1
|
Pang C, Yuan B, Ren K, Xu H, Nie K, Yu C, Liu Z, Zhang Y, Ozkan SA, Yang Q. Activates B lymphocytes and enhanced immune response: A promising adjuvant based on PLGA nanoparticle to improve the sensitivity of ZEN monoclonal antibody. Talanta 2024; 274:126005. [PMID: 38599116 DOI: 10.1016/j.talanta.2024.126005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
In preparing monoclonal antibodies by hybridoma cell technology, the quality of B lymphocytes used for cell fusion directly affects the sensitivity of monoclonal antibodies. To obtain B-lymphocytes producing high-quality specific antibodies for cell fusion during the immunization phase of the antigen, we prepared a TH2-Cell stimulatory delivery system as a novel adjuvant. Astragalus polysaccharide has a good ability to enhance antigenic immune response, and it was encapsulated in biocompatible materials PLGA as an immunostimulatory factor to form the delivery system (APS-PLGA). The preparation conditions of APSP were optimized using RSM to attain the highest utilization of APS. Immunization against ZEN-BSA antigen using APSP as an adjuvant to obtain B lymphocytes producing ZEN-specific antibodies for cell fusion. As results present, APSP could induce a stronger TH2 immune response through differentiating CD4 T cells and promoting IL-4 and IL-6 cytokines. Moreover, it could slow down the release efficiency of ZEN-BSA and enhance the targeting of ZEN-BSA to lymph nodes in vivo experiments. Ultimately, the sensitivity of mouse serum ZEN-specific antibodies was enhanced upon completion of immunization, indicating a significant upregulation of high-quality B lymphocyte expression. In the preparation of monoclonal antibodies, the proportion of positive wells for the first screening was 60%, and the inhibition rates of the antibodies were all similar (>50%). Then we obtained the ZEN monoclonal antibody with IC50 of 0.049 ng/mL, which was more sensitive than most antibodies prepared under conventional adjuvants. Finally, a TRFIAS strip assay was preliminarily established with a LOD value of 0.246 ng/mL.
Collapse
Affiliation(s)
- Chengchen Pang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Bei Yuan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Keyun Ren
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Haitao Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Kunying Nie
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Chunlei Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkiye
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China.
| |
Collapse
|
2
|
Hiller J, Göen T, Drexler H, Berking C, Wagner N. Elevated aluminum excretion in patients by long-term subcutaneous immunotherapy - A cross-sectional case-control study. Int J Hyg Environ Health 2024; 258:114337. [PMID: 38461738 DOI: 10.1016/j.ijheh.2024.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Aluminum (Al) adjuvants have been used in vaccines and subcutaneous immunotherapy (SCIT) for decades. Despite indisputable neurotoxic properties of Al, there is no clear evidence of a causal relationship between their use and any neurotoxic side effects. However, recent rat studies have shown an accumulation of Al from adjuvants in tissues, especially in bones. OBJECTIVES Since the human toxicokinetics of Al-adjuvants are poorly understood, this study aimed to evaluate whether up-dosed or long-term SCIT with Al-coupled extracts leads to increased Al load in humans. METHODS This observational cross-sectional case-control study explored Al excretion in hymenoptera venom allergy patients recruited in 2020 before initiation (n = 10) and during ongoing (n = 12) SCIT with Al-based preparations. Urine samples were collected before and 24 h after the SCIT injections and analyzed for aluminum content by using atomic absorption spectrometry. The cumulative administered Al dose was extracted from patient records. Patients receiving long-term immunotherapy were treated between 2.8 and 13.6 years (mean 7.1). Other potential sources of Al exposure were surveyed. RESULTS Patients who had received Al-coupled immunotherapy for several years showed significantly (p < 0.001) higher Al excretion than the controls at initiation of immunotherapy (mean 18.2 μg/gC vs. 7.9 μg/gC) and predominantly (73%) were above the 95th percentile of the general populations' exposure (>15 μg/gC), however, without reaching levels of toxicological concern (>50 μg/gC). Taking both groups together excreted Al levels correlated with the cumulative administered Al dose from SCIT (linear regression: Alurine = 8.258 + 0.133*Alcum; p = 0.001). DISCUSSION These results suggest a relevant iatrogenic contribution of long-term SCIT to human internal Al burden and potential accumulation. Considering the medical benefits of Al-adjuvants and SCIT a differentiated risk-benefit analysis is needed. For certain scenarios of potential toxicological concern in clinical practice biomonitoring might be advisable.
Collapse
Affiliation(s)
- Julia Hiller
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany.
| | - Hans Drexler
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany.
| | - Carola Berking
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany.
| | - Nicola Wagner
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
3
|
Komatsuzaki K, Kageshima H, Sekino Y, Suzuki Y, Ugajin T, Tamaoka M, Hanazawa R, Hirakawa A, Miyazaki Y. Local nasal immunotherapy with birch pollen-galactomannan conjugate-containing ointment in mice and humans. Allergol Int 2024; 73:290-301. [PMID: 37981502 DOI: 10.1016/j.alit.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Allergen immunotherapy (AIT) is the only disease-modifying treatment for immunoglobulin (Ig) E-mediated allergy. Owing to the high prevalence and early onset of hay fever and pollen-food allergy syndrome (PFAS), a safer and simpler treatment method than conventional AIT is needed. To develop a local nasal immunotherapy using an ointment containing hypoallergenic pollen and assess its efficacy in mice and healthy humans. METHODS Hypoallergenicity was achieved by combining pollen and galactomannan through the Maillard reaction to create birch pollen-galactomannan conjugate (BP-GMC). The binding of galactomannan to Bet v 1 was confirmed using electrophoresis and Western blotting (WB). Binding of specific IgE antibodies to BP-GMC was verified using enzyme-linked immunosorbent assay (ELISA) and basophil activation test (BAT). The localization of BP-GMC absorption was confirmed using a BALB/c mouse model. BP-GMC mixed with white petrolatum was intranasally administered to 10 healthy individuals (active drugs, 8; placebo, 2) for 14 days. RESULTS In electrophoresis and WB, no 17-kDa band was observed. In ELISA and BAT, BP-GMC did not react to specific IgE but was bound to IgA and IgG. In the mouse model, BP-GMC was detected in nasopharyngeal-associated lymphoid tissues. In the active drug group, the salivary-specific IgA level significantly increased on day 15 (p = 0.0299), while the serum-specific IgG level significantly increased on day 85 (p = 0.0006). CONCLUSIONS The BP-GMC ointment rapidly produced antagonistic antibodies against IgE; it is safe and easy to use and might serve as a therapeutic antigen for hay fever and PFAS.
Collapse
Affiliation(s)
- Keiko Komatsuzaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hiroki Kageshima
- Bio & Healthcare Business Division, Wako Filter Technology Co., Ltd., Ibaraki, Japan
| | - Yuki Sekino
- Bio & Healthcare Business Division, Wako Filter Technology Co., Ltd., Ibaraki, Japan
| | - Yasuhiro Suzuki
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsukasa Ugajin
- Department of Dermatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Meiyo Tamaoka
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryoichi Hanazawa
- Department of Clinical Biostatistics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Lin YJ, Zimmermann J, Schülke S. Novel adjuvants in allergen-specific immunotherapy: where do we stand? Front Immunol 2024; 15:1348305. [PMID: 38464539 PMCID: PMC10920236 DOI: 10.3389/fimmu.2024.1348305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Type I hypersensitivity, or so-called type I allergy, is caused by Th2-mediated immune responses directed against otherwise harmless environmental antigens. Currently, allergen-specific immunotherapy (AIT) is the only disease-modifying treatment with the potential to re-establish clinical tolerance towards the corresponding allergen(s). However, conventional AIT has certain drawbacks, including long treatment durations, the risk of inducing allergic side effects, and the fact that allergens by themselves have a rather low immunogenicity. To improve AIT, adjuvants can be a powerful tool not only to increase the immunogenicity of co-applied allergens but also to induce the desired immune activation, such as promoting allergen-specific Th1- or regulatory responses. This review summarizes the knowledge on adjuvants currently approved for use in human AIT: aluminum hydroxide, calcium phosphate, microcrystalline tyrosine, and MPLA, as well as novel adjuvants that have been studied in recent years: oil-in-water emulsions, virus-like particles, viral components, carbohydrate-based adjuvants (QS-21, glucans, and mannan) and TLR-ligands (flagellin and CpG-ODN). The investigated adjuvants show distinct properties, such as prolonging allergen release at the injection site, inducing allergen-specific IgG production while also reducing IgE levels, as well as promoting differentiation and activation of different immune cells. In the future, better understanding of the immunological mechanisms underlying the effects of these adjuvants in clinical settings may help us to improve AIT.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
- Section Research Allergology (ALG 5), Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
5
|
Joshi D, Shah S, Chbib C, Uddin MN. Potential of DPD ((S)-4,5-dihydroxy-2,3-pentanedione) Analogs in Microparticulate Formulation as Vaccine Adjuvants. Pharmaceuticals (Basel) 2024; 17:184. [PMID: 38399399 PMCID: PMC10891675 DOI: 10.3390/ph17020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is involved in bacterial communication. DPD is the precursor of signal molecule autoinducer-2 (AI-2) and has high potential to be used as a vaccine adjuvant. Vaccine adjuvants are compounds that enhance the stability and immunogenicity of vaccine antigens, modulate efficacy, and increase the immune response to a particular antigen. Previously, the microparticulate form of (S)-DPD was found to have an adjuvant effect with the gonorrhea vaccine. In this study, we evaluated the immunogenicity and adjuvanticity of several synthetic analogs of the (S)-DPD molecule, including ent-DPD((R)-4,5-dihydroxy-2,3-pentanedione), n-butyl-DPD ((S)-1,2-dihydroxy-3,4-octanedione), isobutyl-DPD ((S)-1,2-dihydroxy-6-methyl-3,4-heptanedione), n-hexyl-DPD ((S)-1,2-dihydroxy-3,4-decanedione), and phenyl-DPD ((S)-3,4-dihydroxy-1-phenyl-1,2-butanedione), in microparticulate formulations. The microparticulate formulations of all analogs of (S)-DPD were found to be noncytotoxic toward dendritic cells. Among these analogs, ent-DPD, n-butyl-DPD, and isobutyl-DPD were found to be immunogenic toward antigens and showed adjuvant efficacy with microparticulate gonorrhea vaccines. It was observed that n-hexyl-DPD and phenyl-DPD did not show any adjuvant effect. This study shows that synthetic analogs of (S)-DPD molecules are capable of eliciting adjuvant effects with vaccines. A future in vivo evaluation will further confirm that these analogs are promising vaccine adjuvants.
Collapse
Affiliation(s)
- Devyani Joshi
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| | - Sarthak Shah
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| | - Christiane Chbib
- College of Pharmacy, Larkin University, 18301 N Miami Ave, Miami, FL 33169, USA;
| | - Mohammad N. Uddin
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| |
Collapse
|
6
|
Liu X, Min Q, Song H, Yue A, Li Q, Zhou Q, Han W. Potentiating humoral and cellular immunity using a novel hybrid polymer-lipid nanoparticle adjuvant for HBsAg-VLP vaccine. J Nanobiotechnology 2023; 21:441. [PMID: 37993870 PMCID: PMC10666313 DOI: 10.1186/s12951-023-02116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/16/2023] [Indexed: 11/24/2023] Open
Abstract
Aluminium adjuvants are commonly used in vaccines to stimulate the immune system, but they have limited ability to promote cellular immunity which is necessary for clearing viral infections like hepatitis B. Current adjuvants that do promote cellular immunity often have undesired side effects due to the immunostimulants they contain. In this study, a hybrid polymer lipid nanoparticle (HPLNP) was developed as an efficient adjuvant for the hepatitis B surface antigen (HBsAg) virus-like particle (VLP) vaccine to potentiate both humoral and cellular immunity. The HPLNP is composed of FDA approved polyethylene glycol-b-poly (L-lactic acid) (PEG-PLLA) polymer and cationic lipid 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP), and can be easily prepared by a one-step method. The cationic optimised vaccine formulation HBsAg/HPLNP (w/w = 1/600) can maximise the cell uptake of the antigen due to the electrostatic adsorption between the vaccine nanoparticle and the cell membrane of antigen-presenting cells. The HPLNP prolonged the retention of the antigen at the injection site and enhanced the lymph node drainage of antigen, resulting in a higher concentration of serum anti-HBsAg IgG compared to the HBsAg group or the HBsAg/Al group after the boost immunisation in mice. The HPLNP also promoted a strong Th1-driven immune response, as demonstrated by the significantly improved IgG2a/IgG1 ratio, increased production of IFN-γ, and activation of CD4 + and CD8 + T cells in the spleen and lymph nodes. Importantly, the HPLNP demonstrated no systemic toxicity during immunisation. The advantages of the HPLNP, including good biocompatibility, easy preparation, low cost, and its ability to enhance both humoral and cellular immune responses, suggest its suitability as an efficient adjuvant for protein-based vaccines such as HBsAg-VLP. These findings highlight the promising potential of the HPLNP as an HBV vaccine adjuvant, offering an alternative to aluminium adjuvants currently used in vaccines.
Collapse
Affiliation(s)
- Xuhan Liu
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, No. 1098 Xueyuan Avenue, Shenzhen, 518000, Guangdong, China
| | - Qiuxia Min
- Department of Pharmacy, First People's Hospital of Yunnan Province, Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, 650034, Yunnan, China
| | - Huiping Song
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, No. 1098 Xueyuan Avenue, Shenzhen, 518000, Guangdong, China
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Aochun Yue
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, No. 1098 Xueyuan Avenue, Shenzhen, 518000, Guangdong, China
- Centre of Integrated Chinese and Western Medicine, School of Clinical Medicine, Qingdao University, Qingdao, China
| | - Qin Li
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, No. 1098 Xueyuan Avenue, Shenzhen, 518000, Guangdong, China
| | - Qing Zhou
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Han
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, No. 1098 Xueyuan Avenue, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
7
|
Reginald K, Chew FT. Current practices and future trends in cockroach allergen immunotherapy. Mol Immunol 2023; 161:11-24. [PMID: 37480600 DOI: 10.1016/j.molimm.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE OF REVIEW This review evaluates the current modes of allergen-specific immunotherapy for cockroach allergens, in terms of clinical outcomes and explores future trends in the research and development needed for a more targeted cockroach immunotherapy approach with the best efficacy and minimum adverse effects. SUMMARY Cockroach allergy is an important risk factor for allergic rhinitis in the tropics, that disproportionately affects children and young adults and those living in poor socio-economic environments. Immunotherapy would provide long-lasting improvement in quality of life, with reduced medication intake. However, the present treatment regime is long and has a risk of adverse effects. In addition, cockroach does not seem to have an immuno-dominant allergen, that has been traditionally used to treat allergies from other sources. Future trends of cockroach immunotherapy involve precision diagnosis, to correctly identify the offending allergen. Next, precision immunotherapy with standardized allergens, which have been processed in a way that maintains an immunological response without allergic reactions. This approach can be coupled with modern adjuvants and delivery systems that promote a Th1/Treg environment, thereby modulating the immune response away from the allergenic response.
Collapse
Affiliation(s)
- Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia.
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| |
Collapse
|
8
|
Brai A, Poggialini F, Pasqualini C, Trivisani CI, Vagaggini C, Dreassi E. Progress towards Adjuvant Development: Focus on Antiviral Therapy. Int J Mol Sci 2023; 24:9225. [PMID: 37298177 PMCID: PMC10253057 DOI: 10.3390/ijms24119225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Federica Poggialini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Pasqualini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Immacolata Trivisani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Chiara Vagaggini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Elena Dreassi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| |
Collapse
|
9
|
Šošić L, Paolucci M, Flory S, Jebbawi F, Kündig TM, Johansen P. Allergen immunotherapy: progress and future outlook. Expert Rev Clin Immunol 2023:1-25. [PMID: 37122076 DOI: 10.1080/1744666x.2023.2209319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Allergy, the immunological hypersensitivity to innocuous environmental compounds, is a global health problem. The disease triggers, allergens, are mostly proteins contained in various natural sources such as plant pollen, animal dander, dust mites, foods, fungi and insect venoms. Allergies can manifest with a wide range of symptoms in various organs, and be anything from just tedious to life-threatening. A majority of all allergy patients are self-treated with symptom-relieving medicines, while allergen immunotherapy (AIT) is the only causative treatment option. AREAS COVERED This review will aim to give an overview of the state-of-the-art allergy management, including the use of new biologics and the application of biomarkers, and a special emphasis and discussion on current research trends in the field of AIT. EXPERT OPINION Conventional AIT has proven effective, but the years-long treatment compromises patient compliance. Moreover, AIT is typically not offered in food allergy. Hence, there is a need for new, effective and safe AIT methods. Novel routes of administration (e.g. oral and intralymphatic), hypoallergenic AIT products and more effective adjuvants holds great promise. Most recently, the development of allergen-specific monoclonal antibodies for passive immunotherapy may also allow treatment of patients currently not treated or treatable.
Collapse
Affiliation(s)
- Lara Šošić
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Marta Paolucci
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Stephan Flory
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Fadi Jebbawi
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
10
|
Bekis Bozkurt H, Karakurt LT, Cavkaytar Ö, Arga M. Effects of allergen extract change in children receiving house dust mite immunotherapy: Real-Life Data. Pediatr Allergy Immunol 2023; 34:e13916. [PMID: 36825738 DOI: 10.1111/pai.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Affiliation(s)
- Hayrunnisa Bekis Bozkurt
- Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Faculty of Medicine, Istanbul, Turkey
| | - Leman Tuba Karakurt
- Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Faculty of Medicine, Istanbul, Turkey
| | - Özlem Cavkaytar
- Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Faculty of Medicine, Istanbul, Turkey
| | - Mustafa Arga
- Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Fan Z, Zhang Y, Jiao L, Zhu T, Feng Z, Liu Z, Yang Y, Wang D. Lycium barbarum polysaccharides-loaded Particulate Alum via Pickering emulsion as an adjuvant to enhance immune responses. Int J Pharm 2022; 630:122418. [PMID: 36423709 DOI: 10.1016/j.ijpharm.2022.122418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Pickering emulsion has great potential as a vaccine adjuvant due to its unique advantages such as its high antigen loading efficiency, great stability, etc. Among several adjuvants on the market, aluminum adjuvant (Alum) is the most widely used at present. However, problems such as the inability to effectively induce cellular immunity and the poor effect on subunit vaccines limit the application of Alum. As an immunopotentiator, Lycium barbarum polysaccharides (LBP) have been proven to have the ability to regulate humoral and cellular immunity. To overcome the insufficiency of Alum, we explored a new adjuvant delivery system. The Lycium barbarum polysaccharides-loaded Particulate Alum via Pickering emulsion (LBPPE) was prepared by loading Alum on the squalene/water interphase following LBP was adsorbed on the Alum surface (Fig. 10). Similar to squalene, LBPPE possesses a good biosafety profile. LBPPE was spherical with uneven surface, which increased the possibility of efficient antigen adsorption on the surface and crack of LBPPE. And the result shown that the LBPPE had high antigen loading rate at approximately 90 %. In vivo experiments, LBPPE showed an excellent ability to recruit antigen-presenting cells (APCs) at the injection sites, activate dendritic cells in the lymph nodes. Then, in the evaluation of humoral immunity, LBPPE was able to effectively induce the production of IgG, IgG1, and IgG2a. Moreover, LBPPE significantly enhanced the expression and activation of T lymphocytes, and induced a strong immune memory T cells response. All the results above suggested that LBPPE is likely to provide promising insights toward a safe and efficient adjuvant platform for vaccines.
Collapse
Affiliation(s)
- Zexiao Fan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zian Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
12
|
Ramírez W, Torralba D, Bourg V, Lastre M, Perez O, Jacquet A, Labrada A. Immunogenicity of a novel anti-allergic vaccine based on house dust mite purified allergens and a combination adjuvant in a murine prophylactic model. FRONTIERS IN ALLERGY 2022; 3:1040076. [PMID: 36479436 PMCID: PMC9720566 DOI: 10.3389/falgy.2022.1040076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 10/14/2023] Open
Abstract
The outer-membrane-derived proteoliposome (PL) of Neisseria meningitidis has been reported as a potent vaccine adjuvant, inducing a Th1-skewed response. This work aimed to assess the immunogenicity of a novel anti-allergic vaccine candidate based on allergens from Dermatophagoides siboney house dust mite and a combination adjuvant containing PL and Alum. In a preventative experimental setting, BALB/c mice were administered with three doses containing 2 µg of Der s1 and 0.4 µg Der s2 allergen, PL and Alum, at 7 days intervals, by subcutaneous route. Furthermore, mice were subjected to an allergen aerosol challenge for 6 consecutive days. Serum IgE, IgG1, and IgG2a allergen-specific antibodies were assessed by ELISA. Cytokine levels in supernatants of D. siboney stimulated lymphocyte cultures and in bronchoalveolar lavage (BAL) were measured by ELISA. Lung tissues were subjected to histological examination. The vaccine prevented the development of both, systemic (IgE) and local allergic responses (featuring lower IL-4, and IL-5 levels in BAL) upon allergen exposure by the inhalant route. Histological examination showed also a diminished allergic inflammatory response in the lungs. After the allergen challenge, cytokine levels in stimulated lymphocyte cultures showed lower values of IL-13 and augmented IFN-γ and IL-10. The vaccine induced a mixed IgG2a/IgG1 antibody response; although only IgG2a was PL-dependent. Both, IgG1/IgE and IgG2a/IgE ratios, showed significantly greater values in vaccinated mice. The findings support a preventative anti-allergic effect associated with the induction of a Th1-like IFN-γ/IL-10 response. IgG1/IgE and IgG2a/IgE ratios could be useful biomarkers for translation into clinical trials.
Collapse
Affiliation(s)
- Wendy Ramírez
- Department of Allergens, Allergens Lab, Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| | - Damarys Torralba
- Department of Allergens, Allergens Lab, Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| | - Virgilio Bourg
- Department of Allergens, Allergens Lab, Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| | - Miriam Lastre
- Department of Immunology, Havana University of Medical Sciences, Havana, Cuba
| | - Oliver Perez
- Department of Immunology, Havana University of Medical Sciences, Havana, Cuba
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alexis Labrada
- Department of Allergens, Allergens Lab, Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| |
Collapse
|
13
|
Treating allergies via skin - Recent advances in cutaneous allergen immunotherapy. Adv Drug Deliv Rev 2022; 190:114458. [PMID: 35850371 DOI: 10.1016/j.addr.2022.114458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Subcutaneous allergen immunotherapy has been practiced clinically for decades to treat airborne allergies. Recently, the cutaneous route, which exploits the immunocompetence of the skin has received attention, which is evident from attempts to use it to treat peanut allergy. Delivery of allergens into the skin is inherently impeded by the barrier imposed by stratum corneum, the top layer of the skin. While the stratum corneum barrier must be overcome for efficient allergen delivery, excessive disruption of this layer can predispose to development of allergic inflammation. Thus, the most desirable allergen delivery approach must provide a balance between the level of skin disruption and the amount of allergen delivered. Such an approach should aim to achieve high allergen delivery efficiency across various skin types independent of age and ethnicity, and optimize variables such as safety profile, allergen dosage, treatment frequency, application time and patient compliance. The ability to precisely quantify the amount of allergen being delivered into the skin is crucial since it can allow for allergen dose optimization and can promote consistency and reproducibility in treatment response. In this work we review prominent cutaneous delivery approaches, and offer a perspective on further improvisation in cutaneous allergen-specific immunotherapy.
Collapse
|
14
|
Hesse L, Oude Elberink J, van Oosterhout AJ, Nawijn MC. Allergen immunotherapy for allergic airway diseases: Use lessons from the past to design a brighter future. Pharmacol Ther 2022; 237:108115. [DOI: 10.1016/j.pharmthera.2022.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
15
|
Zhang Y, Gu P, Jiao L, He J, Yu L, Liu Z, Yang Y, Hu Y, Liu J, Wang D. Chinese yam polysaccharides PLGA-stabilized Pickering emulsion as an adjuvant system for PCV- 2 vaccine to enhance immune response. Int J Biol Macromol 2022; 219:1034-1046. [PMID: 35963357 DOI: 10.1016/j.ijbiomac.2022.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
Chinese yam polysaccharides (CYP) exhibit superior adjuvant activity and modulate the immune response, but the low bioavailability limits their clinical application. Pickering emulsions have been proven as an efficient vaccine delivery system to enhance the immune response. Here, we used the Chinese yam polysaccharides PLGA-stabilized Pickering emulsion adjuvant system (CYP-PPAS) loaded with Porcine circovirus 2 as a vaccine and focused on investigating its adjuvant activity on humoral and cellular immunity in mice. The CYP-PPAS increased PCV-2 antigen loading efficiency and showed a high antigen uptake efficiency by macrophages in vitro. In vivo, CYP-PPAS significantly facilitated DCs maturation in draining lymph nodes than CYP or PPAS alone group. The CYP-PPAS also induced an increased proliferation index and a CD4+/CD8+ ratio. Meanwhile, in contrast to the CYP and PPAS groups, CYP-PPAS elicited a stronger anti-PCV-2 IgG and mixed Th1/Th2 immune response. Specifically, the CYP-PPAS group displayed the high expression of CD107a, FasL, and Granzyme B secretion to augment a strong cytotoxic lymphocyte response. Overall, the CYP-PPAS was a successful adjuvant system for promoting humoral and cellular immune responses, which opens up an avenue for the development of effective adjuvants against infectious diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
16
|
Heine S, Aguilar-Pimentel A, Russkamp D, Alessandrini F, Gailus-Durner V, Fuchs H, Ollert M, Bredehorst R, Ohnmacht C, Zissler UM, Hrabě de Angelis M, Schmidt-Weber CB, Blank S. Thermosensitive PLGA–PEG–PLGA Hydrogel as Depot Matrix for Allergen-Specific Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081527. [PMID: 35893787 PMCID: PMC9329805 DOI: 10.3390/pharmaceutics14081527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the only currently available curative treatment option for allergic diseases. AIT often includes depot-forming and immunostimulatory adjuvants, to prolong allergen presentation and to improve therapeutic efficacy. The use of aluminium salts in AIT, which are commonly used as depot-forming adjuvants, is controversially discussed, due to health concerns and Th2-promoting activity. Therefore, there is the need for novel delivery systems in AIT with similar therapeutic efficacy compared to classical AIT strategies. In this study, a triblock copolymer (hydrogel) was assessed as a delivery system for AIT in a murine model of allergic asthma. We show that the hydrogel combines the advantages of both depot function and biodegradability at the same time. We further demonstrate the suitability of hydrogel to release different bioactive compounds in vitro and in vivo. AIT delivered with hydrogel reduces key parameters of allergic inflammation, such as inflammatory cell infiltration, mucus hypersecretion, and allergen-specific IgE, in a comparable manner to standard AIT treatment. Additionally, hydrogel-based AIT is superior in inducing allergen-specific IgG antibodies with potentially protective functions. Taken together, hydrogel represents a promising delivery system for AIT that is able to combine therapeutic allergen administration with the prolonged release of immunomodulators at the same time.
Collapse
Affiliation(s)
- Sonja Heine
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
| | - Dennis Russkamp
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 4354 Esch-Sur-Alzette, Luxembourg;
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, 5000 Odense, Denmark
| | - Reinhard Bredehorst
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany;
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
- Correspondence: ; Tel.: +49-89-318-726-25
| |
Collapse
|
17
|
Zhang Y, Jiao L, Wu Z, Gu P, Feng Z, Xu S, Liu Z, Yang Y, Wang D. Fabrication and characterization of Chinese yam polysaccharides PLGA nanoparticles stabilized Pickering emulsion as an efficient adjuvant. Int J Biol Macromol 2022; 209:513-524. [PMID: 35421409 DOI: 10.1016/j.ijbiomac.2022.04.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/18/2022]
Abstract
The Chinese yam polysaccharides PLGA nanoparticles were applied as stabilizers in this study to prepare O/W Pickering emulsion. The optimized preparation conditions were PLGA concentration of 5 mg/mL, ultrasonic power of 50 %, and ultrasonic time of 2 min. The CYP-PPAS emulsion exhibits a raspberry-like morphology with a large number of nanoparticles surrounding the oil droplets. The CYP-PPAS emulsion exhibited outstanding stability at 4 °C and 37 °C for 28 days with high antigen loading efficiency and provided a controlled and sustained release of Chinese yam polysaccharides and OVA antigen in vitro. CYP-PPAS/OVA elicited robust antigen-specific immune response and induced a mixed Th1/Th2 immune response after immunization. Furthermore, CYP-PPAS/OVA caused a high CD4+/CD8+ ratio leading in increased activation of splenic T lymphocytes subpopulations. Moreover, CYP-PPAS is a safe vaccination adjuvant with high safety profile in vivo. Thus, the novel designed Pickering emulsion CYP-PPAS was a safe and effective adjuvant for inducing the strong and long-term immune response.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhiyong Wu
- Nanjing Traditional Chinese Veterinary Medicine Research Center, Nanjing 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zian Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Heldner A, Alessandrini F, Russkamp D, Heine S, Schnautz B, Chaker A, Mwange J, Carreno Velazquez TL, Heath MD, Skinner MA, Kramer MF, Zissler UM, Schmidt‐Weber CB, Blank S. Immunological effects of adjuvanted low-dose allergoid allergen-specific immunotherapy in experimental murine house dust mite allergy. Allergy 2022; 77:907-919. [PMID: 34287971 DOI: 10.1111/all.15012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/16/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Native allergen extracts or chemically modified allergoids are routinely used to induce allergen tolerance in allergen-specific immunotherapy (AIT), although mechanistic side-by-side studies are rare. It is paramount to balance optimal dose and allergenicity to achieve efficacy warranting safety. AIT safety and efficacy could be addressed by allergen dose reduction and/or use of allergoids and immunostimulatory adjuvants, respectively. In this study, immunological effects of experimental house dust mite (HDM) AIT were investigated applying high-dose HDM extract and low-dose HDM allergoids with and without the adjuvants microcrystalline tyrosine (MCT) and monophosphoryl lipid A (MPL) in a murine model of HDM allergy. METHODS Cellular, humoral, and clinical effects of the different AIT strategies were assessed applying a new experimental AIT model of murine allergic asthma based on physiological, adjuvant-free intranasal sensitization followed by subcutaneous AIT. RESULTS While low-dose allergoid and high-dose extract AIT demonstrated comparable potency to suppress allergic airway inflammation and Th2-type cytokine secretion of lung-resident lymphocytes and draining lymph node cells, low-dose allergoid AIT was less effective in inducing a potentially protective IgG1 response. Combining low-dose allergoid AIT with MCT or MCT and dose-adjusted MPL promoted Th1-inducing mechanisms and robust B-cell activation counterbalancing the allergic Th2 immune response. CONCLUSION Low allergen doses induce cellular and humoral mechanisms counteracting Th2-driven inflammation by using allergoids and dose-adjusted adjuvants. In light of safety and efficacy improvement, future therapeutic approaches may use low-dose allergoid strategies to drive cellular tolerance and adjuvants to modulate humoral responses.
Collapse
Affiliation(s)
- Alexander Heldner
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Dennis Russkamp
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Sonja Heine
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Adam Chaker
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
- Department of Otolaryngology, Klinikum rechts der Isar Faculty of Medicine Technical University of Munich Munich Germany
| | | | | | | | | | - Matthias F. Kramer
- Allergy Therapeutic PLC. Worthing UK
- Bencard Allergie GmbH Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| |
Collapse
|
19
|
Hellkvist L, Hjalmarsson E, Weinfeld D, Dahl Å, Karlsson A, Westman M, Lundkvist K, Winqvist O, Georén SK, Westin U, Cardell LO. High-dose pollen intralymphatic immunotherapy: Two RDBPC trials question the benefit of dose increase. Allergy 2022; 77:883-896. [PMID: 34379802 DOI: 10.1111/all.15042] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The same dosing schedule, 1000 SQ-U times three, with one-month intervals, have been evaluated in most trials of intralymphatic immunotherapy (ILIT) for the treatment of allergic rhinitis (AR). The present studies evaluated if a dose escalation in ILIT can enhance the clinical and immunological effects, without compromising safety. METHODS Two randomized double-blind placebo-controlled trials of ILIT for grass pollen-induced AR were performed. The first included 29 patients that had recently ended 3 years of SCIT and the second contained 39 not previously vaccinated patients. An up-dosage of 1000-3000-10,000 (5000 + 5000 with 30 minutes apart) SQ-U with 1 month in between was evaluated. RESULTS Doses up to 10,000 SQ-U were safe after recent SCIT. The combined symptom-medication scores (CSMS) were reduced by 31% and the grass-specific IgG4 levels in blood were doubled. In ILIT de novo, the two first patients that received active treatment developed serious adverse reactions at 5000 SQ-U. A modified up-dosing schedule; 1000-3000-3000 SQ-U appeared to be safe but failed to improve the CSMS. Flow cytometry analyses showed increased activation of lymph node-derived dendritic but not T cells. Quality of life and nasal provocation response did not improve in any study. CONCLUSION Intralymphatic immunotherapy in high doses after SCIT appears to further reduce grass pollen-induced seasonal symptoms and may be considered as an add-on treatment for patients that do not reach full symptom control after SCIT. Up-dosing schedules de novo with three monthly injections that exceeds 3000 SQ-U should be avoided.
Collapse
Affiliation(s)
- Laila Hellkvist
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
- Department of ENT Diseases Karolinska University Hospital Stockholm Sweden
| | - Eric Hjalmarsson
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
| | - Dan Weinfeld
- Asthma and Allergy Clinic Outpatient Unit (adults) Department of Internal Medicine South Alvsborgs Central Hospital Boras Sweden
| | - Åslög Dahl
- Departments of Biological and Environmental Sciences Gothenburg University Gothenburg Sweden
| | - Agneta Karlsson
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
- Department of ENT Diseases Karolinska University Hospital Stockholm Sweden
| | - Marit Westman
- Immunology and Allergy Unit Department of Medicine Solna Karolinska Institutet Stockholm Sweden
| | - Karin Lundkvist
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
| | | | - Susanna Kumlien Georén
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
| | - Ulla Westin
- Laboratory of Clinical and Experimental Allergy Research Department of Otorhinolaryngology Malmö Lund University Skåne University Hospital Malmö Sweden
| | - Lars Olaf Cardell
- Division of ENT Diseases Department of Clinical Sciences, Intervention and Technology Karolinska Institutet Stockholm Sweden
- Department of ENT Diseases Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
20
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, George Firbank L, Guerche P, Hejatko J, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Fernandez Dumont A, Moreno FJ. Scientific Opinion on development needs for the allergenicity and protein safety assessment of food and feed products derived from biotechnology. EFSA J 2022; 20:e07044. [PMID: 35106091 PMCID: PMC8787593 DOI: 10.2903/j.efsa.2022.7044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This Scientific Opinion addresses the formulation of specific development needs, including research requirements for allergenicity assessment and protein safety, in general, which is urgently needed in a world that demands more sustainable food systems. Current allergenicity risk assessment strategies are based on the principles and guidelines of the Codex Alimentarius for the safety assessment of foods derived from 'modern' biotechnology initially published in 2003. The core approach for the safety assessment is based on a 'weight-of-evidence' approach because no single piece of information or experimental method provides sufficient evidence to predict allergenicity. Although the Codex Alimentarius and EFSA guidance documents successfully addressed allergenicity assessments of single/stacked event GM applications, experience gained and new developments in the field call for a modernisation of some key elements of the risk assessment. These should include the consideration of clinical relevance, route of exposure and potential threshold values of food allergens, the update of in silico tools used with more targeted databases and better integration and standardisation of test materials and in vitro/in vivo protocols. Furthermore, more complex future products will likely challenge the overall practical implementation of current guidelines, which were mainly targeted to assess a few newly expressed proteins. Therefore, it is timely to review and clarify the main purpose of the allergenicity risk assessment and the vital role it plays in protecting consumers' health. A roadmap to (re)define the allergenicity safety objectives and risk assessment needs will be required to inform a series of key questions for risk assessors and risk managers such as 'what is the purpose of the allergenicity risk assessment?' or 'what level of confidence is necessary for the predictions?'.
Collapse
|
21
|
van Strien J, Warmenhoven H, Logiantara A, Makurat M, Aglas L, Bethanis A, Leboux R, van Rijt L, MacKay JA, van Schijndel JW, Schneider G, Olsthoorn R, Jiskoot W, van Ree R, Kros A. Bet v 1-displaying elastin-like polypeptide nanoparticles induce a strong humoral and weak CD4+ T-cell response against Bet v 1 in a murine immunogenicity model. Front Immunol 2022; 13:1006776. [PMID: 36275650 PMCID: PMC9583423 DOI: 10.3389/fimmu.2022.1006776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
There is growing concern about the toxicity of colloidal aluminum salts used as adjuvants in subcutaneous allergen immunotherapy (SCIT). Therefore, alternative adjuvants and delivery systems are being explored to replace alum in SCIT. We applied micellar elastin-like polypeptides (ELPs), a type of self-assembling protein, to replace alum as vaccine adjuvant in birch pollen SCIT. ELP and an ELP-Bet v 1 fusion protein were expressed in E. coli and purified by immuno-affinity chromatography and inverse-transition cycling (ITC). Nanoparticles self-assembled from ELP and a 9:1 ELP/ELP-Bet v 1 mixture were characterized by using dynamic light scattering and atomic force microscopy. Allergenicity was assessed by measuring mediator release from rat basophilic leukemia cells transformed with the human FcϵR1 and sensitized with sera derived from human birch pollen allergic patients. Humoral and T-cell immunity were investigated by immunizing naïve mice with the ELP/ELP-Bet v 1 nanoparticles or alum-adsorbed Bet v 1, both containing 36 µg Bet v 1. ELP and ELP/ELP-Bet v 1 self-assembled at 37°C into spherically shaped micelles with a diameter of ~45 nm. ELP conjugation made Bet v 1 hypo-allergenic (10-fold). Compared to alum-adsorbed Bet v 1, ELP/ELP-Bet v 1 nanoparticles induced stronger IgG responses with an earlier onset. Additionally, ELP/ELP-Bet v 1 did not induce Th2 skewing cytokines and IgE. The hypoallergenic character and strong humoral immune response in the absence of a Th2-skewing T-cell response make ELP-based nanoparticles a promising candidate to replace alum in SCIT.
Collapse
Affiliation(s)
- Jolinde van Strien
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hans Warmenhoven
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,R&D Department, Haarlems Allergenen Laboratorium (HAL) Allergy B.V., Leiden, Netherlands
| | - Adrian Logiantara
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Max Makurat
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Lorenz Aglas
- Division of Allergy and Immunology, Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Athanasios Bethanis
- Division of Allergy and Immunology, Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Romain Leboux
- Department of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Leonie van Rijt
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | | | - Gregory Schneider
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - René Olsthoorn
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Wim Jiskoot
- Department of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
22
|
Tong PH, Zhu L, Zang Y, Li J, He XP, James TD. Metal-organic frameworks (MOFs) as host materials for the enhanced delivery of biomacromolecular therapeutics. Chem Commun (Camb) 2021; 57:12098-12110. [PMID: 34714306 DOI: 10.1039/d1cc05157a] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomacromolecular drugs have become an important class of therapeutic agents for the treatment of human diseases. Considering their high propensity for being degraded in the human body, the choice of an appropriate delivery system is key to ensure the therapeutic efficacy of biomacromolecular drugs in vivo. As an emerging class of supramolecular "host" materials, metal-organic frameworks (MOFs) exhibit advantages in terms of the tunability of pore size, encapsulation efficiency, controllable drug release, simplicity in surface functionalization and good biocompatibility. As a result, MOF-based host-guest systems have been extensively developed as a new class of flexible and powerful platform for the delivery of therapeutic biomacromolecules. In this review, we summarize current research progress in the synthesis of MOFs as delivery materials for a variety of biomacromolecules. Firstly, we briefly introduce the advances made in the use of biomacromolecular drugs for disease therapy and the types of commonly used clinical delivery systems. We then describe the advantages of using MOFs as delivery materials. Secondly, the strategies for the construction of MOF-encapsulated biomacromolecules (Biomacromolecules@MOFs) and the release mechanisms of the therapeutics are categorized. Thirdly, the application of MOFs to deliver different types of biomacromolecules (e.g., antigens/antibodies, enzymes, therapeutic proteins, DNA/RNA, polypeptides, and polysaccharides) for the treatment of various human diseases based on immunotherapy, gene therapy, starvation therapy and oxidation therapy is summarized. Finally, the remaining challenges and available opportunities for MOFs as drug delivery systems are outlined, which we anticipate will encourage additional research efforts directed towards developing Biomacromolecules@MOFs systems for biomedical applications.
Collapse
Affiliation(s)
- Pei-Hong Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Ling Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
23
|
Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, Sangkanjanavanich S, Morita H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? FRONTIERS IN ALLERGY 2021; 2:747323. [PMID: 35387059 PMCID: PMC8974870 DOI: 10.3389/falgy.2021.747323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms remain uncontrolled despite medication and allergen avoidance. AIT is considered to have been effective if it alleviated allergic symptoms, decreased medication use, improved the quality of life even after treatment cessation, and prevented the progression of AR to asthma and the onset of new sensitization. AIT can be administered subcutaneously or sublingually, and novel routes are still being developed, such as intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through modification of innate and adaptive immunologic responses. The main mechanism of AIT is control of type 2 inflammatory cells through induction of various functional regulatory cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells (DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However, AIT has a number of disadvantages: the long treatment period required to achieve greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants, and novel vaccine technologies are being studied to overcome the problems associated with AIT. This review presents an updated overview of AIT, with a special focus on AR.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- *Correspondence: Tadech Boonpiyathad
| | - Mongkol Lao-Araya
- Faculty of Medicine, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Faculty of Medicine Ramathibodi Hospital, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
24
|
Dogmas, challenges, and promises in phase III allergen immunotherapy studies. World Allergy Organ J 2021; 14:100578. [PMID: 34659627 PMCID: PMC8487954 DOI: 10.1016/j.waojou.2021.100578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
The concept of treatment of an allergy with the offending allergen was introduced more than a century ago. Allergen immunotherapy (AIT) is the only disease modifying treatment of allergic diseases caused by inhalational allergens and insect venoms. Despite this, only few AIT products have reached licensure in the US or an official marketing authorization status in European countries. Moreover, most of these AIT products are provided on an individual patient basis as named patient products (NPP) in Europe, while individualized preparations of (mixed) allergenic extract vials for subcutaneous administration (compounding) is common practice in the US. AIT products are generally considered safe and well tolerated, but the major practical clinical development challenge is to define the optimal dose and prove the efficacy and safety of these products using state-of-the art Phase II and pivotal Phase III studies. In planning Phase II-III AIT studies, a thorough understanding of the study challenges is essential (e.g. variability and non-validated status of subjective primary endpoints, limitations of pollen season definitions) and dogmas of these products (e.g., for sublingual immunotherapy (SLIT) trials double-blinding conditions cannot be maintained, resulting in stronger placebo responses in the active treatment group and inflated treatment effects in Phase III). There is future promise for more objective biomarker endpoints (e.g. basophil activation (CD63 and CD203c), subsets of regulatory dendritic, T and B cells, IL-10–producing group 2 innate lymphoid cells; alone or in combination) to overcome several of these dogmas and challenges; innovation in AIT clinical trials can only progress with integral biomarker research to complement the traditional endpoints in Phase II-III clinical development. The aim of this paper is to provide an overview of these dogmas, challenges and recommendations based on published data, to facilitate the design of Phase III studies and improve the evidence basis of safe and effective AIT products.
Collapse
|
25
|
Elevated IgG Antibody to Aluminum Bound to Human Serum Albumin in Patients with Crohn's, Celiac and Alzheimer's Disease. TOXICS 2021; 9:toxics9090212. [PMID: 34564363 PMCID: PMC8473134 DOI: 10.3390/toxics9090212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022]
Abstract
Aluminum is in our water and food, and is used as an adjuvant in vaccines. About 40% of the ingested dose accumulates within the intestinal mucosa, making the gut the main target of inflammation and autoimmunity; about 1% accumulates in the skeletal system and brain, inducing the cross-linking of amyloid-β-42 peptide and the formation of amyloid aggregates associated with Alzheimer's disease. To examine whether the accumulation of aluminum in the gut and brain tissues results in neoantigen formation, we bound aluminum compounds to human serum albumin. We used ELISA to measure IgG antibody in 94 different sera from healthy controls and 47 sera from each group of patients: anti-Saccharomyces cerevisiae antibody-positive (Crohn's), and positive for deamidated α-gliadin and transglutaminase-2 IgA antibodies (celiac disease), autoimmune disorders associated with intestinal tissue antigens. Because earlier studies have shown that aluminum exposure is linked to Alzheimer's disease etiology, and high aluminum content is detected in Alzheimer's patients' brain tissue, we also measured aluminum antibody in the blood of these patients. Additionally, we measured aluminum antibody in the sera of mixed connective tissue disease patients who were positive for antinuclear antibodies, and used them as disease controls. We found significant IgG antibody elevation against all three aluminum compounds in the sera of patients with Crohn's, celiac and Alzheimer's disease, but not in patients with mixed connective tissue disease. We concluded that aluminum ingestion and absorption from the GI tract and brain may contribute to Crohn's, celiac and Alzheimer's disease, but not to mixed connective tissue disease.
Collapse
|
26
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Hamaguchi I. Nasal alum-adjuvanted vaccine promotes IL-33 release from alveolar epithelial cells that elicits IgA production via type 2 immune responses. PLoS Pathog 2021; 17:e1009890. [PMID: 34460865 PMCID: PMC8432758 DOI: 10.1371/journal.ppat.1009890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/10/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Aluminum hydroxide salts (alum) have been added to inactivated vaccines as safe and effective adjuvants to increase the effectiveness of vaccination. However, the exact cell types and immunological factors that initiate mucosal immune responses to alum adjuvants are unclear. In this study, the mechanism of action of alum adjuvant in nasal vaccination was investigated. Alum has been shown to act as a powerful and unique adjuvant when added to a nasal influenza split vaccine in mice. Alum is cytotoxic in the alveoli and stimulates the release of damage-associated molecular patterns, such as dsDNA, interleukin (IL)-1α, and IL-33. We found that Ag-specific IgA antibody (Ab) production was markedly reduced in IL-33-deficient mice. However, no decrease was observed in Ag-specific IgA Ab production with DNase I treatment, and no decrease was observed in IL-1α/β or IL-6 production in IL-33-deficient mice. From the experimental results of primary cultured cells and immunofluorescence staining, although IL-1α was secreted by alveolar macrophage necroptosis, IL-33 release was observed in alveolar epithelial cell necroptosis but not in alveolar macrophages. Alum- or IL-33-dependent Ag uptake enhancement and elevation of OX40L expression were not observed. By stimulating the release of IL-33, alum induced Th2 immunity via IL-5 and IL-13 production in group 2 innate lymphoid cells (ILC2s) and increased MHC class II expression in antigen-presenting cells (APCs) in the lung. Our results suggest that IL-33 secretion by epithelial cell necroptosis initiates APC- and ILC2-mediated T cell activation, which is important for the enhancement of Ag-specific IgA Ab production by alum. Aluminum salts have been used as adjuvants in many vaccines. Aluminum salts induce Th2 immunity and vaccine antigen-specific antibody production aluminum salts elicit adjuvant action via cytokine production. Currently, the mechanisms underlying aluminum salt function in nasal vaccination are unknown, and elucidation of the mechanism is important for the development of particulate adjuvants. This study focused on the cytokines released from dead cells as induced by aluminum salt. This study found that aluminum adjuvant caused release of the cytokine interleukin (IL)-33 from alveolar epithelial cells by inducing necrosis. IL-33 is also crucial for antigen-specific IgA antibody production by nasal vaccination. Aluminum adjuvant also induces alveolar macrophage necrosis, which is not accompanied by IL-33 release. Aluminum salt-induced IL-33 acts as an activator for group 2 innate lymphoid cells and antigen-presenting cells in the lung. This means that by developing an adjuvant that targets the release of IL-33, it may be possible to develop a highly effective nasal vaccine. IL-33 significantly contributes to the efficacy of nasal vaccines and provides new insights into the mechanisms underlying aluminum adjuvants, showing that lung parenchymal tissue, rather than macrophages and lymphocytes, is the source of IL-33.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
- * E-mail: (ES); (TM)
| | - Hideki Asanuma
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
- * E-mail: (ES); (TM)
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi–Murayama, Tokyo, Japan
| |
Collapse
|
27
|
Pfaar O, Creticos PS, Kleine-Tebbe J, Canonica GW, Palomares O, Schülke S. One Hundred Ten Years of Allergen Immunotherapy: A Broad Look Into the Future. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1791-1803. [PMID: 33966868 DOI: 10.1016/j.jaip.2020.12.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment option for patients with type 1-mediated allergic diseases such as allergic rhinitis/rhinoconjunctivitis with/without allergic asthma. Although many innovations have been developed since the first clinical report of Noon et al in 1911, the improvement of clinical efficacy and tolerability of this treatment is still an important unmet need. Hence, much progress has been made in the characterization of the cell types, cytokines, and intracellular signaling events involved in the development, maintenance, and regulation of allergic reactions, and also in the understanding of the mechanisms of tolerance induction in AIT. This comprehensive review aims to summarize the current innovative approaches in AIT, but also gives an outlook on promising candidates of the future. On the basis of an extensive literature review, integrating a clinical point of view, this article focuses on recent and future innovations regarding biologicals, allergen-derived peptides, recombinant allergens, "Toll"-like receptor agonists and other adjuvants, and novel application routes being developed for future AIT.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany.
| | - Peter S Creticos
- Division of Allergy & Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Creticos Research Group, Crownsville, Md
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient & Clinical Research Center, Hanf, Ackermann & Kleine-Tebbe, Berlin, Germany
| | - Giorgio Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic, Humanitas University & Research Hospital-IRCCS, Milano, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Stefan Schülke
- Vice Presidents Research Group, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
28
|
Landers JJ, O'Konek JJ. Vaccines as therapies for food allergies. ADVANCES IN PHARMACOLOGY 2021; 91:229-258. [PMID: 34099110 DOI: 10.1016/bs.apha.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Food allergy is a growing public health epidemic with few available treatments beyond allergen avoidance and rescue medications for accidental exposures. A major focus of therapeutic development for food allergies is allergen-specific immunotherapy (AIT) in which patients are exposed to increasing amounts of allergen in controlled dosing to induce desensitization or tolerance. The work of the past few decades has culminated in the recent FDA approval of a peanut product for oral AIT for peanut allergies. Despite these advances, current AIT protocols are cumbersome, take a long time to reach clinical benefit and often have significant side effects. Therefore, there is a great need to develop new therapeutics for food allergy. One area of research aims to improve AIT through the use of adjuvants which are substances traditionally added to vaccines to stimulate or direct a specific immune response. Adjuvants that induce Th1-polarized and regulatory immune responses while suppressing Th2 immunity have shown the most promise in animal models. The addition of adjuvants to AIT may reduce the amount and frequency of allergen required to achieve clinical benefit and may induce more long-lasting immune responses. In this chapter, we highlight examples of adjuvanted AIT and vaccines in development to treat food allergies.
Collapse
Affiliation(s)
- Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
29
|
Montamat G, Leonard C, Poli A, Klimek L, Ollert M. CpG Adjuvant in Allergen-Specific Immunotherapy: Finding the Sweet Spot for the Induction of Immune Tolerance. Front Immunol 2021; 12:590054. [PMID: 33708195 PMCID: PMC7940844 DOI: 10.3389/fimmu.2021.590054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Prevalence and incidence of IgE-mediated allergic diseases have increased over the past years in developed and developing countries. Allergen-specific immunotherapy (AIT) is currently the only curative treatment available for allergic diseases that has long-term efficacy. Although AIT has been proven successful as an immunomodulatory therapy since its beginnings, it still faces several unmet needs and challenges today. For instance, some patients can experience severe side effects, others are non-responders, and prolonged treatment schedules can lead to lack of patient adherence and therapy discontinuation. A common strategy to improve AIT relies on the use of adjuvants and immune modulators to boost its effects and improve its safety. Among the adjuvants tested for their clinical efficacy, CpG oligodeoxynucleotide (CpG-ODN) was investigated with limited success and without reaching phase III trials for clinical allergy treatment. However, recently discovered immune tolerance-promoting properties of CpG-ODN place this adjuvant again in a prominent position as an immune modulator for the treatment of allergic diseases. Indeed, it has been shown that the CpG-ODN dose and concentration are crucial in promoting immune regulation through the recruitment of pDCs. While low doses induce an inflammatory response, high doses of CpG-ODN trigger a tolerogenic response that can reverse a pre-established allergic milieu. Consistently, CpG-ODN has also been found to stimulate IL-10 producing B cells, so-called B regulatory cells (Bregs). Accordingly, CpG-ODN has shown its capacity to prevent and revert allergic reactions in several animal models showing its potential as both preventive and active treatment for IgE-mediated allergy. In this review, we describe how CpG-ODN-based therapies for allergic diseases, despite having shown limited success in the past, can still be exploited further as an adjuvant or immune modulator in the context of AIT and deserves additional attention. Here, we discuss the past and current knowledge, which highlights CpG-ODN as a potential adjuvant to be reevaluated for the enhancement of AIT when used in appropriate conditions and formulations.
Collapse
Affiliation(s)
- Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Cathy Leonard
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ludger Klimek
- Centre for Rhinology and Allergology, Wiesbaden, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| |
Collapse
|
30
|
Gomord V, Stordeur V, Fitchette AC, Fixman ED, Tropper G, Garnier L, Desgagnes R, Viel S, Couillard J, Beauverger G, Trepout S, Ward BJ, van Ree R, Faye L, Vézina LP. Design, production and immunomodulatory potency of a novel allergen bioparticle. PLoS One 2020; 15:e0242867. [PMID: 33259521 PMCID: PMC7707610 DOI: 10.1371/journal.pone.0242867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment with evidence for sustained efficacy. However, it is poorly developed compared to symptomatic drugs. The main reasons come from treatment duration implying monthly injections during 3 to 5 years or daily sublingual use, and the risk of allergic side-effects. To become a more attractive alternative to lifelong symptomatic drug use, improvements to AIT are needed. Among the most promising new immunotherapy strategies is the use of bioparticles for the presentation of target antigen to the immune system as they can elicit strong T cell and B cell immune responses. Virus-like particles (VLPs) are a specific class of bioparticles in which the structural and immunogenic constituents are from viral origin. However, VLPs are ill-suited for use in AIT as their antigenicity is linked to structure. Recently, synthetic biology has been used to produce artificial modular bioparticles, in which supramolecular assemblies are made of elements from heterogeneous biological sources promoting the design and use of in vivo-assembling enveloped bioparticles for viral and non-viral antigens presentation. We have used a coiled-coil hybrid assembly for the design of an enveloped bioparticle (eBP) that present trimers of the Der p 2 allergen at its surface, This bioparticle was produced as recombinant and in vivo assembled eBPs in plant. This allergen biotherapeutic was used to demonstrate i) the capacity of plants to produce synthetic supramolecular allergen bioparticles, and ii) the immunomodulatory potential of naturally-assembled allergen bioparticles. Our results show that allergens exposed on eBPs induced a very strong IgG response consisting predominantly of IgG2a in favor of the TH1 response. Finally, our results demonstrate that rDer p 2 present on the surface of BPs show a very limited potential to stimulate the basophil degranulation of patient allergic to this allergen which is predictive of a high safety potential.
Collapse
Affiliation(s)
- Véronique Gomord
- ANGANY Innovation, Val de Reuil, France
- ANGANY Inc, Québec, Québec, Canada
| | | | | | - Elizabeth D. Fixman
- McGill University Health Centre, Research Institute (RI MUHC), Montreal, Quebec, Canada
| | | | - Lorna Garnier
- Service d’Immunologie Biologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | | | - Sébastien Viel
- Service d’Immunologie Biologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | | | | | - Sylvain Trepout
- IR2 Inserm, Plateforme de microscopie électronique, INSERM US43/CNRS UMS2016, Institut Curie, Orsay, France
| | - Brian J. Ward
- McGill University Health Centre, Research Institute (RI MUHC), Montreal, Quebec, Canada
| | - Ronald van Ree
- Department of Experimental Immunology, Molecular and Translational Allergy, Amsterdam, Netherlands
| | - Loic Faye
- ANGANY Innovation, Val de Reuil, France
| | | |
Collapse
|
31
|
Lee ALZ, Yang C, Gao S, Wang Y, Hedrick JL, Yang YY. Biodegradable Cationic Polycarbonates as Vaccine Adjuvants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52285-52297. [PMID: 33179910 DOI: 10.1021/acsami.0c09649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, biodegradable cationic polycarbonate and polylactide block copolymers were synthesized and successfully used as novel vaccine adjuvants to provide enhanced anticancer immunity. The polymers formed nanoparticles with the model vaccine, ovalbumin (OVA), and the immunostimulant toll-like receptor 3 agonist poly(I:C) (a synthetic analog of the double-stranded RNA). Higher uptake of poly(I:C) by the bone marrow-derived dendritic cells and macrophages and OVA by dendritic cells was observed when delivered using the polymer adjuvant. In vivo experiments showed that these nanoparticles remained longer in the subcutaneous injection site as compared to OVA alone and led to higher production of anti-OVA specific antibodies with prolonged immunostimulation. When OVA was combined with poly(I:C) that was either co-entrapped in the same particles or as separate particles, a comparable level of anti-OVA IgG1 antibodies and interleukin-6 (IL-6) was produced in mouse blood plasma, and a similar level of cytotoxic T lymphocyte (CTL) response in mice was stimulated as compared to OVA/Alum particles. Furthermore, tumor rejection in the mice that were vaccinated for 9 months with the formulations containing the polymer adjuvant was stronger than the other treatment groups without the polymer. Notably, the cationic polycarbonates were not associated with any adverse in vivo effects. Thus, these biodegradable polymers may be promising substitutes for aluminum-based adjuvants in vaccine formulations.
Collapse
Affiliation(s)
- Ashlynn L Z Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, 31 Biopolis Way, #09-01 The Nanos, Singapore 138669, Singapore
| | - Yanming Wang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - James L Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
32
|
Heath MD, Mohsen MO, de Kam PJ, Carreno Velazquez TL, Hewings SJ, Kramer MF, Kündig TM, Bachmann MF, Skinner MA. Shaping Modern Vaccines: Adjuvant Systems Using MicroCrystalline Tyrosine (MCT ®). Front Immunol 2020; 11:594911. [PMID: 33324411 PMCID: PMC7721672 DOI: 10.3389/fimmu.2020.594911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
The concept of adjuvants or adjuvant systems, used in vaccines, exploit evolutionary relationships associated with how the immune system may initially respond to a foreign antigen or pathogen, thus mimicking natural exposure. This is particularly relevant during the non-specific innate stage of the immune response; as such, the quality of this response may dictate specific adaptive responses and conferred memory/protection to that specific antigen or pathogen. Therefore, adjuvants may optimise this response in the most appropriate way for a specific disease. The most commonly used traditional adjuvants are aluminium salts; however, a biodegradable adjuvant, MCT®, was developed for application in the niche area of allergy immunotherapy (AIT), also in combination with a TLR-4 adjuvant-Monophosphoryl Lipid A (MPL®)-producing the first adjuvant system approach for AIT in the clinic. In the last decade, the use and effectiveness of MCT® across a variety of disease models in the preclinical setting highlight it as a promising platform for adjuvant systems, to help overcome the challenges of modern vaccines. A consequence of bringing together, for the first time, a unified view of MCT® mode-of-action from multiple experiments and adjuvant systems will help facilitate future rational design of vaccines while shaping their success.
Collapse
Affiliation(s)
- Matthew D. Heath
- Allergy Therapeutics (UK) Ltd, Worthing, United Kingdom
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
| | - Mona O. Mohsen
- Interim Translational Research Institute “iTRI”, National Center for Cancer Care and Research (NCCCR), Doha, Qatar
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland
| | | | | | - Simon J. Hewings
- Allergy Therapeutics (UK) Ltd, Worthing, United Kingdom
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
| | - Matthias F. Kramer
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
- Bencard Allergie (GmbH), München, Germany
| | | | - Martin F. Bachmann
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Murray A. Skinner
- Allergy Therapeutics (UK) Ltd, Worthing, United Kingdom
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
| |
Collapse
|
33
|
Kirtland ME, Tsitoura DC, Durham SR, Shamji MH. Toll-Like Receptor Agonists as Adjuvants for Allergen Immunotherapy. Front Immunol 2020; 11:599083. [PMID: 33281825 PMCID: PMC7688745 DOI: 10.3389/fimmu.2020.599083] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
Toll-like receptors (TLRs) are essential components of innate immunity and provide defensive inflammatory responses to invading pathogens. Located within the plasma membranes of cells and also intracellular endosomes, TLRs can detect a range of pathogen associated molecular patterns from bacteria, viruses and fungi. TLR activation on dendritic cells can propagate to an adaptive immune response, making them attractive targets for the development of both prophylactic and therapeutic vaccines. In contrast to conventional adjuvants such as aluminium salts, TLR agonists have a clear immunomodulatory profile that favours anti-allergic T lymphocyte responses. Consequently, the potential use of TLRs as adjuvants in Allergen Immunotherapy (AIT) for allergic rhinitis and asthma remains of great interest. Allergic Rhinitis is a Th2-driven, IgE-mediated disease that occurs in atopic individuals in response to exposure to otherwise harmless aeroallergens such as pollens, house dust mite and animal dander. AIT is indicated in subjects with allergic rhinitis whose symptoms are inadequately controlled by antihistamines and nasal corticosteroids. Unlike anti-allergic drugs, AIT is disease-modifying and may induce long-term disease remission through mechanisms involving upregulation of IgG and IgG4 antibodies, induction of regulatory T and B cells, and immune deviation in favour of Th1 responses that are maintained after treatment discontinuation. This process takes up to three years however, highlighting an unmet need for a more efficacious therapy with faster onset. Agonists targeting different TLRs to treat allergy are at different stages of development. Synthetic TLR4, and TLR9 agonists have progressed to clinical trials, while TLR2, TLR5 and TLR7 agonists been shown to have potent anti-allergic effects in human in vitro experiments and in vivo in animal studies. The anti-allergic properties of TLRs are broadly characterised by a combination of enhanced Th1 deviation, regulatory responses, and induction of blocking antibodies. While promising, a durable effect in larger clinical trials is yet to be observed and further long-term studies and comparative trials with conventional AIT are required before TLR adjuvants can be considered for inclusion in AIT. Here we critically evaluate experimental and clinical studies investigating TLRs and discuss their potential role in the future of AIT.
Collapse
Affiliation(s)
- Max E Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| | - Daphne C Tsitoura
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Shakya AK, Lee CH, Gill HS. Microneedle-Mediated Allergen-Specific Immunotherapy for the Treatment of Airway Allergy in Mice. Mol Pharm 2020; 17:3033-3042. [DOI: 10.1021/acs.molpharmaceut.0c00447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Akhilesh Kumar Shakya
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Chang Hyun Lee
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
35
|
Schijns V, Fernández-Tejada A, Barjaktarović Ž, Bouzalas I, Brimnes J, Chernysh S, Gizurarson S, Gursel I, Jakopin Ž, Lawrenz M, Nativi C, Paul S, Pedersen GK, Rosano C, Ruiz-de-Angulo A, Slütter B, Thakur A, Christensen D, Lavelle EC. Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunol Rev 2020; 296:169-190. [PMID: 32594569 PMCID: PMC7497245 DOI: 10.1111/imr.12889] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Therapeutic vaccination offers great promise as an intervention for a diversity of infectious and non-infectious conditions. Given that most chronic health conditions are thought to have an immune component, vaccination can at least in principle be proposed as a therapeutic strategy. Understanding the nature of protective immunity is of vital importance, and the progress made in recent years in defining the nature of pathological and protective immunity for a range of diseases has provided an impetus to devise strategies to promote such responses in a targeted manner. However, in many cases, limited progress has been made in clinical adoption of such approaches. This in part results from a lack of safe and effective vaccine adjuvants that can be used to promote protective immunity and/or reduce deleterious immune responses. Although somewhat simplistic, it is possible to divide therapeutic vaccine approaches into those targeting conditions where antibody responses can mediate protection and those where the principal focus is the promotion of effector and memory cellular immunity or the reduction of damaging cellular immune responses as in the case of autoimmune diseases. Clearly, in all cases of antigen-specific immunotherapy, the identification of protective antigens is a vital first step. There are many challenges to developing therapeutic vaccines beyond those associated with prophylactic diseases including the ongoing immune responses in patients, patient heterogeneity, and diversity in the type and stage of disease. If reproducible biomarkers can be defined, these could allow earlier diagnosis and intervention and likely increase therapeutic vaccine efficacy. Current immunomodulatory approaches related to adoptive cell transfers or passive antibody therapy are showing great promise, but these are outside the scope of this review which will focus on the potential for adjuvanted therapeutic active vaccination strategies.
Collapse
Affiliation(s)
- Virgil Schijns
- Wageningen University, Cell Biology & Immunology and, ERC-The Netherlands, Schaijk, Landerd campus, The Netherlands
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Žarko Barjaktarović
- Agency for Medicines and Medical Devices of Montenegro, Podgorica, Montenegro
| | - Ilias Bouzalas
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute, Thessaloniki, Greece
| | | | - Sergey Chernysh
- Laboratory of Insect Biopharmacology and Immunology, Department of Entomology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maria Lawrenz
- Vaccine Formulation Institute (CH), Geneva, Switzerland
| | - Cristina Nativi
- Department of Chemistry, University of Florence, Florence, Italy
| | | | | | | | - Ane Ruiz-de-Angulo
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain
| | - Bram Slütter
- Div. BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Zahirović A, Luzar J, Molek P, Kruljec N, Lunder M. Bee Venom Immunotherapy: Current Status and Future Directions. Clin Rev Allergy Immunol 2020; 58:326-341. [PMID: 31240545 DOI: 10.1007/s12016-019-08752-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bee venom immunotherapy is the main treatment option for bee sting allergy. Its major limitations are the high percentage of allergic side effects and long duration, which are driving the development of novel therapeutic modalities. Three general approaches have been evaluated including the use of hypoallergenic allergen derivatives, adjunctive therapy, and alternative delivery routes. This article reviews preclinical and clinical evidence on the therapeutic potential of these new therapies. Among hypoallergenic derivatives, hybrid allergens showed a markedly reduced IgE reactivity in mouse models. Whether they will offer therapeutic benefit over extract, it is still not known since clinical trials have not been carried out yet. T cell epitope peptides have proven effective in small clinical trials. Major histocompatibility complex class II restriction was circumvented by using long overlapping or promiscuous T cell epitope peptides. However, the T cell-mediated late-phase adverse events have been reported with both short and longer peptides. Application of mimotopes could potentially overcome both T cell- and IgE-mediated adverse events. During this evolution of vaccine, there has been a gain in safety. The efficacy was further improved with the use of Toll-like receptor-activating adjuvants and delivery systems. In murine models, the association of allergen Api m 1 with cytosine-guanosine rich oligonucleotides stimulated strong T-helper type-1 response, whereas its encapsulation into microbubbles protected mice against allergen challenge. An intralymphatic administration of low-dose vaccine has shown the potential to decrease treatment from 5 years to only 12 weeks. Bigger clinical trials are needed to follow up on these results.
Collapse
Affiliation(s)
- Abida Zahirović
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia.
| | - Jernej Luzar
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Peter Molek
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Nika Kruljec
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Mojca Lunder
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
37
|
Johnson L, Duschl A, Himly M. Nanotechnology-Based Vaccines for Allergen-Specific Immunotherapy: Potentials and Challenges of Conventional and Novel Adjuvants under Research. Vaccines (Basel) 2020; 8:vaccines8020237. [PMID: 32443671 PMCID: PMC7349961 DOI: 10.3390/vaccines8020237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of allergic diseases demands efficient therapeutic strategies for their mitigation. Allergen-specific immunotherapy (AIT) is the only causal rather than symptomatic treatment method available for allergy. Currently, AIT is being administered using immune response modifiers or adjuvants. Adjuvants aid in the induction of a vigorous and long-lasting immune response, thereby improving the efficiency of AIT. The successful development of a novel adjuvant requires a thorough understanding of the conventional and novel adjuvants under development. Thus, this review discusses the potentials and challenges of these adjuvants and their mechanism of action. Vaccine development based on nanoparticles is a promising strategy for AIT, due to their inherent physicochemical properties, along with their ease of production and ability to stimulate innate immunity. Although nanoparticles have provided promising results as an adjuvant for AIT in in vivo studies, a deeper insight into the interaction of nanoparticle-allergen complexes with the immune system is necessary. This review focuses on the methods of harnessing the adjuvant effect of nanoparticles by detailing the molecular mechanisms underlying the immune response, which includes allergen uptake, processing, presentation, and induction of T cell differentiation.
Collapse
|
38
|
Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, Arzt-Gradwohl L, Barber D, Bazire R, Cavkaytar O, Comberiati P, Dramburg S, Durham SR, Eifan AO, Forchert L, Halken S, Kirtland M, Kucuksezer UC, Layhadi JA, Matricardi PM, Muraro A, Ozdemir C, Pajno GB, Pfaar O, Potapova E, Riggioni C, Roberts G, Rodríguez Del Río P, Shamji MH, Sturm GJ, Vazquez-Ortiz M. EAACI Allergen Immunotherapy User's Guide. Pediatr Allergy Immunol 2020; 31 Suppl 25:1-101. [PMID: 32436290 PMCID: PMC7317851 DOI: 10.1111/pai.13189] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergen immunotherapy is a cornerstone in the treatment of allergic children. The clinical efficiency relies on a well-defined immunologic mechanism promoting regulatory T cells and downplaying the immune response induced by allergens. Clinical indications have been well documented for respiratory allergy in the presence of rhinitis and/or allergic asthma, to pollens and dust mites. Patients who have had an anaphylactic reaction to hymenoptera venom are also good candidates for allergen immunotherapy. Administration of allergen is currently mostly either by subcutaneous injections or by sublingual administration. Both methods have been extensively studied and have pros and cons. Specifically in children, the choice of the method of administration according to the patient's profile is important. Although allergen immunotherapy is widely used, there is a need for improvement. More particularly, biomarkers for prediction of the success of the treatments are needed. The strength and efficiency of the immune response may also be boosted by the use of better adjuvants. Finally, novel formulations might be more efficient and might improve the patient's adherence to the treatment. This user's guide reviews current knowledge and aims to provide clinical guidance to healthcare professionals taking care of children undergoing allergen immunotherapy.
Collapse
Affiliation(s)
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cherry Alviani
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elisabeth Angier
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Stefania Arasi
- Pediatric Allergology Unit, Department of Pediatric Medicine, Bambino Gesù Children's research Hospital (IRCCS), Rome, Italy
| | - Lisa Arzt-Gradwohl
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Domingo Barber
- School of Medicine, Institute for Applied Molecular Medicine (IMMA), Universidad CEU San Pablo, Madrid, Spain.,RETIC ARADYAL RD16/0006/0015, Instituto de Salud Carlos III, Madrid, Spain
| | - Raphaëlle Bazire
- Allergy Department, Hospital Infantil Niño Jesús, ARADyAL RD16/0006/0026, Madrid, Spain
| | - Ozlem Cavkaytar
- Department of Paediatric Allergy and Immunology, Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Pasquale Comberiati
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Stephanie Dramburg
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Stephen R Durham
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Aarif O Eifan
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospitals NHS Foundation Trust, London, UK
| | - Leandra Forchert
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Max Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Umut C Kucuksezer
- Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul University, Istanbul, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Paolo Maria Matricardi
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Antonella Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Women and Child Health, University of Padua, Padua, Italy
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey.,Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | | | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Ekaterina Potapova
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Carmen Riggioni
- Pediatric Allergy and Clinical Immunology Service, Institut de Reserca Sant Joan de Deú, Barcelona, Spain
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | | | - Mohamed H Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
39
|
Jensen‐Jarolim E, Bachmann MF, Bonini S, Jacobsen L, Jutel M, Klimek L, Mahler V, Mösges R, Moingeon P, O´Hehir RE, Palomares O, Pfaar O, Renz H, Rhyner C, Roth‐Walter F, Rudenko M, Savolainen J, Schmidt‐Weber CB, Traidl‐Hoffmann C, Kündig T. State-of-the-art in marketed adjuvants and formulations in Allergen Immunotherapy: A position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; 75:746-760. [PMID: 31774179 DOI: 10.1111/all.14134] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
Abstract
Since the introduction of allergen immunotherapy (AIT) over 100 years ago, focus has been on standardization of allergen extracts, with reliable molecular composition of allergens receiving the highest attention. While adjuvants play a major role in European AIT, they have been less well studied. In this Position Paper, we summarize current unmet needs of adjuvants in AIT citing current evidence. Four adjuvants are used in products marketed in Europe: aluminium hydroxide (Al(OH)3 ) is the most frequently used adjuvant, with microcrystalline tyrosine (MCT), monophosphoryl lipid A (MPLA) and calcium phosphate (CaP) used less frequently. Recent studies on humans, and using mouse models, have characterized in part the mechanisms of action of adjuvants on pre-existing immune responses. AIT differs from prophylactic vaccines that provoke immunity to infectious agents, as in allergy the patient is presensitized to the antigen. The intended mode of action of adjuvants is to simultaneously enhance the immunogenicity of the allergen, while precipitating the allergen at the injection site to reduce the risk of anaphylaxis. Contrasting immune effects are seen with different adjuvants. Aluminium hydroxide initially boosts Th2 responses, while the other adjuvants utilized in AIT redirect the Th2 immune response towards Th1 immunity. After varying lengths of time, each of the adjuvants supports tolerance. Further studies of the mechanisms of action of adjuvants may advise shorter treatment periods than the current three-to-five-year regimens, enhancing patient adherence. Improved lead compounds from the adjuvant pipeline are under development and are explored for their capacity to fill this unmet need.
Collapse
Affiliation(s)
- Erika Jensen‐Jarolim
- Institute of Pathophysiology & Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | - Martin F. Bachmann
- Institute of Immunology Inselspital University of Berne Bern Switzerland
| | - Sergio Bonini
- Institute of Translational Pharmacology Italian National Research Council Rome Italy
| | - Lars Jacobsen
- ALC, Allergy Learning & Consulting Copenhagen Denmark
| | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wrocław Poland
- ALL‐MED Medical Research Institute Wroclaw Poland
| | - Ludger Klimek
- Center of Rhinology and Allergology Wiesbaden Germany
| | - Vera Mahler
- Division of Allergology Paul‐Ehrlich‐Institut Federal Institute for Vaccines and Biomedicines Langen Germany
| | - Ralph Mösges
- CRI‐Clinical Research International Ltd Hamburg Germany
- Institute of Medical Statistics and Bioinformatics University of Cologne Cologne Germany
| | - Philippe Moingeon
- Center for Therapeutic Innovation – Immuno‐Inflammatory Disease Servier Suresnes France
| | - Robyn E. O´Hehir
- Department of Respiratory Medicine, Allergy and Clinical Immunology (Research) Central Clinical School Monash University and Alfred Hospital Melbourne Vic. Australia
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology Chemistry School Complutense University of Madrid Madrid Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Harald Renz
- Institute of Laboratory Medicine Universities of Giessen and Marburg Lung Center (UGMLC) German Center for Lung Research (DZL) Philipps Universität Marburg Marburg Germany
| | - Claudio Rhyner
- SIAF – Swiss Institute of Allergy and Asthma Research Davos Switzerland
| | - Franziska Roth‐Walter
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | | | - Johannes Savolainen
- Department of Pulmonary Diseases and Clinical Allergology University of Turku and Turku University Hospital Turku Finland
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) German Center of Lung Research (DZL) and Helmholtz I&I Initiative Technical University, and Helmholtz Center Munich Munich Germany
| | - Claudia Traidl‐Hoffmann
- Institute of Environmental Medicine (IEM) Technical University Munich and Helmholtz Center Munich Munich Germany
| | - Thomas Kündig
- Department of Dermatology University Hospital Zurich Zurich Switzerland
| |
Collapse
|
40
|
Benito‐Villalvilla C, Soria I, Pérez‐Diego M, Fernández‐Caldas E, Subiza JL, Palomares O. Alum impairs tolerogenic properties induced by allergoid-mannan conjugates inhibiting mTOR and metabolic reprogramming in human DCs. Allergy 2020; 75:648-659. [PMID: 31494959 PMCID: PMC7079174 DOI: 10.1111/all.14036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Background Polymerized allergoids conjugated to mannan (PM) are suitable vaccines for allergen‐specific immunotherapy (AIT). Alum remains the most widely used adjuvant in AIT, but its way of action is not completely elucidated. The better understanding of the mechanisms underlying alum adjuvanticity could help to improve AIT vaccine formulations. Objective We sought to investigate the potential influence of alum in the tolerogenic properties imprinted by PM at the molecular level. Methods Flow cytometry, ELISAs, cocultures, intracellular staining and suppression assays were performed to assess alum and PM effects in human dendritic cells (DCs). BALB/c mice were immunized with PM alone or adsorbed to alum. Allergen‐specific antibodies, splenocyte cytokine production and splenic forkhead box P3 (FOXP3)+ regulatory T (Treg) cells were quantified. Metabolic and immune pathways were also studied in human DCs. Results Alum decreases PD‐L1 expression and IL‐10 production induced by PM in human DCs and increases pro‐inflammatory cytokine production. Alum impairs PM‐induced functional FOXP3+ Treg cells and promotes Th1/Th2/Th17 responses. Subcutaneous immunization of mice with PM plus alum inhibits in vivo induction of Treg cells promoted by PM without altering the capacity to induce functional allergen‐specific blocking antibodies. Alum inhibits mTOR activation and alters metabolic reprogramming by shifting glycolytic pathways and inhibiting reactive oxygen species (ROS) production in PM‐activated DCs, impairing their capacity to generate functional Treg cells. Conclusion We uncover novel mechanisms by which alum impairs the tolerogenic properties induced by PM, which might well contribute to improve the formulation of novel vaccines for AIT.
Collapse
Affiliation(s)
| | | | - Mario Pérez‐Diego
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Enrique Fernández‐Caldas
- Inmunotek Alcalá de Henares Madrid Spain
- University of South Florida College of Medicine Tampa FL USA
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| |
Collapse
|
41
|
Baker MG, Wang J. Could This Be IT? Epicutaneous, Sublingual, and Subcutaneous Immunotherapy for the Treatment of Food Allergies. Curr Allergy Asthma Rep 2019; 19:53. [PMID: 31768649 DOI: 10.1007/s11882-019-0885-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Over the last decade, there has been a spark in innovation in the development of therapies for food allergy. Herein, we describe the background and recent advances for food-specific immunotherapies including epicutaneous (EPIT), sublingual (SLIT), and subcutaneous (SCIT). RECENT FINDINGS Studies have progressed most quickly for the treatment of peanut allergy. Data from the phase 3 EPIT trial add to the accumulating evidence that this will be a viable therapy for peanut allergy. Studies for SLIT and SCIT remain in earlier phases with promising results. This is an exciting era for the treatment of food allergy. Multiple therapies are under investigation, each with their own potential advantages. Specific strengths and limitations of each of these therapies may provide an opportunity to personalize the choice of therapy for individual patients.
Collapse
Affiliation(s)
- Mary Grace Baker
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1198, New York, NY, 10029, USA
| | - Julie Wang
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1198, New York, NY, 10029, USA.
| |
Collapse
|
42
|
Entwicklung der subkutanen Allergen-Immuntherapie (Teil 2): präventive Aspekte der SCIT und Innovationen. ALLERGO JOURNAL 2019. [DOI: 10.1007/s15007-019-1847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Development of subcutaneous allergen immunotherapy (part 2): preventive aspects and innovations. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40629-019-0097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Omran GA. Hematological and immunological impairment following in-utero and postnatal exposure to aluminum sulfate in female offspring of albino rats. Immunopharmacol Immunotoxicol 2019; 41:40-47. [PMID: 30706732 DOI: 10.1080/08923973.2018.1533967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aim: Aluminum (Al) is a ubiquitous element extensively utilized in many products like food additives, pharmaceuticals, and vaccines, but its hematotoxic and immunotoxic effects are not entirely clarified. The present study explored the developmental hematotoxic and immunotoxic properties of aluminum sulfate (AS) in rats' offspring. Methods: Forty female offspring (10 rats each) were given three incremental AS doses plus a control group, from conception through lactation and after weaning until reached eight weeks old (near adults). Spleen relative weights along with total and differential blood counts were evaluated. Spectroscopic Al levels in spleen and brain were analyzed. Three immunoglobulins (IgG, IgM, and IgE) and two cytokines, interferon-γ and tumor necrosis factor-α, were measured through the ELISA technique. Results: The results revealed a significant relative increase in splenic weights mostly observed in the highest AS dose treated group. Reduction in the total leukocytic count was noticed in the three AS treated groups with relative lymphocytosis. Additionally, a significant decline in RBCs counts and hemoglobin concentrations were recorded. Tumor necrosis factor-α was significantly elevated in the three Al treated groups, while, interferon- γ showed a non-significant reduction compared to the control group. A significant increment in IgG and decline in IgE concentrations with no change in IgM level among groups were observed. Conclusion: Perinatal AS exposure caused mostly non-linear dose-dependent hematotoxicity and immunological impairment especially for the acquired immunity either cellular or humoral. Further studies can examine the immunotoxic effect of Al on male offspring during different stages of immune development.
Collapse
Affiliation(s)
- Ghada A Omran
- a Faculty of Medicine, Forensic Medicine and Clinical toxicology department , Assiut University , Assiut , Egypt
| |
Collapse
|
45
|
Mazloomi E, Ilkhanizadeh B, Zare A, Mohammadzadeh A, Delirezh N, Shahabi S. Nicotine, as a novel tolerogenic adjuvant, enhances the efficacy of immunotherapy in a mouse model of allergic asthma. Res Pharm Sci 2019; 14:308-319. [PMID: 31516507 PMCID: PMC6714111 DOI: 10.4103/1735-5362.263555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An increasing trend in the incidence of allergic diseases including asthma and related morbidity and mortality is observed worldwide during the last decades. Allergen-specific immunotherapy is suggested for the treatment of some allergic diseases; nevertheless, there is always a menace of uncommon, but life-treating reactions due to increasing the administration of allergen extract doses. Hence, improving its efficacy may reduce the required doses as well as the risk of such reactions. The current study aimed at examining the effects of nicotine (NIC), as a tolerogenic adjuvant, on the improvement of immunotherapy efficacy in a mouse model of allergic asthma. BALB/c mice were sensitized using alum and ovalbumin (OVA) on the days 0 and 7. Mice received OVA either alone or together with NIC (1 or 10 mg/kg) on the days 21, 23, and 25. Then, the mice were challenged with OVA 5% using a nebulizer on the days 35, 38, and 41 and sacrificed the next day. Co-administration of OVA and NIC decreased the inflammation of the lung tissue, eosinophils count in the bronchoalveolar lavage (BAL) fluid, the serum level of OVA-specific immunoglobulin E, as well as interleukin (IL)-4 production, while increasing the population of antigen-specific regulatory T-cells (Treg cells) and transforming growth factor-β/IL-4 (TGF-β/IL-4) ratio compared to the OVA and control groups in a dose-dependent manner. Collectively, the findings suggest that administration of NIC plus the allergen increased immunotherapy efficacy through decreasing allergic inflammation and allergic responses intensity, and increasing Treg cells population.
Collapse
Affiliation(s)
- Ebrahim Mazloomi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Behrooz Ilkhanizadeh
- Department of Pathology, School of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Ahad Zare
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical sciences, Tehran, I.R. Iran
| | - Adel Mohammadzadeh
- Department of Genetics and Immunology, School of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Nowruz Delirezh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, I.R. Iran
| | - Shahram Shahabi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, I.R. Iran
| |
Collapse
|
46
|
Shakya AK, Lee CH, Uddin MJ, Gill HS. Assessment of Th1/Th2 Bias of STING Agonists Coated on Microneedles for Possible Use in Skin Allergen Immunotherapy. Mol Pharm 2018; 15:5437-5443. [PMID: 30299105 DOI: 10.1021/acs.molpharmaceut.8b00768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microneedle-based skin allergen-specific immunotherapy (AIT) can benefit from adjuvants that can stimulate a stronger Th1 response against the allergen. We evaluated two stimulator of interferon genes (STING) agonists, namely, cyclic diguanylate monophosphate (c-di-GMP) and cyclic diadenylate monophosphate (c-di-AMP), as skin adjuvants using coated microneedles (MNs). For comparison, the approved subcutaneous (SC) hypodermic injection containing alum was used. Ovalbumin (Ova) was used as a model allergen. Ova-specific IgG2a antibody in serum, which is a surrogate marker for Th1 type immune response was significantly higher when STING agonists were used with coated MNs as compared to SC injection of Ova+alum in mice. In contrast, IgG1 antibody, a surrogate marker for Th2 type immune response, was at comparable levels in the MN and SC groups. Restimulation of splenocytes with Ova produced higher levels of Th1 cytokines (IFN-γ and IL-2) in the STING agonists MN groups as compared to the SC group. In conclusion, delivery of STING agonists into the skin using coated MNs activated the Th1 pathway better than SC- and MN-based delivery of alum. Thus, STING agonists could fulfill the role of adjuvants for skin AIT and even for infectious disease vaccines, where stimulation of the Th1 pathway is of interest.
Collapse
Affiliation(s)
- Akhilesh Kumar Shakya
- Department of Chemical Engineering , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Chang Hyun Lee
- Department of Chemical Engineering , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Md Jasim Uddin
- Department of Chemical Engineering , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering , Texas Tech University , Lubbock , Texas 79409 , United States
| |
Collapse
|
47
|
Johnson-Weaver BT, Staats HF, Burks AW, Kulis MD. Adjuvanted Immunotherapy Approaches for Peanut Allergy. Front Immunol 2018; 9:2156. [PMID: 30319619 PMCID: PMC6167456 DOI: 10.3389/fimmu.2018.02156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 12/27/2022] Open
Abstract
Food allergies are a growing public health concern with an estimated 8% of US children affected. Peanut allergies are also on the rise and often do not spontaneously resolve, leaving individuals at-risk for potentially life-threatening anaphylaxis throughout their lifetime. Currently, two forms of peanut immunotherapy, oral immunotherapy (OIT) and epicutaneous immunotherapy (EPIT), are in Phase III clinical trials and have shown promise to induce desensitization in many subjects. However, there are several limitations with OIT and EPIT, such as allergic side effects, daily dosing requirements, and the infrequent outcome of long-term tolerance. Next-generation therapies for peanut allergy should aim to overcome these limitations, which may be achievable with adjuvanted immunotherapy. An adjuvant can be defined as anything that enhances, accelerates, or modifies an immune response to a particular antigen. Adjuvants may allow for lower doses of antigen to be given leading to decreased side effects; may only need to be administered every few weeks or months rather than daily exposures; and may induce a long-lasting protective effect. In this review article, we highlight examples of adjuvants and formulations that have shown pre-clinical efficacy in treating peanut allergy.
Collapse
Affiliation(s)
| | - Herman F Staats
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - A Wesley Burks
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,University of North Carolina Food Allergy Initiative, Chapel Hill, NC, United States
| | - Michael D Kulis
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,University of North Carolina Food Allergy Initiative, Chapel Hill, NC, United States
| |
Collapse
|
48
|
Elwood JM, Ameratunga R. Autoimmune diseases after hepatitis B immunization in adults: Literature review and meta-analysis, with reference to 'autoimmune/autoinflammatory syndrome induced by adjuvants' (ASIA). Vaccine 2018; 36:5796-5802. [PMID: 30100071 DOI: 10.1016/j.vaccine.2018.07.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND To assess if hepatitis B vaccination in adults is causally associated with autoimmune diseases. Such causation has been claimed based mainly on case reports and uncontrolled studies, and a syndrome 'Autoimmune/autoinflammatory Disorder Induced by Adjuvants' (ASIA) has been claimed to be linked to immunization, particularly hepatitis B vaccination. METHODS Review of peer-reviewed literature from January 1990 to March 2017 identifying controlled studies with documented incidence of autoimmune diseases occurring after hepatitis B vaccinations in adults. From 1297 studies identified, 259 were further assessed and 49 reviewed further; 19 relevant papers reporting 21 results are reviewed here, and 14 results included in a meta-analysis. RESULTS Overall no association between hepatitis B vaccination and the onset of autoimmune diseases was seen. The overall odds ratio was 1.06, with 95% confidence limits of 0.93-1.21, with non-significant heterogeneity. Only one study showed a significant excess risk between hepatitis B immunisation and autoimmune disease. CONCLUSIONS Despite multiple case reports, there is no reliable scientific evidence of autoimmune diseases being caused by hepatitis B vaccinations.
Collapse
Affiliation(s)
- J Mark Elwood
- School of Population Health, Faculty of Medicine and Health Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Rohan Ameratunga
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, Auckland 1010, New Zealand
| |
Collapse
|
49
|
Gamazo C, D'Amelio C, Gastaminza G, Ferrer M, Irache JM. Adjuvants for allergy immunotherapeutics. Hum Vaccin Immunother 2018; 13:2416-2427. [PMID: 28825867 DOI: 10.1080/21645515.2017.1348447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Allergic diseases are reaching epidemic proportions in developed countries. In particular, food allergy is increasing in prevalence and severity, thus becoming an important socioeconomic burden. Numerous cell types and cell populations, which form an intricate and balanced network, are involved in an immune response. This balance is occasionally disturbed, leading to the onset of different diseases, such as allergic diseases. Antihistamines and corticosteroids provide some degree of relief from the symptoms of allergic conditions. However, the only treatment that can revert the disease is immunotherapy. Nevertheless, specific immunotherapy has at least 2 major drawbacks: it is time-consuming, and it can produce local and even systemic allergic side effects. Immunotherapy's potential goes beyond our current knowledge of the immune response; nevertheless, we can still design strategies to reach a safer immune modulation for treating allergies. This review deals with the use of adjuvants to reduce the undesirable side effects associated with specific allergen immunotherapy. For example, nanoparticles used as immunoadjuvants are offering promising results in preclinical assays.
Collapse
Affiliation(s)
- Carlos Gamazo
- a Dept. Microbiology , Instituto de Investigación Sanitaria de Navarra (Idisna), University of Navarra , Pamplona , Spain
| | - Carmen D'Amelio
- b Department of Allergology and Clinical Immunology , Clínica Universidad de Navarra-Pamplona , Pamplona , Spain
| | - Gabriel Gastaminza
- c Department of Allergology and Clinical Immunology , Clínica Universidad de Navarra-Pamplona , Pamplona , Spain
| | - Marta Ferrer
- d Department of Allergology and Clinical Immunology , Clínica Universidad de Navarra-Pamplona , Pamplona , Spain
| | - Juan M Irache
- e Dept. Pharmacy and Pharmaceutical Technology , University of Navarra , Pamplona , Spain
| |
Collapse
|
50
|
Leuthard DS, Duda A, Freiberger SN, Weiss S, Dommann I, Fenini G, Contassot E, Kramer MF, Skinner MA, Kündig TM, Heath MD, Johansen P. Microcrystalline Tyrosine and Aluminum as Adjuvants in Allergen-Specific Immunotherapy Protect from IgE-Mediated Reactivity in Mouse Models and Act Independently of Inflammasome and TLR Signaling. THE JOURNAL OF IMMUNOLOGY 2018; 200:3151-3159. [PMID: 29592962 PMCID: PMC5911931 DOI: 10.4049/jimmunol.1800035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
Abstract
Allergen immunotherapy (AIT) is the only modality that can modify immune responses to allergen exposure, but therapeutic coverage is low. One strategy to improve AIT safety and efficacy is the use of new or improved adjuvants. This study investigates immune responses produced by microcrystalline tyrosine (MCT)–based vaccines as compared with conventional aluminum hydroxide (alum). Wild-type, immune-signaling–deficient, and TCR-transgenic mice were treated with different Ags (e.g., OVA and cat dander Fel d 1), plus MCT or alum as depot adjuvants. Specific Ab responses in serum were measured by ELISA, whereas cytokine secretion was measured both in culture supernatants by ELISA or by flow cytometry of spleen cells. Upon initiation of AIT in allergic mice, body temperature and further clinical signs were used as indicators for anaphylaxis. Overall, MCT and alum induced comparable B and T cell responses, which were independent of TLR signaling. Alum induced stronger IgE and IL-4 secretion than MCT. MCT and alum induced caspase-dependent IL-1β secretion in human monocytes in vitro, but inflammasome activation had no functional effect on inflammatory and Ab responses measured in vivo. In sensitized mice, AIT with MCT-adjuvanted allergens caused fewer anaphylactic reactions compared with alum-adjuvanted allergens. As depot adjuvants, MCT and alum are comparably effective in strength and mechanism of Ag-specific IgG induction and induction of T cell responses. The biocompatible and biodegradable MCT seems therefore a suitable alternative adjuvant to alum-based vaccines and AIT.
Collapse
Affiliation(s)
- Deborah S Leuthard
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Agathe Duda
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Sina Weiss
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Isabella Dommann
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Emmanuel Contassot
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Matthias F Kramer
- Bencard Allergie GmbH, 80992 Munich, Germany; and.,Allergy Therapeutics Ltd., Worthing BN14 8SA, United Kingdom
| | | | - Thomas M Kündig
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Matthew D Heath
- Allergy Therapeutics Ltd., Worthing BN14 8SA, United Kingdom
| | - Pål Johansen
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland; .,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|