1
|
Jiang H, Zhou L, Zhang H, Yu Z. Bioinformatic analysis of glycolysis and lactate metabolism genes in head and neck squamous cell carcinoma. Sci Rep 2025; 15:10781. [PMID: 40155682 PMCID: PMC11953422 DOI: 10.1038/s41598-025-94843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous cancer with significant global incidence. This study investigates glycolysis- and lactate metabolism-related genes (GALMRGs) in HNSCC, focusing on their impact on prognosis, the tumor immune microenvironment, and their potential as therapeutic biomarkers. Analysis of data from the Cancer Genome Atlas and Gene Expression Omnibus identified 16 GALMRGs that were differentially expressed in HNSCC compared to normal tissues. Functional analysis revealed the involvement of lactate and pyruvate metabolism and HIF-1 signaling pathways. Weighted gene co-expression network analysis identified two module genes, CDKN3 and SLC2A1. Five key genes (CAV1, CDKN3, LDHA, MB, and PER2) were identified through univariate, multivariate, and LASSO regression analyses and used to construct a prognostic model. This model demonstrated strong predictive accuracy for overall survival, stratifying patients into high- and low-risk groups. Immune cell infiltration analysis showed a negative correlation between resting and activated mast cells, and low-risk patients had higher tumor mutational burden, suggesting a better response to immunotherapy. Consensus clustering classified HNSCC into two distinct molecular subtypes with differing expression of the key genes. This GALMRG-based prognostic model is a promising biomarker for predicting HNSCC outcomes and immunotherapy responses, providing valuable insights for personalized treatment strategies.
Collapse
Affiliation(s)
- Huanyu Jiang
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Benq Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Lijuan Zhou
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Benq Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Haidong Zhang
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Benq Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Zhenkun Yu
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Benq Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China.
| |
Collapse
|
2
|
Vázquez-Villa H, Rueda-Zubiaurre A, Fernández D, Foronda R, Parker CG, Cravatt BF, Martín-Fontecha M, Ortega-Gutiérrez S. Chemical probes for the identification of the molecular targets of honokiol. Eur J Med Chem 2025; 283:117102. [PMID: 39616692 DOI: 10.1016/j.ejmech.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025]
Abstract
Honokiol is a natural product with an interesting array of biological effects, including significant anti-tumor properties. However, full exploration of its therapeutic potential is hampered by its modest pharmacokinetic profile and by the lack of synthetic methods that allow to obtain specifically designed derivatives with improved properties. In addition, the specific molecular targets of honokiol remain poorly understood, a fact that limits the search of alternative hits for subsequent optimization programs. In this work we describe an optimized series of synthetic routes that allow to access to a variety of honokiol derivatives, including a set of minimalist photoaffinity probes to map potential protein targets in live cells. Chemical proteomic studies of the most potent probe revealed a defined set of proteins as the cellular targets of honokiol. Significantly, up to the 62 % of the identified proteins have described roles in cancer, highlighting their potential relationship with the antitumor effects of honokiol. Furthermore, several of the top hits have been validated as direct binding partners of honokiol by cellular thermal shift assay (CETSA). In sum, the work described herein provides the first landscape of the cellular targets of honokiol in living cells and contributes to define the specific molecular pathways affected by this natural product.
Collapse
Affiliation(s)
- Henar Vázquez-Villa
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Ainoa Rueda-Zubiaurre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Daniel Fernández
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Román Foronda
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | | | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research, La Jolla, CA, 92037, United States
| | - Mar Martín-Fontecha
- Departamento de Química Orgánica, Facultad de Óptica y Optometría, Avda. Arcos de Jalón, 118, Universidad Complutense de Madrid, E-28037, Madrid, Spain.
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
3
|
Eylem CC, Baysal İ, Yabanoğlu Çiftçi S, Nemutlu E. Tracing of Amino Acids Dynamics in Cell Lines Based on 18O Stable Isotope Labeling. Anal Chem 2025; 97:2143-2152. [PMID: 39844690 DOI: 10.1021/acs.analchem.4c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Metabolite levels and turnover rates are necessary to understand metabolomic dynamics in a living organism fully. Amino acids can play distinct roles in various cellular processes, and their abnormal levels are associated with pathological conditions, including cancer. Therefore, their levels, especially turnover rates, may provide enormous information about a phenotype. 13C- or 13C,15N-labeled amino acids have also been commonly used to trace amino acid metabolism. This study presented a new methodology based on 18O labeling for amino acids that relied on monitoring mass isotopologues to calculate the turnover rates of amino acids. The method optimization studies were carried over for selective amino acid monitoring. This methodology provides a rapid, robust, and simple GC-MS method for analyzing the fluxes of amino acid metabolism. The developed method was applied to fetal human colon (FHC) and human colon carcinoma (Caco-2) cell lines to determine cancer-induced shifts in the turnover rates of amino acids. These results defined metabolic reprogramming in Caco-2 cells through increased glutamate and serine turnovers and sharply decreased turnovers of aspartate, threonine, and methionine, therefore pointing to some metabolic vulnerabilities in the metabolism of cancerous cells. The simple mechanism of the developed methodology, the availability of affordable 18O-enriched water, and the ease of application can open a new arena in fluxomics analysis.
Collapse
Affiliation(s)
- Cemil Can Eylem
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara 06230, Turkey
| | - İpek Baysal
- Hacettepe University, Vocational School of Health Services, Ankara 06230, Turkey
| | | | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara 06230, Turkey
| |
Collapse
|
4
|
Xu X, Tan H, Zhang W, Liu W, Chen Y, Zhang J, Gu M, Yang Y, Chen Q, Wang Y, Qian K, Xu B. Decoding Benign Prostatic Hyperplasia: Insights from Multi-Fluid Metabolomic Analysis. SMALL METHODS 2025:e2401906. [PMID: 39895158 DOI: 10.1002/smtd.202401906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Indexed: 02/04/2025]
Abstract
With the rising incidence of benign prostatic hyperplasia (BPH) due to societal aging, accurate and early diagnosis has become increasingly critical. The clinical challenges associated with BPH diagnosis, particularly the lack of specific biomarkers that can differentiate BPH from other causes of lower urinary tract symptoms (LUTS). Here, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) metabolomic detection platform utilizing urine and serum samples is applied to explore metabolic information and identify potential biomarkers in designed cohort. The nanoparticle-assisted platform demonstrated rapid analysis, minimal sample consumption, and high reproducibility. Employing a two-step grouping screening approach, the identification of urinary metabolic patterns (UMPs) is automated to distinguish healthy individuals from LUTS group, followed by the use of serum metabolic patterns (SMPs) to accurately identify BPH cases within the LUTS cohort, achieving an area under the curve (AUC) of 0.830 (95% CI: 0.802-0.851). Furthermore, eight BPH-sensitive metabolic markers are identified, confirming their uniform distribution across age groups (p > 0.05). This research contributes valuable insights for the early diagnosis and personalized treatment of BPH, enhancing clinical practice and patient care.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Wei Zhang
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, P. R. China
| | - Wanshan Liu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Juxiang Zhang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yanxi Yang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yuning Wang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| |
Collapse
|
5
|
Khan J, Bareja C, Dwivedi K, Mathur A, Kumar N, Saluja D. Identification and validation of a metabolic-related gene risk model predicting the prognosis of lung, colon, and breast cancers. Sci Rep 2025; 15:1374. [PMID: 39779736 PMCID: PMC11711664 DOI: 10.1038/s41598-025-85366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Metabolic reprogramming, vital for cancer cells to adapt to the altered microenvironment, remains a topic requiring further investigation for different tumor types. Our study aims to elucidate shared metabolic reprogramming across breast (BRC), colorectal (CRC), and lung (LUC) cancers. Leveraging gene expression data from the Gene Expression Omnibus and various bioinformatics tools like MSigDB, WebGestalt, String, and Cytoscape, we identified key/hub metabolism-related genes (MRGs) and their interactions. The functional characteristics including survival parameters and expression of the key MRGs were analyzed and validated through Gene Expression Profiling Interactive Analysis 2 and qRT-PCR. In addition, we employed machine learning algorithms such as k-nearest neighbours (KNN), support vector regressor (SVR), and extreme gradient boosting (XGBoost) to assess MRGs' effectiveness in predicting overall patient survival. Among 11,384 DEGs analyzed, 540 overlapped across BRC, CRC, and LUC, with 46 MRGs and 20 key/hub MRGs involved in all studied cancer types. Of these, 11 key MRGs were prognostically significant. The qRT-PCR validation of key MRGs in specific cancer cell lines confirmed their expression profiles, with some showing cell-type-specific patterns. SVR exhibited remarkable accuracy in predicting overall survival, emphasizing its clinical utility. Our integrated approach combining bioinformatics analyses and experimental validations underscores the potential of MRGs as biomarkers for metabolic therapies, with machine learning models enhancing predictive capabilities for patient outcomes.
Collapse
Affiliation(s)
- Jiyauddin Khan
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Chanchal Bareja
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Kountay Dwivedi
- Department of Computer Science, FacultyofMathematicalSciences, University of Delhi, Delhi, 110007, India
| | - Ankit Mathur
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
- Delhi School of Public Health (DSPH), Institution of Eminence (IoE), University of Delhi, Delhi, 110007, India
| | - Naveen Kumar
- Department of Computer Science, FacultyofMathematicalSciences, University of Delhi, Delhi, 110007, India
| | - Daman Saluja
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
- Delhi School of Public Health (DSPH), Institution of Eminence (IoE), University of Delhi, Delhi, 110007, India.
| |
Collapse
|
6
|
Oliveira RCD, Cavalcante GC, Soares-Souza GB. Exploring Aerobic Energy Metabolism in Breast Cancer: A Mutational Profile of Glycolysis and Oxidative Phosphorylation. Int J Mol Sci 2024; 25:12585. [PMID: 39684297 DOI: 10.3390/ijms252312585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Energy metabolism is a fundamental aspect of the aggressiveness and invasiveness of breast cancer (BC), the neoplasm that most affects women worldwide. Nonetheless, the impact of genetic somatic mutations on glycolysis and oxidative phosphorylation (OXPHOS) genes in BC remains unclear. To fill these gaps, the mutational profiles of 205 screened genes related to glycolysis and OXPHOS in 968 individuals with BC from The Cancer Genome Atlas (TCGA) project were performed. We carried out analyses to characterize the mutational profile of BC, assess the clonality of tumors, identify somatic mutation co-occurrence, and predict the pathogenicity of these alterations. In total, 408 mutations in 132 genes related to the glycolysis and OXPHOS pathways were detected. The PGK1, PC, PCK1, HK1, DONSON, GPD1, NDUFS1, and FOXRED1 genes are also associated with the tumorigenesis process in other types of cancer, as are the genes BRCA1, BRCA2, and HMCN1, which had been previously described as oncogenes in BC, with whom the target genes of this work were associated. Seven mutations were identified and highlighted due to the high pathogenicity, which are present in more than one of our results and are documented in the literature as being correlated with other diseases. These mutations are rs267606829 (FOXRED1), COSV53860306 (HK1), rs201634181 (NDUFS1), rs774052186 (DONSON), rs119103242 (PC), rs1436643226 (PC), and rs104894677 (ETFB). They could be further investigated as potential biomarkers for diagnosis, prognosis, and treatment of BC patients.
Collapse
Affiliation(s)
- Ricardo Cunha de Oliveira
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Giordano B Soares-Souza
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Instituto Tecnológico Vale (ITV-DS), Belém 66055-090, Pará, Brazil
| |
Collapse
|
7
|
Hicks E, Layosa MA, Andolino C, Truffer C, Song Y, Heden TD, Donkin SS, Teegarden D. Gluconeogenesis and glycogenolysis required in metastatic breast cancer cells. Front Oncol 2024; 14:1476459. [PMID: 39479019 PMCID: PMC11521782 DOI: 10.3389/fonc.2024.1476459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Metabolic adaptability, including glucose metabolism, enables cells to survive multiple stressful environments. Glycogen may serve as a critical storage depot to provide a source of glucose during times of metabolic demand during the metastatic cascade; therefore, understanding glycogen metabolism is critical. Our goal was to determine mechanisms driving glycogen accumulation and its role in metastatic (MCF10CA1a) compared to nonmetastatic (MCF10A-ras) human breast cancer cells. Methodology 13C6-glucose flux analysis in combination with inhibitors of the gluconeogenic pathway via phosphoenolpyruvate carboxykinase (PCK), the anaplerotic enzyme pyruvate carboxylase (PC), and the rate-limiting enzyme of the pentose phosphate pathway (PPP) glucose 6-phosphate dehydrogenase (G6PD). To determine the requirement of glycogenolysis for migration or survival in extracellular matrix (ECM) detached conditions, siRNA inhibition of glycogenolysis (liver glycogen phosphorylase, PYGL) or glycophagy (lysosomal enzyme α-acid glucosidase, GAA) enzymes was utilized. Results Metastatic MCF10CA1a cells had 20-fold greater glycogen levels compared to non-metastatic MCF10A-ras cells. Most glucose incorporated into glycogen of the MCF10CA1a cells was in the five 13C-containing glucose (M+5) instead of the expected M+6 glycogen-derived glucose moiety, which occurs through direct glucose conversion to glycogen. Furthermore, 13C6-glucose in glycogen was quickly reduced (~50%) following removal of 13C-glucose. Incorporation of 13C6-glucose into the M+5 glucose in the glycogen stores was reduced by inhibition of PCK, with additional contributions from flux through the PPP. Further, inhibition of PC reduced total glycogen content. However, PCK inhibition increased total unlabeled glucose accumulation into glycogen, suggesting an alternative pathway to glycogen accumulation. Inhibition of the rate-limiting steps in glycogenolysis (PYGL) or glycophagy (GAA) demonstrated that both enzymes are necessary to support MCF10CA1a, but not MCF10A-ras, cell migration. GAA inhibition, but not PYGL, reduced viability of MCF10CA1a cells, but not MCF10A-ras, in ECM detached conditions. Conclusion Our results indicate that increased glycogen accumulation is primarily mediated through the gluconeogenesis pathway and that glycogen utilization is required for both migration and ECM detached survival of metastatic MCF10CA1a cells. These results suggest that glycogen metabolism may play an important role in the progression of breast cancer metastasis.
Collapse
Affiliation(s)
- Emily Hicks
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Marjorie Anne Layosa
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Caitlin Truffer
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Yazhen Song
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Timothy D. Heden
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Shawn S. Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Yang Y, Davis I, Altman RA, Liu A. α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase catalyzes enol/keto tautomerization of oxaloacetate. J Biol Chem 2024; 300:107878. [PMID: 39395800 DOI: 10.1016/j.jbc.2024.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
ACMSD (α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase) is a key metalloenzyme critical for regulating de novo endogenous NAD+/NADH biosynthesis through the tryptophan-kynurenine pathway. This decarboxylase is a recognized target implicated in mitochondrial diseases and neurodegenerative disorders. However, unraveling its enzyme-substrate complex has been challenging due to its high catalytic efficiency. Here, we present a combined biochemical and structural study wherein we determined the crystal structure of ACMSD in complex with malonate. Our analysis revealed significant rearrangements in the active site, particularly in residues crucial for ACMS decarboxylation, including Arg51, Arg239∗ (a residue from an adjacent subunit), His228, and Trp194. Docking modeling studies proposed a putative ACMS binding mode. Additionally, we found that ACMSD catalyzes oxaloacetic acid (OAA) tautomerization at a rate of 6.51 ± 0.42 s-1 but not decarboxylation. The isomerase activity of ACMSD on OAA warrants further investigation in future biological studies. Subsequent mutagenesis studies and crystallographic analysis of the W194A variant shed light on the roles of specific second-coordination sphere residues. Our findings indicate that Arg51 and Arg239∗ are crucial for OAA tautomerization. Moreover, our comparative analysis with related isomerase superfamily members underscores a general strategy employing arginine residues to promote OAA isomerization. Given the observed isomerase activity of ACMSD on OAA and its structural similarity to ACMS, we propose that ACMSD may facilitate isomerization to ensure ACMS is in the optimal tautomeric form for subsequent decarboxylation initiated by the zinc-bound hydroxide ion. Overall, these findings deepen the understanding of the structure and function of ACMSD, offering insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China; Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA.
| | - Ian Davis
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Ryan A Altman
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
9
|
Leverett B, Austin S, Tan-Arroyo J. Malate dehydrogenase (MDH) in cancer: a promiscuous enzyme, a redox regulator, and a metabolic co-conspirator. Essays Biochem 2024; 68:135-146. [PMID: 38864161 DOI: 10.1042/ebc20230088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Malate dehydrogenase (MDH) is an essential enzyme in the tricarboxylic acid cycle that functions in cellular respiration and redox homeostasis. Recent studies indicate that MDH facilitates metabolic plasticity in tumor cells, catalyzing the formation of an oncometabolite, contributing to altered epigenetics, and maintaining redox capacity to support the rewired energy metabolism and biosynthesis that enables cancer progression. This minireview summarizes current findings on the unique supporting roles played by MDH in human cancers and provides an update on targeting MDH in cancer chemotherapy.
Collapse
Affiliation(s)
- Betsy Leverett
- Department of Biochemistry, University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209, U.S.A
| | - Shane Austin
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown Barbados BB11000, Barbados
| | - Jason Tan-Arroyo
- Department of Biology, Augsburg University, 2211 Riverside Ave, Minneapolis, MN 55454, U.S.A
| |
Collapse
|
10
|
Huang X, Lian M, Li C. Copper homeostasis and cuproptosis in gynecological cancers. Front Cell Dev Biol 2024; 12:1459183. [PMID: 39386020 PMCID: PMC11461353 DOI: 10.3389/fcell.2024.1459183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Copper (Cu) is an essential trace element involved in a variety of biological processes, such as antioxidant defense, mitochondrial respiration, and bio-compound synthesis. In recent years, a novel theory called cuproptosis has emerged to explain how Cu induces programmed cell death. Cu targets lipoylated enzymes in the tricarboxylic acid cycle and subsequently triggers the oligomerization of lipoylated dihydrolipoamide S-acetyltransferase, leading to the loss of Fe-S clusters and induction of heat shock protein 70. Gynecological malignancies including cervical cancer, ovarian cancer and uterine corpus endometrial carcinoma significantly impact women's quality of life and even pose a threat to their lives. Excessive Cu can promote cancer progression by enhancing tumor growth, proliferation, angiogenesis and metastasis through multiple signaling pathways. However, there are few studies investigating gynecological cancers in relation to cuproptosis. Therefore, this review discusses Cu homeostasis and cuproptosis while exploring the potential use of cuproptosis for prognosis prediction as well as its implications in the progression and treatment of gynecological cancers. Additionally, we explore the application of Cu ionophore therapy in treating gynecological malignancies.
Collapse
Affiliation(s)
- Xiaodi Huang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Mengyi Lian
- Department of Obstetrics and Gynecology, Longquan People’s Hospital, Lishui, China
| | - Changzhong Li
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| |
Collapse
|
11
|
Toshniwal AG, Lam G, Bott AJ, Cluntun AA, Skabelund R, Nam HJ, Wisidagama DR, Thummel CS, Rutter J. The fate of pyruvate dictates cell growth by modulating cellular redox potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614588. [PMID: 39386652 PMCID: PMC11463453 DOI: 10.1101/2024.09.23.614588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Pyruvate occupies a central node in carbohydrate metabolism such that how it is produced and consumed can optimize a cell for energy production or biosynthetic capacity. This has been primarily studied in proliferating cells, but observations from the post-mitotic Drosophila fat body led us to hypothesize that pyruvate fate might dictate the rapid cell growth observed in this organ during development. Indeed, we demonstrate that augmented mitochondrial pyruvate import prevented cell growth in fat body cells in vivo as well as in cultured mammalian hepatocytes and human hepatocyte-derived cells in vitro. This effect on cell size was caused by an increase in the NADH/NAD+ ratio, which rewired metabolism toward gluconeogenesis and suppressed the biomass-supporting glycolytic pathway. Amino acid synthesis was decreased, and the resulting loss of protein synthesis prevented cell growth. Surprisingly, this all occurred in the face of activated pro-growth signaling pathways, including mTORC1, Myc, and PI3K/Akt. These observations highlight the evolutionarily conserved role of pyruvate metabolism in setting the balance between energy extraction and biomass production in specialized post-mitotic cells.
Collapse
Affiliation(s)
- Ashish G Toshniwal
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Geanette Lam
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Ahmad A Cluntun
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
- Present address: Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Rachel Skabelund
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Dona R Wisidagama
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Lead Contact
| |
Collapse
|
12
|
Shin S, Bong S, Moon H, Jeon H, Kim H, Choi GJ, Lee DY, Son H. Oxaloacetate anaplerosis differently contributes to pathogenicity in plant pathogenic fungi Fusarium graminearum and F. oxysporum. PLoS Pathog 2024; 20:e1012544. [PMID: 39250495 PMCID: PMC11412510 DOI: 10.1371/journal.ppat.1012544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/19/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Anaplerosis refers to enzymatic reactions or pathways replenishing metabolic intermediates in the tricarboxylic acid (TCA) cycle. Pyruvate carboxylase (PYC) plays an important anaplerotic role by catalyzing pyruvate carboxylation, forming oxaloacetate. Although PYC orthologs are well conserved in prokaryotes and eukaryotes, their pathobiological functions in filamentous pathogenic fungi have yet to be fully understood. Here, we delve into the molecular functions of the ortholog gene PYC1 in Fusarium graminearum and F. oxysporum, prominent fungal plant pathogens with distinct pathosystems, demonstrating variations in carbon metabolism for pathogenesis. Surprisingly, the PYC1 deletion mutant of F. oxysporum exhibited pleiotropic defects in hyphal growth, conidiation, and virulence, unlike F. graminearum, where PYC1 deletion did not significantly impact virulence. To further explore the species-specific effects of PYC1 deletion on pathogenicity, we conducted comprehensive metabolic profiling. Despite shared metabolic changes, distinct reprogramming in central carbon and nitrogen metabolism was identified. Specifically, alpha-ketoglutarate, a key link between the TCA cycle and amino acid metabolism, showed significant down-regulation exclusively in the PYC1 deletion mutant of F. oxysporum. The metabolic response associated with pathogenicity was notably characterized by S-methyl-5-thioadenosine and S-adenosyl-L-methionine. This research sheds light on how PYC1-mediated anaplerosis affects fungal metabolism and reveals species-specific variations, exemplified in F. graminearum and F. oxysporum.
Collapse
Affiliation(s)
- Soobin Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seonghun Bong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hosung Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
14
|
Wang Z, Lan H, Wang Y, Zheng Q, Li C, Wang K, Xiong T, Wu Q, Dong N. Pyruvate Carboxylase Attenuates Myocardial Ischemia-Reperfusion Injury in Heart Transplantation via Wnt/β-Catenin-Mediated Glutamine Metabolism. Biomedicines 2024; 12:1826. [PMID: 39200290 PMCID: PMC11351651 DOI: 10.3390/biomedicines12081826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The ischemia-reperfusion process of a donor heart during heart transplantation leads to severe mitochondrial dysfunction, which may be the main cause of donor heart dysfunction after heart transplantation. Pyruvate carboxylase (PC), an enzyme found in mitochondria, is said to play a role in the control of oxidative stress and the function of mitochondria. This research examined the function of PC and discovered the signaling pathways controlled by PC in myocardial IRI. We induced IRI using a murine heterotopic heart transplantation model in vivo and a hypoxia-reoxygenation cell model in vitro and evaluated inflammatory responses, oxidative stress levels, mitochondrial function, and cardiomyocyte apoptosis. In both in vivo and in vitro settings, we observed a significant decrease in PC expression during myocardial IRI. PC knockdown aggravated IRI by increasing MDA content, LDH activity, TUNEL-positive cells, serum cTnI level, Bax protein expression, and the level of inflammatory cytokines and decreasing SOD activity, GPX activity, and Bcl-2 protein expression. PC overexpression yielded the opposite findings. Additional research indicated that reducing PC levels could block the Wnt/β-catenin pathway and glutamine metabolism by hindering the movement of β-catenin to the nucleus and reducing the activity of complex I and complex II, as well as ATP levels, while elevating the ratios of NADP+/NADPH and GSSG/GSH. Overall, the findings indicated that PC therapy can shield the heart from IRI during heart transplantation by regulating glutamine metabolism through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Hongwen Lan
- Department of Thoracic Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Chenghao Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Kan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Tixiusi Xiong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| |
Collapse
|
15
|
Meng XY, Yang D, Zhang B, Zhang T, Zheng ZC, Zhao Y. Glycolysis-related five-gene signature correlates with prognosis and immune infiltration in gastric cancer. World J Gastrointest Oncol 2024; 16:3097-3117. [PMID: 39072176 PMCID: PMC11271787 DOI: 10.4251/wjgo.v16.i7.3097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies worldwide. Glycolysis has been demonstrated to be pivotal for the carcinogenesis of GC. AIM To develop a glycolysis-based gene signature for prognostic evaluation in GC patients. METHODS Differentially expressed genes correlated with glycolysis were identified in stomach adenocarcinoma data (STAD). A risk score was established through a univariate Cox and least absolute shrinkage and selection operator analysis. The model was evaluated using the area under the receiver operating characteristic curves. RNA-sequencing data from high- and low-glycolysis groups of STAD patients were analyzed using Cibersort algorithm and Spearman correlation to analyze the interaction of immune cell infiltration and glycolysis. Multiomics characteristics in different glycolysis status were also analyzed. RESULTS A five-gene signature comprising syndecan 2, versican, malic enzyme 1, pyruvate carboxylase and SRY-box transcription factor 9 was constructed. Patients were separated to high- or low-glycolysis groups according to risk scores. Overall survival of patients with high glycolysis was poorer. The sensitivity and specificity of the model in prediction of survival of GC patients were also observed by receiver operating characteristic curves. A nomogram including clinicopathological characteristics and the risk score also showed good prediction for 3- and 5-year overall survival. Gene set variation analysis showed that high-glycolysis patients were related to dysregulation of pancreas beta cells and estrogen late pathways, and low-glycolysis patients were related to Myc targets, oxidative phosphorylation, mechanistic target of rapamycin complex 1 signaling and G2M checkpoint pathways. Tumor-infiltrating immune cells and multiomics analysis suggested that the different glycolysis status was significantly correlated with multiple immune cell infiltration. The patients with high glycolysis had lower tumor mutational burden and neoantigen load, higher incidence of microsatellite instability and lower chemosensitivity. High glycolysis status was often found among patients with grade 2/3 cancer or poor prognosis. CONCLUSION The genetic characteristics revealed by glycolysis could predict the prognosis of GC. High glycolysis significantly affects GC phenotype, but the detailed mechanism needs to be further studied.
Collapse
Affiliation(s)
- Xiang-Yu Meng
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| | - Dong Yang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| | - Bao Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| | - Tao Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| | - Zhi-Chao Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| |
Collapse
|
16
|
Coleman MF, Cotul EK, Pfeil AJ, Devericks EN, Safdar MH, Monteiro M, Chen H, Ho AN, Attaar N, Malian HM, Kiesel VA, Ramos A, Smith M, Panchal H, Mailloux A, Teegarden D, Hursting SD, Wendt MK. Hypoxia-mediated repression of pyruvate carboxylase drives immunosuppression. Breast Cancer Res 2024; 26:96. [PMID: 38849928 PMCID: PMC11161980 DOI: 10.1186/s13058-024-01854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Metabolic plasticity mediates breast cancer survival, growth, and immune evasion during metastasis. However, how tumor cell metabolism is influenced by and feeds back to regulate breast cancer progression are not fully understood. We identify hypoxia-mediated suppression of pyruvate carboxylase (PC), and subsequent induction of lactate production, as a metabolic regulator of immunosuppression. METHODS We used qPCR, immunoblot, and reporter assays to characterize repression of PC in hypoxic primary tumors. Steady state metabolomics were used to identify changes in metabolite pools upon PC depletion. In vivo tumor growth and metastasis assays were used to evaluate the impact of PC manipulation and pharmacologic inhibition of lactate transporters. Immunohistochemistry, flow cytometry, and global gene expression analyzes of tumor tissue were employed to characterize the impact of PC depletion on tumor immunity. RESULTS PC is essential for metastatic colonization of the lungs. In contrast, depletion of PC in tumor cells promotes primary tumor growth. This effect was only observed in immune competent animals, supporting the hypothesis that repression of PC can suppress anti-tumor immunity. Exploring key differences between the pulmonary and mammary environments, we demonstrate that hypoxia potently downregulated PC. In the absence of PC, tumor cells produce more lactate and undergo less oxidative phosphorylation. Inhibition of lactate metabolism was sufficient to restore T cell populations to PC-depleted mammary tumors. CONCLUSIONS We present a dimorphic role for PC in primary mammary tumors vs. pulmonary metastases. These findings highlight a key contextual role for PC-directed lactate production as a metabolic nexus connecting hypoxia and antitumor immunity.
Collapse
Affiliation(s)
- Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eylem Kulkoyluoglu Cotul
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Alexander J Pfeil
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily N Devericks
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Muhammad H Safdar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Marvis Monteiro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Hao Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Alyssa N Ho
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Numair Attaar
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah M Malian
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Violet A Kiesel
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Ramos
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Matthew Smith
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Heena Panchal
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Adam Mailloux
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Dorothy Teegarden
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
17
|
Meynen J, Adriaensens P, Criel M, Louis E, Vanhove K, Thomeer M, Mesotten L, Derveaux E. Plasma Metabolite Profiling in the Search for Early-Stage Biomarkers for Lung Cancer: Some Important Breakthroughs. Int J Mol Sci 2024; 25:4690. [PMID: 38731909 PMCID: PMC11083579 DOI: 10.3390/ijms25094690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. In order to improve its overall survival, early diagnosis is required. Since current screening methods still face some pitfalls, such as high false positive rates for low-dose computed tomography, researchers are still looking for early biomarkers to complement existing screening techniques in order to provide a safe, faster, and more accurate diagnosis. Biomarkers are biological molecules found in body fluids, such as plasma, that can be used to diagnose a condition or disease. Metabolomics has already been shown to be a powerful tool in the search for cancer biomarkers since cancer cells are characterized by impaired metabolism, resulting in an adapted plasma metabolite profile. The metabolite profile can be determined using nuclear magnetic resonance, or NMR. Although metabolomics and NMR metabolite profiling of blood plasma are still under investigation, there is already evidence for its potential for early-stage lung cancer diagnosis, therapy response, and follow-up monitoring. This review highlights some key breakthroughs in this research field, where the most significant biomarkers will be discussed in relation to their metabolic pathways and in light of the altered cancer metabolism.
Collapse
Affiliation(s)
- Jill Meynen
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (J.M.); (M.C.); (K.V.); (L.M.)
| | - Peter Adriaensens
- Applied and Analytical Chemistry, NMR Group, Institute for Materials Research (Imo-Imomec), Hasselt University, Agoralaan 1, B-3590 Diepenbeek, Belgium;
| | - Maarten Criel
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (J.M.); (M.C.); (K.V.); (L.M.)
- Department of Respiratory Medicine, Ziekenhuis Oost-Limburg, Synaps Park 1, B-3600 Genk, Belgium;
| | - Evelyne Louis
- Department of Respiratory Medicine, University Hospital Leuven, Herestraat 49, B-3000 Leuven, Belgium;
| | - Karolien Vanhove
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (J.M.); (M.C.); (K.V.); (L.M.)
- Department of Respiratory Medicine, University Hospital Leuven, Herestraat 49, B-3000 Leuven, Belgium;
- Department of Respiratory Medicine, Algemeen Ziekenhuis Vesalius, Hazelereik 51, B-3700 Tongeren, Belgium
| | - Michiel Thomeer
- Department of Respiratory Medicine, Ziekenhuis Oost-Limburg, Synaps Park 1, B-3600 Genk, Belgium;
| | - Liesbet Mesotten
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (J.M.); (M.C.); (K.V.); (L.M.)
- Department of Nuclear Medicine, Ziekenhuis Oost-Limburg, Synaps Park 1, B-3600 Genk, Belgium
| | - Elien Derveaux
- Applied and Analytical Chemistry, NMR Group, Institute for Materials Research (Imo-Imomec), Hasselt University, Agoralaan 1, B-3590 Diepenbeek, Belgium;
| |
Collapse
|
18
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
19
|
Wei X, Liu J, Xu Z, Wang D, Zhu Q, Chen Q, Xu W. Research progress on the pharmacological mechanism, in vivo metabolism and structural modification of Erianin. Biomed Pharmacother 2024; 173:116295. [PMID: 38401517 DOI: 10.1016/j.biopha.2024.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Erianin is an important bibenzyl compound in dendrobium and has a wide spectrum of pharmacological properties. Since Erianin was discovered, abundant results have been achieved in the in vitro synthesis, structural modification, and pharmacological mechanism research. Researchers have developed a series of simple and efficient in vitro synthesis methods to improve the shortcomings of poor water solubility by replacing the chemical structure or coating it in nanomaterials. Erianin has a broad anti-tumor spectrum and significant anti-tumor effects. In addition, Erianin also has pharmacological actions like immune regulation, anti-inflammatory, and anti-angiogenesis. A comprehensive understanding of the synthesis, metabolism, structural modification, and pharmacological action pathways of Erianin is of great value for the utilization of Erianin. Therefore, this review conducts a relatively systematic look back at Erianin from the above four aspects, to give a reference for the evolvement and further appliance of Erianin.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei 230026, PR China; Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230001, PR China.
| |
Collapse
|
20
|
Fu B, Lou Y, Lu X, Wu Z, Ni J, Jin C, Wu P, Xu C. tRF-1:30-Gly-CCC-3 inhibits thyroid cancer via binding to PC and modulating metabolic reprogramming. Life Sci Alliance 2024; 7:e202302285. [PMID: 38081642 PMCID: PMC10713435 DOI: 10.26508/lsa.202302285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
tRFs and tiRNAs (tRNA-derived fragments) are an emerging class of small noncoding RNAs produced by the precise shearing of tRNAs in response to specific stimuli. They have been reported to regulate the pathological processes of numerous human cancers. However, the biofunction of tRFs and tiRNAs in the development and progression of papillary thyroid cancer (PTC) has not been reported yet. In this study, we aimed to explore the biological roles of tRFs and tiRNAs in PTC and discovered that a novel 5'tRNA-derived fragment called tRF-1:30-Gly-CCC-3 (tRF-30) was markedly down-regulated in PTC tissues and cell lines. Functionally, tRF-30 inhibited the proliferation and invasion of PTC cells. Mechanistically, tRF-30 directly bound to the biotin-dependent enzyme pyruvate carboxylase (PC), downregulated its protein level, interfered with the TCA cycle intermediate anaplerosis, and thus affected metabolic reprogramming and PTC progression. These findings revealed a novel regulatory mechanism for tRFs and a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Bifei Fu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - YuMing Lou
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaofeng Lu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zhaolin Wu
- Department of Anaesthesiology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Junjie Ni
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Cong Jin
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Pu Wu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
21
|
Evans WA, Eccles-Miller JA, Anderson E, Farrell H, Baldwin WS. 9-HODE and 9-HOTrE alter mitochondrial metabolism, increase triglycerides, and perturb fatty acid uptake and synthesis associated gene expression in HepG2 cells. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102635. [PMID: 39142221 PMCID: PMC11404490 DOI: 10.1016/j.plefa.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) prevalence is rising and can lead to detrimental health outcomes such as Non-Alcoholic Steatohepatitis (NASH), cirrhosis, and cancer. Recent studies have indicated that Cytochrome P450 2B6 (CYP2B6) is an anti-obesity CYP in humans and mice. Cyp2b-null mice are diet-induced obese, and human CYP2B6-transgenic (hCYP2B6-Tg) mice reverse the obesity or diabetes progression, but with increased liver triglyceride accumulation in association with an increase of several oxylipins. Notably, 9-hydroxyoctadecadienoic acid (9-HODE) produced from linoleic acid (LA, 18:2, ω-6) is the most prominent of these and 9-hydroxyoctadecatrienoic acid (9-HOTrE) from alpha-linolenic acid (ALA, 18:3, ω-3) is the most preferentially produced when controlling for substrate concentrations in vitro. Transactivation assays indicate that 9-HODE and 9-HOTrE activate PPARα and PPARγ. In Seahorse assays performed in HepG2 cells, 9-HOTrE increased spare respiratory capacity, slightly decreased palmitate metabolism, and increased non-glycolytic acidification in a manner consistent with slightly increased glutamine utilization; however, 9-HODE exhibited no effect on metabolism. Both compounds increased triglyceride and pyruvate concentrations, most strongly by 9-HOTrE, consistent with increased spare respiratory capacity. qPCR analysis revealed several perturbations in fatty acid uptake and metabolism gene expression. 9-HODE increased expression of CD36, FASN, PPARγ, and FoxA2 that are involved in lipid uptake and production. 9-HOTrE decreased ANGPTL4 expression and increased FASN expression consistent with increased fatty acid uptake, fatty acid production, and AMPK activation. Our findings support the hypothesis that 9-HODE and 9-HOTrE promote steatosis, but through different mechanisms as 9-HODE is directly involved in fatty acid uptake and synthesis; 9-HOTrE weakly inhibits mitochondrial fatty acid metabolism while increasing glutamine use.
Collapse
Affiliation(s)
- William A Evans
- Clemson University, Biological Sciences, Clemson, SC 29634, USA
| | | | | | - Hannah Farrell
- Clemson University, Biological Sciences, Clemson, SC 29634, USA
| | | |
Collapse
|
22
|
Noriega Landa E, Quaye GE, Su X, Badmos S, Holbrook KL, Polascik TJ, Adams ES, Deivasigamani S, Gao Q, Annabi MH, Habib A, Lee WY. Urinary fatty acid biomarkers for prostate cancer detection. PLoS One 2024; 19:e0297615. [PMID: 38335180 PMCID: PMC10857612 DOI: 10.1371/journal.pone.0297615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
The lack of accuracy in the current prostate specific antigen (PSA) test for prostate cancer (PCa) screening causes around 60-75% of unnecessary prostate biopsies. Therefore, alternative diagnostic methods that have better accuracy and can prevent over-diagnosis of PCa are needed. Researchers have examined various potential biomarkers for PCa, and of those fatty acids (FAs) markers have received special attention due to their role in cancer metabolomics. It has been noted that PCa metabolism prefers FAs over glucose substrates for continued rapid proliferation. Hence, we proposed using a urinary FAs based model as a non-invasive alternative for PCa detection. Urine samples collected from 334 biopsy-designated PCa positive and 232 biopsy-designated PCa negative subjects were analyzed for FAs and lipid related compounds by stir bar sorptive extraction coupled with gas chromatography/mass spectrometry (SBSE-GC/MS). The dataset was split into the training (70%) and testing (30%) sets to develop and validate logit models and repeated for 100 runs of random data partitioning. Over the 100 runs, we confirmed the stability of the models and obtained optimal tuning parameters for developing the final FA based model. A PSA model using the values of the patients' PSA test results was constructed with the same cohort for the purpose of comparing the performances of the FA model against PSA test. The FA final model selected 20 FAs and rendered an AUC of 0.71 (95% CI = 0.67-0.75, sensitivity = 0.48, and specificity = 0.83). In comparison, the PSA model performed with an AUC of 0.51 (95% CI = 0.46-0.66, sensitivity = 0.44, and specificity = 0.71). The study supports the potential use of urinary FAs as a stable and non-invasive alternative test for PCa diagnosis.
Collapse
Affiliation(s)
- Elizabeth Noriega Landa
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - George E. Quaye
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Xiaogang Su
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Sabur Badmos
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Kiana L. Holbrook
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Thomas J. Polascik
- Department of Urological Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eric S. Adams
- Department of Urological Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sriram Deivasigamani
- Department of Urological Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Qin Gao
- Biologics Analytical Operations, Gilead Sciences Incorporated, Oceanside, California, United States of America
| | | | - Ahsan Habib
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
23
|
Yang Q, Wu Y, Liu W, Ou X, Zhang W, Wang J, Chang Y, Wang F, Gao M, Liu S. Zonated iron deposition in the periportal zone of the liver is associated with selectively enhanced lipid synthesis. Liver Int 2024; 44:589-602. [PMID: 38082474 DOI: 10.1111/liv.15807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND AND AIMS Disorders in liver lipid metabolism have been implicated in a range of metabolic conditions, including fatty liver and liver cancer. Altered lipid distribution within the liver, shifting from the pericentral to the periportal zone under pathological circumstances, has been observed; however, the underlying mechanism remains elusive. Iron, an essential metal, exhibits a zonal distribution in the liver similar to that of lipids. Nevertheless, the precise relationship between iron and lipid distribution, especially in the pericentral and periportal zones, remains poorly understood. METHODS We conducted comprehensive in vitro and in vivo experiments, combining with in situ analysis and RNA sequencing, aiming for a detailed exploration of the causal relationship between iron accumulation and lipid metabolism. RESULTS Our research suggests that iron overload can disrupt the normal distribution of lipids within the liver, particularly in the periportal zone. Through meticulous gene expression profiling in both the pericentral and periportal zones, we identified pyruvate carboxylase (PC) as a pivotal regulator in iron overload-induced lipid accumulation. Additionally, we revealed that the activation of cyclic adenosine monophosphate response element binding protein (CREB) was indispensable for Pc gene expression when in response to iron overload. CONCLUSIONS In summary, our investigation unveils the crucial involvement of iron overload in fostering hepatic lipid accumulation in the periportal zone, at least partly mediated by the modulation of Pc expression. These insights offer new perspectives for understanding the pathogenesis of fatty liver diseases and their progression.
Collapse
Affiliation(s)
- Qiuyuan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Wei Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jianning Wang
- The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yanzhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Treadway CJ, Boyer JA, Yang S, Yang H, Liu M, Li Z, Cheng M, Marzluff WF, Ye D, Xiong Y, Baldwin AS, Zhang Q, Brown NG. Using NMR to Monitor TET-Dependent Methylcytosine Dioxygenase Activity and Regulation. ACS Chem Biol 2024; 19:15-21. [PMID: 38193366 PMCID: PMC11075173 DOI: 10.1021/acschembio.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The active removal of DNA methylation marks is governed by the ten-eleven translocation (TET) family of enzymes (TET1-3), which iteratively oxidize 5-methycytosine (5mC) into 5-hydroxymethycytosine (5hmC), and then 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TET proteins are frequently mutated in myeloid malignancies or inactivated in solid tumors. These methylcytosine dioxygenases are α-ketoglutarate (αKG)-dependent and are, therefore, sensitive to metabolic homeostasis. For example, TET2 is activated by vitamin C (VC) and inhibited by specific oncometabolites. However, understanding the regulation of the TET2 enzyme by different metabolites and its activity remains challenging because of limitations in the methods used to simultaneously monitor TET2 substrates, products, and cofactors during catalysis. Here, we measure TET2-dependent activity in real time using NMR. Additionally, we demonstrate that in vitro activity of TET2 is highly dependent on the presence of VC in our system and is potently inhibited by an intermediate metabolite of the TCA cycle, oxaloacetate (OAA). Despite these opposing effects on TET2 activity, the binding sites of VC and OAA on TET2 are shared with αKG. Overall, our work suggests that NMR can be effectively used to monitor TET2 catalysis and illustrates how TET activity is regulated by metabolic and cellular conditions at each oxidation step.
Collapse
Affiliation(s)
- Colton J. Treadway
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Joshua A Boyer
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Shiyue Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Hui Yang
- Molecular & Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai 200032, China
- Present address: Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, Shanghai College of Medicine, Fudan University, Shanghai, 200032, China
| | - Mengxi Liu
- Molecular & Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai 200032, China
- Present address: Plexium, Inc., San Diego, CA 92121, United States
| | - Zhijun Li
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Meng Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - William F. Marzluff
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Dan Ye
- Molecular & Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai 200032, China
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Present address: Cullgen, Inc., 12730 High Bluff Drive, San Diego, CA, 92130, United States
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Qi Zhang
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Nicholas G. Brown
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
25
|
Katopodi T, Petanidis S, Anestakis D, Charalampidis C, Chatziprodromidou I, Floros G, Eskitzis P, Zarogoulidis P, Koulouris C, Sevva C, Papadopoulos K, Dagher M, Karakousis VA, Varsamis N, Theodorou V, Mystakidou CM, Vlassopoulos K, Kosmidis S, Katsios NI, Farmakis K, Kosmidis C. Tumor cell metabolic reprogramming and hypoxic immunosuppression: driving carcinogenesis to metastatic colonization. Front Immunol 2024; 14:1325360. [PMID: 38292487 PMCID: PMC10824957 DOI: 10.3389/fimmu.2023.1325360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
A significant factor in the antitumor immune response is the increased metabolic reprogramming of immunological and malignant cells. Increasing data points to the fact that cancer metabolism affects not just cancer signaling, which is essential for maintaining carcinogenesis and survival, but also the expression of immune cells and immune-related factors such as lactate, PGE2, arginine, IDO, which regulate the antitumor immune signaling mechanism. In reality, this energetic interaction between the immune system and the tumor results in metabolic competition in the tumor ecosystem, limiting the amount of nutrients available and causing microenvironmental acidosis, which impairs the ability of immune cells to operate. More intriguingly, different types of immune cells use metabolic reprogramming to keep the body and self in a state of homeostasis. The process of immune cell proliferation, differentiation, and performance of effector functions, which is crucial to the immune response, are currently being linked to metabolic reprogramming. Here, we cover the regulation of the antitumor immune response by metabolic reprogramming in cancer cells and immune cells as well as potential strategies for metabolic pathway targeting in the context of anticancer immunotherapy. We also discuss prospective immunotherapy-metabolic intervention combinations that might be utilized to maximize the effectiveness of current immunotherapy regimes.
Collapse
Affiliation(s)
- Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Doxakis Anestakis
- Department of Anatomy, Medical School, University of Cyprus, Nicosia, Cyprus
| | | | | | - George Floros
- Department of Electrical and Computer Engineering, University of Thessaly, Volos, Greece
| | | | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charilaos Koulouris
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina Sevva
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Papadopoulos
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marios Dagher
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikolaos Varsamis
- Department of Surgery, Interbalkan Medical Center, Thessaloniki, Greece
| | - Vasiliki Theodorou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysi Maria Mystakidou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Vlassopoulos
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Kosmidis
- Department of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Konstantinos Farmakis
- Pediatric Surgery Clinic, General Hospital of Thessaloniki “G. Gennimatas”, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
26
|
Bhalla M, Mittal R, Kumar M, Bhatia R, Kushwah AS. Metabolomics: A Tool to Envisage Biomarkers in Clinical Interpretation of Cancer. Curr Drug Res Rev 2024; 16:333-348. [PMID: 37702236 DOI: 10.2174/2589977516666230912120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Cancer is amongst the most dreadful ailments of modern times, and its impact continuously worsens global health systems. Early diagnosis and suitable therapeutic agents are the prime keys to managing this disease. Metabolomics deals with the complete profiling of cells and physiological phenomena in their organelles, thus helping in keen knowledge of the pathological status of the disease. It has been proven to be one of the best strategies in the early screening of cancer. OBJECTIVE This review has covered the recent updates on the promising role of metabolomics in the identification of significant biochemical markers in cancer-prone individuals that could lead to the identification of cancer in the early stages. METHODS The literature was collected through various databases, like Scopus, PubMed, and Google Scholar, with stress laid on the last ten years' publications. CONCLUSION It was assessed in this review that early recognition of cancerous growth could be achieved via complete metabolic profiling in association with transcriptomics and proteomics. The outcomes are rooted in various clinical studies that anticipated various biomarkers like tryptophan, phenylalanine, lactates, and different metabolic pathways associated with the Warburg effect. This metabolite imaging has been a fundamental step for the target acquisition, evaluation of predictive cancer biomarkers for early detection, and outlooks into cancer therapy along with critical evaluation. Significant efforts should be made to make this technique most reliable and easy.
Collapse
Affiliation(s)
- Medha Bhalla
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Ropar, 140111, India
| | - Roopal Mittal
- Department of Pharmacology, IKG Punjab Technical University, Jalandhar, 144601, India
- Department of Pharmacology, R.K.S.D. College of Pharmacy, Kaithal, 136027, India
| | - Manish Kumar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, Indo Soviet Friendship College of Pharmacy, Moga, 142001, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Ropar, 140111, India
| |
Collapse
|
27
|
Zhai Y, Shen H, Wei H. A Comprehensive Metabolism-Related Gene Signature Predicts the Survival of Patients with Acute Myeloid Leukemia. Genes (Basel) 2023; 15:63. [PMID: 38254953 PMCID: PMC10815187 DOI: 10.3390/genes15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Acute myeloid leukemia (AML) is a clonal malignancy with heterogeneity in genomics and clinical outcome. Metabolism reprogramming has been increasingly recognized to play an important role in the leukemogenesis and prognosis in AML. A comprehensive prognostic model based on metabolism signatures has not yet been developed. (2) Methods: We applied Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) normalization to establish a metabolism-related prognostic gene signature based on glycolysis, fatty acid metabolism, and the tricarboxylic acid cycle gene signatures. The Cancer Genome Atlas-Acute Myeloid Leukemia-like (TCGA-LAML) cohort was set as the training dataset for model construction. Three independent AML cohorts (GSE37642, GSE10358, and GSE12417) combined from Gene Expression Omnibus (GEO) datasets and the Beat-AML dataset were retrieved as two validation sets to test the robustness of the model. The transcriptome data and clinic information of the cohorts were enrolled for the analysis. (3) Results: Divided by the median value of the metabolism risk score, the five-year overall survival (OS) of the high-risk and low-risk groups in the training set were 8.2% and 41.3% (p < 0.001), respectively. The five-year OS of the high-risk and low-risk groups in the combined GEO cohort were 25.5% and 37.3% (p = 0.002), respectively. In the Beat-AML cohort, the three-year OS of the high-risk and low-risk groups were 16.2% and 40.2% (p = 0.0035), respectively. The metabolism risk score showed a significantly negative association with the long-term survival of AML. Furthermore, this metabolism risk score was an independent unfavorable factor for OS by univariate analysis and multivariate analysis. (4) Conclusions: Our study constructed a comprehensive metabolism-related signature with twelve metabolism-related genes for the risk stratification and outcome prediction of AML. This novel signature might contribute to a better use of metabolism reprogramming factors as prognostic markers and provide novel insights into potential metabolism targets for AML treatment.
Collapse
Affiliation(s)
| | | | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; (Y.Z.); (H.S.)
| |
Collapse
|
28
|
Ma L, Li M, Zhang Y, Liu K. Recent advances of antitumor leading compound Erianin: Mechanisms of action and structural modification. Eur J Med Chem 2023; 261:115844. [PMID: 37804769 DOI: 10.1016/j.ejmech.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Erianin, a bioactive compound extracted from Dendrobium, a traditional Chinese medicine, exhibits remarkable anti-cancer properties through diverse molecular mechanisms and has attracted the attention of medicinal chemists. However, the low solubility in water, rapid metabolism and elimination from the body lead to poor bioavailability of Erianin, and greatly hinder its clinical application. The development of new Erianin derivatives is continuously proceed to improve its anticancer effects. In recent years, although important progress in the development of Erianin and the publication of some reviews in this aspect, the mechanism against various cancers, pharmacokinetic study, structural modification as well as structure-activity relationships have not been thoroughly considered. This review is aimed at providing complete picture regarding the above aspects by reviewing studies from 2000 to 2023.06. This review also supplies some important viewpoints on the design and future directions for the development of Erianin derivatives as possible clinically effective anticancer agents.
Collapse
Affiliation(s)
- Lu Ma
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Menglong Li
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yueteng Zhang
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
29
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
30
|
Bowley TY, Merkley SD, Lagutina IV, Ortiz MC, Lee M, Tawfik B, Marchetti D. Targeting Translation and the Cell Cycle Inversely Affects CTC Metabolism but Not Metastasis. Cancers (Basel) 2023; 15:5263. [PMID: 37958436 PMCID: PMC10650766 DOI: 10.3390/cancers15215263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Melanoma brain metastasis (MBM) is significantly associated with poor prognosis and is diagnosed in 80% of patients at autopsy. Circulating tumor cells (CTCs) are "seeds" of metastasis and the smallest functional units of cancer. Our multilevel approach has previously identified a CTC RPL/RPS gene signature directly linked to MBM onset. We hypothesized that targeting ribogenesis prevents MBM/metastasis in CTC-derived xenografts. We treated parallel cohorts of MBM mice with FDA-approved protein translation inhibitor omacetaxine with or without CDK4/CDK6 inhibitor palbociclib, and monitored metastatic development and cell proliferation. Necropsies and IVIS imaging showed decreased MBM/extracranial metastasis in drug-treated mice, and RNA-Seq on mouse-blood-derived CTCs revealed downregulation of four RPL/RPS genes. However, mitochondrial stress tests and RT-qPCR showed that omacetaxine and palbociclib inversely affected glycolytic metabolism, demonstrating that dual targeting of cell translation/proliferation is critical to suppress plasticity in metastasis-competent CTCs. Equally relevant, we provide the first-ever functional metabolic characterization of patient-derived circulating neoplastic cells/CTCs.
Collapse
Affiliation(s)
- Tetiana Y. Bowley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Seth D. Merkley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Irina V. Lagutina
- Animal Models Shared Resource, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87120, USA;
| | - Mireya C. Ortiz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Margaret Lee
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Bernard Tawfik
- Division of Hematology and Oncology, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87120, USA;
| | - Dario Marchetti
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| |
Collapse
|
31
|
Bishayee K, Lee SH, Park YS. The Illustration of Altered Glucose Dependency in Drug-Resistant Cancer Cells. Int J Mol Sci 2023; 24:13928. [PMID: 37762231 PMCID: PMC10530558 DOI: 10.3390/ijms241813928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
A chemotherapeutic approach is crucial in malignancy management, which is often challenging due to the development of chemoresistance. Over time, chemo-resistant cancer cells rapidly repopulate and metastasize, increasing the recurrence rate in cancer patients. Targeting these destined cancer cells is more troublesome for clinicians, as they share biology and molecular cross-talks with normal cells. However, the recent insights into the metabolic profiles of chemo-resistant cancer cells surprisingly illustrated the activation of distinct pathways compared with chemo-sensitive or primary cancer cells. These distinct metabolic dynamics are vital and contribute to the shift from chemo-sensitivity to chemo-resistance in cancer. This review will discuss the important metabolic alterations in cancer cells that lead to drug resistance.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | | | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
32
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar Drugs 2023; 21:462. [PMID: 37755075 PMCID: PMC10532649 DOI: 10.3390/md21090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to impaired insulin secretion, insulin resistance, or both. Oxidative stress and chronic low-grade inflammation play crucial roles in the pathophysiology of diabetes mellitus. There has been a growing interest in applying natural products to improve metabolic derangements without the side effects of anti-diabetic drugs. Microalgae biomass or extract and their bioactive compounds have been applied as nutraceuticals or additives in food products and health supplements. Several studies have demonstrated the therapeutic effects of microalgae and their bioactive compounds in improving insulin sensitivity attributed to their antioxidant, anti-inflammatory, and pancreatic β-cell protective properties. However, a review summarizing the progression in this topic is lacking despite the increasing number of studies reporting their anti-diabetic potential. In this review, we gathered the findings from in vitro, in vivo, and human studies to discuss the effects of microalgae and their bioactive compounds on diabetes mellitus and the mechanisms involved. Additionally, we discuss the limitations and future perspectives of developing microalgae-based compounds as a health supplement for diabetes mellitus. In conclusion, microalgae-based supplementation has the potential to improve diabetes mellitus and be applied in more clinical studies in the future.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
33
|
Li X, Du Y, Jiang W, Dong S, Li W, Tang H, Yi J, Zhou W, Zhang H. Integrated transcriptomics, proteomics and metabolomics-based analysis uncover TAM2-associated glycolysis and pyruvate metabolic remodeling in pancreatic cancer. Front Immunol 2023; 14:1170223. [PMID: 37662928 PMCID: PMC10470650 DOI: 10.3389/fimmu.2023.1170223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Tumor-associated macrophage 2 (TAM2) abundantly infiltrates pancreatic ductal adenocarcinoma (PAAD), and its interaction with malignant cells is involved in the regulation of tumor metabolism. In this study, we explored the metabolic heterogeneity involved in TAM2 by constructing TAM2-associated metabolic subtypes in PAAD. Materials and methods PAAD samples were classified into molecular subtypes with different metabolic characteristics based on a multi-omics analysis strategy. 20 PAAD tissues and 10 normal pancreatic tissues were collected for proteomic and metabolomic analyses. RNA sequencing data from the TCGA-PAAD cohort were used for transcriptomic analyses. Immunohistochemistry was used to assess TAM2 infiltration in PAAD tissues. Results The results of transcriptomics and immunohistochemistry showed that TAM2 infiltration levels were upregulated in PAAD and were associated with poor patient prognosis. The results of proteomics and metabolomics indicated that multiple metabolic processes were aberrantly regulated in PAAD and that this dysregulation was linked to the level of TAM2 infiltration. WGCNA confirmed pyruvate and glycolysis/gluconeogenesis as co-expressed metabolic pathways of TAM2 in PAAD. Based on transcriptomic data, we classified the PAAD samples into four TAM2-associated metabolic subtypes (quiescent, pyruvate, glycolysis/gluconeogenesis and mixed). Metabolic subtypes were each characterized in terms of clinical prognosis, tumor microenvironment, immune cell infiltration, chemotherapeutic drug sensitivity, and functional mechanisms. Conclusion Our study confirmed that the metabolic remodeling of pyruvate and glycolysis/gluconeogenesis in PAAD was closely related to TAM2. Molecular subtypes based on TAM2-associated metabolic pathways provided new insights into prognosis prediction and therapy for PAAD patients.
Collapse
Affiliation(s)
- Xin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yan Du
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenkai Jiang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Huan Tang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jianfeng Yi
- Department of General Surgery, The First School of Clinical Medicine of Lanzhou University, Lanzhou, China
- Department of Surgery, The First School of Clinical Medicine of Gansu University of Chinese Medicine, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Hui Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
He H, Sugiyama A, Snyder NW, Teneche MG, Liu X, Maner-Smith KM, Goessling W, Hagen SJ, Ortlund EA, Najafi-Shoushtari SH, Acuña M, Cohen DE. Acyl-CoA thioesterase 12 suppresses YAP-mediated hepatocarcinogenesis by limiting glycerolipid biosynthesis. Cancer Lett 2023; 565:216210. [PMID: 37150501 DOI: 10.1016/j.canlet.2023.216210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Cancer cells use acetate to support the higher demand for energy and lipid biosynthesis during uncontrolled cell proliferation, as well as for acetylation of regulatory proteins. Acyl-CoA thioesterase 12 (Acot12) is the enzyme that hydrolyzes acetyl-CoA to acetate in liver cytosol and is downregulated in hepatocellular carcinoma (HCC). A mechanistic role for Acot12 in hepatocarcinogenesis was assessed in mice in response to treatment with diethylnitrosamine(DEN)/carbon tetrachloride (CCl4) administration or prolonged feeding of a diet that promotes non-alcoholic steatohepatitis (NASH). Relative to controls, Acot12-/- mice exhibited accelerated liver tumor formation that was characterized by the hepatic accumulation of glycerolipids, including lysophosphatidic acid (LPA), and that was associated with reduced Hippo signaling and increased yes-associated protein (YAP)-mediated transcriptional activity. In Acot12-/- mice, restoration of hepatic Acot12 expression inhibited hepatocarcinogenesis and YAP activation, as did knockdown of hepatic YAP expression. Excess LPA produced due to deletion of Acot12 signaled through LPA receptors (LPARs) coupled to Gα12/13 subunits to suppress YAP phosphorylation, thereby promoting its nuclear localization and transcriptional activity. These findings identify a protective role for Acot12 in suppressing hepatocarcinogenesis by limiting biosynthesis of glycerolipids including LPA, which preserves Hippo signaling.
Collapse
Affiliation(s)
- Haiyue He
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Gastroenterology, Xiangya Hospital of Central South University, Hunan, China
| | - Akiko Sugiyama
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19104, USA
| | - Marcos G Teneche
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19104, USA
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Hunan, China
| | - Kristal M Maner-Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wolfram Goessling
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Susan J Hagen
- Division of Surgical Sciences, Department of Surgery, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - S Hani Najafi-Shoushtari
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, 10021, USA; Research Department, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Mariana Acuña
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Azari F, Kennedy GT, Chang A, Nadeem B, Bou-Samra P, Chang A, Segil A, Bernstein E, Sullivan NT, Eruslanov E, Delikatny J, Singhal S. Sodium Multivitamin Transporter-Targeted Fluorochrome Facilitates Enhanced Metabolic Evaluation of Tumors Through Coenzyme-R Dependent Intracellular Signaling Pathways. Mol Imaging Biol 2023; 25:569-585. [PMID: 36534331 PMCID: PMC10348344 DOI: 10.1007/s11307-022-01792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Intraoperative molecular imaging (IMI)-guided resections have been shown to improve oncologic outcomes for patients undergoing surgery for solid malignancies. The technology utilizes fluorescent tracers targeting cancer cells without the use of any ionizing radiation. However, currently available targeted IMI tracers are effective only for tumors with a highly specific receptor expression profile, and there is an unmet need for IMI tracers to label a broader range of tumor types. Here, we describe the development and testing of a novel tracer (CR)-S0456) targeted to the sodium multivitamin transporter (SMVT). METHODS Preclinical models of fibrosarcoma (HT-1080), lung (A549), breast (4T1), and renal cancers (HEK-293 T) in vitro and in vivo were used for assessment of (CR)-S0456 specific tumor labeling via sodium-mediated SMVT uptake in dipotassium phosphate or choline chloride-containing media buffer. Additionally, pharmacologic inhibition of multiple intracellular coenzyme-R obligate signaling pathways, including holocarboxylase synthetase (sulconazole nitrate), PI3K/AKT/mTOR (omipalisib), and calmodulin-dependent phosphatase (calmidazolium), were investigated to assess (CR)-S0456 uptake kinetics. Human fibrosarcoma-bearing xenografts in athymic nude mice were used for tumor and metabolic-specific labeling. Novel NIR needle confocal laser endomicroscopic (nCLE) intratumoral sampling was performed to demonstrate single-cell specific labeling by CR-S0456. RESULTS CR-S0456 localization in vitro correlated with highly proliferative cell lines (MTT) and doubling time (p < 0.05) with the highest microscopic fluorescence detected in aggressive human fibrosarcomas (HT-1080). Coenzyme-R-specific localization was demonstrated to be SMVT-specific after competitive inhibition of internal localization with excess administration of pantothenic acid. Inhibiting the activity of SMVT by affecting sodium ion hemostasis prevented the complete uptake of CR-S0456. In vivo validation demonstrated (CR)-S0456 localization to xenograft models with accurate identification of primary tumors as well as margin assessment down to 1 mm3 tumor volume. Systemic treatment of xenograft-bearing mice with a dual PI3K/mTOR inhibitor suppressed intratumoral cell signaling and (CR)-S0456 uptake via a reduction in SMVT expression. Novel analysis of in vivo intratumoral cytologic fluorescence using near-infrared confocal laser endomicroscopy demonstrated the absence of coenzyme-R-mediated NIR fluorescence but not fibroblast activation protein (FAP)-conjugated fluorochrome, indicating specific intracellular inhibition of coenzyme-R obligate pathways. CONCLUSION These findings suggest that a SMVT-targeted NIR contrast agent can be a suitable tracer for imaging a wide range of malignancies as well as evaluating metabolic response to systemic therapies, similar to PET imaging with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Thoracic Surgery, Hospital of the University of Pennsylvania, 3400 Civic Center Boulevard, 14th floor, South Pavilion, Philadelphia, PA, 19104, USA.
| | - Gregory T Kennedy
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashley Chang
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bilal Nadeem
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Patrick Bou-Samra
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Austin Chang
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alix Segil
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth Bernstein
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Neil T Sullivan
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Evgeniy Eruslanov
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James Delikatny
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
Liu C, Zhou X, Ju H, Zhang Y. Inhibition of pyruvate carboxylase reverses metformin resistance by activating AMPK in pancreatic cancer. Life Sci 2023:121817. [PMID: 37270169 DOI: 10.1016/j.lfs.2023.121817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
AIMS Pyruvate carboxylase (PC) plays a key role in cancer cell metabolic reprogramming. Whether metabolic reprogramming and PC are related in PDAC is unclear. Here, the effect of PC expression on PDAC tumorigenesis and metabolic reprogramming were evaluated. MATERIALS AND METHODS PC protein expression in PDAC and precancerous tissues was measured through immunohistochemistry. The maximum standardized uptake (SUVmax) of 18F-fluoro-2-deoxy-2-d-glucose (18F-FDG) in PDAC patient PET/CT scans before surgical resection was retrospectively determined. Stable PC-knockdown and PC-overexpressing cells were established using lentiviruses, and PDAC progression was assessed in vivo and in vitro. Lactate content, 18F-FDG cell uptake rate, mitochondrial oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured in cells. RNA sequencing revealed and qPCR verified differentially expressed genes (DEGs) after PC knockdown. The signaling pathways involved were determined by Western blotting. KEY FINDINGS PC was significantly upregulated in PDAC tissues vs. precancerous tissues. A high SUVmax correlated with PC upregulation. PC knockdown significantly inhibited PDAC progression. Lactate content, SUVmax, and ECAR significantly decreased after PC knockdown. Peroxisome proliferator-activated receptor gamma coactivator-one alpha (PGC-1α) was upregulated after PC knockdown; and PGC1a expression promoted AMPK phosphorylation to activate mitochondrial metabolism. Metformin significantly inhibited mitochondrial respiration after PC knockdown, further activated AMPK and downstream carnitine palmitoyltransferase 1A (CPT1A)-regulated fatty acid oxidation (FAO), and inhibited PDAC cells progression. SIGNIFICANCE PDAC cell uptake of FDG was positively correlated with PC expression. PC promotes PDAC glycolysis, and reducing PC expression can increase PGC1a expression, activate AMPK, and restore metformin sensitivity.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijun Ju
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
Bernal-Tirapo J, Bayo Jiménez MT, Yuste-García P, Cordova I, Peñas A, García-Borda FJ, Quintela C, Prieto I, Sánchez-Ramos C, Ferrero-Herrero E, Monsalve M. Evaluation of Mitochondrial Function in Blood Samples Shows Distinct Patterns in Subjects with Thyroid Carcinoma from Those with Hyperplasia. Int J Mol Sci 2023; 24:ijms24076453. [PMID: 37047426 PMCID: PMC10094811 DOI: 10.3390/ijms24076453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Metabolic adaptations are a hallmark of cancer and may be exploited to develop novel diagnostic and therapeutic tools. Only about 50% of the patients who undergo thyroidectomy due to suspicion of thyroid cancer actually have the disease, highlighting the diagnostic limitations of current tools. We explored the possibility of using non-invasive blood tests to accurately diagnose thyroid cancer. We analyzed blood and thyroid tissue samples from two independent cohorts of patients undergoing thyroidectomy at the Hospital Universitario 12 de Octubre (Madrid, Spain). As expected, histological comparisons of thyroid cancer and hyperplasia revealed higher proliferation and apoptotic rates and enhanced vascular alterations in the former. Notably, they also revealed increased levels of membrane-bound phosphorylated AKT, suggestive of enhanced glycolysis, and alterations in mitochondrial sub-cellular distribution. Both characteristics are common metabolic adaptations in primary tumors. These data together with reduced mtDNA copy number and elevated levels of the mitochondrial antioxidant PRX3 in cancer tissue samples suggest the presence of mitochondrial oxidative stress. In plasma, cancer patients showed higher levels of cfDNA and mtDNA. Of note, mtDNA plasma levels inversely correlated with those in the tissue, suggesting that higher death rates were linked to lower mtDNA copy number. In PBMCs, cancer patients showed higher levels of PGC-1α, a positive regulator of mitochondrial function, but this increase was not associated with a corresponding induction of its target genes, suggesting a reduced activity in cancer patients. We also observed a significant difference in the PRDX3/PFKFB3 correlation at the gene expression level, between carcinoma and hyperplasia patients, also indicative of increased systemic metabolic stress in cancer patients. The correlation of mtDNA levels in tissue and PBMCs further stressed the interconnection between systemic and tumor metabolism. Evaluation of the mitochondrial gene ND1 in plasma, PBMCs and tissue samples, suggested that it could be a good biomarker for systemic oxidative metabolism, with ND1/mtDNA ratio positively correlating in PBMCs and tissue samples. In contrast, ND4 evaluation would be informative of tumor development, with ND4/mtDNA ratio specifically altered in the tumor context. Taken together, our data suggest that metabolic dysregulation in thyroid cancer can be monitored accurately in blood samples and might be exploited for the accurate discrimination of cancer from hyperplasia.
Collapse
|
38
|
Lin S, Xu Y, Liu B, Zheng L, Cao C, Wu P, Ding W, Ren F. A novel cuproptosis-related gene signature for overall survival prediction in uterine corpus endometrial carcinoma (UCEC). Heliyon 2023; 9:e14613. [PMID: 37035374 PMCID: PMC10073764 DOI: 10.1016/j.heliyon.2023.e14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Cuproptosis is a copper-dependent model of cell death involved in tumor genesis and progression. Its roles in uterine corpus endometrial carcinoma (UCEC) remains elusive. Here, we aimed to explore the expression and prognostic values of cuprotosis-related genes (CRGs) in UCEC. Expression profiles and clinical data of UCEC were downloaded from The Cancer Genome Atlas (TCGA), and randomly divided into testing or training cohort (1:1 ratio). The CRG signature was identified by LASSO regression analysis. The differentially expressed genes and their functional enrichment analysis were performed by the "limma" R package and Metascape, respectively. The immunocytes infiltration was measured by TIMER, and "GSVA" R package. In total, seven differentially expressed prognostic genes of CRGs in UCEC were identified, and four genes (GLS, CDKN2A, PC, and SUCLG1) were selected to construct a predictive model in training cohort. UCEC patients from training and testing cohorts were further divided into high- or low-risk groups according to the median risk score. High-risk group favored poor prognosis compared to low-risk group. Functional enrichment analysis revealed this CRG signature were got involved in the process of cell-cell adhesion and immune activities (e.g., IL-1 signaling pathway, cellular response to cytokine stimulus). Further analyses revealed there were significant differences between high- and low-risk patients regarding immunocytes infiltration, chemokines, and chemokine receptors. Finally, the expression and biological functions of identified CRGs were confirmed by UCEC samples and experimental methods in vitro. In summary, the CRG signature was significantly correlated with patients' overall survival, which could provide insights into the diagnosis and prognosis prediction for UCEC.
Collapse
|
39
|
Izadpanah A, Willingham K, Chandrasekar B, Alt EU, Izadpanah R. Unfolded protein response and angiogenesis in malignancies. Biochim Biophys Acta Rev Cancer 2023; 1878:188839. [PMID: 36414127 PMCID: PMC10167724 DOI: 10.1016/j.bbcan.2022.188839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
Cellular stress, arising from accumulation of unfolded proteins, occurs frequently in rapidly proliferating cancer cells. This cellular stress, in turn, activates the unfolded protein response (UPR), an interconnected set of signal transduction pathways that alleviate the proteostatic stress. The UPR is implicated in cancer cell survival and proliferation through upregulation of pro-tumorigenic pathways that ultimately promote malignant metabolism and neoangiogenesis. Here, we reviewed mechanisms of signaling crosstalk between the UPR and angiogenesis pathways, as well as transmissible ER stress and the role in tumor growth and development. To characterize differences in UPR and UPR-mediated angiogenesis in malignancy, we employed a data mining approach using patient tumor data from The Cancer Genome Atlas (TCGA). The analysis of TCGA revealed differences in UPR between malignant samples versus their non-malignant counterparts.
Collapse
Affiliation(s)
- Amin Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kurtis Willingham
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine and Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA; Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
40
|
Immunodetection of Pyruvate Carboxylase Expression in Human Astrocytomas, Glioblastomas, Oligodendrogliomas, and Meningiomas. Neurochem Res 2023; 48:1728-1736. [PMID: 36662405 PMCID: PMC10119210 DOI: 10.1007/s11064-023-03856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Pyruvate carboxylase (PC) is an enzyme catalyzing the carboxylation of pyruvate to oxaloacetate. The enzymatic generation of oxaloacetate, an intermediate of the Krebs cycle, could provide the cancer cells with the additional anaplerotic capacity and promote their anabolic metabolism. Recent studies revealed that several types of cancer cells express PC. The gained anaplerotic capability of cells mediated by PC correlates with their expedited growth, higher aggressiveness, and increased metastatic potential. By immunohistochemical staining and immunoblotting analysis, we investigated PC expression among samples of different types of human brain tumors. Our results show that PC is expressed by the cells in glioblastoma, astrocytoma, oligodendroglioma, and meningioma tumors. The presence of PC in these tumors suppose that PC could support the anabolic metabolism of their cellular constituents by its anaplerotic capability.
Collapse
|
41
|
Chung YH, Hung TH, Yu CF, Tsai CK, Weng CC, Jhang F, Chen FH, Lin G. Glycolytic Plasticity of Metastatic Lung Cancer Captured by Noninvasive 18F-FDG PET/CT and Serum 1H-NMR Analysis: An Orthotopic Murine Model Study. Metabolites 2023; 13:metabo13010110. [PMID: 36677035 PMCID: PMC9866275 DOI: 10.3390/metabo13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
We aim to establish a noninvasive diagnostic platform to capture early phenotypic transformation for metastasis using 18F-FDG PET and 1H-NMR-based serum metabolomics. Mice with implantation of NCI-H460 cells grew only primary lung tumors in the localized group and had both primary and metastatic lung tumors in the metastatic group. The serum metabolites were analyzed using 1H-NMR at the time of PET/CT scan. The glycolysis status and cell proliferation were validated by Western blotting and staining. A receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic accuracy of SUVmean and serum metabolites in metastasis. In the metastatic mice, the SUVmean of metastatic tumors was significantly higher than that of primary lung tumors in PET images, which was supported by elevated glycolytic protein expression of HK2 and PKM2. The serum pyruvate level in the metastatic group was significantly lower than that in the localized group, corresponding to increased pyruvate-catalyzed enzyme and proliferation rates in metastatic tumors. In diagnosing localized or metastatic tumors, the areas under the ROC curves of SUVmean and pyruvate were 0.92 and 0.91, respectively, with p < 0.05. In conclusion, the combination of 18F-FDG PET and 1H-NMR-based serum metabolomics demonstrated the feasibility of a glycolytic platform for diagnosing metastatic lung cancers.
Collapse
Affiliation(s)
- Yi-Hsiu Chung
- Department of Medical Research and Development, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - Ching-Fang Yu
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333323, Taiwan
| | - Cheng-Kun Tsai
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - Chi-Chang Weng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 333323, Taiwan
| | - Fujie Jhang
- Department of Medical Research and Development, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - Fang-Hsin Chen
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
- Department of Medical Imaging and Intervention, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333323, Taiwan
- Correspondence:
| |
Collapse
|
42
|
Ngamkham J, Siritutsoontorn S, Saisomboon S, Vaeteewoottacharn K, Jitrapakdee S. CRISPR Cas9-mediated ablation of pyruvate carboxylase gene in colon cancer cell line HT-29 inhibits growth and migration, induces apoptosis and increases sensitivity to 5-fluorouracil and glutaminase inhibitor. Front Oncol 2022; 12:966089. [DOI: 10.3389/fonc.2022.966089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Pyruvate carboxylase (PC) is an important anaplerotic enzyme that replenishes the tricarboxylic acid cycle (TCA) intermediates. It prevents the collapse of the TCA cycle upon its intermediates are removed during high anabolic demand. We have recently shown that overexpression of PC protein was associated with staging, metastasis and poor survival of colorectal cancer patients. Herein, we generated the PC knockout (PC KO) colon cancer cell lines, HT-29, by CRISPR-Cas9 technique, as a model to understand the role of this enzyme in colorectal cancer. The PC KO HT-29 cell lines had no detectable PC protein and did not show abnormal cellular or nuclear structures. However, PC KO HT-29 cells showed a 50-60% reduction in their growth rate and a 60-70% reduction in migration. The deficient growth phenotype of PC KO HT-29 cells was associated with apoptotic induction with no apparent cell cycle disruption following five days of growth. Down-regulation of key lipogenic enzymes, including acetyl-CoA carboxylase-1 and fatty acid synthase, was also associated with growth inhibition, suggesting that the de novo lipogenesis is impaired. Furthermore, PC KO HT-29 cells were 50% and 60% more sensitive to 5-fluorouracil and glutaminase inhibitor, CB-839, at their IC50 concentrations, respectively, following 48 h exposure. The increased cytotoxicity of CB-839 to PC KO HT-29 cells was associated with increased poly (ADP-ribose) polymerase cleavage. However, this was not observed with PC KO cells exposed to 5-fluorouracil, suggesting that PC KO HT-29 cells were prone to CB-839-induced apoptosis. Collectively, these findings indicate that ablation of PC expression in HT-29 cells disrupts the metabolic homeostasis of cells and inhibits proliferation and migration, accompanied by apoptotic induction. This study highlights the crucial role of PC in supporting the survival of HT-29 cells during exposure to chemotherapeutic drugs.
Collapse
|
43
|
Pyruvate carboxylase promotes malignant transformation of papillary thyroid carcinoma and reduces iodine uptake. Cell Death Dis 2022; 8:423. [PMID: 36266265 PMCID: PMC9585021 DOI: 10.1038/s41420-022-01214-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that pyruvate carboxylase (PC) plays a key role in the occurrence and progression of thyroid cancer (TC); however, the relationship between PC and iodine-refractory TC is unclear. Therefore, the present study aimed to investigate the molecular mechanism of PC in the malignant progression and loss of iodine uptake in papillary TC (PTC) and to explore the potential therapeutic effect of PC inhibitors in iodine-refractory PTC. PC increased cell proliferation, invasion, and metastasis, inhibited expression of the iodine metabolism-related genes TSHR, NIS, TPO, and TG, and decreased the iodine-uptake capacity by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway in PTC cell lines. Furthermore, the PC inhibitor ZY-444 effectively inhibited the activation of PC, reduced the malignant invasiveness, and restored the expression of iodine metabolism-related genes and the iodine-uptake capacity in PTC cells. These findings suggest that PC activation is involved in the progression of iodine-refractory TC and that PC inhibitors may represent a potentially novel targeted therapy for iodine-refractory TC.
Collapse
|
44
|
CryoEM structural exploration of catalytically active enzyme pyruvate carboxylase. Nat Commun 2022; 13:6185. [PMID: 36261450 PMCID: PMC9581989 DOI: 10.1038/s41467-022-33987-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Pyruvate carboxylase (PC) is a tetrameric enzyme that contains two active sites per subunit that catalyze two consecutive reactions. A mobile domain with an attached prosthetic biotin links both reactions, an initial biotin carboxylation and the subsequent carboxyl transfer to pyruvate substrate to produce oxaloacetate. Reaction sites are at long distance, and there are several co-factors that play as allosteric regulators. Here, using cryoEM we explore the structure of active PC tetramers focusing on active sites and on the conformational space of the oligomers. The results capture the mobile domain at both active sites and expose catalytic steps of both reactions at high resolution, allowing the identification of substrates and products. The analysis of catalytically active PC tetramers reveals the role of certain motions during enzyme functioning, and the structural changes in the presence of additional cofactors expose the mechanism for allosteric regulation.
Collapse
|
45
|
Moss DY, McCann C, Kerr EM. Rerouting the drug response: Overcoming metabolic adaptation in KRAS-mutant cancers. Sci Signal 2022; 15:eabj3490. [PMID: 36256706 DOI: 10.1126/scisignal.abj3490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations in guanosine triphosphatase KRAS are common in lung, colorectal, and pancreatic cancers. The constitutive activity of mutant KRAS and its downstream signaling pathways induces metabolic rewiring in tumor cells that can promote resistance to existing therapeutics. In this review, we discuss the metabolic pathways that are altered in response to treatment and those that can, in turn, alter treatment efficacy, as well as the role of metabolism in the tumor microenvironment (TME) in dictating the therapeutic response in KRAS-driven cancers. We highlight metabolic targets that may provide clinical opportunities to overcome therapeutic resistance and improve survival in patients with these aggressive cancers.
Collapse
Affiliation(s)
- Deborah Y Moss
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Christopher McCann
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| |
Collapse
|
46
|
Sheeley MP, Kiesel VA, Andolino C, Lanman NA, Donkin SS, Hursting SD, Wendt MK, Teegarden D. 1α,25-dihydroxyvitamin D reduction of MCF10A-ras cell viability in extracellular matrix detached conditions is dependent on regulation of pyruvate carboxylase. J Nutr Biochem 2022; 109:109116. [DOI: 10.1016/j.jnutbio.2022.109116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
47
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
48
|
Tripathi S, Park JH, Pudakalakatti S, Bhattacharya PK, Kaipparettu BA, Levine H. A mechanistic modeling framework reveals the key principles underlying tumor metabolism. PLoS Comput Biol 2022; 18:e1009841. [PMID: 35148308 PMCID: PMC8870510 DOI: 10.1371/journal.pcbi.1009841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 02/24/2022] [Accepted: 01/15/2022] [Indexed: 01/12/2023] Open
Abstract
While aerobic glycolysis, or the Warburg effect, has for a long time been considered a hallmark of tumor metabolism, recent studies have revealed a far more complex picture. Tumor cells exhibit widespread metabolic heterogeneity, not only in their presentation of the Warburg effect but also in the nutrients and the metabolic pathways they are dependent on. Moreover, tumor cells can switch between different metabolic phenotypes in response to environmental cues and therapeutic interventions. A framework to analyze the observed metabolic heterogeneity and plasticity is, however, lacking. Using a mechanistic model that includes the key metabolic pathways active in tumor cells, we show that the inhibition of phosphofructokinase by excess ATP in the cytoplasm can drive a preference for aerobic glycolysis in fast-proliferating tumor cells. The differing rates of ATP utilization by tumor cells can therefore drive heterogeneity with respect to the presentation of the Warburg effect. Building upon this idea, we couple the metabolic phenotype of tumor cells to their migratory phenotype, and show that our model predictions are in agreement with previous experiments. Next, we report that the reliance of proliferating cells on different anaplerotic pathways depends on the relative availability of glucose and glutamine, and can further drive metabolic heterogeneity. Finally, using treatment of melanoma cells with a BRAF inhibitor as an example, we show that our model can be used to predict the metabolic and gene expression changes in cancer cells in response to drug treatment. By making predictions that are far more generalizable and interpretable as compared to previous tumor metabolism modeling approaches, our framework identifies key principles that govern tumor cell metabolism, and the reported heterogeneity and plasticity. These principles could be key to targeting the metabolic vulnerabilities of cancer.
Collapse
Affiliation(s)
- Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas, United States of America
- Center for Theoretical Biological Physics and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pratip K. Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Herbert Levine
- Center for Theoretical Biological Physics and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
49
|
Comprehensive Analysis of Alteration Landscape and Its Clinical Significance of Mitochondrial Energy Metabolism Pathway-Related Genes in Lung Cancers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:9259297. [PMID: 34970420 PMCID: PMC8713050 DOI: 10.1155/2021/9259297] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Background Mitochondria are the energy factories of cells. The abnormality of mitochondrial energy metabolism pathways is closely related to the occurrence and development of lung cancer. The abnormal genes in mitochondrial energy metabolism pathways might be the novel targets and biomarkers to diagnose and treat lung cancers. Method Genes in major mitochondrial energy metabolism pathways were obtained from the KEGG database. The transcriptomic, mutation, and clinical data of lung cancers were obtained from The Cancer Genome Atlas (TCGA) database. Genes and clinical biomarkers were mined that affected lung cancer survival. Gene enrichment analysis was performed with ClusterProfiler and the gene set enrichment analysis (GSEA). STRING database and Cytoscape were used for protein-protein interaction (PPI) analysis. The diagnostic biomarker pattern of lung cancer was optimized, and its accuracy was verified with 10-fold cross-validation. The four genes screened by logistic regression model were verified by western blot in 5 pairs of lung cancer specimens collected in hospital. Results In total, 188 mitochondrial energy metabolism pathway-related genes (MMRGs) were included in this study. GSEA analysis found that MMRGs in the lung cancer group were mainly enriched in the metabolic pathway of oxidative phosphorylation and electron respiratory transport chain compared to the control group. Age did not affect the mutation frequency of MMRGs. Comparative analysis of these 188 MMRGs identified 43 differentially expressed MMRGs (24 upregulated and 19 downregulated) in the lung cancer group compared to the control group. The survival analysis of these 43 differentially expressed MMRGs found that the survival time was better in the low-expressed GAPDHS group than that in the high-expressed GAPDHS group of lung cancers. The advanced age, high expression of GAPDHS, low expressions of ACSBG1 and CYP4A11, and ACOX3 mutation were biomarkers of poor prognosis in lung cancers. PPI analysis showed that proteins such as GAPDH and GAPDHS interacted with many proteins in mitochondrial metabolic pathways. A four-MMRG-signature model (y = 0.0069∗ACADL - 0.001∗ALDH18A1 - 0.0405∗CPT1B + 0.0008∗PPARG - 1.625) was established to diagnose lung cancer with the accuracy up to 98.74%, AUC value up to 0.992, and a missed diagnosis rate of only 0.6%. Western blotting showed that ALDH18A1 and CPT1B proteins were significantly overexpressed in the lung cancer group (p < 0.05), and ACADL and PPARG proteins were slightly underexpressed in the lung cancer group (p < 0.05), which were consistent with the results of their corresponding mRNA expressions. Conclusion Mitochondrial energy metabolism pathway alterations are the important hallmarks of lung cancer. Age did not increase the risk of MMRG mutation. High expression of GAPDHS, low expression of ACSBG1, low expression of CYP4A11, mutated ACOX3, and old age predict a poor prognosis of lung cancer. Four differentially expressed MMRGs (ACADL, ALDH18A1, CPT1B, and PPARG) established a logistic regression model, which could effectively diagnose lung cancer. At the protein level, ALDH18A1 and CPT1B were significantly upregulated, and ACADL and PPARG were slightly underexpressed, in the lung cancer group compared to the control group, which were consistent with the results of their corresponding mRNA expressions.
Collapse
|
50
|
Sheng Y, Chen Y, Zeng Z, Wu W, Wang J, Ma Y, Lin Y, Zhang J, Huang Y, Li W, Zhu Q, Wei X, Li S, Wisanwattana W, Li F, Liu W, Suksamrarn A, Zhang G, Jiao W, Wang F. Identification of Pyruvate Carboxylase as the Cellular Target of Natural Bibenzyls with Potent Anticancer Activity against Hepatocellular Carcinoma via Metabolic Reprogramming. J Med Chem 2021; 65:460-484. [PMID: 34931827 DOI: 10.1021/acs.jmedchem.1c01605] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer cell proliferation in some organs often depends on conversion of pyruvate to oxaloacetate via pyruvate carboxylase (PC) for replenishing the tricarboxylic acid cycle to support biomass production. In this study, PC was identified as the cellular target of erianin using the photoaffinity labeling-click chemistry-based probe strategy. Erianin potently inhibited the enzymatic activity of PC, which mediated the anticancer effect of erianin in human hepatocellular carcinoma (HCC). Erianin modulated cancer-related gene expression and induced changes in metabolic intermediates. Moreover, erianin promotes mitochondrial oxidative stress and inhibits glycolysis, leading to insufficient energy required for cell proliferation. Analysis of 14 natural analogs of erianin showed that some compounds exhibited potent inhibitory effects on PC. These results suggest that PC is a cellular target of erianin and reveal the unrecognized function of PC in HCC tumorigenesis; erianin along with its analogs warrants further development as a novel therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Chen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongqiu Zeng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuling Ma
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuan Lin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Sichuan Xincheng Biological Co., LTD, Chengdu 611731, China
| | - Jichao Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yulan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenhua Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiyu Zhu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao Wei
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wisanee Wisanwattana
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| | - Wei Jiao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|