapeutic targets. Methods PubMed searches were conducted to identify publications describing gene modulations in animal models. Analysed gene expression data were retrieved from the SkeletalVis database of analysed skeletal microarray and RNA-Seq expression data. A network diffusion approach was used to predict new genes associated with OA joint damage. Results A total of 459 genes were identified as having been modulated in animal models of OA, with ageing and post-traumatic (surgical) models the most prominent. Ninety-eight of the 143 genes (69%) genetically modulated more than once had a consistent effect on OA joint damage severity. Several discrepancies between different studies were identified, providing lessons on interpretation of these data. We used the data collected along with OA gene expression data to expand existing annotations and prioritise the most promising therapeutic targets, which we validated using the latest reported associations. We constructed an online database OATargets to allow researchers to explore the collated data and integrate it with existing OA and skeletal gene expression data. Conclusions We present a comprehensive survey and online resource for understanding gene regulation of animal model OA pathogenesis.
Collapse
Affiliation(s)
- Jamie Soul
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Matthew J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute, The University of Sydney, St Leonards, New South Wales, Australia
| | - David A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
42
|
Identification of TGFβ signatures in six murine models mimicking different osteoarthritis clinical phenotypes. Osteoarthritis Cartilage 2020; 28:1373-1384. [PMID: 32659345 DOI: 10.1016/j.joca.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE TGFβ is a key player in cartilage homeostasis and OA pathology. However, few data are available on the role of TGFβ signalling in the different OA phenotypes. Here, we analysed the TGFβ pathway by transcriptomic analysis in six mouse models of OA. METHOD We have brought together seven expert laboratories in OA pathophysiology and, used inter-laboratories standard operating procedures and quality controls to increase experimental reproducibility and decrease bias. As none of the available OA models covers the complexity and heterogeneity of the human disease, we used six different murine models of knee OA: from post-traumatic/mechanical models (meniscectomy (MNX), MNX and hypergravity (HG-MNX), MNX and high fat diet (HF-MNX), MNX and seipin knock-out (SP-MNX)) to aging-related OA and inflammatory OA (collagenase-induced OA (CIOA)). Four controls (MNX-sham, young, SP-sham, CIOA-sham) were added. OsteoArthritis Research Society International (OARSI)-based scoring of femoral condyles and ribonucleic acid (RNA) extraction from tibial plateau samples were done by single operators as well as the transcriptomic analysis of the TGFβ family pathway by Custom TaqMan® Array Microfluidic Cards. RESULTS The transcriptomic analysis revealed specific gene signatures in each of the six models; however, no gene was deregulated in all six OA models. Of interest, we found that the combinatorial Gdf5-Cd36-Ltbp4 signature might discriminate distinct subgroups of OA: Cd36 upregulation is a hallmark of MNX-related OA while Gdf5 and Ltbp4 upregulation is related to MNX-induced OA and CIOA. CONCLUSION These findings stress the OA animal model heterogeneity and the need of caution when extrapolating results from one model to another.
Collapse
|
43
|
Alves CJ, Couto M, Sousa DM, Magalhães A, Neto E, Leitão L, Conceição F, Monteiro AC, Ribeiro-da-Silva M, Lamghari M. Nociceptive mechanisms driving pain in a post-traumatic osteoarthritis mouse model. Sci Rep 2020; 10:15271. [PMID: 32943744 PMCID: PMC7499425 DOI: 10.1038/s41598-020-72227-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022] Open
Abstract
In osteoarthritis (OA), pain is the dominant clinical symptom, yet the therapeutic approaches remain inadequate. The knowledge of the nociceptive mechanisms in OA, which will allow to develop effective therapies for OA pain, is of utmost need. In this study, we investigated the nociceptive mechanisms involved in post-traumatic OA pain, using the destabilization of the medial meniscus (DMM) mouse model. Our results revealed the development of peripheral pain sensitization, reflected by augmented mechanical allodynia. Along with the development of pain behaviour, we observed an increase in the expression of calcitonin gene-related peptide (CGRP) in both the sensory nerve fibers of the periosteum and the dorsal root ganglia. Interestingly, we also observed that other nociceptive mechanisms commonly described in non-traumatic OA phenotypes, such as infiltration of the synovium by immune cells, neuropathic mechanisms and also central sensitization were not present. Overall, our results suggest that CGRP in the sensory nervous system is underlying the peripheral sensitization observed after traumatic knee injury in the DMM model, highlighting the CGRP as a putative therapeutic target to treat pain in post-traumatic OA. Moreover, our findings suggest that the nociceptive mechanisms involved in driving pain in post-traumatic OA are considerably different from those in non-traumatic OA.
Collapse
Affiliation(s)
- C J Alves
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.
| | - M Couto
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - D M Sousa
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - A Magalhães
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - E Neto
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - L Leitão
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - F Conceição
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - A C Monteiro
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - M Ribeiro-da-Silva
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto (FMUP), Porto, Portugal.,Serviço de Ortopedia e Traumatologia, Centro Hospitalar São João, Porto, Portugal
| | - M Lamghari
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| |
Collapse
|
44
|
Cartilage repair using stem cells & biomaterials: advancement from bench to bedside. Mol Biol Rep 2020; 47:8007-8021. [PMID: 32888123 DOI: 10.1007/s11033-020-05748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Osteoarthritis (OA) involves gradual destruction of articular cartilagemanifested by pain, stiffness of joints, and impaired movement especially in knees and hips. Non-vascularity of this tissue hinders its self-regenerative capacity and thus, the application of reparative or restorative modalities becomes imperative in OA treatment. In recent years, stem cell-based therapies have been explored as potential modalities for addressing OA complications. While mesenchymal stem cells (MSCs) hold immense promise, the recapitulation of native articular cartilage usingMSCs remains elusive. In this review, we have highlighted the chondrogenic potential of MSCs, factors guiding in vitro chondrogenic differentiation, biomaterials available for cartilage repair, their current market status, and the outcomes of major clinical trials. Our search on ClinicalTrials.gov using terms "stem cell" and "osteoarthritis" yielded 83 results. An analysis of the 29 trials that have been completed revealed differences in source of MSCs (bone marrow, adipose tissue, umbilical cord etc.), cell type (autologous or allogenic), and dose administered. Moreover, only 02 out of 29 studies have reported the use of matrix for cartilage repair. From future perspective, aconsensus on choice of cells, differentiation inducers, biomaterials, and clinical settings might pave a way for concocting robust strategies to improve the clinical applicability of biomimetic neocartilage constructs.
Collapse
|
45
|
Shea MK, Booth SL, Harshman SG, Smith D, Carlson CS, Harper L, Armstrong AR, Fang M, Cancela ML, Márcio Simão, Loeser RF. The effect of vitamin K insufficiency on histological and structural properties of knee joints in aging mice. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100078. [PMID: 36474686 PMCID: PMC9718348 DOI: 10.1016/j.ocarto.2020.100078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
Objective While a role for vitamin K in maintaining joint tissue homeostasis has been proposed based on the presence of vitamin K dependent proteins in cartilage and bone, it is not clear if low vitamin K intake is causally linked to joint tissue degeneration. To address this gap, we manipulated vitamin K status in aging mice to test its effect on age-related changes in articular cartilage and sub-chondral bone. Methods Eleven-month old male C57BL6 mice were randomly assigned to a low vitamin K diet containing 120 mcg phylloquinone/kg diet (n = 32) or a control diet containing 1.5 mg phylloquinone/kg diet (n = 30) for 6 months. Knees were evaluated histologically using Safranin O and H&E staining, as well as using micro-CT. Results Eleven mice in the low vitamin K diet group and three mice in the control group died within the first 100 days of the experiment (p = 0.024). Mice fed the low vitamin K diet had higher Safranin-O scores, indicative of more proteoglycan loss, compared to mice fed the control diet (p ≤ 0.026). The articular cartilage structure scores did not differ between the two groups (p ≥ 0.190). The sub-chondral bone parameters measured using micro CT also did not differ between the two groups (all p ≥ 0.174). Conclusion Our findings suggest low vitamin K status can promote joint tissue proteoglycan loss in older male mice. Future studies are needed to confirm our findings and obtain a better understanding of the molecular mechanisms underlying the role of vitamin K in joint tissue homeostasis.
Collapse
Affiliation(s)
- M. Kyla Shea
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA, USA
| | - Sarah L. Booth
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA, USA
| | | | - Donald Smith
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA, USA
| | - Cathy S. Carlson
- College of Veterinary Medicine, University of Minnesota, St. Paul MN, USA
| | - Lindsey Harper
- College of Veterinary Medicine, University of Minnesota, St. Paul MN, USA
| | | | - Min Fang
- Small Animal Imaging Preclinical Testing Facility, Tufts University School of Medicine, Boston MA, USA
| | - M. Leonor Cancela
- Center of Marine Sciences University of Algarve, Faro Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro Portugal
- Algarve Biomedical Centre and Centre for Biomedical Research, Universidade do Algarve, Faro, Portugal
| | - Márcio Simão
- Center of Marine Sciences University of Algarve, Faro Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro Portugal
| | - Richard F. Loeser
- Thurston Arthritis Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Weber MC, Fischer L, Damerau A, Ponomarev I, Pfeiffenberger M, Gaber T, Götschel S, Lang J, Röblitz S, Buttgereit F, Ehrig R, Lang A. Macroscale mesenchymal condensation to study cytokine-driven cellular and matrix-related changes during cartilage degradation. Biofabrication 2020; 12:045016. [PMID: 32598334 DOI: 10.1088/1758-5090/aba08f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the pathophysiological processes of cartilage degradation requires adequate model systems to develop therapeutic strategies towards osteoarthritis (OA). Although different in vitro or in vivo models have been described, further comprehensive approaches are needed to study specific disease aspects. This study aimed to combine in vitro and in silico modeling based on a tissue-engineering approach using mesenchymal condensation to mimic cytokine-induced cellular and matrix-related changes during cartilage degradation. Thus, scaffold-free cartilage-like constructs (SFCCs) were produced based on self-organization of mesenchymal stromal cells (mesenchymal condensation) and (i) characterized regarding their cellular and matrix composition or secondly (ii) treated with interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) for 3 weeks to simulate OA-related matrix degradation. In addition, an existing mathematical model based on partial differential equations was optimized and transferred to the underlying settings to simulate the distribution of IL-1β, type II collagen degradation and cell number reduction. By combining in vitro and in silico methods, we aimed to develop a valid, efficient alternative approach to examine and predict disease progression and effects of new therapeutics.
Collapse
Affiliation(s)
- Marie-Christin Weber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany. These authors contributed equally
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Narez GE, Fischenich KM, Donahue TLH. Experimental animal models of post-traumatic osteoarthritis of the knee. Orthop Rev (Pavia) 2020; 12:8448. [PMID: 32922696 PMCID: PMC7461640 DOI: 10.4081/or.2020.8448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022] Open
Abstract
Due to the complex and dynamic nature of osteoarthritis (OA) and post-traumatic osteoarthritis (PTOA), animal models have been used to investigate the progression and pathogenesis of the disease. Researchers have used different experimental models to study OA and PTOA. With an emphasis on the knee joint, this review will compare and contrast the existing body of knowledge from anterior cruciate ligament transection models, meniscectomy models, combination models, as well as impact models in large animals to see how tissues respond to these different approaches to induce experimental OA and PTOA. The tissues discussed will include articular cartilage and the meniscus, with a focus on morphological, mechanical and histological assessments. The goal of this review is to demonstrate the progressive nature of OA by indicating the strong correlation between progressive tissue degeneration, change of mechanical properties, and loss of biochemical integrity and to highlight key differences between the most commonly used experimental animal models.
Collapse
Affiliation(s)
- Gerardo E Narez
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA
| | | | | |
Collapse
|
48
|
Masson AO, Krawetz RJ. Understanding cartilage protection in OA and injury: a spectrum of possibilities. BMC Musculoskelet Disord 2020; 21:432. [PMID: 32620156 PMCID: PMC7334861 DOI: 10.1186/s12891-020-03363-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent musculoskeletal disease resulting in progressive degeneration of the hyaline articular cartilage within synovial joints. Current repair treatments for OA often result in poor quality tissue that is functionally ineffective compared to the hyaline cartilage and demonstrates increased failure rates post-treatment. Complicating efforts to improve clinical outcomes, animal models used in pre-clinical research show significant heterogeneity in their regenerative and degenerative responses associated with their species, age, genetic/epigenetic traits, and context of cartilage injury or disease. These can lead to variable outcomes when testing and validating novel therapeutic approaches for OA. Furthermore, it remains unclear whether protection against OA among different model systems is driven by inhibition of cartilage degeneration, enhancement of cartilage regeneration, or any combination thereof. MAIN TEXT Understanding the mechanistic basis underlying this context-dependent duality is essential for the rational design of targeted cartilage repair and OA therapies. Here, we discuss some of the critical variables related to the cross-species paradigm of degenerative and regenerative abilities found in pre-clinical animal models, to highlight that a gradient of regenerative competence within cartilage may exist across species and even in the greater human population, and likely influences clinical outcomes. CONCLUSIONS A more complete understanding of the endogenous regenerative potential of cartilage in a species specific context may facilitate the development of effective therapeutic approaches for cartilage injury and/or OA.
Collapse
Affiliation(s)
- Anand O Masson
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Roman J Krawetz
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada. .,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada. .,Department Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada. .,Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
49
|
The Efficacy of Stem Cells Secretome Application in Osteoarthritis: A Systematic Review of In Vivo Studies. Stem Cell Rev Rep 2020; 16:1222-1241. [DOI: 10.1007/s12015-020-09980-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
McCreery KP, Calve S, Neu CP. Ontogeny informs regeneration: explant models to investigate the role of the extracellular matrix in cartilage tissue assembly and development. Connect Tissue Res 2020; 61:278-291. [PMID: 32186210 PMCID: PMC7190409 DOI: 10.1080/03008207.2019.1698556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA) is typically managed in late stages by replacement of the articular cartilage surface with a prosthesis as an effective, though undesirable outcome. As an alternative, hydrogel implants or growth factor treatments are currently of great interest in the tissue engineering community, and scaffold materials are often designed to emulate the mechanical and chemical composition of mature extracellular matrix (ECM) tissue. However, scaffolds frequently fail to capture the structure and organization of cartilage. Additionally, many current scaffold designs do not mimic processes by which structurally sound cartilage is formed during musculoskeletal development. The objective of this review is to highlight methods that investigate cartilage ontogenesis with native and model systems in the context of regenerative medicine. Specific emphasis is placed on the use of cartilage explant cultures that provide a physiologically relevant microenvironment to study tissue assembly and development. Ex vivo cartilage has proven to be a cost-effective and accessible model system that allows researchers to control the culture conditions and stimuli and perform proteomics and imaging studies that are not easily possible using in vivo experiments, while preserving native cell-matrix interactions. We anticipate our review will promote a developmental biology approach using explanted tissues to guide cartilage tissue engineering and inform new treatment methods for OA and joint damage.
Collapse
Affiliation(s)
| | - Sarah Calve
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| | - Corey P. Neu
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| |
Collapse
|