1
|
Sardon-Prado O, Diaz-Garcia C, Corcuera-Elosegui P, Korta-Murua J, Valverde-Molina J, Sanchez-Solis M. Severe Asthma and Biological Therapies: Now and the Future. J Clin Med 2023; 12:5846. [PMID: 37762787 PMCID: PMC10532431 DOI: 10.3390/jcm12185846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Recognition of phenotypic variability in pediatric asthma allows for a more personalized therapeutic approach. Knowledge of the underlying pathophysiological and molecular mechanisms (endotypes) of corresponding biomarkers and new treatments enables this strategy to progress. Biologic therapies for children with severe asthma are becoming more relevant in this sense. The T2 phenotype is the most prevalent in childhood and adolescence, and non-T2 phenotypes are usually rare. This document aims to review the mechanism of action, efficacy, and potential predictive and monitoring biomarkers of biological drugs, focusing on the pediatric population. The drugs currently available are omalizumab, mepolizumab, benralizumab, dupilumab, and 1ezepelumab, with some differences in administrative approval prescription criteria between the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Previously, we described the characteristics of severe asthma in children and its diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Olaia Sardon-Prado
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 20014 Leioa, Spain
| | - Carolina Diaz-Garcia
- Paediatric Pulmonology and Allergy Unit, Santa Lucia General University Hospital, 30202 Cartagena, Spain;
| | - Paula Corcuera-Elosegui
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Javier Korta-Murua
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Jose Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
| | - Manuel Sanchez-Solis
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
- Department of Pediatrics, University of Murcia, 20120 Murcia, Spain
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, 20120 Murcia, Spain
| |
Collapse
|
2
|
黄 奕, 林 丽, 黄 浩, 董 航. [VDAC1 participates in house dust mite-induced asthmatic airway inflammation in mice by inducing ferroptosis of airway epithelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1333-1338. [PMID: 37712269 PMCID: PMC10505576 DOI: 10.12122/j.issn.1673-4254.2023.08.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To investigate the role of voltage-dependent anion-selective channel protein 1 (VDAC1) in house dust mite (HDM)-induced asthmatic airway inflammation and its mechanism for regulating ferroptosis in airway epithelial cells. METHODS Human airway epithelial (HBE) cells were exposed to a concentration gradient (200, 400 and 800 U) of HDM alone or in combination with treatment with 10 μmol/L VBIT-4 (a VDAC1 inhibitor) for 24 h, and the expressions of VDAC1 and ferroptosis-associated proteins in the cells were examined. Adult male BALB/c mice were treated with intranasal instillation of VBIT-4, HDM, or both, and the level of airway inflammation and the expressions of ferroptosis-associated proteins were detected with immunohistochemistry. RESULTS In HBE cells, HDM exposure caused a significant increase of mitochondrial ROS (mtROS) production and obviously decreased the mitochondrial membrane potential. The exposed cells showed obviously increased protein expressions of VDAC1 (P=0.005) and FTH1 (P=0.030) but decreased protein expression of GPX4 (P=0.015) and FTH1 (P=0.037), while the treatment with VBIT-4 repressed the expression of GPX4 (P=0.001) and inhibited the expression of VDAC1. In BALB/c mice, treatment with VBIT-4 significantly improved HDM-induced airway inflammation by reducing the number of inflammatory cells (P=0.029) in the airway and the number of eosinophils in the alveolar lavage fluid. Immunohistochemical staining showed that GPX4 expression in the airway epithelial cells was significantly increased after treatment with VBIT-4. CONCLUSIONS VDAC1 participates in HDM-induced chronic airway inflammation in bronchial asthma by causing ferroptosis of the airway epithelial cells.
Collapse
Affiliation(s)
- 奕 黄
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 丽珊 林
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 浩华 黄
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 航明 董
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Busse WW, Castro M, Casale TB. Asthma Management in Adults. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:21-33. [PMID: 36283607 DOI: 10.1016/j.jaip.2022.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Management of asthma in adults has advanced in the past 10 years. Central to these advances has been further clarification of type (T) 2 mechanisms of airway inflammation and utilization of T2 biomarkers, that is, eosinophils and fractional exhaled nitric oxide. In addition, epithelial cells are emerging as significant contributors to inflammation through generation of alarmins to initiate local injury as well as downstream pathways. Five new biologics, mepolizumab, benralizumab, reslizumab, dupilumab, and tezepelumab, were approved to join omalizumab and revolutionize severe asthma treatment. These biologics significantly prevent exacerbations to spare systemic corticosteroids use and their side effects. Guidelines attest to the effectiveness of inhaled corticosteroids/long-acting β-agonists (formoterol) for both maintenance and rescue therapy. Focused updates to the Expert Panel Report addressed limited but specific questions relevant to asthma control. Future guidelines should include phenotype/endotype-directed therapeutics to gain more precision-directed treatment.
Collapse
Affiliation(s)
- William W Busse
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas, Kansas City, Kan
| | - Thomas B Casale
- Division of Allergy and Immunology, University of South Florida, Tampa, Fla
| |
Collapse
|
4
|
Xiong D(JP, Martin JG, Lauzon AM. Airway smooth muscle function in asthma. Front Physiol 2022; 13:993406. [PMID: 36277199 PMCID: PMC9581182 DOI: 10.3389/fphys.2022.993406] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Known to have affected around 340 million people across the world in 2018, asthma is a prevalent chronic inflammatory disease of the airways. The symptoms such as wheezing, dyspnea, chest tightness, and cough reflect episodes of reversible airway obstruction. Asthma is a heterogeneous disease that varies in clinical presentation, severity, and pathobiology, but consistently features airway hyperresponsiveness (AHR)—excessive airway narrowing due to an exaggerated response of the airways to various stimuli. Airway smooth muscle (ASM) is the major effector of exaggerated airway narrowing and AHR and many factors may contribute to its altered function in asthma. These include genetic predispositions, early life exposure to viruses, pollutants and allergens that lead to chronic exposure to inflammatory cells and mediators, altered innervation, airway structural cell remodeling, and airway mechanical stress. Early studies aiming to address the dysfunctional nature of ASM in the etiology and pathogenesis of asthma have been inconclusive due to the methodological limitations in assessing the intrapulmonary airways, the site of asthma. The study of the trachealis, although convenient, has been misleading as it has shown no alterations in asthma and it is not as exposed to inflammatory cells as intrapulmonary ASM. Furthermore, the cartilage rings offer protection against stress and strain of repeated contractions. More recent strategies that allow for the isolation of viable intrapulmonary ASM tissue reveal significant mechanical differences between asthmatic and non-asthmatic tissues. This review will thus summarize the latest techniques used to study ASM mechanics within its environment and in isolation, identify the potential causes of the discrepancy between the ASM of the extra- and intrapulmonary airways, and address future directions that may lead to an improved understanding of ASM hypercontractility in asthma.
Collapse
Affiliation(s)
- Dora (Jun Ping) Xiong
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Anne-Marie Lauzon,
| |
Collapse
|
5
|
Wu S, Liu H. Sirtuins-Novel Regulators of Epigenetic Alterations in Airway Inflammation. Front Genet 2022; 13:862577. [PMID: 35620467 PMCID: PMC9127257 DOI: 10.3389/fgene.2022.862577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Histone modification is an important epigenetic alteration, and histone deacetylases are involved in the occurrence and development of various respiratory diseases. Sirtuins (SIRTs) have been demonstrated to play an important role in the formation and progression of chronic inflammatory diseases of the respiratory tract. SIRTs participate in the regulation of oxidative stress and inflammation and are related to cell structure and cellular localization. This paper summarizes the roles and mechanisms of SIRTs in airway inflammation and describes the latest research on SIRT modulators, aiming to provide a theoretical basis for the study of potential epigenetic alteration-inducing drug targets.
Collapse
Affiliation(s)
- Shunyu Wu
- Department of Otolaryngological, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Huanhai Liu
- Department of Otolaryngological, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, China
| |
Collapse
|
6
|
Wang C, Wang J, Zheng X, Zhang J, Zhang J, Qiao G, Liu H, Zhao H, Bai J, Zhang H, Zhang Z. Epigenetic regulation is involved in traffic-related PM 2.5 aggravating allergic airway inflammation in rats. Clin Immunol 2021; 234:108914. [PMID: 34954131 DOI: 10.1016/j.clim.2021.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
Increasing fine particulate matter (PM2.5) and epigenetic modifications are closely associated with the pathogenesis of asthma, but the definite mechanism remains unclear. The traffic-related PM2.5 exposure aggravated pulmonary inflammation and changed the methylation level of interferon gamma (Ifng) and interleukin (Il)4 genes, and then altered levels of affiliated cytokines of IFN-γ and IL-4 in rats with allergic airway inflammation. It also increased the level of miR146a and decreased the level of miR31. In addition, transcription factors of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 6 (Stat6) rose; forkhead box P3 (Foxp3) and signal transducer and activator of transcription 4 (Stat4) lowered. The traffic-related PM2.5 altered epigenetic modifications in allergic airway inflammation of rats leading to inflammation exacerbation through impaired regulatory T (Treg) cells function and T-helper type 1 (Th1)/Th2 cells imbalance, which provided a new target for the treatment and control of asthma.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jing Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Xin Zheng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jiaqi Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jingwei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Guoguo Qiao
- Teaching Experiment Center, School of Public Health, Shanxi Medical University, China
| | - Haifang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Huichao Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China.
| |
Collapse
|
7
|
Subramanian H, Hashem T, Bahal D, Kammala AK, Thaxton K, Das R. Ruxolitinib Ameliorates Airway Hyperresponsiveness and Lung Inflammation in a Corticosteroid-Resistant Murine Model of Severe Asthma. Front Immunol 2021; 12:786238. [PMID: 34777398 PMCID: PMC8586657 DOI: 10.3389/fimmu.2021.786238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
Asthma prevalence has increased considerably over the decades and it is now considered as one of the most common chronic disorders in the world. While the current anti-asthmatic therapies are effective for most asthma patients, there are 5-10% subjects whose disease is not controlled by such agents and they account for about 50% of the asthma-associated healthcare costs. Such patients develop severe asthma (SA), a condition characterized by a dominant Th1/Th17 cytokine response that is accompanied by Type 2 (T2)-low endotype. As JAK (Janus Kinase) signaling is very important for the activation of several cytokine pathways, we examined whether inhibition of JAKs might lessen the clinical and laboratory manifestations of SA. To that end, we employed a recently described murine model that recapitulates the complex immune response identified in the airways of human SA patients. To induce SA, mice were sensitized with house dust mite extract (HDME) and cyclic (c)-di-GMP and then subsequently challenged with HDME and a lower dose of c-di-GMP. In this model, treatment with the JAK inhibitor, Ruxolitinib, significantly ameliorated all the features of SA, including airway hyperresponsiveness and lung inflammation as well as total IgE antibody titers. Thus, these studies highlight JAKs as critical targets for mitigating the hyper-inflammation that occurs in SA and provide the framework for their incorporation into future clinical trials for patients that have severe or difficult-to manage asthma.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Tanwir Hashem
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Devika Bahal
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Ananth K Kammala
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Kanedra Thaxton
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Rupali Das
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Lourenço LO, Ribeiro AM, Lopes FDTQDS, Tibério IDFLC, Tavares-de-Lima W, Prado CM. Different Phenotypes in Asthma: Clinical Findings and Experimental Animal Models. Clin Rev Allergy Immunol 2021; 62:240-263. [PMID: 34542807 DOI: 10.1007/s12016-021-08894-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Asthma is a respiratory allergic disease presenting a high prevalence worldwide, and it is responsible for several complications throughout life, including death. Fortunately, asthma is no longer recognized as a unique manifestation but as a very heterogenic manifestation. Its phenotypes and endotypes are known, respectively, as pathologic and molecular features that might not be directly associated with each other. The increasing number of studies covering this issue has brought significant insights and knowledge that are constantly expanding. In this review, we intended to summarize this new information obtained from clinical studies, which not only allowed for the creation of patient clusters by means of personalized medicine and a deeper molecular evaluation, but also created a connection with data obtained from experimental models, especially murine models. We gathered information regarding sensitization and trigger and emphasizing the most relevant phenotypes and endotypes, such as Th2-high asthma and Th2-low asthma, which included smoking and obesity-related asthma and mixed and paucigranulocytic asthma, not only in physiopathology and the clinic but also in how these phenotypes can be determined with relative similarity using murine models. We also further investigated how clinical studies have been treating patients using newly developed drugs focusing on specific biomarkers that are more relevant according to the patient's clinical manifestation of the disease.
Collapse
Affiliation(s)
- Luiz Otávio Lourenço
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | | | | | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil. .,Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 2021; 7:00309-2020. [PMID: 34109244 PMCID: PMC8181790 DOI: 10.1183/23120541.00309-2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Currently, and based on the development of relevant biologic therapies, T2-high is the most well-defined endotype of asthma. Although much progress has been made in elucidating T2-high inflammation pathways, no specific clinically applicable biomarkers for T2-low asthma have been identified. The therapeutic approach of T2-low asthma is a problem urgently needing resolution, firstly because these patients have poor response to steroids, and secondly because they are not candidates for the newer targeted biologic agents. Thus, there is an unmet need for the identification of biomarkers that can help the diagnosis and endotyping of T2-low asthma. Ongoing investigation is focusing on neutrophilic airway inflammation mediators as therapeutic targets, including interleukin (IL)-8, IL-17, IL-1, IL-6, IL-23 and tumour necrosis factor-α; molecules that target restoration of corticosteroid sensitivity, mainly mitogen-activated protein kinase inhibitors, tyrosine kinase inhibitors and phosphatidylinositol 3-kinase inhibitors; phosphodiesterase (PDE)3 inhibitors that act as bronchodilators and PDE4 inhibitors that have an anti-inflammatory effect; and airway smooth muscle mass attenuation therapies, mainly for patients with paucigranulocytic inflammation. This article aims to review the evidence for noneosinophilic inflammation being a target for therapy in asthma; discuss current and potential future therapeutic approaches, such as novel molecules and biologic agents; and assess clinical trials of licensed drugs in the treatment of T2-low asthma.
Collapse
Affiliation(s)
- Chris Kyriakopoulos
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Konstantinos Kostikas
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
10
|
Schneider AL, Schleimer RP, Tan BK. Targetable pathogenic mechanisms in nasal polyposis. Int Forum Allergy Rhinol 2021; 11:1220-1234. [PMID: 33660425 DOI: 10.1002/alr.22787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) represents a challenging disease entity with significant rates of recurrence following appropriate medical and surgical therapy. Recent approval of targeted biologics in CRSwNP compels deeper understanding of underlying disease pathophysiology. Both of the approved biologics for CRSwNP modulate the type 2 inflammatory pathway, and the majority of drugs in the clinical trials pathway are similarly targeted. However, there remain multiple other pathogenic mechanisms relevant to CRSwNP for which targeted therapeutics already exist in other inflammatory diseases that have not been studied directly. In this article we summarize pathogenic mechanisms of interest in CRSwNP and discuss the results of ongoing clinical studies of targeted therapeutics in CRSwNP and other related human inflammatory diseases.
Collapse
Affiliation(s)
| | - Robert P Schleimer
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce K Tan
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Lin J, Huang N, Li J, Liu X, Xiong Q, Hu C, Chen D, Guan L, Chang K, Li D, Tsui SKW, Zhong N, Liu Z, Yang PC. Cross-reactive antibodies against dust mite-derived enolase induce neutrophilic airway inflammation. Eur Respir J 2021; 57:13993003.02375-2019. [PMID: 32817257 DOI: 10.1183/13993003.02375-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Neutrophilic inflammation is a hallmark of some specific asthma phenotypes; its aetiology is not yet fully understood. House dust mite (HDM) is the most common factor in the pathogenesis of airway inflammation. This study aims to elucidate the role of cross-antibodies against HDM-derived factors in the development of neutrophilic inflammation in the airway. METHODS Blood samples were collected from asthma patients with chronic neutrophilic asthma for analysis of HDM-specific cross-reactive antibodies. The role of an antibody against HDM-derived enolase (EnoAb) in the impairment of airway epithelial barrier function and induction of airway inflammation was assessed in a cell culture model and an animal model. RESULTS High similarity (72%) of the enolase gene sequences was identified between HDM and human. Serum EnoAb was detected in patients with chronic neutrophilic asthma. The EnoAb bound to airway epithelial cells to form complexes with enolase, which activated complement, impaired airway epithelial barrier functions and induced neutrophilic inflammation in the airway tissues. CONCLUSIONS HDM-derived enolase can induce specific cross-antibodies in humans, which induce neutrophilic inflammation in the airway.
Collapse
Affiliation(s)
- Jianli Lin
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China.,State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,These authors contributed equally to this work
| | - Nana Huang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China.,These authors contributed equally to this work
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,These authors contributed equally to this work
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China.,These authors contributed equally to this work
| | - Qing Xiong
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chengshen Hu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Desheng Chen
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Lvxin Guan
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Kexin Chang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Dan Li
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | | | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Nanshan Zhong, Zhigang Liu and Ping-Chang Yang contributed equally to this article as lead authors and supervised the work
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China.,Nanshan Zhong, Zhigang Liu and Ping-Chang Yang contributed equally to this article as lead authors and supervised the work
| | - Ping-Chang Yang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.,Nanshan Zhong, Zhigang Liu and Ping-Chang Yang contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
12
|
Monocyte chemotactic protein-inducing protein 1 negatively regulating asthmatic airway inflammation and mucus hypersecretion involving γ-aminobutyric acid type A receptor signaling pathway in vivo and in vitro. Chin Med J (Engl) 2020; 134:88-97. [PMID: 33009026 PMCID: PMC7862809 DOI: 10.1097/cm9.0000000000001154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mounting evidence, consistent with our previous study, showed that γ-aminobutyric acid type A receptor (GABAAR) played an indispensable role in airway inflammation and mucus hypersecretion in asthma. Monocyte chemotactic protein-inducing protein 1 (MCPIP1) was a key negative regulator of inflammation. Recent studies showed that inflammation was largely suppressed by enhanced MCPIP1 expression in many inflammatory diseases. However, the role and potential mechanism of MCPIP1 in airway inflammation and mucus hypersecretion in asthma were still not well studied. This study was to explore the role of MCPIP1 in asthmatic airway inflammation and mucus hypersecretion in both mice and BEAS-2B cells, and its potential mechanism. METHODS In vivo, mice were sensitized and challenged by ovalbumin (OVA) to induce asthma. Airway inflammation and mucus secretion were analyzed. In vitro, BEAS-2B cells were chosen. Interleukin (IL)-13 was used to stimulate inflammation and mucus hypersecretion in cells. MCPIP1 Lentiviral vector (LA-MCPIP1) and plasmid-MCPIP1 were used to up-regulate MCPIP1 in lung and cells, respectively. MCP-1, thymic stromal lymphopoietin (TSLP), mucin 5AC (MUC5AC), MCPIP1, and GABAARβ2 expressions were measured in both lung and BEAS-2B cells. Immunofluorescence staining was performed to observe the expression of GABAARβ2 in cells. RESULTS MCPIP1 was up-regulated by LA-MCPIP1 (P < 0.001) and plasmid-MCPIP1 (P < 0.001) in lung and cells, respectively. OVA-induced airway inflammation and mucus hypersecretion, OVA-enhanced MCP-1, TSLP, MUC5AC, and GABAARβ2 expressions, and OVA-reduced MCPIP1 were significantly blunted by LA-MCPIP1 in mice (all P < 0.001). IL-13-enhanced MCP-1, TSLP, MUC5AC, and GABAARβ2 expressions, and IL-13-reduced MCPIP1 were markedly abrogated by plasmid-MCPIP1 in BEAS-2B cells (all P < 0.001). CONCLUSION The results of this study suggested that OVA and IL-13-induced airway inflammation and mucus hypersecretion were negatively regulated by MCPIP1 in both lung and BEAS-2B cells, involving GABAAR signaling pathway.
Collapse
|
13
|
Shi S, Xue L, Han S, Qiu H, Peng Y, Zhao P, Liu QH, Shen J. Anti-Contractile and Anti-Inflammatory Effects of Diacerein on Isolated Mouse Airways Smooth Muscle and Mouse Asthma Model. Front Pharmacol 2020; 11:560361. [PMID: 33013396 PMCID: PMC7498646 DOI: 10.3389/fphar.2020.560361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
Characterized by abnormal smooth muscle contractility and airway inflammation, asthma is one of the most common airway diseases worldwide. Diacerein is a well-known anti-inflammatory drug, widely used in osteoarthritis. In current study, the innovative usage of diacerein in anti-contractile and anti-inflammatory treatment of asthma was studied. In vitro experiments including tension measurement and patch-clamp technique and in vivo experiments including establishment of mice model and measurement of respiratory resistance were applied to explore the role of diacerein in asthma. It turned out that agonist-precontracted mouse airway smooth muscle could be relaxed by diacerein via intracellular and extracellular calcium mobilization which was mediated by switched voltage-dependent L-type Ca2+ channels, non-selective cation channels, large-conductance Ca2+-activated K+ channel, and Na+/Ca2+ exchangers. Furthermore, diacerein could relieve bronchospasm and control airway inflammation in asthmatic mice via reduction of several inflammatory factors. Our studies elucidated the potential therapeutic property of diacerein in asthma treatment and the possible underlying mechanism. It also confirmed that new uses for already-approved drugs could be an important form of innovation.
Collapse
Affiliation(s)
- Shunbo Shi
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shuhui Han
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Haiting Qiu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yongbo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
14
|
TSLP as druggable target - a silver-lining for atopic diseases? Pharmacol Ther 2020; 217:107648. [PMID: 32758645 DOI: 10.1016/j.pharmthera.2020.107648] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Atopic diseases refer to common allergic inflammatory diseases such as atopic dermatitis (AD), allergic rhinitis (AR), and allergic asthma (AA). AD often develops in early childhood and may herald the onset of other allergic disorders such as food allergy (FA), AR, and AA. This progression of the disease is also known as the atopic march, and it goes hand in hand with a significantly impaired quality of life as well as a significant economic burden. Atopic diseases usually are considered as T helper type 2 (Th2) cell-mediated inflammatory diseases. Thymic stromal lymphopoietin (TSLP), an epithelium-derived pro-inflammatory cytokine, activates distinct immune and non-immune cells. It has been shown to be a master regulator of type 2 immune responses and atopic diseases. In experimental settings, the inhibition or knockout of TSLP signaling has shown great therapeutic potential. This, in conjunction with the increasing knowledge about the central role of TSLP in the pathogenesis of atopic diseases, has sparked an interest in TSLP as a druggable target. In this review, we will discuss the autocrine and paracrine effects of TSLP, how it regulates the tissue microenvironment and drives atopic diseases, which provide the rationale for the increasing interest in TSLP as a druggable target.
Collapse
|
15
|
Zhang J, Zhu Z, Zuo X, Pan H, Gu Y, Yuan Y, Wang G, Wang S, Zheng R, Liu Z, Wang F, Zheng J. The role of NTHi colonization and infection in the pathogenesis of neutrophilic asthma. Respir Res 2020; 21:170. [PMID: 32620122 PMCID: PMC7333292 DOI: 10.1186/s12931-020-01438-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Asthma is a complex heterogeneous disease. The neutrophilic subtypes of asthma are described as persistent, more severe and corticosteroid-resistant, with higher hospitalization and mortality rates, which seriously affect the lives of asthmatic patients. With the development of high-throughput sequencing technology, an increasing amount of evidence has shown that lower airway microbiome dysbiosis contributes to the exacerbation of asthma, especially neutrophilic asthma. Nontypeable Haemophilus influenzae is normally found in the upper respiratory tract of healthy adults and is one of the most common strains in the lower respiratory tract of neutrophilic asthma patients, in whom its presence is related to the occurrence of corticosteroid resistance. To understand the pathogenic mechanism by which nontypeable Haemophilus influenzae colonization leads to the progression of neutrophilic asthma, we reviewed the previous literature on nontypeable Haemophilus influenzae colonization and subsequent aggravation of neutrophilic asthma and corticosteroid resistance. We discussed nontypeable Haemophilus influenzae as a potential therapeutic target to prevent the progression of neutrophilic asthma.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China.,Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhenxing Zhu
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xu Zuo
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - He Pan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yinuo Gu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yuze Yuan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shiji Wang
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Ruipeng Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.,Department of Interventional Therapy, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhongmin Liu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingtong Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China. .,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
16
|
Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic Endotypes and Phenotypes of Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:429-440. [PMID: 32037107 PMCID: PMC7569362 DOI: 10.1016/j.jaip.2019.11.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
Allergic asthma is defined as asthma associated with sensitization to aeroallergens, which leads to asthma symptoms and airway inflammation. Allergic asthma is the most common asthma phenotype. The onset of allergic asthma is most often in childhood and is usually accompanied by other comorbidities including atopic dermatitis and allergic rhinitis. It is often persistent although there is a wide variation in disease severity. It is a TH2-driven process. Biomarkers have been identified to distinguish patients with allergic asthma, particularly serum IgE levels, tests to indicate sensitization to aeroallergens such as specific IgE or skin prick test positivity, blood and sputum eosinophil levels, fraction of exhaled nitric oxide, and periostin. Treatments for allergic asthma include environmental control measures, allergen immunotherapy, and glucocorticoids. Biologics, targeting the TH2 pathway, have been shown to be effective in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Nicole Akar-Ghibril
- Division of Pediatric Allergy/Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Thomas Casale
- Division of Allergy and Immunology, University of South Florida Health Morsani College of Medicine, Tampa, Fla
| | - Adnan Custovic
- Respiratory Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Wanda Phipatanakul
- Division of Pediatric Allergy/Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
17
|
Carpagnano GE, Sessa F, Scioscia G, Lacedonia D, Foschino MP, Venuti MP, Triggiani AI, Valenzano A, Resta O, Cibelli G, Messina G. Physical Activity as a New Tool to Evaluate the Response to Omalizumab and Mepolizumab in Severe Asthmatic Patients: A Pilot Study. Front Pharmacol 2020; 10:1630. [PMID: 32038267 PMCID: PMC6992710 DOI: 10.3389/fphar.2019.01630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/13/2019] [Indexed: 01/27/2023] Open
Abstract
Asthma is a chronic inflammatory airway disease, representing one of the most severe pathologies in developed countries. Based on a report of the World Health Organization (WHO), it affects about 300 million people worldwide. Few studies have analyzed the effects of daily life physical activity (PA) levels in patients with asthma: moreover, little research has been carried out on PA levels in patients suffering from severe asthma (SA). This study aimed to investigate the PA levels in two groups of patients suffering from SA; in particular, this study analyzed the changes that occur in patients treated with biologic therapy (BT group) and patients who underwent traditional treatment (TT group) over 6 months. Moreover, this study represents a pilot study because, to the best of our knowledge, it is the first investigation that analyzed if the kind of biologic drug (omalizumab or mepolizumab) can produce differences in the PA levels of SA patients. Fifty SA patients were enrolled and PA parameters were monitored for 6 months. Subjects were divided into two treatment groups: TT (20 patients) and BT (30 patients), the BT group was further subdivided according to the drugs used (15, omalizumab; 15, mepolizumab). During drug treatment, all subjects improved their PA levels: indeed, considering the intragroup variation, the PA levels were significantly higher comparing the T6 levels to baseline (T0, p < 0.01). Considering the intragroup variation, it is very interesting to note that biologic therapy improved PA levels compared to the effects of traditional therapy; while at T0 there were no significant differences in the steps per day (SPD) values between the two groups (T0, p = 0.85), the differences become statistically significant at T1, T3, and T6 (T1, p = 0.019; T3, p = 3.48x10−6; T6, p = 4.78x10−10). As expected, the same differences were reported analyzing the energy expenditure data. In conclusion, this pilot study reports a positive relationship between biologic drug therapy and PA patterns, even if further studies are needed.
Collapse
Affiliation(s)
- Giovanna Elisiana Carpagnano
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Foggia, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Foggia, Italy
| | - Maria Pia Foschino
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Foggia, Italy
| | - Maria Pia Venuti
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Foggia, Italy
| | | | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Onofrio Resta
- Department of Neurosciences, University of Bari, Bari, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
18
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
19
|
Flora M, Perrotta F, Nicolai A, Maffucci R, Pratillo A, Mollica M, Bianco A, Calabrese C. Staphylococcus Aureus in chronic airway diseases: An overview. Respir Med 2019; 155:66-71. [PMID: 31302581 DOI: 10.1016/j.rmed.2019.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/22/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
This review investigates about the role of Staphylococcus Aureus (S. aureus) and S. aureus enterotoxins (SEs) in the pathogenesis of several chronic airway diseases. S. aureus is part of normal human flora and may colonize the skin and the upper airways. SEs acting as superantigens can induce an intense T cell activation and through the release of interleukin (IL) - 4, 5, and 13, can promote a polyclonal IgE response and eosinophilic inflammation. S. aureus can damage epithelial cells inducing the release of the so-called "alarmins" responsible of the activation of Type 2 innate lymphoid cells (ILC-2) linked to an IL-5 mediated airway eosinophilic inflammation. SEs sensitization has been recently associated with the eosinophilic endotypes of both nasal polyps and late onset severe asthma. Studies investigating the effect of biological therapies in SEs sensitized patients should be performed in order to better define the role played by S. aureus in the different endotypes of severe asthma and/or chronic rhinosinusitis.
Collapse
Affiliation(s)
- Martina Flora
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Italy
| | - Fabio Perrotta
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Italy
| | - Ambra Nicolai
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Italy
| | - Rosalba Maffucci
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Italy
| | - Anna Pratillo
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Italy
| | - Mariano Mollica
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Italy
| | - Cecilia Calabrese
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Italy.
| |
Collapse
|
20
|
Feketea G, Bocsan CI, Popescu C, Gaman M, Stanciu LA, Zdrenghea MT. A Review of Macrophage MicroRNAs' Role in Human Asthma. Cells 2019; 8:cells8050420. [PMID: 31071965 PMCID: PMC6562863 DOI: 10.3390/cells8050420] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
There is an imbalance in asthma between classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells) in favor of the latter. MicroRNAs (miRNAs) play a critical role in regulating macrophage proliferation and differentiation and control the balance of M1 and M2 macrophage polarization, thereby controlling immune responses. Here we review the current published data concerning miRNAs with known correlation to a specific human macrophage phenotype and polarization, and their association with adult asthma. MiRNA-targeted therapy is still in the initial stages, but clinical trials are under recruitment or currently running for some miRNAs in other diseases. Regulating miRNA expression via their upregulation or downregulation could show potential as a novel therapy for improving treatment efficacy in asthma.
Collapse
Affiliation(s)
- Gavriela Feketea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
| | - Corina I Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Cristian Popescu
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
| | - Mihaela Gaman
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Luminita A Stanciu
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK.
| | - Mihnea T Zdrenghea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
- Department of Hematology, Ion Chiricuta Oncology Institute, 400010 Cluj-Napoca, Romania.
| |
Collapse
|
21
|
Ijaz HM, Chowdhury W, Lodhi MU, Gulzar Q, Rahim M. A Case of Persistent Asthma Resistant to Available Treatment Options: Management Dilemma. Cureus 2019; 11:e4194. [PMID: 31106094 PMCID: PMC6504033 DOI: 10.7759/cureus.4194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Asthma affects nearly 300 million people worldwide, with 250,000 associated deaths annually. An estimated 5%-10% of patients have severe asthma, while only 1%-2% presented with treatment-resistant or refractory asthma. Currently, the endotype of asthma is divided into T-helper type 2 (Th2) high and Th2-low inflammation endotypes. The Th2-high endotype is characterized by eosinophilic asthma, while the Th2-low endotype is associated with neutrophilia and a pauci-granulocytic profile. The Th2-low endotype carries a high resistance to corticosteroid and bronchodilator therapy, and these patients typically have a severe and acute-onset of symptoms. We present a 57-year-old nonsmoking female with recurrent intensive care unit (ICU) admissions for severe acute asthma exacerbations, resistant to bronchodilator and steroid treatment, requiring mechanical ventilation. Currently, the guidelines for treating neutrophil-predominant Th2-low inflammation asthma have not been established. This creates a management dilemma when encountered with such a patient in clinical practice. We aim to propose targeted treatment options for these severe and potentially fatal asthma patients, with reference to current literature.
Collapse
Affiliation(s)
- Hasnan M Ijaz
- Internal Medicine, Raleigh General Hospital, Beckley, USA
| | | | | | - Qamar Gulzar
- Internal Medicine, Raleigh General Hospital, Beckley, USA
| | - Mustafa Rahim
- Internal Medicine, West Virginia University School of Medicine, Morgantown, USA
| |
Collapse
|
22
|
Chang YS. Innovation in Asia Pacific Allergy. Asia Pac Allergy 2019; 9:e10. [PMID: 30740358 PMCID: PMC6365654 DOI: 10.5415/apallergy.2019.9.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|