1
|
Qiao Y, Xie D, Li Z, Cao S, Zhao D. Global research trends on biomarkers for cancer immunotherapy: Visualization and bibliometric analysis. Hum Vaccin Immunother 2025; 21:2435598. [PMID: 39773010 PMCID: PMC11730411 DOI: 10.1080/21645515.2024.2435598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The global burden of cancer continues to grow, posing a significant public health challenge. Although cancer immunotherapy has shown significant efficacy, the response rate is not high. Therefore, the objective of our research was to identify the latest research trends and hotspots on biomarkers from 1993 to 2023. Data were collected from the database Web of Science core collection. Bibliometric analysis and visualization were conducted with CiteSpace(6.3.1), VOSviewer (v1.6.20), R-bibliometrix(v4.3.3), and Microsoft Excel(2019). A total of 2686 literatures were retrieved. The sheer annual volume of publications has shown a rapid upward trend since 2015. The United States has generated the most publications and Harvard University ranked as a leading institution. The global biomarker research on immune checkpoint inhibitors (ICIs) revealed regional differences and in-depth explorations should be promoted in developing countries. Although China has become the second largest country in terms of publication, the average citation per paper and the total link strength were both lower than the other countries. The research on biomarkers mainly concentrated upon the following aspects: PD-1/PD-L1, CTLA-4, gene expression, adverse events, total mutational burden (TMB), body mass index (BMI), gut microbiota, cd8(+)/cd4(+) t-cells, and blood-related biomarkers such as lactate dehydrogenase (LDH), neutrophil-lymphocyte ratio (NLR), cytokines. Furthermore, "artificial intelligence" and "machine learning" have become the most important research hotspot over the last 2 y, which will help us to identify useful biomarkers from complex big data and provide a basis for precise medicine for malignant tumors.
Collapse
Affiliation(s)
- Yuan Qiao
- Department of Clinical Pharmacy, Yan’an University Affiliated Hospital, Yan’an, Shaanxi, China
| | - Dong Xie
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhengxiang Li
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaohua Cao
- Department of Clinical Pharmacy, Yan’an University Affiliated Hospital, Yan’an, Shaanxi, China
| | - Dong Zhao
- Department of Clinical Laboratory, Yan’an University Affiliated Hospital, Yan’an, Shaanxi, China
| |
Collapse
|
2
|
Huang M, Ji Q, Huang H, Wang X, Wang L. Gut microbiota in hepatocellular carcinoma immunotherapy: immune microenvironment remodeling and gut microbiota modification. Gut Microbes 2025; 17:2486519. [PMID: 40166981 PMCID: PMC11970798 DOI: 10.1080/19490976.2025.2486519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with limited treatment options at advanced stages. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, plays a pivotal role in regulating immune responses through the gut-liver axis. Emerging evidence underscores its impact on HCC progression and the efficacy of immunotherapy. This review explores the intricate interactions between gut microbiota and the immune system in HCC, with a focus on key immune cells and pathways involved in tumor immunity. Additionally, it highlights strategies for modulating the gut microbiota - such as fecal microbiota transplantation, dietary interventions, and probiotics - as potential approaches to enhancing immunotherapy outcomes. A deeper understanding of these mechanisms could pave the way for novel therapeutic strategies aimed at improving patient prognosis.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian, China
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Quansong Ji
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiyan Huang
- Ward 3, De’an Hospital, Xianyou County, Putian, Fujian, China
| | - Xiaoqian Wang
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Zhang H, Xu X, Li S, Huang H, Zhang K, Li W, Wang X, Yang J, Yin X, Qu C, Ni J, Dong X. Advances in nanoplatform-based multimodal combination therapy activating STING pathway for enhanced anti-tumor immunotherapy. Colloids Surf B Biointerfaces 2025; 250:114573. [PMID: 39983453 DOI: 10.1016/j.colsurfb.2025.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Activation of the cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes (STING) has great potential to promote antitumor immunity. As a major effector of the cell to sense and respond to the aberrant presence of cytoplasmic double-stranded DNA (dsDNA), inducing the expression and secretion of type I interferons (IFN) and STING, cGAS-STING signaling pathway establishes an effective natural immune response, which is one of the fundamental mechanisms of host defense in organisms. In addition to the release of heterologous DNA due to pathogen invasion and replication, mitochondrial damage and massive cell death can also cause abnormal leakage of the body's own dsDNA, which is then recognized by the DNA receptor cGAS and activates the cGAS-STING signaling pathway. However, small molecule STING agonists suffer from rapid excretion, low bioavailability, non-specificity and adverse effects, which limits their therapeutic efficacy and in vivo application. Various types of nano-delivery systems, on the other hand, make use of the different unique structures and surface modifications of nanoparticles to circumvent the defects of small molecule STING agonists such as fast metabolism and low bioavailability. Also, the nanoparticles are precisely directed to the focal site, with their own appropriate particle size combined with the characteristics of passive or active targeting. Herein, combined with the cGAS-STING pathway to activate the immune system and kill tumor tissues directly or indirectly, which help maximize the use of the functions of chemotherapy, photothermal therapy(PTT), chemodynamic therapy(CDT), and radiotherapy(RT). In this review, we will discuss the mechanism of action of the cGAS-STING pathway and introduce nanoparticle-mediated tumor combination therapy based on the STING pathway. Collectively, the effective multimodal nanoplatform, which can activate cGAS-STING pathway for enhanced anti-tumor immunotherapy, has promising avenue clinical applications for cancer treatment.
Collapse
Affiliation(s)
- Huizhong Zhang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaohan Xu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shiman Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huating Huang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ke Zhang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenjing Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinzhu Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingwen Yang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhai Qu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xiaoxv Dong
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
He Z, Cao J, Wang X, Yang S, Gao H, Yu Y, Di Z, Peng C. Single-cell analyses unravel ecosystem dynamics and intercellular crosstalk during gallbladder cancer malignant transformation. Hepatol Commun 2025; 9:e0697. [PMID: 40377484 PMCID: PMC12088638 DOI: 10.1097/hc9.0000000000000697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a rare but aggressive malignancy, often detected late due to early asymptomatic stages. Understanding cellular and molecular changes from normal tissue to high-grade intraepithelial neoplasia (HGIN) and invasive GBC is vital for identifying early biomarkers and therapeutic targets. METHODS We performed single-cell RNA sequencing on 98,113 cells derived from 2 normal adjacent tissues (NAT), 2 HGIN, and 6 GBC samples. The cellular diversity and heterogeneity, particularly within epithelial and immune cell populations in NAT-HGIN-GBC, were investigated utilizing single-cell RNA sequencing, bulk RNA sequencing (bulk RNA-seq), and 10 machine learning methodologies. Furthermore, the intercellular crosstalk between epithelial cells and tumor immune microenvironment cells was examined and validated through multiplex immunofluorescence staining. RESULTS The constructed cell atlas elucidated alterations in the immune landscape across various states of NAT-HGIN-GBC, highlighting a more pronounced inhibitory immune microenvironment in GBC. The epithelial subtype TOP2A+ Epi is markedly elevated in GBC and is correlated with a poor prognosis. Key genes associated with this subtype may include GMNN, CYTOR, KLK6, and BIRC5. Similarly, immunosuppressive macrophages, identified as TOP2A+ Macro, also increase along the NAT-HGIN-GBC sequence and are linked to reduced patient survival. Furthermore, TOP2A+ Macro and CD8+ exhausted T cells (CD8+ Tex) engage in intercellular communication with epithelial TOP2A+Epi cells via the TWEAK/FN14 signaling pathway, thereby promoting tumor progression and immune evasion in GBC. The findings were further corroborated through multiplex immunofluorescence staining conducted on specimens from patients. CONCLUSIONS This study elucidates significant alteration in the cellular ecosystems and intercellular signaling within the tumor immune microenvironment across the NAT-HGIN-GBC sequence. It identifies TOP2A, TWEAK, and FN14 as potential biomarkers and therapeutic targets for GBC.
Collapse
Affiliation(s)
- Zhaobin He
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| | - Jianqiang Cao
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| | - Xiqiang Wang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| | - Shengbiao Yang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| | - Huijie Gao
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| | - Yongzhe Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Zequn Di
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
- Department of Clinical Medicine, School of Basic Medical Sciences Nanchang University, Nanchang, Jiangxi Province, China
| | - Cheng Peng
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Hepatobiliary Minimally Invasive Surgery, Shandong University Institute of Endoscopic Minimally Invasive Surgery, Jinan, Shandong Province, China
| |
Collapse
|
5
|
Zhang L, Yang M, Zhang Y, Lan J, Chen Q. Unraveling the mechanisms of irAEs in endometrial cancer immunotherapy: insights from FAERS and scRNA-seq data. Sci Rep 2025; 15:18645. [PMID: 40436981 PMCID: PMC12119918 DOI: 10.1038/s41598-025-02723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/15/2025] [Indexed: 06/01/2025] Open
Abstract
Endometrial cancer (EC) is one of the most common malignancies in women. In recent years, immunotherapy has gradually become a significant treatment option. However, the mechanisms underlying immune checkpoint inhibitor (ICI)-related Adverse Events (AEs) remain poorly understood, posing significant challenges for optimizing clinical treatment strategies. This study aims to integrate the FAERS database and single-cell transcriptomic data to investigate potential mechanisms underlying PD-1 inhibitor-related AEs in EC immunotherapy, with a focus on exploring the PD-1-associated cell communication network and its potential compensatory activation pathways. Data related to AEs were extracted from the FAERS database. Disproportionality analyses, including Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma Poisson Shrinker (MGPS), were used to quantify signals of immune-related AEs (irAEs) associated with ICIs. We compared the occurrence timing and characteristics of AEs across different drugs. Subsequently, scRNA-seq was performed to analyze the tumor microenvironment of EC, focusing on PD-1-high expressing cell populations. Cell Communication was analyzed and key receptor-ligand pairs were identified. From Q1 2004 to Q3 2024, 21,838,627 drug-related reports were retrieved from FAERS, including 2,202 related to ICIs. ICI-associated irAEs involved 26 organ systems, with general disorders, gastrointestinal disorders, and injury/poisoning as the top System Organ Class (SOC). Fatigue, product use issues, and diarrhea were the most reported Preferred Terms (PTs). PD-1 inhibitors were associated with faster onset of AEs compared to PD-L1 inhibitors and Weibull modeling indicated an early failure-type AE pattern for both treatments. Single-cell analysis further demonstrated that PD-1 was highly expressed in CD8 + cytotoxic T cells and Tfh cells, which communicated with other cells within the tumor microenvironment through key receptor-ligand pairs such as CXCL12-CXCR4 and CXCL16-CXCR6. These findings suggested that PD-1 inhibitors may induce AEs through compensatory activation of the CXCR4 and CXCR6 pathways. This study suggested that PD-1 inhibitors may contribute to irAEs in EC, potentially through compensatory activation of the CXCR4 and CXCR6 pathways. By integrating FAERS and scRNA-seq data, key receptor-ligand interactions were identified, providing preliminary insights that could inform future efforts to optimize immunotherapy efficacy and mitigate AEs. However, further validation through clinical studies and mechanistic research is needed to confirm these findings.
Collapse
Affiliation(s)
- Lu Zhang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Mengjie Yang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Yiqian Zhang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jianfa Lan
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Qionghua Chen
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
He L, He J, Jiang T, Gong R, Wan X, Duan M, Chen Z, Cheng Y. Inhibition of UCH-L1 enhances immunotherapy efficacy in triple-negative breast cancer by stabilizing PD-L1. Eur J Pharmacol 2025; 1000:177743. [PMID: 40389130 DOI: 10.1016/j.ejphar.2025.177743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Recent research indicates that programmed death 1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors show promise in treating triple-negative breast cancer (TNBC), but their efficacy is lower than anticipated, especially when used alone. Therefore, enhancing the anti-tumor immune response strategy for TNBC is crucial. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), involved in tumor cell regulation and a potential therapeutic target, has an undefined role in TNBC immunotherapy. In this study, we explored the inverse correlation between UCH-L1 and PD-L1 in TNBC patient tissues. Through in vitro experiments, we found that UCH-L1 negatively regulates PD-L1 by stabilizing the E3 ubiquitin ligase ariadne-1 homolog (ARIH1), which promotes PD-L1 ubiquitination and degradation. Further analysis in Balb/c mice xenograft tumors showed that UCH-L1 correlates with GZMB+/CD8+ T cell infiltration in TNBC, suggesting potential synergistic effects when combining UCH-L1 inhibitors with PD-L1 antibodies. Overall, in TNBC, UCH-L1 stabilizes ARIH1, leading to low PD-L1 expression, which may explain the limited effectiveness of immunotherapy in TNBC patients. Our mouse experiments showed improved therapeutic effects when combining UCH-L1 inhibitors with PD-L1 antibodies. These findings offer a new avenue for immunotherapy in TNBC patients.
Collapse
Affiliation(s)
- Linhao He
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Jiaying He
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ting Jiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Rong Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Xiaoya Wan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Mingwu Duan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Zonglin Chen
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China; Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China; NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, 410011, China.
| |
Collapse
|
7
|
Pang L, Guo S, Huang Y, Khan F, Liu Y, Zhou F, Lathia JD, Chen P. Targeting legumain-mediated cell-cell interaction sensitizes glioblastoma to immunotherapy in preclinical models. J Clin Invest 2025; 135:e186034. [PMID: 40131864 PMCID: PMC12077903 DOI: 10.1172/jci186034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are the most prominent immune cell population in the glioblastoma (GBM) tumor microenvironment and play critical roles in promoting tumor progression and immunosuppression. Here we identified that TAM-derived legumain (LGMN) exhibited a dual role in regulating the biology of TAMs and GBM cells. LGMN promoted macrophage infiltration in a cell-autonomous manner by activating the GSK3β/STAT3 pathway. Moreover, TAM-derived LGMN activated integrin αv/AKT/p65 signaling to drive GBM cell proliferation and survival. Targeting of LGMN-directed macrophage (inhibiting GSK3β and STAT3) and GBM cell (inhibiting integrin αv) mechanisms resulted in an antitumor effect in immunocompetent GBM mouse models that was further enhanced by combination with anti-PD-1 therapy. Our study reveals a paracrine and autocrine mechanism of TAM-derived LGMN that promotes GBM progression and immunosuppression, providing effective therapeutic targets to improve immunotherapy in GBM.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Songlin Guo
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yuyun Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fatima Khan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Yan Z, Wang C, Wu J, Wang J, Ma T. TIM-3 teams up with PD-1 in cancer immunotherapy: mechanisms and perspectives. MOLECULAR BIOMEDICINE 2025; 6:27. [PMID: 40332725 PMCID: PMC12058639 DOI: 10.1186/s43556-025-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has become a prominent strategy for cancer treatment over the past ten years. However, the efficacy of ICIs remains limited, with certain cancers exhibiting resistance to these therapeutic approaches. Consequently, several immune checkpoint proteins are presently being thoroughly screened and assessed in both preclinical and clinical studies. Among these candidates, T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is considered a promising target. TIM-3 exhibits multiple immunosuppressive effects on various types of immune cells. Given its differential expression levels at distinct stages of T cell dysfunction in the tumor microenvironment (TME), TIM-3, along with programmed cell death protein 1 (PD-1), serves as indicators of T cell exhaustion. Moreover, it is crucial to carefully evaluate the impact of TIM-3 and PD-1 expression in cancer cells on the efficacy of immunotherapy. To increase the effectiveness of anti-TIM-3 and anti-PD-1 therapies, it is proposed to combine the inhibition of TIM-3, PD-1, and programmed death-ligand 1 (PD-L1). The efficacy of TIM-3 inhibition in conjunction with PD-1/PD-L1 inhibitors is being evaluated in a number of ongoing clinical trials for patients with various cancers. This study systematically investigates the fundamental biology of TIM-3 and PD-1, as well as the detailed mechanisms through which TIM-3 and PD-1/PD-L1 axis contribute to cancer immune evasion. Additionally, this article provides a thorough analysis of ongoing clinical trials evaluating the synergistic effects of combining PD-1/PD-L1 and TIM-3 inhibitors in anti-cancer treatment, along with an overview of the current status of TIM-3 and PD-1 antibodies.
Collapse
Affiliation(s)
- Zhuohong Yan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Chunmao Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
9
|
Shen W, Nguyen TH, Li MM, Huang Y, Moon I, Nair N, Marbach D, Zitnik M. Generalizable AI predicts immunotherapy outcomes across cancers and treatments. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.01.25326820. [PMID: 40385399 PMCID: PMC12083594 DOI: 10.1101/2025.05.01.25326820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Immune checkpoint inhibitors have become standard care across many cancers, but most patients do not respond. Predicting response remains challenging due to complex tumor-immune interactions and the poor generalizability of current biomarkers and models. Predictors such as tumor mutational burden, PD-L1 expression, and transcriptomic signatures often fail across cancer types, therapies, and clinical settings. There is a clear need for a robust, interpretable model that captures shared immune response principles and adapts to diverse clinical contexts. We present Compass, a foundation model for predicting immunotherapy response from pan-cancer transcriptomic data using a concept bottleneck architecture. Compass encodes tumor gene expression through 44 biologically grounded immune concepts representing immune cell states, tumor-microenvironment interactions, and signaling pathways. Trained on 10,184 tumors across 33 cancer types, Compass outperforms 22 baseline methods in 16 independent clinical cohorts spanning seven cancers and six immune checkpoint inhibitors, increasing precision by 8.5%, Matthews correlation coefficient by 12.3%, and area under the precision-recall curve by 15.7%, with minimal or no additional training. The model generalizes to unseen cancer types and treatments, supporting indication selection and patient stratification in early-phase clinical trials. Survival analysis shows that Compass-stratified responders have significantly longer overall survival (hazard ratio = 4.7, p < 0.0001). Personalized response maps link gene expression to immune concepts, revealing distinct mechanisms of response and resistance. For example, among immune-inflamed non-responders, Compass identifies distinct resistance programs involving TGF- β signaling, endothelial exclusion, CD4+ T cell dysfunction, and B cell deficiency. By combining mechanistic interpretability with transfer learning, Compass provides mechanistic insights into treatment response variability, supports clinical decision-making, and informs trial design.
Collapse
Affiliation(s)
- Wanxiang Shen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Thinh H. Nguyen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle M. Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yepeng Huang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Intae Moon
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Nitya Nair
- Roche Pharma Research and Early Development, Oncology Early Clinical Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Daniel Marbach
- Roche Pharma Research and Early Development, Data & Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Data Science Initiative, Cambridge, MA, USA
| |
Collapse
|
10
|
Huang M, Zhang Y, Chen Z, Yu X, Luo S, Peng X, Li X. Gut microbiota reshapes the TNBC immune microenvironment: Emerging immunotherapeutic strategies. Pharmacol Res 2025; 215:107726. [PMID: 40184763 DOI: 10.1016/j.phrs.2025.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options and poor prognosis. The gut microbiota, a diverse community of microorganisms in the gastrointestinal tract, plays a crucial role in regulating immune responses through the gut-immune axis. Recent studies have highlighted its significant impact on TNBC progression and the efficacy of immunotherapies. This review examines the interactions between gut microbiota and the immune system in TNBC, focusing on key immune cells and pathways involved in tumor immunity. It also explores microbiota modulation strategies, including probiotics, prebiotics, dietary interventions, and fecal microbiota transplantation, as potential methods to enhance immunotherapeutic outcomes. Understanding these mechanisms offers promising avenues for improving treatment efficacy and patient prognosis in TNBC.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Yikai Zhang
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Zhaoji Chen
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Xin Yu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian 350011, China
| | - Shiping Luo
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian 350011, China.
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management, China.
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; Department of Physiologyand Pharmacology, Karolinska Institutet, Solna 171 65, Sweden.
| |
Collapse
|
11
|
Li C, Dai M, Gu Q, Lu K, Ge C, Liu X, Li Z, Wang J, Wang J, Wei C, Tang X, Zheng Q, Gao P, Chen W. Incidence of the Stevens-Johnson syndrome spectrum and its patterns in urban China. J Dermatol 2025; 52:897-906. [PMID: 40125909 DOI: 10.1111/1346-8138.17692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Stevens-Johnson syndrome (SJS) spectrum is a series of rare, but life-threatening mucocutaneous hypersensitivity reactions. However, the epidemiological evidence of it is limited, especially in developing countries. The shape associations with age and its seasonal pattern are still uncertain. Therefore, this study aimed to describe the nationwide incidence of SJS spectrum, its associations with age and season, and its subsequent diagnosed diseases across urban China. By using national health insurance datasets from 2013 to 2017, this retrospective cohort study estimated the incidence of SJS spectrum and its associations in 23 Chinese provinces. SJS spectrum was defined to include SJS and/or toxic epidermal necrolysis (ICD-10 code: L51.1-2). First, age-specific incidence rates were estimated in each province and then pooled using a random-effects model. Relative risks (RR) of SJS spectrum in different seasons were estimated by Poisson regression. Diseases diagnosed within 6 months following SJS occurrence were described. In total, 9308 patients were identified (50.17% women, median age 45). The average standardized incidence rate of SJS spectrum was 3.43 (95% confidence interval [CI] 3.04-3.84) per million person-years, which increased by 0.57 (95% CI 0.29-0.84) per million person-years. Incidence rates were significantly higher among children age <10 years (5.48, 95% CI 4.02-7.09, p = 0.0036) and adults age ≥ 40 (5.50, 95% CI 4.35-6.78, p = 0.00085) than the group aged 10-40 years (3.12, 95% CI 2.29-4.07). The risk of SJS spectrum was highest in summer (vs autumn: RR = 1.83, 95% CI 1.72-1.93). The most frequently diagnosed disease within 6 months after the onset of SJS was respiratory disease (43.8%). In conclusion, this study provides evidence on the epidemiology of SJS spectrum in developing countries and supports the two-peak distribution of its incidence across age. Its high occurrence in summer needs further confirmation.
Collapse
Affiliation(s)
- Chaiquan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Mali Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinyi Gu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Chaoxiang Ge
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingying Wang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinxi Wang
- Beijing Healthcom Data Technology, Beijing, China
| | - Chen Wei
- Beijing Healthcom Data Technology, Beijing, China
| | - Xun Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Qinxiang Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pei Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Center for Real-World Evidence Evaluation, Peking University Clinical Research Institute, Beijing, China
| | - Wei Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
13
|
Farahavar G, Abolmaali SS, Biabanikhankahdani R, Tamaddon AM. Synergistic action of combining photodynamic therapy with immunotherapy for eradicating solid tumors in animal models: A systematic review. Crit Rev Oncol Hematol 2025; 209:104691. [PMID: 40058741 DOI: 10.1016/j.critrevonc.2025.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/24/2025] Open
Abstract
Malignancies maintain a high rate of mortality worldwide each year, requiring the development of novel therapeutic platforms. Immunotherapy approaches are considered a revolutionary treatment for overcoming malignancies. Photodynamic therapy (PDT) has attracted significant attention in various cancer types. Recent progress in cancer therapies has underscored the potential of combining PDT with immunotherapy. This approach can improve therapeutic outcomes by directly eliminating tumor cells and boosting immune responses for sustained anti-tumor effects in the whole body. This study aims to determine the relative efficacy of combining PDT with immunotherapy compared to PDT alone. Following the PRISMA guidance, an extensive literature review was conducted utilizing Scopus, Web of Science, and PubMed to identify high-quality preclinical studies exploring various aspects of PDT combined with immunotherapy. The adopted PICO framework included studies with rigorous experimental designs and relevant outcomes. The present review reveals the characteristics of tumor models, delivery systems, photosensitizers, and immunotherapy approaches. Key findings indicate that the combined PDT-immunotherapy approach shows promise in treating multiple tumors according to their size, therapeutic biomarkers, and inhibition of distant tumors. Finally, this integrated therapeutic strategy holds significant promise for advancing cancer treatment paradigms by potentiating each treatment efficacy; however, its clinical utility requires careful consideration of the associated challenges.
Collapse
Affiliation(s)
- Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Nanotechnology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Roya Biabanikhankahdani
- Department of Basic Sciences, College of Dentistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Nanotechnology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Yuan Y, Li Q, Yan G, Qian Y, Guo W, Li S, Wang F, Shang W, Zhu Z, Ge D, Wang Y, Liu Y. Targeting KMT5C Suppresses Lung Cancer Progression and Enhances the Efficacy of Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407575. [PMID: 40126333 PMCID: PMC12097080 DOI: 10.1002/advs.202407575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/24/2025] [Indexed: 03/25/2025]
Abstract
The immune evasion is one major challenge for cancer immunotherapy. Despite considerable advancements in immune checkpoint blockade (ICB) therapies for the advanced non-small cell lung cancer (NSCLC) patients, only a minority of patients receive long-term survival benefit. Here, this work demonstrates that lysine methyltransferase 5C (KMT5C) is a crucial promoter of the NSCLC progression and immune evasion. This work first observes that upregulation of KMT5C in NSCLC correlated with cancer progression and poor patient prognosis. Notably, KMT5C knockdown in NSCLC cells suppress tumor growth and metastasis in mice. Mechanistically, this work demonstrates that KMT5C activated the DNA repair response to inhibit the STING-IRF3 pathway, downstream type I IFN signaling, and CCL5 secretion, leading to the downregulation of CD8+ T cell infiltration and function in NSCLC, ultimately facilitating tumor immune evasion and tumor progression. Importantly, both the pharmacological inhibitor A196 and the genetic inhibition of KMT5C could synergize with anti-PD-1 therapy in the lung cancer mouse model. Clinically, high expression levels of KMT5C in patients with NSCLC are associated with a lower response rate and worse clinical outcomes to ICB therapy. Therefore, these findings identify a previously unknown functional link between KMT5C and tumor immune evasion, and demonstrate that targeting KMT5C may be a potential therapeutic approach for enhancing the efficacy of NSCLC patients to ICB therapy.
Collapse
Affiliation(s)
- Yunfeng Yuan
- Department of Thoracic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Qianyu Li
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Guoquan Yan
- Institute of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yifei Qian
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Wenyun Guo
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Songling Li
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Fan Wang
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Wanjing Shang
- Lymphocyte Biology SectionLaboratory of Immune System BiologyNational Institute of Allergy and infectious DiseasesNational Institutes of HealthBethesdaMD20814USA
| | - Zijun Zhu
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Di Ge
- Department of Thoracic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yanan Wang
- Department of Laboratory MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Yanfeng Liu
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
- Shanghai Engineering Research Center of Transplantation and ImmunologyShanghai Institute of TransplantationShanghai200127China
| |
Collapse
|
15
|
Chen QF, Chen S, Zhao M. The Synergistic Mechanisms and Prospects of Transarterial Chemoembolization Combined with Immunotherapy for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2025; 12:841-854. [PMID: 40322278 PMCID: PMC12050036 DOI: 10.2147/jhc.s514881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Hepatocellular carcinoma (HCC) represents a highly aggressive form of liver neoplasm that presents various therapeutic obstacles. Recently, the synergistic use of transarterial chemoembolization (TACE) in conjunction with immunotherapy has attracted considerable interest within the medical community. This review aims to explore the synergistic mechanisms between TACE and immunotherapy, analyze the current research evidence, and discuss their potential applications in the treatment of HCC. By examining how TACE can enhance the efficacy of immunotherapy, we seek to provide direction for future research and emphasize the importance of personalized treatment strategies in managing HCC.
Collapse
Affiliation(s)
- Qi-Feng Chen
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People’s Republic of China
| | - Song Chen
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People’s Republic of China
| | - Ming Zhao
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
16
|
Xiong B, Zhang Y, Liu S, Liao S, Zhou Z, He Q, Zhou Y. NOX Family: Regulators of Reactive Oxygen Species Balance in Tumor Cells. FASEB J 2025; 39:e70565. [PMID: 40266050 PMCID: PMC12017260 DOI: 10.1096/fj.202500238rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Cancer cells are capable of surviving, proliferating, and invading or migrating within hypoxic environments by regulating various adaptive mechanisms. Due to the activation of oncogenes and the inactivation of tumor suppressor genes, and relative deficiencies in oxygen and nutrients, cancer cells demonstrate elevated production of reactive oxygen species (ROS), primarily sourced from NADPH oxidases (NOX family). A key aspect of the reorientation of tumor cell metabolism is the combating of cellular oxidative stress through the promotion of antioxidant molecule synthesis to counteract ROS production. Given that most cancers experience hypoxia and that NOX is closely linked to numerous redox-dependent signaling pathways, the expression and function of NOX are altered in various malignancies. Therefore, this review summarizes the characteristics of NOX family members, their influence on tumor proliferation, invasion, and migration, the role of NOX in promoting tumor angiogenesis, the impact of NOX on the function of immune cells within the tumor microenvironment, and the potential of targeting NOX in tumor therapy. This aims to offer a fresh viewpoint on a comprehensive understanding of the functions of NOX family members.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer HospitalChangshaHunanChina
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| | - Yang Zhang
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| | - Siyi Liu
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| | - Shan Liao
- Department of PathologyThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zihua Zhou
- Department of OncologyLoudi Central HospitalLoudiHunanChina
| | - Qian He
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer HospitalChangshaHunanChina
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
17
|
Zheng H, Tan J, Qin F, Zheng Y, Yang X, Liu Z, Cai W, Qin X, Liao H. PKM2 modulates chemotherapy sensitivity by regulating autophagy and predicts the prognosis and immunity in pancancer. Sci Rep 2025; 15:14626. [PMID: 40287473 PMCID: PMC12033356 DOI: 10.1038/s41598-025-96562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
One of the main characteristics of tumor metabolite reprogramming is enhanced glycolysis, and Pyruvate Kinase M2(PKM2) is a crucial enzyme that limits the pace of glycometabolism. Although PKM2 has been proven to affect the development of some cancers, a pan-cancer analysis of PKM2 has not yet been performed. We analyzed the expression and prognosis of PKM2 in pan-cancer using multiple databases. We performed epigenetic, functional enrichment, immune cell infiltration, immune checkpoint, and drug sensitivity analyses of PKM2. PKM2 was found to be significantly upregulated in most malignancies and associated with a bad prognosis. In some cancers, the PKM2 DNA promoter was hypomethylated. The expression of PKM2 was positively linked with most m6A-methylation-related genes in pan-cancer. The functions of PKM2 were primarily associated with the regulation of the immune system, glycolysis, hypoxia, angiogenesis, and epithelial-mesenchymal transition. PKM2 was favorably associated with neutrophils and cancer-associated fibroblasts in the tumor microenvironment of most cancers. Importantly, PKM2 showed a strikingly high correlation with CD274 (PD-L1), CD276, TGF-β1, VEGFA, and HAVCR2 in most cancers. Finally, using experiments, it was confirmed that silencing PKM2 could increase the sensitivity of esophageal squamous cell carcinoma to cisplatin by regulating autophagy. PKM2 affects autophagy - regulated tumor cell tolerance to chemotherapy, providing future research directions for solving tumor chemotherapy resistance.
Collapse
Affiliation(s)
- Haosheng Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Jian Tan
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Fei Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yuzhen Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xingping Yang
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zui Liu
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Weijie Cai
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xianyu Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Hongying Liao
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
18
|
He Y, Liu Q, Luo Z, Hu Q, Wang L, Guo Z. Role of Tumor-Associated Macrophages in Breast Cancer Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:26995. [PMID: 40302326 DOI: 10.31083/fbl26995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 05/02/2025]
Abstract
Breast cancer (BC) is the second leading cause of death among women worldwide. Immunotherapy has become an effective treatment for BC patients due to the rapid development of medical technology. Considerable breakthroughs have been made in research, marking the beginning of a new era in cancer treatment. Among them, various cancer immunotherapies such as immune checkpoint inhibitors (ICIs), cancer vaccines, and adoptive cell transfer are effective and have good prospects. The tumor microenvironment (TME) plays a crucial role in determining the outcomes of tumor immunotherapy. Tumor-associated macrophages (TAMs) are a key component of the TME, with an immunomodulatory effect closely related to the immune evasion of tumor cells, thereby affecting malignant progression. TAMs also significantly affect the therapeutic effect of ICIs (such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1) inhibitors). TAMs are composed of multiple heterogeneous subpopulations, including M1 phenotypes macrophages (M1) and M2 phenotypes macrophages (M2). Furthermore, they mainly play an M2-like role and moderate a variety of harmful consequences such as angiogenesis, immunosuppression, and metastasis. Therefore, TAMs have become a key area of focus in the development of tumor therapies. However, several tumor immunotherapy studies demonstrated that ICIs are effective only in a small number of solid cancers, and tumor immunotherapy still faces relevant challenges in the treatment of solid tumors. This review explores the role of TAMs in BC immunotherapy, summarizing their involvement in BC development. It also explains the classification and functions of TAMs, outlines current tumor immunotherapy approaches and combination therapies, and discusses the challenges and potential strategies for TAMs in immuno-oncology treatments.
Collapse
Affiliation(s)
- Yan He
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, 518052 Shenzhen, Guangdong, China
| | - Zhihao Luo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Qian Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Li Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| |
Collapse
|
19
|
Córdoba-Lanús E, García-Pérez O, Melgar-Vilaplana L, Domínguez-de-Barros A, Fernández-de-Misa R. Germline PDCDL1 Gene Variants Are Associated with Increased Primary Melanoma Thickness. Biomolecules 2025; 15:584. [PMID: 40305358 PMCID: PMC12024702 DOI: 10.3390/biom15040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The incidence of malignant melanoma (MM) continues to increase annually, and tumour invasiveness is a main prognostic factor. Single-nucleotide polymorphisms (SNPs) have become key tools in the study of cancer genetics, influencing susceptibility and prognosis. Methods: In the present study, we analysed the relationship between five SNPs on the PDCDL1 gene (rs822336, rs822337, rs822338, rs229736, rs4143815) with prognosis as well as primary tumour invasiveness characteristics in 377 whole blood samples from MM individuals. Results: Patients who presented the rs822336 CG or GG genotypes (OR = 3.01, 95% CI = 1.53-5.92; p = 0.0017), TA or TT in rs822337 (OR = 2.45, 95% CI = 1.22-4.93; p = 0.0098), and CT or CC of rs822338 (OR = 2.23, 95% CI = 1.05-4.73; p = 0.028) were at an increased risk of developing invasive melanomas. Cases with the AG or GG genotype in rs2297136 presented a lower risk (OR = 0.29, 95% CI = 0.11-0.75; p = 0.0038) of invasive MM. The genetic analysis at the haplotype level resulted in similar findings (OR: 2.95, 95% CI: 1.08-8.10), p = 0.036). Furthermore, patients carrying the homozygous AA genotype in rs2297136 had thicker tumours than those harbouring the AG or GG (1.4 mm vs. 1.0 and 0.8 mm; p = 0.030). No significant association was found between the studied SNPs and melanoma-specific survival (MSS) nor progression-free survival (PFS). Conclusions: Current results suggest that SNPs rs822336, rs822337, rs822338, and rs2297136 genotypes in the PDCDL1 gene are associated with the risk of tumour invasiveness and tumour thickness in MM. Further studies on SNPs considering genetic and epigenetic factors are needed for a better understanding of malignant melanoma susceptibility and its prognosis.
Collapse
Affiliation(s)
- Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, Avda. Astrofísico Sánchez, s/n, 38296 San Cristóbal de La Laguna, Spain; (O.G.-P.)
- Consorcio Centro de Investigación Biomédica (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Omar García-Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, Avda. Astrofísico Sánchez, s/n, 38296 San Cristóbal de La Laguna, Spain; (O.G.-P.)
- Consorcio Centro de Investigación Biomédica (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Leticia Melgar-Vilaplana
- Pathology Department, Hospital Universitario Nuestra Señora de Candelaria, Ctra. Gral. del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain;
| | - Angélica Domínguez-de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, Avda. Astrofísico Sánchez, s/n, 38296 San Cristóbal de La Laguna, Spain; (O.G.-P.)
- Consorcio Centro de Investigación Biomédica (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ricardo Fernández-de-Misa
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Ctra. Gral. del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain
- Dermatology Department, Hospital Universitario Nuestra Señora de Candelaria, Ctra. Gral. del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain
- Department of Internal Medicine, Dermatology and Psychiatry, Universidad de La Laguna, 38071 San Cristóbal de La Laguna, Spain
| |
Collapse
|
20
|
Rolig AS, Peng X, Sturgill ER, Holay N, Kasiewicz M, Mick C, Mcgee GH, Miller W, Koguchi Y, Kaufmann J, Yanamandra N, Griffin S, Smothers J, Adamow M, Lee J, Shen R, Callahan MK, Redmond WL. The response to anti-PD-1 and anti-LAG-3 checkpoint blockade is associated with regulatory T cell reprogramming. Sci Transl Med 2025; 17:eadk3702. [PMID: 40203085 DOI: 10.1126/scitranslmed.adk3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2024] [Accepted: 01/20/2025] [Indexed: 04/11/2025]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment; however, many patients develop therapeutic resistance. We previously identified and validated a pretreatment peripheral blood biomarker, characterized by a high frequency of LAG-3+ lymphocytes, that predicts resistance in patients receiving anti-PD-1 (aPD-1) ICB. To better understand the mechanism of aPD-1 resistance, we identified murine tumor models with a high LAG-3+ lymphocyte frequency (LAG-3hi), which were resistant to aPD-1 therapy, and LAG-3lo murine tumor models that were aPD-1 sensitive, recapitulating the predictive biomarker we previously described in patients. LAG-3hi tumor-bearing mice were sensitive to aPD-1 + anti-LAG-3 (aLAG-3) therapy, and this benefit was CD8+ T cell dependent. The efficacy of combination therapy was enhanced in LAG-3hi (but not LAG-3lo) mice with depletion of CD4+ T cells. Furthermore, responses to aPD-1 + aLAG-3 correlated with regulatory T cell (Treg) phenotypic plasticity in LAG-3hi mice, suggesting a specific role for Tregs in response to aPD-1 + aLAG-3 treatment. Using Treg fate-tracking Foxp3GFP-Cre-ERT2 × ROSAYFP reporter mice, we demonstrated that expanded populations of unstable Tregs correlated with improved response to combination therapy in LAG-3hi mice. Complementing these preclinical data, an increased proportion of unstable Tregs also correlated with higher response rate and improved survival after aPD-1 + aLAG-3 therapy in a cohort of patients with metastatic melanoma (n = 117). These data indicate that Treg phenotypic plasticity affects aPD-1 + aLAG-3 responsiveness, which may represent a biomarker to aid patient selection and a rational therapeutic target for a subset of PD-1-refractory patients.
Collapse
Affiliation(s)
- Annah S Rolig
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - Xiyu Peng
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth R Sturgill
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - Nisha Holay
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - Melissa Kasiewicz
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - Courtney Mick
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - Grace Helen Mcgee
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - William Miller
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - Yoshinobu Koguchi
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | | | - Niranjan Yanamandra
- Immuno-Oncology & Combinations Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Sue Griffin
- Immuno-Oncology & Combinations Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - James Smothers
- Immuno-Oncology & Combinations Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Matthew Adamow
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jasme Lee
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronglai Shen
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| |
Collapse
|
21
|
Karunamurthy A, Davar D. There and back again: PD-L1 Positivity as a Biomarker for Immune Checkpoint Blockade in Urothelial Carcinoma. Cancer Immunol Res 2025; 13:454-455. [PMID: 40084809 DOI: 10.1158/2326-6066.cir-25-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Biomarkers of responsiveness to immune checkpoint blockade (ICB) are heavily sought given the breadth and depth of the use of ICB in cancer. PD-L1 expression was among the first biomarkers identified, but multiple factors have precluded more widespread use. In this issue, Galsky and colleagues utilize two separate PD-L1 assays to study urothelial carcinoma specimens and observe that SP142 (relative to 22C3) preferentially stains dendritic cells. These observations may help reconcile the discordant performance of the two PD-L1 assays in ICB-treated urothelial carcinoma while underscoring the role of dendritic cells in orchestrating ICB response. See related article by Galsky et al., p. 476 .
Collapse
Affiliation(s)
- Arivarasan Karunamurthy
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Diwakar Davar
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania
- University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Liu X, Wang S, Lv H, Chen E, Yan L, Yu J. Advances in the relationship of immune checkpoint inhibitors and DNA damage repair. Curr Res Transl Med 2025; 73:103494. [PMID: 39824061 DOI: 10.1016/j.retram.2025.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Cancer immunotherapy, alongside surgery, radiation therapy, and chemotherapy, has emerged as a key treatment modality. Immune checkpoint inhibitors (ICIs) represent a promising immunotherapy that plays a critical role in the management of various solid tumors. However, the limited efficacy of ICI monotherapy and the development of primary or secondary resistance to combination therapy remain a challenge. Consequently, identifying molecular markers for predicting ICI efficacy has become an area of active clinical research. Notably, the correlation between DNA damage repair (DDR) mechanisms and the effectiveness of ICI treatment has been established. This review outlines the two primary pathways of DDR, namely, the homologous recombination repair pathway and the mismatch repair pathway. The relationship between these key genes and ICIs has been discussed and the potential of these genes as molecular markers for predicting ICI efficacy summarized.
Collapse
Affiliation(s)
- Xiaolin Liu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Hongwei Lv
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Enli Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Li Yan
- School of Humanities, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
23
|
Ibrahim A, Mohamady Farouk Abdalsalam N, Liang Z, Kashaf Tariq H, Li R, O Afolabi L, Rabiu L, Chen X, Xu S, Xu Z, Wan X, Yan D. MDSC checkpoint blockade therapy: a new breakthrough point overcoming immunosuppression in cancer immunotherapy. Cancer Gene Ther 2025; 32:371-392. [PMID: 40140724 PMCID: PMC11976280 DOI: 10.1038/s41417-025-00886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Despite the success of cancer immunotherapy in treating hematologic malignancies, their efficacy in solid tumors remains limited due to the immunosuppressive tumor microenvironment (TME), which is mainly formed by myeloid-derived suppressor cells (MDSCs). MDSCs not only exert potent immunosuppressive effects that hinder the success of immune checkpoint inhibitors (ICIs) and adaptive cellular therapies, but they also promote tumor advancement through non-immunological pathways, including promoting angiogenesis, driving epithelial-mesenchymal transition (EMT), and contributing to the establishment of pre-metastatic environments. While targeting MDSCs alone or in combination with conventional therapies has shown limited success, emerging evidence suggests that MDSC checkpoint blockade in combination with other immunotherapies holds great promise in overcoming both immunological and non-immunological barriers. In this review, we discussed the dual roles of MDSCs, with a particular emphasis on their underexplored checkpoints blockade strategies. We discussed the rationale behind combination strategies, their potential advantages in overcoming MDSC-mediated immunosuppression, and the challenges associated with their development. Additionally, we highlight future research directions aimed at optimizing combination immunotherapies to enhance cancer therapeutic effectiveness, particularly in solid tumor therapies where MDSCs are highly prevalent.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Zihao Liang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Hafiza Kashaf Tariq
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Rong Li
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, South Bend, IN, 46617, USA
| | - Lawan Rabiu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Xuechen Chen
- College of Pharmacy, Jinan University, 511436, Guangzhou, China.
| | - Shu Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, 518106, Shenzhen, China
| | - Zhiming Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, 518106, Shenzhen, China.
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| |
Collapse
|
24
|
Xiao Y, Shi Y, Shao C, Tang W, Liu H, Chen J, Wang S, Cheng B. Discovery of bifunctional small molecules targeting PD-L1/VISTA with favorable pharmacokinetics for cancer immunotherapy. Bioorg Chem 2025; 157:108323. [PMID: 40049048 DOI: 10.1016/j.bioorg.2025.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/18/2025]
Abstract
In this work, we designed and synthesized a series of bifunctional PD-L1/VISTA (V-domain immunoglobulin suppressor of T-cell activation) small molecule inhibitors. Among them, S8 showed acceptable PD-L1 inhibitory effects (IC50 = 1.4 μM, HTRF assay) and VISTA binding activity (KD = 2.1 μM, ITC assay). BLI, ITC, and DSF assays further confirmed its dual action mode. Notably, S8 exhibited desirable in vivo pharmacokinetic properties, featuring a respectable oral bioavailability of 34.2 %. Moreover, oral administration of S8 led to a 40 % reduction in tumor weight and a 51 % decrease in tumor volume in a B16-F10 tumor model, better than the positive control an anti-PD-L1 antibody, and CA-170. PK-PD studies show that the plasma level of unbound S8 covered the biochemical IC50 concentration determined by ITC and HTRF assays, which is consistent with the strong antitumor activity observed in vivo. Analysis of tumor-infiltrating lymphocytes (TILs) via flow cytometry suggested that S8 activated the tumor immune microenvironment to exert its anti-cancer effects. In summary, S8 represents a dual PD-L1/VISTA inhibitor with potential for further investigation as a dual-function immunotherapeutic agent.
Collapse
Affiliation(s)
- Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, PR China
| | - Yaru Shi
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, PR China
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, PR China
| | - Wubing Tang
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, PR China.
| | - Hao Liu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, PR China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Shuanghu Wang
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, PR China.
| | - Binbin Cheng
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, PR China; Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi 435003, PR China.
| |
Collapse
|
25
|
Nelles C, Gräf M, Bernard P, Persigehl T, Große Hokamp N, Zopfs D, Maintz D, Kreuzberg N, Wolf J, Bröckelmann PJ, Lennartz S. Real-world response assessment of immune checkpoint inhibition: comparing iRECIST and RECIST 1.1 in melanoma and non-small cell lung cancer patients. Eur Radiol 2025; 35:2084-2093. [PMID: 39294304 PMCID: PMC11914328 DOI: 10.1007/s00330-024-11060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 08/18/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES To compare immune response evaluation criteria in solid tumors (iRECIST) and response evaluation criteria in solid tumors (RECIST) 1.1 for response assessment of immune checkpoint inhibitor (ICI) therapy in a real-world setting in patients with melanoma and non-small cell lung cancer (NSCLC). METHODS Two-hundred fifty-two patients with melanoma and NSCLC who received CTLA-4 inhibitor ipilimumab or PD-1 inhibitors nivolumab or pembrolizumab and who underwent staging CT of the chest and abdomen were retrospectively included. Treatment response evaluation according to the RECIST 1.1 and iRECIST guidelines was performed for all patients. Response patterns, as well as overall response rate (ORR), disease control rate (DCR), and time to progression (TTP), were compared between RECIST 1.1 and iRECIST. RESULTS Out of 143 patients with progressive disease (PD) according to RECIST 1.1, 48 (33.6%) did not attain confirmation of progression (iCPD) as per iRECIST and six patients who were treated beyond RECIST 1.1 progression reached PD at a later point in time in iRECIST, resulting in a significant difference in TTP between iRECIST and RECIST 1.1 (618.3 ± 626.9 days vs. 538.1 ± 617.9 days, respectively (p < 0.05)). The number of non-responders as per RECIST 1.1 was 79, whereas it was 60 when using iRECIST. ORR was 28.5% for RECIST 1.1 and 34.1% for iRECIST, and corresponding DCR of 67.4% for RECIST 1.1 and 74.6% for iRECIST. CONCLUSION iRECIST was more suitable than RECIST 1.1 for capturing atypical response patterns to ICI therapy in patients with melanoma and NSCLC, resulting in differences in the assessment of treatment response. CLINICAL RELEVANCE STATEMENT Compared to RECIST 1.1, iRECIST may improve patient care and treatment decisions for patients with NSCLC or melanoma who are treated with immune checkpoint inhibitors in clinical routine. KEY POINTS RECIST 1.1 may incorrectly assess atypical treatment patterns to immune checkpoint inhibitors. iRECIST better captured atypical response patterns compared to RECIST 1.1. iRECIST was more suitable for assessing response to immune checkpoint inhibitors in non-small cell lung carcinoma and melanoma.
Collapse
Affiliation(s)
- Christian Nelles
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Moritz Gräf
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pascale Bernard
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Kreuzberg
- Department of Dermatology and Venereology, Skin Cancer Center, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jürgen Wolf
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul J Bröckelmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
26
|
Izadi S, Abrantes R, Gumpelmair S, Kunnummel V, Duarte HO, Steinberger P, Reis CA, Castilho A. An engineered PD1-Fc fusion produced in N. benthamiana plants efficiently blocks PD1/PDL1 interaction. PLANT CELL REPORTS 2025; 44:80. [PMID: 40119938 PMCID: PMC11929711 DOI: 10.1007/s00299-025-03475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE Plant-made PD1-Fc fusions engineered for optimized glycosylation and Fc-receptor engagement are highly efficient in blocking PD1/PDL1 interactions and can be cost-effective alternatives to antibody-based immune checkpoint inhibitors. Immune checkpoint inhibitors (ICIs) are antibodies to receptors that have pivotal roles during T-cell activation processes. The programmed cell death 1 (PD1) can be regarded as the primary immune checkpoint and antibodies targeting PD1 or its ligand PDL1 have revolutionized immunotherapy of cancer. However, the majority of patients fail to respond, and treatment resistance as well as immune-related adverse events are commonly associated with this therapy. Alternatives to antibody-based ICIs targeting the PD1 pathway may bear the potential to overcome some of these shortcomings. Here, we have used a plant expression platform based on the tobacco relative Nicotiana benthamiana to generate immunoglobulin fusion proteins harboring the wild type or an affinity-enhanced PD1 ectodomain. We have exploited the versatility of our system to generate variants that differed regarding their glycosylation profile as well as their capability to engage Fc-receptors. Unlike its wild-type counterpart, the affinity-enhanced versions showed strongly augmented capabilities to engage PDL1 in both protein- and cell-based assays. Moreover, in contrast with clinical antibodies, their binding is not affected by the glycosylation status of PDL1. Importantly, we could demonstrate that the plant-made PD1 fusion proteins are highly efficient in blocking inhibitory PD1 signaling in a T cell reporter assay. Taken together, our study highlights the utility of our plant-based protein expression platform to generate biologics with therapeutic potential. Targeting PDL1 with plant derived affinity-enhanced PD1 immunoglobulin fusion proteins may reduce overstimulation associated with antibody-based therapies while retaining favorable features of ICIs such as long serum half-life.
Collapse
Affiliation(s)
- Shiva Izadi
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Rafaela Abrantes
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Simon Gumpelmair
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vinny Kunnummel
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Henrique O Duarte
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Celso A Reis
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, Porto, Portugal
| | - Alexandra Castilho
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
27
|
Huang Q, Zang X, Jin X, Liu Q, Zhang X, Li X, Zhao L, Lv Z. Discovery of PD-L1 Peptide Inhibitors from Ascidian Enzymatic Hydrolysates by Affinity Ultrafiltration Coupled to NanoLC-MS/MS. Mar Drugs 2025; 23:137. [PMID: 40278258 PMCID: PMC12028738 DOI: 10.3390/md23040137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
Anti-PD-1 and anti-PD-L1 antibodies have achieved great clinical success in cancer immunotherapy, and peptide and small molecule inhibitors of PD-1/PD-L1 binding also attract much attention. Ascidians are not only seafood, but are also an important source of bioactive substances, including anti-tumor components. In this study, ascidian enzymatic hydrolysates were found to contain PD-1/PD-L1 inhibitory components. Affinity ultrafiltration (AUF) coupled with the nanoLC-MS/MS method was first applied in screening for PD-L1 peptide inhibitors from ascidian enzymatic hydrolysates. Two anti-PD-L1 ascidian peptides, C5 (LDVVIHTVTYGDR) and S2 (VLRDNIQGITKPAIR), were filtered out from the ascidians Ciona intestinalis and Styela clava, respectively. C5 and S2 showed moderate anti-PD-1/PD-L1 effects with the IC50 values of 33.9 µM (C5) and 112.8 μM (S2), respectively, by homogenous time-resolved fluorescence (HTRF) binding assay, and the KD values of 22.9 µM (C5) and 29.1 µM (S2), respectively, by surface plasmon resonance (SPR) assay. The results of this study suggest that ascidian enzymatic hydrolysates may be a potential source of bioactive peptides with anti-PD-1/PD-L1 activity.
Collapse
Affiliation(s)
- Qiuyang Huang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.H.); (X.J.); (Q.L.); (X.Z.); (X.L.)
| | - Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.H.); (X.J.); (Q.L.); (X.Z.); (X.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xinyu Jin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.H.); (X.J.); (Q.L.); (X.Z.); (X.L.)
| | - Qian Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.H.); (X.J.); (Q.L.); (X.Z.); (X.L.)
| | - Xin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.H.); (X.J.); (Q.L.); (X.Z.); (X.L.)
- Sinopep Allsino Bio Pharmaceutical Co., Ltd., Hangzhou 310020, China
| | - Xinyu Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.H.); (X.J.); (Q.L.); (X.Z.); (X.L.)
| | - Lizhen Zhao
- College of Physics, Qingdao University, Qingdao 266071, China;
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.H.); (X.J.); (Q.L.); (X.Z.); (X.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
28
|
Zhang J, Wise SG, Zuo S, Bao S, Zhang X. The distinct roles of IL-37 and IL-38 in non-small cell lung carcinoma and their clinical implications. Front Immunol 2025; 16:1564357. [PMID: 40191189 PMCID: PMC11968353 DOI: 10.3389/fimmu.2025.1564357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Lung cancer, a significant global health challenge, is primarily classified into non-small cell lung cancer (NSCLC) and small cell lung cancer. Despite advancements in targeted therapies and immunotherapies, NSCLC outcomes remain poor, with low five-year survival rates. Given the lung's constant exposure to the environment and the presence of mucosal-associated lymphoid tissues, immunity plays a crucial role in NSCLC development. Immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have shown promise. However, adverse immune events limit their efficacy. This review highlights the contrasting roles of IL-37 and IL-38 in NSCLC pathogenesis. IL-37, an anti-inflammatory cytokine, suppresses tumour growth. It achieves this by modulating macrophage polarization and dendritic cell maturation. Correlations between intra-tumoral IL-37 expression and improved survival suggest a protective role in NSCLC. This may be mediated through VEGF inhibition and immune regulation. Conversely, IL-38, while anti-inflammatory in certain contexts, exhibits a pro-tumorigenic role in NSCLC. IL-38 enhances tumour progression by increasing pro-inflammatory cytokine secretion and facilitating immune evasion, potentially through NF-κB signalling. Notably, IL-38 negatively regulates IL-37, further promoting tumorigenesis. Emerging data suggest that IL-37 has therapeutic potential in inhibiting NSCLC metastasis and supporting immune modulation. In contrast, IL-38 presents a potential target for mitigating pro-inflammatory microenvironment effects. The distinct roles of these cytokines emphasize the complex immune dynamics in NSCLC. Further exploration of their molecular mechanisms and therapeutic implications is warranted. Targeting IL-37 and IL-38 may offer novel strategies for enhancing NSCLC treatment outcomes.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Steven G. Wise
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NS, Australia
| | - Shunqing Zuo
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Shisan Bao
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xufeng Zhang
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Jiang YJ, Wu L, Yang X, Pu Y, Ning BJ, Peng N, Zhu XJ. Dermatitis bullosa caused by the immune checkpoint inhibitor camrelizumab: A case report. World J Clin Cases 2025; 13:97677. [PMID: 40094109 PMCID: PMC11670018 DOI: 10.12998/wjcc.v13.i8.97677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 12/04/2024] Open
Abstract
BACKGROUND Since the advent of the 20th century, alongside the progression of medical science and technological advancements, immunotherapy has emerged as a pivotal therapeutic approach for tumor patients subsequent to undergoing radiotherapy and chemotherapy. Arimab (camrelizumab), a flagship drug in the realm of immunotherapy, functions as a monoclonal antibody specifically targeting the programmed death protein 1 (PD-1). This drug engages with the human PD-1 receptor, effectively inhibiting the PD-1/programmed death ligand 1 signaling pathway. This inhibition results in the restoration of T cell activity and the induction of an anti-tumour response. However, it is noteworthy that such interference could lead to immune-related adverse events resembling autoimmune reactions. The growing availability and clinical use of immune checkpoint inhibitors have raised significant clinical concerns regarding their safety. Numerous instances of immune-related adverse reactions and the associated management strategies have been extensively reported. Timely identification and diagnosis, coupled with multidisciplinary consultation and the prompt administration of immunosuppressants, can effectively address severe immune-related adverse reactions. CASE SUMMARY Arimab (camrelizumab), a monoclonal antibody targeting programmed death protein 1 (PD-1), disrupts the PD-1/ programmed death ligand 1 (PD-L1) interaction, reactivating T cell function and triggering anti-tumor immunity. However, this disruption may trigger immune-mediated adverse events akin to autoimmune disorders. Approximately 2.8% of such events manifest as immune-related dermatologic reactions, with 0.7% classified as grade 3, which are infrequently documented. Here, this study describes a case of grade 3 bullous dermatitis occurring 15 days after initiating camrelizumab therapy. The patient, a 67-year-old male with oesophageal squamous cell carcinoma, received camrelizumab plus paclitaxel alongside chemotherapy and radiotherapy in early 2022. Due to disease progression, maintenance monotherapy with camrelizumab (200 mg) commenced in June 2022. On the fourth cycle, 15 days into treatment, the patient presented with an immune-checkpoint inhibitor-related rash, despite unremarkable test results. Dermatology and pharmacy consultations were conducted, leading to glucocorticoid therapy, topical interventions, and supportive care. Gastric mucosal protection, nutritional supplementation, and other adjunctive treatments were also provided. The patient's symptoms resolved within 15 days post-discharge, resulting in discontinuation of camrelizumab. Like other PD-1 inhibitors, camrelizumab is associated with immune-mediated dermatitis. Thus, optimal management of these events requires a multidisciplinary approach, vigilant monitoring, regular evaluations, prompt glucocorticoid administration, and specialized dermatologic care. CONCLUSION The increasing adoption of immune checkpoint inhibitors in clinical practice has prompted substantial concerns about their safety profile. A wide range of immune-related adverse events and corresponding management strategies have been well-documented. Early recognition and accurate diagnosis, combined with interdisciplinary collaboration and swift initiation of immunosuppressive therapy, are essential in managing severe immune-related adverse reactions effectively. This report details the treatment trajectory and outcome of a case involving immune-related cutaneous adverse reactions, providing pertinent clinical insights for future cases.
Collapse
Affiliation(s)
- Yuan-Jing Jiang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Lu Wu
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiao Yang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yu Pu
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Bing-Jie Ning
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Na Peng
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiao-Ju Zhu
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
30
|
Chen Y, Hu Y, Li A, Zhang G, Guo D, Yao X, Zeng B, Tang G, Jiang B, Jiang L. Preclinical and first‑in‑human evaluation of [ 68Ga]Ga-DOTA-PEG 2-Asp 2-PDL1P PET imaging to assess tumor PD-L1 expression. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07173-7. [PMID: 40029371 DOI: 10.1007/s00259-025-07173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
PURPOSE PD-L1 PET imaging can provide a non-invasively and real-time assessment of PD-L1 expression status at tumor sites. This study aimed to evaluate the targeting efficacy and biodistribution of a novel peptide-based PD-L1 PET agent, [68Ga]Ga-DOTA-PEG2-Asp2-PDL1P, in preclinical studies and human participants. METHODS [68Ga]Ga-DOTA-PEG2-Asp2-PDL1P was synthesized and the probe stability was analyzed in vitro and in vivo. Cellular uptake of the probe was evaluated using tumor cell lines with different PD-L1 expression levels. Small animal PET imaging and semi-quantitative studies were conducted in PC3, H1975 and A549 tumor-bearing mice models, with tumor PD-L1 expression confirmed through immunofluorescence and immunohistochemistry. Furthermore, [68Ga]Ga-DOTA-PEG2-Asp2-PDL1P PET imaging was performed in 1 healthy volunteer and 14 lung cancer patients to assess biodistribution and PD-L1 expression at tumor sites. RESULTS [68Ga]Ga-DOTA-PEG2-Asp2-PDL1P exhibited a radiochemical purity of > 99% and had good stability both in vitro and in vivo. In vitro cellular uptake and in vivo small animal PET imaging revealed the probe binding to PD-L1 with high affinity and specificity, consistent with the results of immunofluorescence and immunohistochemistry. In the clinical study involving 15 participants, [68Ga]Ga-DOTA-PEG2-Asp2-PDL1P was proven safe with demonstrating low uptake in normal organs and physiologically excreting via the urinary system. Lung cancer patients with high PD-L1 expression (TPS 70-90%) exhibited higher tumor uptake and tumor-to-background ratios than those with negative or low PD-L1 expression (TPS < 1-10%), with SUVmax of 1.89-2.27 vs. 0.87-1.01, tumor-to-lung ratios of 4.73-7.68 vs. 1.61-2.35, and tumor-to-muscle ratios of 6.73-12.61 vs. 4.35-5.61. CONCLUSION [68Ga]Ga-DOTA-PEG2-Asp2-PDL1P showed promising as a PET agent to assess tumor PD-L1 expression in preclinical and first-in-human studies, offering a non-invasive, real-time and accurate tool to address clinical challenges in predicting and assessing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yang Chen
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yinting Hu
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ao Li
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guojin Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Danyi Guo
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinchao Yao
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Baozhen Zeng
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ganghua Tang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Benyuan Jiang
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- Department of Pulmonary Surgery, Guangdong Provincial People's Hospital, Guangdong Lung Cancer Institute, Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
| | - Lei Jiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Morrison MA, Artru F, Trovato FM, Triantafyllou E, McPhail MJ. Potential therapies for acute-on-chronic liver failure. Liver Int 2025; 45:e15545. [PMID: 36800487 PMCID: PMC11815631 DOI: 10.1111/liv.15545] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome that develops in approximately 30% of patients hospitalised with cirrhosis and is characterised by an acute decompensation of liver function associated with extra-hepatic organ failures and a high short-term mortality. At present, no specific therapies are available for ACLF, and current management is limited to treatment of the precipitating event and organ support. Given the high prevalence and high mortality of this severe liver disease, there is an urgent need for targeted treatments. There is increasing evidence of the important role played by systemic inflammation and immune dysfunction in the pathophysiology of ACLF and a better understanding of these immune processes is resulting in new therapeutic targets. The aim of this review is to present an overview of ongoing studies of potentially promising therapies and how they could be utilised in the management of ACLF.
Collapse
Affiliation(s)
- Maura A. Morrison
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Florent Artru
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Francesca M. Trovato
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Mark J. McPhail
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| |
Collapse
|
32
|
Kobori T, Ito Y, Urashima Y, Ito T, Takagaki N, Hotta K, Obata T. Ezrin works as a scaffold protein for a macrophage checkpoint molecule CD47, leading to a poor prognosis for patients with uterine cervical squamous cell carcinoma. Taiwan J Obstet Gynecol 2025; 64:239-247. [PMID: 40049807 DOI: 10.1016/j.tjog.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 05/13/2025] Open
Abstract
OBJECTIVES Despite recent advances in the immunotherapeutic intervention as the second-line treatment of cervical cancer, including Pembrolizumab and Nivolumab, the advanced stages of the disease are still associated with poor prognosis. CD47 is a macrophage checkpoint molecule overexpressed superficially in nearly all cancer types that binds to its receptor on macrophage surface, leading to a disruption of their phagocytic capacities against cancer cells. Ezrin-Radixin-Moesin (ERM) family member of proteins work as scaffold proteins by crosslinking specific transmembrane proteins to actin filaments, contributing to their plasma membrane localization. This study aimed to investigate the relationship between ERM family and CD47 in the uterine cervical squamous cell carcinoma (UCSCC). MATERIALS AND METHODS The mRNA expression, intracellular localization, and molecular interaction of CD47 and ERM in BOKU cells derived from human UCSCC were determined using RT-PCR, immunofluorescence, and co-immunoprecipitation, respectively. CD47 plasma membrane expression was measured by flow cytometry three days after transfection with small interfering RNAs against each ERM. CD47 and ERM expression in tumor tissues from patients with uterine cervical cancer was analyzed using a clinical RNA sequencing database. RESULTS Confocal laser scanning microscopy analysis showed the co-localization of CD47 with all three ERM in the plasma membrane of BOKU cells. RNA interference-mediated knockdown of ezrin but not others reduced the plasma membrane expression of CD47. Furthermore, immunoprecipitation assay demonstrated the molecular interaction of CD47 with ezrin. Notably, bioinformatic analysis indicated that CD47 and ezrin expressions were markedly increased and positively correlated in the clinical uterine cervical tumor tissues and that higher expressions of ezrin correlates with a poor prognosis for the uterine cervical cancers. CONCLUSION This study illustrates that in uterine cervical cancers, ezrin may be a dominant scaffold protein responsible for CD47 expression and, therefore, is a potential target for developing a novel macrophage checkpoint blockade therapy.
Collapse
Affiliation(s)
- Takuro Kobori
- Laboratory of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Yui Ito
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Nobumasa Takagaki
- Nobumasa Clinic, 35-6 Higashikujominamikarasuma-cho, Minami-ku, Kyoto, 601-8041, Japan
| | - Kikuko Hotta
- Laboratory of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan.
| |
Collapse
|
33
|
Ma X, Hu B, Zhou X, Wang L, Chen H, Xie F, Zhu H, Jia B, Yang Z. Development and First-in-Human evaluation of a Site-Specific [ 18F]-Labeled PD-L1 nanobody PET radiotracer for noninvasive imaging in NSCLC. Bioorg Chem 2025; 156:108222. [PMID: 39889552 DOI: 10.1016/j.bioorg.2025.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Immunohistochemistry (IHC) for PD-L1 detection is limited by its invasiveness and heterogeneity of tumors. To address these challenges, a new PD-L1-targeted nanobody-based immune-PET radiotracer [18F]AlF-APN09 was developed using the site-specific radiolabeling method with the complexing agent (Mal-RESCA) under mild conditions. [18F]AlF-APN09 was prepared at room temperature (pH 4.6-4.8) within 20 min with satisfactory radiochemical yields (45.8 ± 4.48 %, non-decay corrected), high radiochemical purity (>98 %) and moderate apparent molar activity (15-35 GBq/μmol), and remained stable in both PBS and 5 % HSA after 4 h (>90 %). Cell uptake studies indicated variable levels of surface PD-L1 expression in the following order: A549PD-L1 > H1975 > A549. In micro-PET/CT imaging, A549PD-L1 and H1975 tumors were distinctly visualized in a 6.0:1 and 3.2:1 ratios over PD-L1-negative A549 tumors in vivo. Ex vivo biodistribution studies showed tumor uptake values of 6.47 ± 1.06 %ID/g (A549PD-L1) and 2.27 ± 0.19 %ID/g (H1975), significantly higher than 0.90 ± 0.28 %ID/g in A549 tumors. The estimated effective radiation dose in humans was 8.65E-03 mSv/MBq, lower than that of conventional [18F]FDG. First-in-human imaging was conducted on a single resectable non-small cell lung cancer (NSCLC) subject without any adverse reactions. The radiotracer exhibited renal excretion with minimal hepatobiliary clearance. Tumor uptake reached SUVmax 4.20 at 2 h post-injection, demonstrating high contrast and rapid clearance. After PD-1 inhibitor immunotherapy and chemotherapy, the subject showed a therapeutic response and postoperative pathological specimens confirmed a major pathological response (MPR). These results suggest that we have successfully developed a new PD-L1-targeted nanobody PET tracer using the site-specific labeling method with the complexing agent (Mal-RESCA) within 20 min under mild conditions and [18F]AlF-APN09 is a promising noninvasive PET radiotracer for visualizing PD-L1 expression in tumors, offering rapid tumor targeting, excellent signal-to-noise ratios, and favorable clearance properties.
Collapse
Affiliation(s)
- Xiaopan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142 China; Department of Nuclear Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441138 China
| | - Biao Hu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191 China
| | - Xin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142 China
| | - Lei Wang
- Department of Laboratory Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441138 China
| | - Hui Chen
- Department of Nuclear Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441138 China
| | - Fei Xie
- Department of Nuclear Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441138 China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142 China.
| | - Bing Jia
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191 China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142 China.
| |
Collapse
|
34
|
Gao F, You W, Zhang L, Shen AZ, Chen G, Zhang Z, Nie X, Xia L, Huang WQ, Wang LH, Hong CY, Yin DL, You YZ. Copper Chelate Targeting Externalized Phosphatidylserine Inhibits PD-L1 Expression and Enhances Cancer Immunotherapy. J Am Chem Soc 2025; 147:5796-5807. [PMID: 39797790 DOI: 10.1021/jacs.4c14394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies. Here, we introduce a copper chelate composed of a terpyridine-Cu complex with a farnesol tail designed to selectively target and cap the externalized PS on cancer cells. This approach not only promotes dendritic cell maturation and effector T-cell proliferation and tumor infiltration but also significantly inhibits PD-L1 expression, thereby amplifying T-cell-mediated immune responses. Our results demonstrate that this strategy induces robust immunological memory and leads to the eradication of tumors in over 70% of mice with colorectal and melanoma cancers. These findings highlight a promising, antibody-independent strategy for cancer immunotherapy where targeting externalized PS could overcome current limitations of checkpoint blockade therapies.
Collapse
Affiliation(s)
- Fan Gao
- Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China
| | - Ai-Zong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China
| | - Guang Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ze Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China
| | - Lei Xia
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei-Qiang Huang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Long-Hai Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Da-Long Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ye-Zi You
- Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Champiat S, Garralda E, Galvao V, Cassier PA, Gomez-Roca C, Korakis I, Grell P, Naing A, LoRusso P, Mikyskova R, Podzimkova N, Reinis M, Ouali K, Schoenenberger A, Kiemle-Kallee J, Tillmanns S, Sachse R, Moebius U, Spisek R, Bechard D, Jelinkova LP, Adkins I, Marabelle A. Nanrilkefusp alfa (SOT101), an IL-15 receptor βγ superagonist, as a single agent or with anti-PD-1 in patients with advanced cancers. Cell Rep Med 2025; 6:101967. [PMID: 39933529 PMCID: PMC11866505 DOI: 10.1016/j.xcrm.2025.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/15/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
Nanrilkefusp alfa (nanril; SOT101) is an interleukin (IL)-15 receptor βγ superagonist that stimulates natural killer (NK) and CD8+ T cells, thereby promoting an innate and adaptive anti-tumor inflammatory microenvironment in mouse tumor models either in monotherapy or combined with an anti-programmed cell death protein 1 (PD-1) antibody. In cynomolgus monkeys, a clinical schedule was identified, which translated into the design of a phase 1/1b clinical trial, AURELIO-03 (NCT04234113). In 51 patients with advanced/metastatic solid tumors, nanril increased the proportions of CD8+ T cells and NK cells in peripheral blood and tumors. It had a favorable safety profile when administered subcutaneously on days 1, 2, 8, and 9 of each 21-day cycle as monotherapy (0.25-15 μg/kg) or combined (1.5-12 μg/kg) with the anti-PD-1 pembrolizumab (200 mg). The most frequent treatment-emergent adverse events were pyrexia, injection site reactions, and chills. Furthermore, early clinical efficacy was observed, including in immune checkpoint blockade-resistant/refractory patients.
Collapse
Affiliation(s)
- Stephane Champiat
- Gustave Roussy, Departement d'Innovation Therapeutique et d'Essais Precoces (DITEP), Universite Paris Saclay, 94805 Villejuif, France.
| | - Elena Garralda
- Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | | | | | - Carlos Gomez-Roca
- Institut Universitaire du Cancer de Toulouse, 31100 Toulouse, France
| | - Iphigenie Korakis
- Institut Universitaire du Cancer de Toulouse, 31100 Toulouse, France
| | - Peter Grell
- Masaryk Memorial Cancer Institute, 602 00 Brno, Czech Republic
| | - Aung Naing
- Department of Lnvestigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Romana Mikyskova
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | | | - Milan Reinis
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Kaissa Ouali
- Gustave Roussy, Departement d'Innovation Therapeutique et d'Essais Precoces (DITEP), Universite Paris Saclay, 94805 Villejuif, France
| | | | | | | | | | | | - Radek Spisek
- SOTIO Biotech a.s., 170 00 Prague, Czech Republic
| | | | - Lenka Palova Jelinkova
- SOTIO Biotech a.s., 170 00 Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, 150 06 Prague, Czech Republic
| | - Irena Adkins
- SOTIO Biotech a.s., 170 00 Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, 150 06 Prague, Czech Republic
| | - Aurelien Marabelle
- Gustave Roussy, Departement d'Innovation Therapeutique et d'Essais Precoces (DITEP), Universite Paris Saclay, 94805 Villejuif, France
| |
Collapse
|
36
|
Safir W, Malik A, Saadia H, Zahid A, Li J. Extraction, GC-MS analysis, cytotoxic, anti-inflammatory and anticancer potential of Cannabis sativa female flower; in vitro, in vivo and in silico. Front Pharmacol 2025; 16:1546062. [PMID: 40008130 PMCID: PMC11850312 DOI: 10.3389/fphar.2025.1546062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
This work examines the anticancer activity, the anti-inflammatory nature, and the cytotoxicity of the ethanol extract obtained from the female flowers of Cannabis sativa L using molecular methods in vitro, animal testing in vivo, as well as computational methods and simulations in silico. From the GC-MS analysis, the following bioactive compounds were found: cannabidiol (CBD), tetrahydrocannabinol (THC), and humulene. The antiproliferative activities of the extract were determined on HeLa cells by using MTT, Crystal Violet, and Trypan Blue assays with an IC50 value suggesting 51%-77.6% lethality. The bioinformatics analysis of molecular docking proved significant ligand-protein interactions of CBD, THC, and humulene with cancer-associated proteins such as PD-1/PD-L1, TNF-α, and MMP-9. In vivo, breast cancer was first established in female Sprague-Dawley rats with 7,12-dimethylbenz(a)anthracene (DMBA) then treated with cannabinoids either singularly or in combination. Detailed treatment demonstrated that the use of the three cannabinoids simultaneously yielded the best anticancer and anti-inflammatory outcomes together with the best tumor reduction. The concentration of serum biomarkers of inflammation and tumor progression was substantially reduced in treated groups compared to the control group, which proves the synergistic effects of these cannabinoids in breast cancer therapy. This study emphasizes the importance of medical Cannabis sativa derivatives in cancer treatment.
Collapse
Affiliation(s)
- Waqas Safir
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Arif Malik
- School of Pain and Regenerative Medicine (SPRM), The University of Lahore, Lahore, Pakistan
- Faculty of Health Sciences, Equator University of Science and Technology, (EQUSaT), Masaka, Uganda
| | - Haleema Saadia
- Department of Biochemistry, Islam Medical College, Sialkot, Pakistan
| | - Ayesha Zahid
- School of Pain and Regenerative Medicine (SPRM), The University of Lahore, Lahore, Pakistan
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
37
|
Zou M, Qattan A, Al-Alwan M, Ghebeh H, Binjumah N, Al-Haj L, Khabar KSA, Altaweel A, Almohanna F, Assiri AM, Aboussekhra A, Alzahrani AS, Shi Y. Genome-wide transcriptome analysis and drug target discovery reveal key genes and pathways in thyroid cancer metastasis. Front Endocrinol (Lausanne) 2025; 16:1514264. [PMID: 39996058 PMCID: PMC11847698 DOI: 10.3389/fendo.2025.1514264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction Metastasis is the major cause of thyroid cancer morbidity and mortality. However, the mechanisms are still poorly understood. Methods We performed genome-wide transcriptome analysis comparing gene expression profile of metastatic thyroid cancer cells (Met) with primary tumor cells established from transgenic mouse models of papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), poorly differentiated thyroid cancer (PDTC), and anaplastic thyroid cancer (ATC). Results Genes involved in tumor microenvironment (TME), inflammation, and immune escape were significantly overexpressed in Met cells. Notably, IL-6-mediated inflammatory and PD-L1 pathways were highly active in Met cells with increased secretion of pro-inflammatory and pro-metastatic cytokines such as CCL2, CCL11, IL5, IL6, and CXCL5. Furthermore, Met cells showed robust overexpression of Tbxas1, a thromboxane A synthase 1 gene that catalyzes the conversion of prostaglandin H2 to thromboxane A2 (TXA2), a potent inducer of platelet aggregation. Application of aspirin, a TXA2 inhibitor, significantly reduced lung metastases. Mertk, a member of the TAM (Tyro, Axl, Mertk) family of RTKs, was also overexpressed in Met cells, which led to increased MAPK activation, epithelial-mesenchymal transition (EMT), and enrichment of cancer stem cells. Braf-mutant Met cells developed resistance to BRAFV600E inhibitor PLX4720, but remained sensitive to β-catenin inhibitor PKF118-310. Conclusion We have identified several overexpressed genes/pathways in thyroid cancer metastasis, making them attractive therapeutic targets. Given the complexity of metastasis involving multiple pathways (PD-L1, Mertk, IL6, COX-1/Tbxas1-TXA2), simultaneously targeting more than one of these pathways may be warranted to achieve better therapeutic effect for metastatic thyroid cancer.
Collapse
Affiliation(s)
- Minjing Zou
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Amal Qattan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Monther Al-Alwan
- Department of Cell Therapy and Immunobiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hazem Ghebeh
- Department of Cell Therapy and Immunobiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Naif Binjumah
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Latifa Al-Haj
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khalid S. A. Khabar
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdulmohsen Altaweel
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Falah Almohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah M. Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ali S. Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Yufei Shi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Cheng B, Lv J, Xiao Y, Song C, Chen J, Shao C. Small molecule inhibitors targeting PD-L1, CTLA4, VISTA, TIM-3, and LAG3 for cancer immunotherapy (2020-2024). Eur J Med Chem 2025; 283:117141. [PMID: 39653621 DOI: 10.1016/j.ejmech.2024.117141] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Cancer immunotherapy, leveraging antibodies, excels in targeting efficacy but faces hurdles in tissue penetration, oral delivery, and prolonged half-life, with costly production and risk of adverse immunogenic effects. In contrast, small molecule immuno-oncology agents provide favorable pharmacokinetic properties and benign toxicity profiles. These agents are well-positioned to address the limitations of antibody-based immunotherapies, augment existing treatment modalities, and achieve synergistic effects when combined with antibodies. This review, for the first time, summarizes the recent advances (2020-2024) in small molecule inhibitors targeting PD-1/PD-L1, CTLA4, VISTA, TIM-3, and LAG3, highlighting rational design, benefits, and potential limitations. It also outlines the prospects for small-molecule immunotherapy.
Collapse
Affiliation(s)
- Binbin Cheng
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Jinke Lv
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan 528000, China
| | - Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, China
| | - Changshan Song
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan 528000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| |
Collapse
|
39
|
He Q, Wang Z, Wang R, Lu T, Chen Y, Lu S. Modulating the phosphorylation status of target proteins through bifunctional molecules. Drug Discov Today 2025; 30:104307. [PMID: 39900282 DOI: 10.1016/j.drudis.2025.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Phosphorylation is an important form of protein post-translational modification (PTM) in cells. Dysregulation of phosphorylation is closely associated with many diseases. Because the regulation of proteins of interest (POIs) by chemically induced proximity (CIP) strategies has been widely validated, regulating the phosphorylation status of POIs by phosphorylation-regulating bifunctional molecules (PBMs) emerges as an alternative paradigm. PBMs promote the spatial proximity of POIs to kinases/phosphatases, and thus alter the phosphorylation state of POIs. Herein, we describe the history and current status of PBMs, analyze in detail the general design principles and specific applications of PBMs, assess their current advantages, possible challenges and limitations, and propose future directions for PBMs, which will stimulate interest in PBM research.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100 China
| | - Rongrong Wang
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198 China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198 China.
| |
Collapse
|
40
|
Shi J, Gao H, Wu Y, Luo C, Yang G, Luo Q, Jia B, Han C, Liu Z, Wang F. Nuclear imaging of PD-L1 expression promotes the synergistic antitumor efficacy of targeted radionuclide therapy and immune checkpoint blockade. Eur J Nucl Med Mol Imaging 2025; 52:955-969. [PMID: 39472367 DOI: 10.1007/s00259-024-06962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/18/2024] [Indexed: 01/23/2025]
Abstract
PURPOSE In order to maximize synergistic effect of targeted radionuclide therapy (TRT) and immune checkpoint blockade (ICB) as well as reduce the toxicity, we pioneered a strategy guided by PD-L1-targeted nuclear medicine imaging for the combination of TRT and ICB towards precision cancer therapy. METHODS As a novel targeted radiotherapeutic agent, 177Lu-AB-3PRGD2 targeting integrin αvβ3 was developed to achieve sustained antitumor effect by introducing an albumin binder (AB) into the structure of 3PRGD2. The 177Lu-AB-3PRGD2 TRT as well as different types of combination therapies of 177Lu-AB-3PRGD2 TRT and anti-PD-L1 ICB were performed in animal models. The changes of PD-L1 expression in tumors after TRT were evaluated in vitro and in vivo by PD-L1-specific SPECT/CT imaging of 99mTc-MY1523. RESULTS 177Lu-AB-3PRGD2 showed improved tumor uptake and prolonged tumor retention, leading to significantly enhanced tumor growth suppression. Moreover, 177Lu-AB-3PRGD2 TRT remodeled the tumor immune microenvironment by upregulating PD-L1 expression and increasing tumor-infiltrating CD8+ T cells, facilitating immunotherapy. We found that the anti-PD-L1 treatment was more effective during the upregulation of tumor PD-L1 expression, and the time window could be determined by 99mTc-MY1523 SPECT/CT. CONCLUSION We developed a novel and long-acting radiotherapeutic agent 177Lu-AB-3PRGD2, and pioneered a strategy guided by PD-L1-targeted nuclear medicine imaging for the combination of TRT and ICB towards precision cancer therapy, optimizing the therapeutic efficacy and reducing the cost and potential toxicity risks. This strategy could also be adapted for clinical practice, combining conventional radiotherapy or chemotherapy with ICB to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Jiyun Shi
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hannan Gao
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Wu
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
| | - Chuangwei Luo
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
| | - Guangjie Yang
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
| | - Qi Luo
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Bing Jia
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
| | - Chuanhui Han
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
| | - Zhaofei Liu
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
| | - Fan Wang
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China.
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
41
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
42
|
Tong X, Tang R, Xu J, Wang W, Du Q, Shi S, Yu X. Cancer type-specific adverse events of immune checkpoint inhibitors: A systematic review and meta-analysis. Heliyon 2025; 11:e41597. [PMID: 39866435 PMCID: PMC11757769 DOI: 10.1016/j.heliyon.2024.e41597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND The distribution of adverse events (AEs) triggered by immune checkpoint inhibitors (ICIs) across different cancer types has never been demonstrated. METHODS Randomised controlled trials exclusively assessing ICI monotherapy in cohorts of over 100 patients were considered. Our primary outcome was a comprehensive summary of the distribution of all-grade treatment-related adverse events (TRAEs) as well as serious TRAEs (CTCAE grade 3 or higher) across different malignancies. The study is registered with PROSPERO CRD42023387934. FINDINGS 75 trials that enrolled over 100 patients were included. While investigating the incidence of each TRAE across various cancers, we found special linkages existed between certain TRAEs and particular cancer types. In anti-PD-1 monotherapy group, melanoma patients experienced the most frequent fatigue (31.1 %, 95 % CI 29.7%-32.5 %); the incidences of severe pneumonitis and other respiratory disorders were highest in Hodgkin lymphoma (4.1 %, 95 % CI 1.5%-8.6 %; 4.1 %, 95 % CI 1.5%-8.6 %, respectively). Among individuals undergoing single-agent anti-PD-L1, higher frequency of all-grade pruritus occurred in 19.0 % of renal cell carcinoma (RCC) patients (95 % CI 15.2%-23.2 %), and the highest probability of developing other severe musculoskeletal disorders was observed in patients with RCC (6.2 %, 95 % CI 4.0%-9.0 %). In anti-CTLA-4 monotherapy, the incidences of both all-grade and severe diarrhea occurred most frequently in prostate cancer patients (41.9 %, 95 % CI 37.9%-47.9; 14.8 %, 95 % CI 11.5%-18.7 %, respectively). INTERPRETATION This is the first comprehensive study addressing the distribution of various TRAEs across cancer types. Our research emphasizes the significance of considering cancer-specific TRAEs when using ICIs for treatment.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiong Du
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Si Shi
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
44
|
Chang W, Gao W, Wu Y, Luo B, Zhong L, Zhong L, Lin W, Wen Z, Chen Y. The lysosome-related characteristics affects the prognosis and tumor microenvironment of lung adenocarcinoma. Front Med (Lausanne) 2025; 11:1497312. [PMID: 39839650 PMCID: PMC11746080 DOI: 10.3389/fmed.2024.1497312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Background The lysosome plays a vitally crucial role in tumor development and is a major participant in the cell death process, involving aberrant functional and structural changes. However, there are few studies on lysosome-associated genes (LAGs) in lung adenocarcinoma (LUAD). Methods Bulk RNA-seq of LUAD was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The lysosome risk signature was constructed after univariate and least absolute shrinkage and selection operator (Lasso) cox regression analysis of the TCGA training set, and its capability was validated by additional validation sets from GEO. Single cell sequencing (scRNA) was obtained from GEO to analyze the differences of lysosome risk signature at the single-cell level and the differences in the function and pathway. In vitro experiments have validated the function of CTSH in LUAD. Results The risk signature contained seven key LAGs, and patients were categorized into high- and low-risk groups based on a specific calculation formula. The LAG risk signature, which accurately predicted the prognostic status of LUAD patients, was still regarded as an independent prognostic indicator in multifactorial cox regression analysis. Subsequently, the combination of the signature and key clinical information was used to construct a column-line diagram for clinical assessment, which had a high discriminatory power. Immune infiltration analysis from bulk RNA-seq and scRNA-seq indicated that the low-risk group was immune-activated and had a better benefit in the prediction of immunotherapy. Finally, we validated its role in inhibiting tumor proliferation and metastasis in LUAD cells by knockdown of CTSH. Conclusion We defined a new biomarker that provided unique insights for individualized survival prediction and immunotherapy recommendations for LUAD patients.
Collapse
Affiliation(s)
- Wuguang Chang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Wuyou Gao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yawei Wu
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bin Luo
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lekai Zhong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Leqi Zhong
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenqian Lin
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhesheng Wen
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Youfang Chen
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
45
|
Oh DY, Rokutanda N, Żotkiewicz M, He P, Stocks J, Johnson ML. Delayed Separation of Kaplan-Meier Curves is Commonly Observed in Studies of Advanced/Metastatic Solid Tumors Treated with Anti-PD-(L)1 Therapy: Systematic Review and Meta-Analysis. Target Oncol 2025; 20:45-56. [PMID: 39522075 PMCID: PMC11762587 DOI: 10.1007/s11523-024-01108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) Kaplan-Meier (KM) curves often show delayed survival benefit followed by long-term survival in a subgroup of patients. Such outcomes can violate the proportional hazards assumption, leading to a loss of statistical power. OBJECTIVE We aimed to determine common trends in delayed separation to inform future ICI clinical trials. PATIENTS AND METHODS A literature search was performed using Trialtrove® to identify phase III trials of antiprogrammed cell death (ligand)-1 (anti-PD-[L]1) agents in locally advanced/metastatic solid tumors published between January 2010 and September 2021. The frequency of delayed separation of overall survival (OS) and progression-free survival (PFS) KM curves, correlation between duration of delayed separation in OS/PFS KM curves, and correlation between duration of delayed separation in OS/PFS KM curves with corresponding hazard ratios (HRs) were assessed in all-comer and PD-L1 enriched populations. RESULTS Eighty-five studies with OS/PFS KM curves were identified. Most studies showed delayed separation of OS (> 67.9%) and PFS (> 54.5%) KM curves. The correlation between the duration of delayed separation in OS/PFS KM curves was strongest in the PD-L1 enriched population (adjusted R2 = 0.66). No correlation was seen between the duration of delayed separation of OS KM curves and OS HR. A modest correlation was seen between the duration of delayed separation of PFS KM curves and PFS HR in all-comer and PD-L1 enriched populations (adjusted R2 = 0.24 and 0.31, respectively). CONCLUSIONS Delayed separation of KM curves was common in clinical trials of anti-PD-(L)1 agents. Understanding delayed separation is key to clinical study designs and assessing outcomes with ICIs.
Collapse
Affiliation(s)
- Do-Youn Oh
- Division of Medical Oncology, Department of Internal Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea.
| | | | | | - Philip He
- Biostatistics and Data Management, Daiichi Sankyo, Basking Ridge, NJ 07920, USA
| | | | - Melissa L Johnson
- Sarah Cannon Research Institute-Tennessee Oncology, Nashville, TN 37203, USA
| |
Collapse
|
46
|
Vickram S, Infant SS, Manikandan S, Jenila Rani D, Mathan Muthu CM, Chopra H. Immune biomarkers and predictive signatures in gastric cancer: Optimizing immunotherapy responses. Pathol Res Pract 2025; 265:155743. [PMID: 39616978 DOI: 10.1016/j.prp.2024.155743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
Gastric cancer is a malignant disease with a poor prognosis and few therapeutic options once it has advanced. Immunotherapy using ICIs has emerged as a viable therapeutic method; nevertheless, reliable immunological biomarkers are required to identify who may benefit from these therapies. It focuses on key immune biomarkers and predictive signatures in gastric cancer, such as PD-L1 expression, microsatellite instability (MSI), tumor mutational burden (TMB), and Epstein-Barr virus (EBV) status, to optimize gastric cancer patients' immunotherapy responses. PD-L1 expression is a popular biomarker for ICI effectiveness. Tumors with high MSI-H and TMB are the most susceptible to ICIs because they are highly immunogenic. EBV-positive stomach tumors are highly immunogenic, and immunotherapy has a high response rate. Combining composite biomarker panels with multi-omics-based techniques improved patient selection accuracy. In recent years, machine learning models have been integrated into next-generation sequencing. Dynamic, real-time-monitorable biomarkers for real-time immune response monitoring are also being considered. Thus, enhancing biomarker-driven immunotherapy is critical for improving clinical outcomes with gastric cancer. There is still more work to be done in this field, and verifying developing biomarkers will be an important component in the future of customized cancer therapy.
Collapse
Affiliation(s)
- Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Shofia Saghya Infant
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - D Jenila Rani
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
47
|
Yu Z, Wang Q, Wang Z, Liu S, Xia T, Duan C, Liu Y, Ding X, Chen S, Yu T, You R, Chen M, Huang P. Lachnoclostridium intestinal flora is associated with immunotherapy efficacy in nasopharyngeal carcinoma. Head Neck 2025; 47:269-281. [PMID: 39135356 DOI: 10.1002/hed.27917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Effective biomarkers for assessing anti-PD-1/PD-L1 therapy efficacy in patients with nasopharyngeal carcinoma (NPC) are still lacking. The human gut microbiota has been shown to influence clinical response to anti-PD-1/PD-L1 therapy in many cancers. However, the relationship between the gut microbiota and the efficacy of immunotherapy in patients with nasopharyngeal carcinoma has not been determined. METHODS We conducted a prospective study in which fecal and blood samples from patients with NPC were subjected to 16S rDNA sequencing and survival analysis. To investigate potential differences in the gut microbiome between these groups and to identify potential biomarkers indicative of immunotherapy efficacy, patients were categorized into two groups according to their clinical response to immunotherapy, the responder group (R group) and the non-responder group (NR group). Progression-free survival (PFS) between these subgroups was analyzed using Kaplan-Meier survival analysis with the log-rank test. Additionally, we performed univariate and multivariate analyses to evaluate prognostic factors. Finally, we carried out non-targeted metabolomics to examine the metabolic effects associated with the identified microbiome. RESULTS Our 16S rDNA sequencing results showed that the abundance of Lachnoclostridium was higher in the NR group than in the R group (p = 0.003), and alpha diversity analysis showed that the abundance of microbiota in the NR group was higher than that in the R group (p = 0.050). Patients with a lower abundance of Lachnoclostridium had better PFS (p = 0.048). Univariate (p = 0.017) and multivariate analysis (p = 0.040) showed that Lachnoclostridium was a predictor of PFS. Non-targeted metabolomics analysis revealed that Lachnoclostridium affects the efficacy of immunotherapy through the usnic acid. CONCLUSIONS High abundance of Lachnoclostridium predicts poor prognosis in patients with NPC receiving immunotherapy.
Collapse
Affiliation(s)
- Zikun Yu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qin Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zimeng Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihan Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tianliang Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chongyang Duan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Youping Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Nasopharyngeal Cancer Prevention Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Xi Ding
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Siyuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tao Yu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui You
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Nasopharyngeal Cancer Prevention Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Mingyuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Nasopharyngeal Cancer Prevention Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Peiyu Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
48
|
Liu P, Gu C, Cao X, Zhang H, Wang Z, Yang Y, OuYang K, Zhen Y, Jia F, He X, Yu H, Deng S. Discovery of a common light chain bispecific antibody targeting PD-1 and PD-L1 by Hybridoma-to-Phage-to-Yeast (H2PtY) platform. Antib Ther 2025; 8:1-12. [PMID: 39839911 PMCID: PMC11744305 DOI: 10.1093/abt/tbae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 01/23/2025] Open
Abstract
Background Therapeutic antibody drugs targeting the PD-1 pathway are generally characterized by relatively low response rates and susceptibility to drug resistance during clinical application. Therefore, there is an urgent need for alternative therapeutic strategies to increase the immune response rate. Bispecific antibodies co-targeting PD-1 and PD-L1 may have greater potential to improve the efficacy of the immune checkpoint pathway. Method In this study, we developed a potent humanized common light chain (CLC) IgG shape bispecific antibody (bsAb), named JMB2005, based on Hybridoma-to-Phage-to-Yeast platform. The platform allowed us to discover CLC bsAb from traditional mice for any pair of given targets. Results JMB2005 exhibited favorable developability, good manufacturing property, and satisfactory efficacy, which could be given via subcutaneous injection at the concentration of 120 mg/mL. Mechanistically, JMB2005 could bridge tumor cells and T cells with both Fab arms and promote T-cells to function as direct tumor cell killers. It could also promote T cell activation by blocking the binding of PD-L1 to CD80. Furthermore, JMB2005 has exhibited a favorable half-life and has demonstrated promising anti-tumor therapeutic efficacy in vivo. Conclusion Consequently, the present study showed that the novel humanized CLC bsAb JMB2005 may represent a novel therapeutic agent of great clinical potential.
Collapse
Affiliation(s)
- Peipei Liu
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Chunyin Gu
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Xiaodan Cao
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Huawei Zhang
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Zongda Wang
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Yukun Yang
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - KeDong OuYang
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Yingying Zhen
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Fangfang Jia
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Xianqing He
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Haixiang Yu
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| | - Sujun Deng
- Biologics Innovation Institute, Shanghai Jemincare Pharmaceutical Co., Ltd., Lane 535, Huanqiao Road, Pudong New Area, Shanghai 201315, China
| |
Collapse
|
49
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
50
|
Chen J, Jiang Y, Hou M, Liu C, Liu E, Zong Y, Wang X, Meng Z, Gu M, Su Y, Wang H, Fu J. Nuclear translocation of plasma membrane protein ADCY7 potentiates T cell-mediated antitumour immunity in HCC. Gut 2024; 74:128-140. [PMID: 39349007 DOI: 10.1136/gutjnl-2024-332902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/31/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The potency of T cell-mediated responses is a determinant of immunotherapy effectiveness in treating malignancies; however, the clinical efficacy of T-cell therapies has been limited in hepatocellular carcinoma (HCC) owing to the extensive immunosuppressive microenvironment. OBJECTIVE Here, we aimed to investigate the key genes contributing to immune escape in HCC and raise a new therapeutic strategy for remoulding the HCC microenvironment. DESIGN The genome-wide in vivo clustered regularly interspaced short palindromic repeats (CRISPR) screen library was conducted to identify the key genes associated with immune tolerance. Single-cell RNA-seq (scRNA-seq), flow cytometry, HCC mouse models, chromatin immunoprecipitation and coimmunoprecipitation were used to explore the function and mechanism of adenylate cyclase 7 (ADCY7) in HCC immune surveillance. RESULTS Here, a genome-wide in vivo CRISPR screen identified a novel immune modulator-ADCY7. The transmembrane protein ADCY7 undergoes subcellular translocation via caveolae-mediated endocytosis and then translocates to the nucleus with the help of leucine-rich repeat-containing protein 59 (LRRC59) and karyopherin subunit beta 1 (KPNB1). In the nucleus, it functions as a transcription cofactor of CCAAT/enhancer binding protein alpha (CEBPA) to induce CCL5 transcription, thereby increasing CD8+ T cell infiltration to restrain HCC progression. Furthermore, ADCY7 can be secreted as exosomes and enter neighbouring tumour cells to promote CCL5 induction. Exosomes with high ADCY7 levels promote intratumoural infiltration of CD8+ T cells and suppress HCC tumour growth. CONCLUSION We delineate the unconventional function and subcellular location of ADCY7, highlighting its pivotal role in T cell-mediated immunity in HCC and its potential as a promising treatment target.
Collapse
Affiliation(s)
- Jianan Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Youhai Jiang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology, Anhui, China
| | - Minghui Hou
- Research Center for Organoids, Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunliang Liu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Erdong Liu
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Yali Zong
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Xiang Wang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhengyuan Meng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingye Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Su
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|