1
|
Hiraizumi K, Honda C, Watanabe A, Nakao T, Midorikawa S, Abe H, Matsui N, Yamamoto T, Sakamoto T. Safety of nivolumab monotherapy in five cancer types: pooled analysis of post-marketing surveillance in Japan. Int J Clin Oncol 2024; 29:932-943. [PMID: 38844668 PMCID: PMC11196337 DOI: 10.1007/s10147-024-02515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/13/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Nivolumab has been approved for treating ≥ 10 cancer types. However, there is limited information on the incidence of rare, but potentially serious, treatment-related adverse events (TRAEs), as well as notable TRAEs in patients with certain medical disorders or older patients in Japan. METHODS We performed pooled analyses of data from published post-marketing surveillance in Japan of nivolumab monotherapy for patients with malignant melanoma, non-small cell lung cancer, renal cell carcinoma, head and neck cancer, and gastric cancer to determine the frequencies of 20 categories of TRAEs of special interest overall and in patient groups with higher perceived safety risks (history of autoimmune disease, interstitial lung disease, tuberculosis, or hepatitis B/C; patients vaccinated during nivolumab treatment; and older patients [≥ 75 years]). RESULTS The overall population comprised 7421 patients treated with nivolumab. TRAEs were reported in 49.1% of patients, with grade ≥ 3 TRAEs in 16.7%. Endocrine disorders (14.4%), hepatobiliary disorders (10.9%), and interstitial lung disease (7.0%) were the three most common categories (any grade). The incidences of rare TRAEs with high risk of becoming serious, which occurred in < 1% of patients, were consistent with those in previous reports. The frequencies of TRAEs were not markedly increased in the specified patient groups relative to the overall population. CONCLUSION To our knowledge, this is the largest study examining the safety of nivolumab-treated patients in real-world clinical practice including rare but potentially serious TRAEs. We found no new signals in the safety of nivolumab among the patient groups relative to the overall population, and no additional safety measures are required in these groups. Trial registration UMIN000048892 (overall analysis), JapicCTI-163272 (melanoma), Japic-163271 (non-small cell lung cancer), JapicCTI-184071 (head and neck cancer), JapicCTI-184070 (gastric cancer), and JapicCTI-184069 (renal cell cancer).
Collapse
Affiliation(s)
- Kenji Hiraizumi
- Oncology Medical Affairs, Ono Pharmaceutical Co., Ltd., 1-8-2 Kyutaromachi, Chuo-ku, Osaka, 541-8564, Japan
| | - Chikara Honda
- PV Data Strategy, Pharmacovigilance Department, Ono Pharmaceutical Co., Ltd., 2-1-5 Dosho-machi, Chuo-ku, Osaka, 541-8526, Japan
| | - Ayu Watanabe
- Safety Management Pharmacovigilance Department, Ono Pharmaceutical Co., Ltd., 2-1-5 Dosho-machi, Chuo-ku, Osaka, 541-8526, Japan
| | - Takafumi Nakao
- Safety Management Pharmacovigilance Department, Ono Pharmaceutical Co., Ltd., 2-1-5 Dosho-machi, Chuo-ku, Osaka, 541-8526, Japan
| | - Shuichi Midorikawa
- Biometrics and Data Sciences, R&D Department, Bristol-Myers Squibb K.K., Otemachi One Tower, 1-2-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Hiromi Abe
- Oncology Medical, Bristol-Myers Squibb K.K., Otemachi One Tower, 1-2-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Nobuki Matsui
- Patient Safety Japan, Bristol-Myers Squibb K.K., Otemachi One Tower, 1-2-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Tsunehisa Yamamoto
- Oncology Medical, Bristol-Myers Squibb K.K., Otemachi One Tower, 1-2-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Takahiko Sakamoto
- Safety Management Pharmacovigilance Department, Ono Pharmaceutical Co., Ltd., 2-1-5 Dosho-machi, Chuo-ku, Osaka, 541-8526, Japan.
| |
Collapse
|
2
|
Dalu D, Ridolfo AL, Ruggieri L, Cona MS, Riva A, De Francesco D, Tricella C, Fasola C, Ferrario S, Gambaro A, Lombardi Stocchetti B, Smiroldo V, Rebecchi G, Piva S, Carrozzo G, Antinori S, La Verde N. Hospital-Based Influenza and Pneumococcal Vaccination for Cancer Patients on Active Treatment and Their Family Members during the COVID-19 Pandemic in Italy: A Single-Center Experience. Vaccines (Basel) 2024; 12:642. [PMID: 38932371 PMCID: PMC11209258 DOI: 10.3390/vaccines12060642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
In patients with cancer, tumor- and treatment-induced immunosuppression are responsible for a four-fold increase in morbidity and mortality caused by influenza and invasive Streptococcus pneumoniae infections compared to the general population. The main oncology societies strongly recommend vaccination in patients with cancer to prevent these infections. However, vaccine hesitancy is a main concern in this population. The aim of this study was to assess the feasibility of in-hospital vaccination for patients under anticancer treatment and their family members (FMs) against influenza and pneumococcal infections during the COVID-19 pandemic in order to increase vaccine coverage. This was a single-center, prospective, observational study conducted at the Department of Oncology of Luigi Sacco University Hospital (Milan, Italy) between October 2020 and April 2021. The main primary outcome was the incidence of influenza-like illness (ILI) and pneumococcal infections. The main secondary outcome was safety. A total of 341 subjects were enrolled, including 194 patients with cancer and 147 FMs. The incidence of ILI was higher among patients than among FMs (9% vs. 2.7%, OR 3.92, p = 0.02). Moreover, two subjects were diagnosed with pneumococcal pneumonia. The most frequent vaccine-related AEs were pain in the injection site (31%) and fatigue (8.7%). In conclusion, this hospital-based vaccination strategy was feasible during the COVID-19 pandemic, representing a potential model to maximize vaccine coverage during a public health emergency.
Collapse
Affiliation(s)
- Davide Dalu
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| | - Anna Lisa Ridolfo
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (A.L.R.); (A.R.); (G.C.); (S.A.)
| | - Lorenzo Ruggieri
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| | - Maria Silvia Cona
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| | - Agostino Riva
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (A.L.R.); (A.R.); (G.C.); (S.A.)
- Luigi Sacco Department of Biomedical and Clinical Sciences DIBIC, University of Milan, 20157 Milan, Italy
| | | | - Chiara Tricella
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| | - Cinzia Fasola
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| | - Sabrina Ferrario
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| | - Anna Gambaro
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| | - Benedetta Lombardi Stocchetti
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| | - Valeria Smiroldo
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| | - Gaia Rebecchi
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| | - Sheila Piva
- Department of Oncology, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, 20121 Milan, Italy;
| | - Giorgia Carrozzo
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (A.L.R.); (A.R.); (G.C.); (S.A.)
| | - Spinello Antinori
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (A.L.R.); (A.R.); (G.C.); (S.A.)
- Luigi Sacco Department of Biomedical and Clinical Sciences DIBIC, University of Milan, 20157 Milan, Italy
| | - Nicla La Verde
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (D.D.); (M.S.C.); (C.T.); (C.F.); (S.F.); (A.G.); (B.L.S.); (V.S.); (G.R.); (N.L.V.)
| |
Collapse
|
3
|
Campagna R, Dominelli F, Zingaropoli MA, Ciurluini F, Grilli G, Amoroso A, De Domenico A, Amatore D, Lia MS, Cortesi E, Picone V, Mastroianni CM, Ciardi MR, De Santis R, Lista F, Antonelli G, Turriziani O. COVID-19 vaccination in cancer patients: Immune responses one year after the third dose. Vaccine 2024; 42:2687-2694. [PMID: 38499458 DOI: 10.1016/j.vaccine.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Cancer patients (CPs), being immunosuppressed due to the treatment received or to the disease itself, are more susceptible to infections and their potential complications, showing therefore an increased risk of developing severe COVID-19 compared to the general population. We evaluated the immune responses to anti-SARS-CoV-2 vaccination in patients with solid tumors one year after the administration of the third dose and the effect of cancer treatment on vaccine immunogenicity was assessed. Healthy donors (HDs) were enrolled. Binding and neutralizing antibody (Ab) titers were evaluated using chemiluminescence immunoassay (CLIA) and Plaque Reduction Neutralization Test (PRNT) respectively. T-cell response was analyzed using multiparametric flow cytometry. CPs who were administered three vaccine doses showed lower Ab titers than CPs with four doses and HDs. Overall, a lower cell-mediated response was found in CPs, with a predominance of monofunctional T-cells producing TNFα. Lower Ab titers and a weaker T-cell response were observed in CPs without prior SARS-CoV-2 infection when compared to those with a previous infection. While no differences in the humoral response were found comparing immunotherapy and non-immunotherapy patients, a stronger T-cell response in CPs treated with immunotherapy was observed. Our results emphasize the need of booster doses in cancer patients to achieve a level of protection similar to that observed in healthy donors and underlines the importance of considering the treatment received to reach a proper immune response.
Collapse
Affiliation(s)
- Roberta Campagna
- Department of Molecular Medicine Sapienza University of Rome, Viale dell'Università, 33, 000185 Rome, Italy.
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| | - Fabio Ciurluini
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185 Rome, Italy.
| | - Giorgia Grilli
- Defence Institute for Biomedical Sciences, 00184 Rome, Italy.
| | | | | | | | | | - Enrico Cortesi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185 Rome, Italy.
| | - Vincenzo Picone
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185 Rome, Italy.
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| | - Riccardo De Santis
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; Defence Institute for Biomedical Sciences, 00184 Rome, Italy.
| | - Florigio Lista
- Defence Institute for Biomedical Sciences, 00184 Rome, Italy.
| | - Guido Antonelli
- Department of Molecular Medicine Sapienza University of Rome, Viale dell'Università, 33, 000185 Rome, Italy.
| | - Ombretta Turriziani
- Department of Molecular Medicine Sapienza University of Rome, Viale dell'Università, 33, 000185 Rome, Italy.
| |
Collapse
|
4
|
Grima AA, Kwong JC, Richard L, Reid J, Raphael J, Basta NE, Carignan A, Top KA, Brousseau N, Blanchette PS, Sundaram ME. The safety of seasonal influenza vaccination among adults prescribed immune checkpoint inhibitors: A self-controlled case series study using administrative data. Vaccine 2024; 42:1498-1505. [PMID: 38341288 DOI: 10.1016/j.vaccine.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapy for patients undergoing cancer treatment carries a risk of severe immune-related adverse events (IRAEs). Questions remain about whether seasonal influenza vaccination might increase the risk of developing IRAEs among these patients given that vaccines are immunomodulatory. Previous vaccine safety studies on patients with cancer prescribed ICI therapy have demonstrated conflicting results. METHODS Using health administrative data from Ontario, Canada among adults diagnosed with cancer who had been prescribed ICI therapy and who had received an influenza vaccine from 2012 to 2019, we conducted a self-controlled case series study. The pre-vaccination control period started 42-days post-ICI initiation until 14-days prior to vaccination, the risk period was 1-42 days post-vaccination, and the post-vaccination control period was after the risk period until ICI discontinuation or a maximum period of two years. Emergency department (ED) visit(s) and/or hospitalization for any cause after ICI initiation was used to identify severe IRAEs. We fitted a fixed-effects Poisson regression model accounting for seasonality and calendar time to estimate relative incidence of IRAEs between risk and control periods. RESULTS We identified 1133 records of cancer patients who received influenza vaccination while prescribed ICI therapy. Most were aged ≥ 66 years (73 %), were male (63 %), had lung cancer (54 %), and had received ICI therapy with a programmed cell death protein 1(PD-1) inhibitor (91 %). A quarter (26 %) experienced an ED visit and/or hospitalization during the observation period. Rates of ED visits and/or hospitalizations in the risk vs. control periods were similar, with an incidence rate ratio of 1.04 (95 % CI: 0.75-1.45). Subgroup and sensitivity analyses yielded similar results. CONCLUSION Seasonal influenza vaccination was not associated with an increased incidence of ED visit or hospitalization among adults with cancer treated with ICI therapy and our results support further evidence of vaccine safety.
Collapse
Affiliation(s)
- Alicia A Grima
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Jeffrey C Kwong
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; ICES, ON, Canada; Public Health Ontario, Toronto, ON, Canada; Centre for Vaccine Preventable Diseases, University of Toronto, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada; University Health Network, Toronto, ON, Canada
| | | | | | - Jacques Raphael
- ICES, ON, Canada; Division of Medical Oncology, Department of Oncology, London Regional Cancer Program, London Health Sciences Centre, Western University, London, ON, Canada
| | - Nicole E Basta
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, QC, Canada
| | - Alex Carignan
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Karina A Top
- Departments of Pediatrics and Community Health & Epidemiology, Dalhousie University, Halifax, NS, Canada
| | - Nicholas Brousseau
- Institut national de santé publique du Québec, Quebec City, QC, Canada; Département de Médecine Sociale et Préventive, Université Laval, Quebec City, QC, Canada
| | - Phillip S Blanchette
- ICES, ON, Canada; Division of Medical Oncology, Department of Oncology, London Regional Cancer Program, London Health Sciences Centre, Western University, London, ON, Canada.
| | - Maria E Sundaram
- ICES, ON, Canada; Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, WI, USA.
| |
Collapse
|
5
|
Coleman M, Mascialino SJ, Panjwani A, Edwards E, Sukhatme VV, Gavegnano C, Sukhatme VP. Readily available drugs and other interventions to potentially improve the efficacy of immune checkpoint blockade in cancer. Front Immunol 2024; 14:1281744. [PMID: 38299150 PMCID: PMC10827885 DOI: 10.3389/fimmu.2023.1281744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
To improve the efficacy of immune checkpoint inhibitors (ICIs) for cancer treatment, various strategies, including combination therapies with repurposed drugs, are being explored. Several readily available interventions with potential to enhance programmed death 1 (PD-1) blockade have been identified. However, these interventions often remain overlooked due to the lack of financial incentives for their development, making them financial orphans. This review summarizes current knowledge regarding off-label drugs, supplements, and other readily available interventions that could improve the efficacy of PD-1 blockade. The summary of each intervention includes the proposed mechanism of action for combination with checkpoint inhibitors and data from animal and human studies. Additionally, we include summaries of common interventions to be avoided by patients on PD-1 blockade. Finally, we present approaches for conducting further studies in patients, with the aim of expediting the clinical development of these interventions. We strive to increase awareness of readily available combination therapies that may advance cancer immunotherapy and help patients today.
Collapse
Affiliation(s)
- Merissa Coleman
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Sophia J. Mascialino
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Anusha Panjwani
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Emily Edwards
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
- College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Vidula V. Sukhatme
- Morningside Center for Innovative & Affordable Medicine, Emory University, Atlanta, GA, United States
- GlobalCures, Inc, Newton, MA, United States
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Christina Gavegnano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Vikas P. Sukhatme
- Morningside Center for Innovative & Affordable Medicine, Emory University, Atlanta, GA, United States
- GlobalCures, Inc, Newton, MA, United States
- Department of Medicine, Emory University, Atlanta, GA, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Hanafy AS, Embaby A, Salem SM, Behiry A, Ebrahim HA, Elkattawy HA, Abed SY, Almadani ME, El-Sherbiny M. Real-Life Experience in the Efficacy and Safety of COVID-19 Vaccination in Patients with Advanced Cirrhosis. J Clin Med 2023; 12:7578. [PMID: 38137646 PMCID: PMC10744263 DOI: 10.3390/jcm12247578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
COVID-19 infections accelerate liver decompensation and serious liver-related co-morbidities. The aim is to evaluate the safety and impact of COVID vaccines on hepatic disease progression in patients with advanced liver disease and to identify parameters that predict the occurrence of complications. The study involved 70 patients with advanced liver disease who were vaccinated with different COVID vaccines from January 2021 to April 2022. They were evaluated clinically. The laboratory investigation included a complete blood count, liver and kidney function tests, calculation of CTP and MELD scores, plasma levels of ammonia, abdominal ultrasound, and upper GI endoscopy. Twenty patients had experienced complications 64 ± 12 days from the last dose of a vaccination. Twenty patients (28.6%) developed hepatic decompensation and hypothyroidism (n = 11, 15.7%), and five (7.14%) patients developed splanchnic thrombosis. There were no COVID-19 reinfections except for two patients who received Sinopharm and developed vaccine-associated enhanced disease (2.9%). Complications after COVID vaccinations were correlated with ALT (r = 0.279, p = 0.019), serum sodium (r = -0.30, p = 0.005), creatinine (r = 0.303, p = 0.011), liver volume (LV) (r = -0.640, p = 0.000), and MELD score (r = 0.439, p = 0.000). Multivariate logistic regression revealed that LV is the only independent predictor (p = 0.001). LV ≤ 682.3 has a sensitivity of 95.24% and a specificity of 85.71% in predicting complications with an AUC of 0.935, p < 0.001. In conclusion, the hepatic reserve and prognosis in liver cirrhosis should be evaluated prior to COVID vaccinations using the MELD score and liver volume as promising risk stratification criteria. In summary, the research proposes a novel triaging strategy that involves utilizing the MELD score and liver volume as risk stratification parameters of the hepatic reserve and prognosis of advanced liver cirrhosis prior to COVID immunization to determine who should not receive a COVID vaccination.
Collapse
Affiliation(s)
- Amr Shaaban Hanafy
- Internal Medicine Department, Gastroenterology and Hepatology Division, Zagazig University, Zagazig 44519, Egypt; (A.S.H.); (S.M.S.)
| | - Ahmed Embaby
- Clinical Hematology Unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Sara Mohamed Salem
- Internal Medicine Department, Gastroenterology and Hepatology Division, Zagazig University, Zagazig 44519, Egypt; (A.S.H.); (S.M.S.)
| | - Ahmed Behiry
- Department of Tropical Medicine and Endemic Diseases, College of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany Ahmed Elkattawy
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia;
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sally Yussef Abed
- Department of Respiratory Care, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 34212, Saudi Arabia;
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Moneer E. Almadani
- Department of Clinical Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Mohamad El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| |
Collapse
|
7
|
Zhou Y, Ding S. Key Determinants of Immune-Mediated Adverse Reactions to Oncology Drugs. Cancers (Basel) 2023; 15:5622. [PMID: 38067327 PMCID: PMC10705334 DOI: 10.3390/cancers15235622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 06/16/2024] Open
Abstract
To overcome the epidemiological severity of cancer, developing effective treatments is urgently required. In response, immune checkpoint inhibitors (ICIs) have been revealed as a promising resolution for treatment-resistant cancers across the world. Yet, they have both advantages and disadvantages, bringing therapeutic benefits while simultaneously inducing toxicity, and in particular, immune-mediated adverse drug reactions (imADRs), to the human body. These imADRs can be pathogenic and sometimes lethal, hampering health prediction and monitoring following the provision of ICI treatment. Therefore, it is necessary to collectively identify the determinant factors that contribute to these imADRs induced by ICIs. This article evaluated treatment-, tumor-, and patient-related determinants, and indicated a research gap for future investigations on the pathogenic mechanism of imADRs and translational conversion of determinants into clinical biomarkers to aid pharmacovigilance and cancer therapies.
Collapse
Affiliation(s)
- Yihan Zhou
- Medical Sciences Division, Department of Oncology, University of Oxford, Old Road Campus Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Shan Ding
- Department of Life Science, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK;
| |
Collapse
|
8
|
Nakashima K, Homma Y, Taniguchi J, Kubota N, Otsuki A, Ito H, Otsuka Y, Kondo K, Ohfuji S, Fukushima W, Hirota Y. Immunogenicity and safety of influenza vaccine in patients with lung cancer receiving immune checkpoint inhibitors: A single-center prospective cohort study. J Infect Chemother 2023; 29:1038-1045. [PMID: 37481070 DOI: 10.1016/j.jiac.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
INTRODUCTION Patients with lung cancer have a high risk of influenza complications. International guidelines recommend annual influenza vaccination for patients with cancer. Immune checkpoint inhibitors (ICIs) are progressively used to treat lung cancer. Data regarding immunogenicity and safety of influenza vaccine are limited in patients with lung cancer receiving ICIs; therefore, we conducted this single-center, prospective observational study in the Japanese population. METHODS Patients with lung cancer receiving ICIs and influenza immunization were enrolled. Blood samples were collected from patients for serum antibody titer measurement pre- and 4 ± 1 weeks post-vaccination. The primary endpoint was seroprotection rate (sP) at 4 ± 1 weeks post-vaccination. The secondary endpoints were geometric mean titer (GMT), mean fold rise, seroresponse rate (sR), seroconversion rate (sC), and immune-related adverse events (irAEs), defined as adverse effects caused by ICI administration, 6 months post-vaccination. RESULTS Influenza vaccination in the 23 patients included in the immunogenicity analyses significantly increased GMT for all strains, and sP, sR, and sC were 52%-91%, 26%-39%, and 26%-35%, respectively. In the 24 patients included in the safety analyses, 7 (29%) and 5 (21%) patients exhibited systemic and local reactions, respectively. Only one patient (4%) (hypothyroidism, grade 2) showed post-vaccination irAEs. CONCLUSIONS Overall, influenza vaccination in patients with lung cancer receiving ICIs showed acceptable immunogenicity and safety, thus supporting annual influenza vaccination in this population.
Collapse
Affiliation(s)
- Kei Nakashima
- Department of Pulmonology, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, 296-8602, Japan; Kameda Institute for Health sciences, 462 Yokosuka, Kamogawa, Chiba, 296-0001, Japan; Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, 1 Chome-4-3 Asahimachi, Osaka, 545-8585, Japan.
| | - Yuya Homma
- Department of Pulmonology, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, 296-8602, Japan
| | - Jumpei Taniguchi
- Department of Pulmonology, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, 296-8602, Japan
| | - Norihiko Kubota
- Department of Pulmonology, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, 296-8602, Japan
| | - Ayumu Otsuki
- Department of Pulmonology, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, 296-8602, Japan
| | - Hiroyuki Ito
- Department of Pulmonology, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, 296-8602, Japan
| | - Yoshihito Otsuka
- Department of Clinical Laboratory, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, 296-0041, Japan
| | - Kyoko Kondo
- Management Bureau, Osaka Metropolitan University Hospital, 1 Chome-5-7 Asahimachi, Osaka, 545-0051, Japan
| | - Satoko Ohfuji
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, 1 Chome-4-3 Asahimachi, Osaka, 545-8585, Japan; Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, 1 Chome-4-3 Asahimachi, Osaka, 545-8585, Japan
| | - Wakaba Fukushima
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, 1 Chome-4-3 Asahimachi, Osaka, 545-8585, Japan; Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, 1 Chome-4-3 Asahimachi, Osaka, 545-8585, Japan
| | - Yoshio Hirota
- Clinical Epidemiology Research Center, SOUSEIKAI Medical Group (Medical Co. LTA), 3-5-1 Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| |
Collapse
|
9
|
Jeong NY, Kim CJ, Park SM, Kim YJ, Lee J, Choi NK. Active surveillance for adverse events of influenza vaccine safety in elderly cancer patients using self-controlled tree-temporal scan statistic analysis. Sci Rep 2023; 13:13346. [PMID: 37587127 PMCID: PMC10432531 DOI: 10.1038/s41598-023-40091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Both cancer patients and the elderly are at high risk of developing flu complications, so influenza vaccination is recommended. We aimed to evaluate potential adverse events (AEs) following influenza vaccination in elderly cancer patients using the self-controlled tree-temporal scan statistic method. From a large linked database of Korea Disease Control and Prevention Agency vaccination data and the National Health Insurance Service claims data, we identified cancer patients aged over 65 who received flu vaccines during the 2016/2017 and 2017/2018 seasons. We included all the outcomes occurring on 1-84 days post-vaccination and evaluated all temporal risk windows, which started 1-28 days and ended 2-42 days. Patients who were diagnosed with the same disease during a year prior to vaccination were excluded. We used the hierarchy of ICD-10 to identify statistically significant clustering. This study included 431,276 doses of flu vaccine. We detected signals for 1 set: other dorsopathies on 1-15 days (attributable risk 16.5 per 100,000, P = 0.017). Dorsopathy is a known AE of influenza vaccine. No statistically significant clusters were found when analyzed by flu season. Therefore, influenza vaccination is more recommended for elderly patients with cancer and weakened immune systems.
Collapse
Affiliation(s)
- Na-Young Jeong
- Department of Health Convergence, College of Science & Industry Convergence, Ewha Womans University, Seoul, Korea
| | - Chung-Jong Kim
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Sang Min Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joongyub Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Nam-Kyong Choi
- Department of Health Convergence, College of Science & Industry Convergence, Ewha Womans University, Seoul, Korea.
- Graduate School of Industrial Pharmaceutical Science, College of Pharmacy, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
10
|
Wang J, Zhang B, Peng L, Liu X, Sun J, Su C, Wang H, Zhao Z, Si L, Duan J, Zhang H, Li M, Zhu B, Zhang L, Li J, Guo J, Luo R, Qiu W, Ye D, Chu Q, Cui J, Dong X, Fan Y, Gao Q, Guo Y, He Z, Li W, Lin G, Liu L, Liu Y, Qin H, Ren S, Ren X, Wang Y, Xue J, Yang Y, Yang Z, Yue L, Zhan X, Zhang J, Ma J, Qin S, Wang B. Chinese expert consensus recommendations for the administration of immune checkpoint inhibitors to special cancer patient populations. Ther Adv Med Oncol 2023; 15:17588359231187205. [PMID: 37484525 PMCID: PMC10357053 DOI: 10.1177/17588359231187205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed cell death 1, programmed cell death ligand 1, and cytotoxic T lymphocyte-associated antigen-4 have shown significantly durable clinical benefits and tolerable toxicities and have improved the survival of patients with various types of cancer. Since 2018, the National Medical Products Administration of China has approved 17 ICIs as the standard treatment for certain advanced or metastatic solid tumors. As ICIs represent a broad-spectrum antitumor strategy, the populations eligible for cancer immunotherapy are rapidly expanding. However, the clinical applications of ICIs in cancer patient populations with special issues, a term that refers to complex subgroups of patients with comorbidities, special clinical conditions, or concomitant medications who are routinely excluded from prospective clinical trials of ICIs or are underrepresented in these trials, represent a great real-world challenge. Although the Chinese Society of Clinical Oncology (CSCO) has provided recommendations for screening before the use of ICIs in special populations, the recommendations for full-course management remain insufficient. The CSCO Expert Committee on Immunotherapy organized leading medical oncology and multidisciplinary experts to develop a consensus that will serve as an important reference for clinicians to guide the proper application of ICIs in special patient populations. This article is a translation of a study first published in Chinese in The Chinese Clinical Oncology (ISSN 1009-0460, CN 32-1577/R) in May 2022 (27(5):442-454). The publisher of the original paper has provided written confirmation of permission to publish this translation in Therapeutic Advances in Medical Oncology.
Collapse
Affiliation(s)
- Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine; Shandong Lung Cancer Institute, Jinan 250014, China
| | - Bicheng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Peng
- Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiufeng Liu
- Department of Hepatobiliary Oncology, Qinhuai Medical District, Eastern Theater Command General Hospital, Nanjing, China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Huijuan Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zheng Zhao
- Department of Oncology, Shannxi Cancer Hospital, Xi’an, China
| | - Lu Si
- Department of Melanoma, Cancer Hospital and Institute, Peking University, Beijing, China
| | - Jianchun Duan
- Department of Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongmei Zhang
- Department of Oncology, Xijing Hospital, Air Force Medical University, Xian, China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqing, China
| | - Bo Zhu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Jun Guo
- Department of Melanoma, Cancer Hospital and Institute, Peking University, Beijing, China
| | - Rongcheng Luo
- Cancer Center, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dingwei Ye
- Department of Urology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuwei Cui
- Department of Oncology, The First Hospital of Jilin University, Changchun, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Fan
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Quanli Gao
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ye Guo
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhiyong He
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Wenfeng Li
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Lian Liu
- Department of Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yutao Liu
- Department of Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haifeng Qin
- Department of Oncology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Shengxiang Ren
- Department of Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xiubao Ren
- Department of Immunology and Biotherapy, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yongsheng Wang
- GCP Center/Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhou Yang
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yue
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Junping Zhang
- Department of Cancer Biotherapy, Shanxi Bethune Hospital, Taiyuan, China
| | - Jun Ma
- Harbin Institute of Hematology and Oncology, Harbin, China
| | - Shukui Qin
- Department of Hepatobiliary Oncology, Qinhuai Medical District, Eastern Theater Command General Hospital, Nanjing 210008, China
| | - Baocheng Wang
- Department of Oncology, The 960th Hospital, The People’s Liberation Army, Jinan 250031, China
| |
Collapse
|
11
|
Bersanelli M, Verzoni E, Cortellini A, Giusti R, Calvetti L, Ermacora P, Di Napoli M, Catino A, Guadalupi V, Guaitoli G, Scotti V, Mazzoni F, Veccia A, Guglielmini PF, Perrone F, Maruzzo M, Rossi E, Casadei C, Montesarchio V, Grossi F, Rizzo M, Travagliato Liboria MG, Mencoboni M, Zustovich F, Fratino L, Accettura C, Cinieri S, Camerini A, Sorarù M, Zucali PA, Ricciardi S, Russo A, Negrini G, Banzi MC, Lacidogna G, Fornarini G, Laera L, Mucciarini C, Santoni M, Mosillo C, Bonetti A, Longo L, Sartori D, Baldini E, Guida M, Iannopollo M, Bordonaro R, Morelli MF, Tagliaferri P, Spada M, Ceribelli A, Silva RR, Nolè F, Beretta G, Giovanis P, Santini D, Luzi Fedeli S, Nanni O, Maiello E, Labianca R, Pinto C, Clemente A, Tognetto M, De Giorgi U, Pignata S, Di Maio M, Buti S, Giannarelli D. Impact of influenza vaccination on survival of patients with advanced cancer receiving immune checkpoint inhibitors (INVIDIa-2): final results of the multicentre, prospective, observational study. EClinicalMedicine 2023; 61:102044. [PMID: 37434748 PMCID: PMC10331809 DOI: 10.1016/j.eclinm.2023.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Background The prospective multicentre observational INVIDIa-2 study investigated the clinical effectiveness of influenza vaccination in patients with advanced cancer receiving immune checkpoint inhibitors (ICI). In this secondary analysis of the original trial, we aimed to assess the outcomes of patients to immunotherapy based on vaccine administration. Methods The original study enrolled patients with advanced solid tumours receiving ICI at 82 Italian Oncology Units from Oct 1, 2019, to Jan 31, 2020. The trial's primary endpoint was the time-adjusted incidence of influenza-like illness (ILI) until April 30, 2020, the results of which were reported previously. Secondary endpoints (data cut-off Jan 31, 2022) included the outcomes of patients to immunotherapy based on vaccine administration, for which the final results are reported herein. A propensity score matching by age, sex, performance status, primary tumour site, comorbidities, and smoking habits was planned for the present analysis. Only patients with available data for these variables were included. The outcomes of interest were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease-control rate (DCR). Findings The original study population consisted of 1188 evaluable patients. After a propensity score matching, 1004 patients were considered (502 vaccinated and 502 unvaccinated), and 986 of them were evaluable for overall survival (OS). At the median follow-up of 20 months, the influenza vaccination demonstrated a favourable impact on the outcome receiving ICI in terms of median OS [27.0 months (CI 19.5-34.6) in vaccinated vs. 20.9 months (16.6-25.2) in unvaccinated, p = 0.003], median progression-free survival [12.5 months (CI 10.4-14.6) vs. 9.6 months (CI 7.9-11.4), p = 0.049], and disease-control rate (74.7% vs. 66.5%, p = 0.005). The multivariable analyses confirmed the favourable impact of influenza vaccination in terms of OS (HR 0.75, 95% C.I. 0.62-0.92; p = 0.005) and DCR (OR 1.47, 95% C.I. 1.11-1.96; p = 0.007). Interpretation The INVIDIa-2 study results suggest a favourable immunological impact of influenza vaccination on the outcome of cancer patients receiving ICI immunotherapy, further encouraging the vaccine recommendation in this population and supporting translational investigations about the possible synergy between antiviral and antitumour immunity. Funding The Federation of Italian Cooperative Oncology Groups (FICOG), Roche S.p.A., and Seqirus.
Collapse
Affiliation(s)
| | - Elena Verzoni
- SS.Oncologia Genitourinaria, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Alessio Cortellini
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
- Department of Surgery and Cancer, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Raffaele Giusti
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Sant’Andrea, Roma, Italy
| | - Lorenzo Calvetti
- Department of Oncology, San Bortolo General Hospital, Unità Locale Socio-Sanitaria (ULSS)8 Berica, Vicenza, Italy
| | - Paola Ermacora
- Dipartimento di Oncologia, Presidio Ospedaliero Universitario Santa Maria della Misericordia, Azienda Sanitaria Universitaria Integrata Friuli Centrale, Udine, Italy
| | - Marilena Di Napoli
- Department of Uro Gynecological Oncology, Istituto Nazionale dei Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Annamaria Catino
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Valentina Guadalupi
- SS.Oncologia Genitourinaria, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giorgia Guaitoli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Vieri Scotti
- SODc Radioterapia Oncologica, DAI Oncologia, AOU Careggi, Firenze, Italy
| | | | | | | | - Fabiana Perrone
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Marco Maruzzo
- Oncologia Medica 1, Dipartimento di Oncologia, Istituto Oncologico Veneto IOV–IRCCS, Padova, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Vincenzo Montesarchio
- U.O.C. Oncologia, Azienda Ospedaliera Specialistica dei Colli, Ospedale Monaldi, Napoli, Italy
| | - Francesco Grossi
- Università degli Studi dell’Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Mimma Rizzo
- Oncologia Traslazionale, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | | | - Manlio Mencoboni
- SSD Oncologia, Villa Scassi Hospital, ASL3 Regione Liguria, Genova, Italy
| | | | | | | | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - Andrea Camerini
- Medical Oncology, Versilia Hospital - Azienda USL Toscana Nord Ovest, Lido di Camaiore, Italy
| | - Mariella Sorarù
- Medical Oncology, Camposampiero Hospital, ULSS 6 Euganea, Padova, Italy
| | - Paolo Andrea Zucali
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Serena Ricciardi
- UOSD Pneumologia Oncologica, Az. Ospedal. San Camillo Forlanini, Roma, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giorgia Negrini
- Oncologia Medica, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Chiara Banzi
- Medical Oncology, Comprehensive Cancer Centre, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Gaetano Lacidogna
- Department of Oncology, University of Turin, Turin, Italy
- Medical Oncology, AO Ordine Mauriziano, Turin, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Laera
- UOC di Oncologia e Oncoematologia Ente Ecclesiastico Ospedale Generale Regionale “Miulli” Acquaviva delle Fonti (BA), Italy
| | | | - Matteo Santoni
- UOC Oncologia, Ospedale Generale Provinciale di Macerata, ASUR Marche Area Vasta 3, Macerata, Italy
| | - Claudia Mosillo
- Department of Oncology, Medical & Translational Oncology, Azienda Ospedaliera Santa Maria, Terni, Italy
| | - Andrea Bonetti
- Department of Oncology, Mater Salutis Hospital, Verona, Legnago, Italy
| | - Lucia Longo
- UOSD Oncologia Area Sud Azienda AUSL Modena, Sassuolo (MO), Italy
| | | | | | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto dei Tumori “Giovanni Paolo II”, Bari, Italy
| | - Mauro Iannopollo
- SOC Oncologia, Dipartimento di Oncologia, Azienda Usl Toscana Centro, Presidio Ospedaliero SS. Cosma e Damiano - Pescia e San Jacopo, Pistoia, Italy
| | | | | | | | - Massimiliano Spada
- UOC Oncologia, Fondazione Istituto G. Giglio - C.da Pietrapollastra-Pisciotto SNC, Cefalù (PA), Italy
| | - Anna Ceribelli
- Department of Oncology, San Camillo De Lellis Hospital, Rieti, Italy
| | - Rosa Rita Silva
- Medical Oncology, ASUR Marche, Area Vasta 2, Fabriano, Italy
| | - Franco Nolè
- Medical Oncology Division of Urogenital and Head & Neck Tumours IEO, European Institute of Oncology IRCCS, Milano, Italy
| | | | - Petros Giovanis
- UOC Oncologia, Ospedale Santa Maria del Prato, Feltre, AULSS1 Dolomiti, Feltre, Italy
| | - Daniele Santini
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università di Roma, Romaa, Italy
| | - Stefano Luzi Fedeli
- Department of Medical Oncology, AOU Ospedali Riuniti, Presidio San Salvatore, Pesaro, Italy
| | - Oriana Nanni
- Biostatistics and Clinical Research Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Evaristo Maiello
- Department of Oncology, Fondazione “Casa Sollievo della Sofferenza” IRCCS Hospital, San Giovanni Rotondo, Italy
- Federation of Italian Cooperative Oncology Groups (FICOG), Milan, Italy
| | - Roberto Labianca
- Federation of Italian Cooperative Oncology Groups (FICOG), Milan, Italy
- Medical Oncology Unit, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Carmine Pinto
- Medical Oncology, Comprehensive Cancer Centre, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Federation of Italian Cooperative Oncology Groups (FICOG), Milan, Italy
| | - Alberto Clemente
- Federation of Italian Cooperative Oncology Groups (FICOG), Milan, Italy
| | - Michele Tognetto
- Federation of Italian Cooperative Oncology Groups (FICOG), Milan, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
- Federation of Italian Cooperative Oncology Groups (FICOG), Milan, Italy
| | - Sandro Pignata
- Department of Uro Gynecological Oncology, Istituto Nazionale dei Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
- Federation of Italian Cooperative Oncology Groups (FICOG), Milan, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Turin, Italy
- Medical Oncology, AO Ordine Mauriziano, Turin, Italy
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Medicine and Surgery Department, University of Parma, Parma, Italy
| | - Diana Giannarelli
- Facility of Epidemiology & Biostatistics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | | |
Collapse
|
12
|
Retnakumar SV, Chauvin C, Bayry J. The implication of anti-PD-1 therapy in cancer patients for the vaccination against viral and other infectious diseases. Pharmacol Ther 2023; 245:108399. [PMID: 37001736 DOI: 10.1016/j.pharmthera.2023.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The phenomenon of 'T cell exhaustion', a state of T cell dysfunction observed during chronic infections and cancers, has been a major obstacle in mounting appropriate immune responses against infectious agents or tumor antigens. The exhausted T cells are characterized by poor effector functions mainly due to the overexpression of inhibitory receptors such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin-domain containing 3 (TIM3), lymphocyte activation gene 3 (LAG3), and T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), commonly referred to as immune checkpoint (ICP) molecules. ICP blockade, especially of PD-1 that can potentially reverse T cell exhaustion and thereby re-stimulate the impaired immune system, is widely used in clinics as a promising therapeutic strategy for various cancers and is more recently being investigated in infectious diseases as well. In fact, cancer patients represent a population of immunocompromised individuals who are more susceptible to infections and associated complications, and thus the need for protective vaccinations against these diseases is of prime importance in this category. When it comes to vaccinating anti-PD-1-treated cancer patients against infectious diseases including COVID-19 and influenza, a special focus should be brought on the revived immune cells, which could be dynamically affected by the antigenic stimulation. However, since cancer patients are not generally included in clinical trials for designing vaccines against infectious diseases, the possible interaction between vaccine immune responses and ICP therapy is largely unexplored. Mechanistically, the reversal of T cell exhaustion by ICP in an otherwise immunocompromised population could be beneficial for the vaccine's efficacy, helping the immune system to mount a robust immune response. Nevertheless, patients with cancer undergoing anti-PD-1 blockade are known to experience immune-related adverse effects (irAEs). The risk of increasing the irAEs due to the overstimulation of the immune system during vaccination is a major concern. Therefore, while routine vaccination is indispensable for the protection of cancer patients, the impact of PD-1 blockade on vaccine responses against infectious agents requires careful consideration to avoid undesirable adverse effects that could impair the efficacy of anti-cancer treatment.
Collapse
|
13
|
Furlong E, Kotecha RS. Lessons learnt from influenza vaccination in immunocompromised children undergoing treatment for cancer. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:199-213. [PMID: 36706776 DOI: 10.1016/s2352-4642(22)00315-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 01/26/2023]
Abstract
Influenza infection contributes substantially to global morbidity and mortality, with children undergoing treatment for cancer among the most vulnerable due to immunosuppression associated with disease and treatment. However, influenza remains one of the most common vaccine-preventable diseases. Despite international guidelines recommending inactivated influenza vaccination on the basis of data supporting efficacy and an excellent safety profile in this population, uptake has often been suboptimal due to persisting hesitancy among both patients and oncologists regarding the ability of the vaccine to mount a sufficient immune response, the optimal vaccine schedule and timing, and the best method to assess response in immunocompromised populations. In this Review, we discuss the evidence regarding influenza vaccination in children with cancer, factors that influence response, and highlight strategies to optimise vaccination. Host immune factors play a substantial role, thus principles learnt from influenza vaccination can be broadly applied for the use of inactivated vaccines in children with cancer.
Collapse
Affiliation(s)
- Eliska Furlong
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia; Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia; Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia; Curtin Medical School, Curtin University, Perth, WA, Australia.
| |
Collapse
|
14
|
Tanvetyanon T, Chen DT, Gray JE. Impact of COVID-19 Pandemic on Frontline Pembrolizumab-Based Treatment for Advanced Lung Cancer. J Clin Med 2023; 12:jcm12041611. [PMID: 36836146 PMCID: PMC9960275 DOI: 10.3390/jcm12041611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Pembrolizumab monotherapy or pembrolizumab plus chemotherapy has become an important frontline treatment for advanced non-small cell lung cancer (NSCLC). To date, it remains unclear how the coronavirus disease 2019 (COVID-19) pandemic impacted the treatment outcome. METHODS A quasi-experimental study was conducted based on a real-world database, comparing pandemic with pre-pandemic patient cohorts. The pandemic cohort consisted of patients who initiated treatment from March to July 2020, with follow-up through March 2021. The pre-pandemic cohort consisted of those initiating treatment between March and July 2019.The outcome was overall real-world survival. Multivariable Cox-proportional hazard models were constructed. RESULTS Analyses included data from 2090 patients: 998 in the pandemic cohort and 1092 in the pre-pandemic cohort. Baseline characteristics were comparable, with 33% of patients having PD-L1 expression level ≥50% and 29% of patients receiving pembrolizumab monotherapy. Among those treated with pembrolizumab monotherapy (N = 613), there was a differential impact of the pandemic on survival by PD-L1 expression levels (p-interaction = 0.02). For those with PD-L1 level < 50%, survival was better in the pandemic cohort than the pre-pandemic cohort: hazard ratio (HR) 0.64 (95% CI: 0.43-0.97, p = 0.03). However, for those with PD-L1 level ≥ 50%, survival was not better in the pandemic cohort: HR 1.17 (95% CI: 0.85-1.61, p = 0.34). We found no statistically significant impact of the pandemic on survival among patients treated with pembrolizumab plus chemotherapy. CONCLUSIONS The COVID-19 pandemic was associated with an increase in survival among patients with lower PD-L1 expression who were treated with pembrolizumab monotherapy. This finding suggests an increased efficacy of immunotherapy due to viral exposure in this population.
Collapse
|
15
|
Combined Vaccination with B Cell Peptides Targeting Her-2/neu and Immune Checkpoints as Emerging Treatment Option in Cancer. Cancers (Basel) 2022; 14:cancers14225678. [PMID: 36428769 PMCID: PMC9688220 DOI: 10.3390/cancers14225678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
The application of monoclonal antibodies (mAbs), targeting tumor-associated (TAAs) or tumor-specific antigens or immune checkpoints (ICs), has shown tremendous success in cancer therapy. However, the application of mAbs suffers from a series of limitations, including the necessity of frequent administration, the limited duration of clinical response and the emergence of frequently pronounced immune-related adverse events. However, the introduction of mAbs has also resulted in a multitude of novel developments for the treatment of cancers, including vaccinations against various tumor cell-associated epitopes. Here, we reviewed recent clinical trials involving combination therapies with mAbs targeting the PD-1/PD-L1 axis and Her-2/neu, which was chosen as a paradigm for a clinically highly relevant TAA. Our recent findings from murine immunizations against the PD-1 pathway and Her-2/neu with peptides representing the mimotopes/B cell peptides of therapeutic antibodies targeting these molecules are an important focus of the present review. Moreover, concerns regarding the safety of vaccination approaches targeting PD-1, in the context of the continuing immune response, as a result of induced immunological memory, are also addressed. Hence, we describe a new frontier of cancer treatment by active immunization using combined mimotopes/B cell peptides aimed at various targets relevant to cancer biology.
Collapse
|
16
|
Nüse B, Holland T, Mattner J. Immune responses to tumor-unrelated antigens might predict adverse effects in patients treated with anti-PD-1 immunotherapy. Cell Mol Immunol 2022; 20:313-315. [PMID: 36380097 PMCID: PMC10066306 DOI: 10.1038/s41423-022-00947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
|
17
|
Al-qaim ZH, Owadh HKH, Ali SA, Hussein AS, Ameen TR, Kolemen A, Washi GA, Jalil AT. COVID-19 vaccination in patients with cancer: Opportunities and challenges. Front Oncol 2022; 12:1029325. [PMID: 36425557 PMCID: PMC9679654 DOI: 10.3389/fonc.2022.1029325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 09/26/2023] Open
Abstract
The rapid spread of the SARS-Cov-2 virus, the increase in the number of patients with severe COVID-19, and the high mortality rate created the basis for the production of safe and effective vaccines. Studies have confirmed the increased risk of severe Covid-19 disease and mortality in cancer patients. It is logical that cancer patients should be the first to receive the primary vaccination and the booster vaccine for Covid-19. Since studies related to cancer patients and the effectiveness of existing Covid-19 vaccines have not been widely conducted, there are significant uncertainties about the effectiveness of the vaccine and the level of humoral and cellular immune responses in these patients. As a result, the possible risks and side effects of existing vaccines are not clear for patients with different cancers who are undergoing special treatments. In this study, we will discuss the effectiveness and safety of existing vaccines on cancer patients. In addition, we highlight factors that could affect the effectiveness of vaccines in these patients and finally discuss opportunities and challenges related to vaccination in cancer patients.
Collapse
Affiliation(s)
- Zahraa Haleem Al-qaim
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | | | - Sarah A. Ali
- Department of Medical Laboratory Techniques, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Alaa S. Hussein
- Radiological Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | | | - Ayshan Kolemen
- Department of Dentistry, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Ghassan A. Washi
- Department of Nursing, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| |
Collapse
|
18
|
Tsiakos K, Gavrielatou N, Vathiotis IA, Chatzis L, Chatzis S, Poulakou G, Kotteas E, Syrigos NK. Programmed Cell Death Protein 1 Axis Inhibition in Viral Infections: Clinical Data and Therapeutic Opportunities. Vaccines (Basel) 2022; 10:vaccines10101673. [PMID: 36298538 PMCID: PMC9611078 DOI: 10.3390/vaccines10101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
A vital function of the immune system is the modulation of an evolving immune response. It is responsible for guarding against a wide variety of pathogens as well as the establishment of memory responses to some future hostile encounters. Simultaneously, it maintains self-tolerance and minimizes collateral tissue damage at sites of inflammation. In recent years, the regulation of T-cell responses to foreign or self-protein antigens and maintenance of balance between T-cell subsets have been linked to a distinct class of cell surface and extracellular components, the immune checkpoint molecules. The fact that both cancer and viral infections exploit similar, if not the same, immune checkpoint molecules to escape the host immune response highlights the need to study the impact of immune checkpoint blockade on viral infections. More importantly, the process through which immune checkpoint blockade completely changed the way we approach cancer could be the key to decipher the potential role of immunotherapy in the therapeutic algorithm of viral infections. This review focuses on the effect of programmed cell death protein 1/programmed death-ligand 1 blockade on the outcome of viral infections in cancer patients as well as the potential benefit from the incorporation of immune checkpoint inhibitors (ICIs) in treatment of viral infections.
Collapse
Affiliation(s)
- Konstantinos Tsiakos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Correspondence:
| | - Niki Gavrielatou
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Ioannis A. Vathiotis
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Loukas Chatzis
- Pathophysiology Department, Athens School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Stamatios Chatzis
- Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Hippokration” Hospital, 115 27 Athens, Greece
| | - Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Elias Kotteas
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Nikolaos K. Syrigos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
19
|
Lin EPY, Huang LC, Whisenant J, York S, Osterman T, Lewis J, Iams W, Skotte E, Cass A, Hsu CY, Shyr Y, Horn L. Associations of influenza vaccination with severity of immune-related adverse events in patients with advanced thoracic cancers on immune checkpoint inhibitors. ERJ Open Res 2022; 8:00684-2021. [PMID: 36225333 PMCID: PMC9549316 DOI: 10.1183/23120541.00684-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Whether influenza vaccination (FV) is associated with the severity of immune-related adverse events (IRAEs) in patients with advanced thoracic cancer on immune checkpoint inhibitors (ICIs) is not fully understood. Methods Patients enrolled in this retrospective cohort study were identified from the Vanderbilt BioVU database and their medical records were reviewed. Patients with advanced thoracic cancer who received FV within 3 months prior to or during their ICI treatment period were enrolled in the FV-positive cohort and those who did not were enrolled in the FV-negative cohort. The primary objective was to detect whether FV is associated with decreased IRAE severity. The secondary objectives were to evaluate whether FV is associated with a decreased risk for grade 3-5 IRAEs and better survival times. Multivariable ordinal logistic regression was used for the primary analysis. Results A total of 142 and 105 patients were enrolled in the FV-positive and FV-negative cohorts, respectively. There was no statistically significant difference in patient demographics or cumulative incidences of IRAEs between the two cohorts. In the primary analysis, FV was inversely associated with the severity of IRAEs (OR 0.63; p=0.046). In the secondary analysis, FV was associated with a decreased risk for grade 3-5 IRAEs (OR 0.42; p=0.005). Multivariable Cox regression showed that FV was not associated with survival times. Conclusions Our study showed that FV does not increase toxicity for patients with advanced thoracic cancer on ICIs and is associated with a decreased risk for grade 3-5 IRAEs. No statistically significant survival differences were found between patients with and without FV.
Collapse
Affiliation(s)
- Emily Pei-Ying Lin
- Dept of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Dept of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Pulmonary Medicine, Dept of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Dept of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Ching Huang
- Dept of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Whisenant
- Division of Hemato-oncology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sally York
- Division of Hemato-oncology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Travis Osterman
- Division of Hemato-oncology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Dept of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Lewis
- Division of Hemato-oncology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wade Iams
- Division of Hemato-oncology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily Skotte
- Division of Hemato-oncology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda Cass
- Division of Hemato-oncology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chih-Yuan Hsu
- Dept of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Dept of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- These authors contributed equally
| | - Leora Horn
- Division of Hemato-oncology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- These authors contributed equally
| |
Collapse
|
20
|
Immune Checkpoint Inhibitors for Vaccine Improvements: Current Status and New Approaches. Pharmaceutics 2022; 14:pharmaceutics14081721. [PMID: 36015348 PMCID: PMC9415890 DOI: 10.3390/pharmaceutics14081721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, the use of immune checkpoint inhibitors (ICIs) in combination with approved or experimental vaccines has proven to be a promising approach to improve vaccine immunogenicity and efficacy. This strategy seeks to overcome the immunosuppressive mechanisms associated with the vaccine response, thereby achieving increased immunogenicity and efficacy. Most of the information on the use of ICIs combined with vaccines derives from studies on certain anti-tumor vaccines combined with monoclonal antibodies (mAbs) against either cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or programmed death-ligand 1 (PD-L1). However, over the past few years, emerging strategies to use new-generation ICIs as molecular adjuvants are paving the way for future advances in vaccine research. Here, we review the current state and future directions of the use of ICIs in experimental and clinical settings, including mAbs and alternative new approaches using antisense oligonucleotides (ASOs), small non-coding RNAs, aptamers, peptides, and other small molecules for improving vaccine efficacy. The scope of this review mainly includes the use of ICIs in therapeutic antitumor vaccines, although recent research on anti-infective vaccines will also be addressed.
Collapse
|
21
|
Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in Patients with Melanoma Treated with Immunotherapy. Cancers (Basel) 2022; 14:cancers14153791. [PMID: 35954454 PMCID: PMC9367332 DOI: 10.3390/cancers14153791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The efficacy and safety of the BNT126b2 vaccine against SARS-CoV-2 has not been thoroughly studied in cancer patients treated with immunotherapy. This research aims to investigate the efficacy and safety of the vaccine in patients with melanoma under immunotherapy; at the same time, through the immunophenotyping of T cells and myeloid cells of the peripheral blood, it will be possible to look for changes in the subpopulations of such cells after vaccinations. The results of the study help establish the efficacy and safety of the vaccine in this population, especially since a theoretical concern exists about the vaccine triggering irAEs. Abstract The BNT162b2 vaccine against SARS-CoV-2 has a proven efficacy and a favorable safety profile. In cancer patients under immunotherapy in the form of immune-checkpoint inhibitors (ICIs), the efficacy of the vaccine has not been thoroughly studied, while a theoretical concern has also been raised about triggering immune-related adverse events (irAEs) by the vaccine. We conducted a prospective, non-interventional study on the immunogenicity and safety of the BNT162b2 vaccine in patients with advanced or metastatic melanoma treated with ICIs. Blood samples were obtained 0–4 days before the first dose and 12–21 days after the second dose of the vaccine for the quantification of the SARS-CoV-2 anti-spike antibody using an ELISA and immunophenotyping of the T and myeloid cell subpopulations. The active recording of AEs for a two-month period was conducted. Forty patients were included in the study. All but one (97.3%) achieved seroconversion after two doses of the vaccine and no correlations of the antibody titers with any of the studied parameters (age, gender, stage and duration of the disease, type of ICI, previous treatment, etc.) were found. Moreover, no differences in the subpopulations of the T cells (including the T-regulatory cells) or the myeloid cells were found pre- and post-vaccination. All AEs were low-grade, while one case of arthritis exacerbation was noted. The seroconversion rate in the studied population was high and was comparable to that of healthy subjects, while no major safety issues were raised during the safety follow-up. Finally, no derangements in the subpopulations of T cells or myeloid cells were noted. This is the first study focusing on the immunogenicity, safety, and effect of anti-SARS-CoV-2 vaccines on the blood-cell immunophenotype status of patients with melanoma treated with ICIs.
Collapse
|
22
|
Herati RS, Knorr DA, Vella LA, Silva LV, Chilukuri L, Apostolidis SA, Huang AC, Muselman A, Manne S, Kuthuru O, Staupe RP, Adamski SA, Kannan S, Kurupati RK, Ertl HCJ, Wong JL, Bournazos S, McGettigan S, Schuchter LM, Kotecha RR, Funt SA, Voss MH, Motzer RJ, Lee CH, Bajorin DF, Mitchell TC, Ravetch JV, Wherry EJ. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat Immunol 2022; 23:1183-1192. [PMID: 35902637 PMCID: PMC9880663 DOI: 10.1038/s41590-022-01274-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/20/2022] [Indexed: 01/31/2023]
Abstract
Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.
Collapse
Affiliation(s)
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura A Vella
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Luisa Victoria Silva
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lakshmi Chilukuri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sokratis A Apostolidis
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alexander Muselman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Immunology, Stanford University, Stanford, CA, USA
| | - Sasikanth Manne
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ryan P Staupe
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sharon A Adamski
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Jeffrey L Wong
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Suzanne McGettigan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ritesh R Kotecha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel A Funt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean F Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tara C Mitchell
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA.
| | - E John Wherry
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Lopez-Olivo MA, Valerio V, Karpes Matusevich AR, Brizio M, Kwok M, Geng Y, Suarez-Almazor ME, Colmegna I. Safety and Efficacy of Influenza Vaccination in Patients Receiving Immune Checkpoint Inhibitors. Systematic Review with Meta-Analysis. Vaccines (Basel) 2022; 10:vaccines10081195. [PMID: 36016085 PMCID: PMC9412390 DOI: 10.3390/vaccines10081195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022] Open
Abstract
The potential increased risk of immune-related adverse events (irAEs) post-influenza vaccine is a concern in patients receiving immune checkpoint inhibitors (ICI). We conducted a systematic review with meta-analysis of studies reporting the effects of influenza vaccination in patients with cancer during ICI treatment. We searched five electronic databases until 01/2022. Two authors independently selected studies, appraised their quality, and collected data. The primary outcome was the determination of pooled irAE rates. Secondary outcomes included determination of immunogenicity and influenza infection rates and cancer-related outcomes. Nineteen studies (26 publications, n = 4705) were included; 89.5% were observational. Vaccinated patients reported slighter lower rates of irAEs compared to unvaccinated patients (32% versus 41%, respectively). Seroprotection for influenza type A was 78%-79%, and for type B was 75%. Influenza and irAE-related death rates were similar between groups. The pooled proportion of participants reporting a laboratory-confirmed infection was 2% (95% CI 0% to 6%), and influenza-like illness was 14% (95% CI 2% to 32%). No differences were reported on the rates of laboratory-confirmed infection between vaccinated and unvaccinated patients. Longer progression-free and overall survival was also observed in vaccinated compared with unvaccinated patients. Current evidence suggests that influenza vaccination is safe in patients receiving ICIs, does not increase the risk of irAEs, and may improve survival.
Collapse
Affiliation(s)
- Maria A. Lopez-Olivo
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1444, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-713-563-0020
| | - Valeria Valerio
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A 3J1, Canada; (V.V.); (I.C.)
| | | | - Marianela Brizio
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Michelle Kwok
- Department of Clinical Immunology and Allergy, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Yimin Geng
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Maria E. Suarez-Almazor
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1444, Houston, TX 77030, USA;
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ines Colmegna
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A 3J1, Canada; (V.V.); (I.C.)
| |
Collapse
|
24
|
Tsiakos K, Kyriakoulis KG, Kollias A, Kyriakoulis IG, Poulakou G, Syrigos K. Influenza Vaccination in Cancer Patients Treated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. J Immunother 2022; 45:291-298. [PMID: 35639000 DOI: 10.1097/cji.0000000000000424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/24/2022] [Indexed: 12/29/2022]
Abstract
The safety and efficacy of influenza vaccination is not well-studied in cancer patients receiving immune checkpoint inhibitors (ICIs). A systematic review and meta-analysis was performed aiming to summarize available data regarding influenza vaccination in ICI-treated cancer patients. Peer-reviewed studies or nonpeer-reviewed conference abstracts including ICI-treated cancer patients who received at least 1 dose of influenza vaccine were deemed eligible. A systematic search in PubMed/EMBASE was performed until October 26, 2021. Endpoints of interest included mortality as the primary outcome and secondary safety outcomes such as the incidence of immune-related adverse events (irAEs). Twenty-five studies were included in the systematic review, among which 9 were included in the meta-analysis. Meta-analysis of 3 studies (n=589, weighted age 64 y, men 61%, influenza vaccinated 32%) showed pooled odds ratio for death in influenza vaccinated versus nonvaccinated patients at 1.25 [(95% confidence intervals (CI): 0.81-1.92), P=non significant (NS)]. Meta-analysis of 6 studies studies (n=1285, weighted age 60 y, men 59%, influenza vaccinated 48%) showed pooled odds ratio for any irAEs in influenza vaccinated versus nonvaccinated patients at 0.82 [95% CI: 0.63-1.08, P=NS]. Similar results were observed in sensitivity analyses for serious irAEs, as well as when only peer-reviewed studies were included. Influenza vaccination appears to be a safe and reasonable intervention for cancer patients receiving ICIs. Most data are derived from retrospective observational studies. Randomized studies are needed to provide high-quality evidence.
Collapse
Affiliation(s)
- Konstantinos Tsiakos
- Third Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Hospital, Athens, Greece
| | | | | | | | | | | |
Collapse
|
25
|
Zhu N, Yang Y, Wang H, Tang P, Zhang H, Sun H, Gong L, Yu Z. CSF2RB Is a Unique Biomarker and Correlated With Immune Infiltrates in Lung Adenocarcinoma. Front Oncol 2022; 12:822849. [PMID: 35574409 PMCID: PMC9096117 DOI: 10.3389/fonc.2022.822849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background The tumor microenvironment plays an important role in the occurrence and development of tumors. However, there are gaps in understanding the molecular and cellular interactions between tumor cells and the immune tumor microenvironment (TME). The aim of this study was to identify a novel gene that played an important role in the tumor microenvironment of lung adenocarcinoma (LUAD). Methods The gene expression profile and clinical data for LUAD were downloaded from TCGA database. First, we used the ESTIMATE algorithm to evaluate the immune and stromal scores accordingly. Also, we analyzed differentially expressed immune-related genes (IRGs) in the high and low immune/stromal score groups. Then, we used the protein–protein interaction network (PPI network) and a univariate Cox regression analysis to identify the hub gene. After that, we analyzed the relationship between CSF2RB expression and TNM stage/prognosis. Furthermore, gene set enrichment analysis (GSEA) was used to analyze the pathway regulated by CSF2RB and the Pearson correlation analysis method was used to analyze the correlation between the CSF2RB and immune cells. Finally, we used Western blot, real-time quantitative PCR (RT-qPCR), and immunohistochemistry (IHC) to validate CSF2RB expression in cancer and para-cancerous tissues. Results We identified that CSF2RB played an important role in the tumor microenvironment of LUAD. The expression of CSF2RB in tumor tissues was lower than that in normal tissues. Furthermore, the Kaplan–Meier plotter showed that a low CSF2RB expression was associated with poor survival and multivariate COX regression analysis revealed that the CSF2RB gene was an independent risk factor for prognosis, independent of whether patients received chemotherapy or radiotherapy. More importantly, a high expression of CSF2RB was related to early T, N, and clinical stages. GSEA analysis revealed that CSF2RB associated with diverse immune-related pathways, including T-cell receptor signaling pathway, Toll-like receptor signaling pathway, and B-cell receptor signaling pathway. CSF2RB expression levels were also positively related with the levels of infiltrating CD4+ T cells, macrophages, NK cells, and monocytes in LUAD. Finally, tumor tissues from LUAD patients were used for the assessment of CSF2RB expression. It was significantly lower in tumor sites than in adjacent normal tissues, which was consistent with data analysis. Conclusion CSF2RB effectively predicted the prognosis of patients with lung adenocarcinoma which could also be a potential target for cancer treatment and prevention. However, further studies are required to elucidate the function and regulatory mechanisms of CSF2RB and to develop some novel treatment strategies.
Collapse
Affiliation(s)
- Ningning Zhu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yueyang Yang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haitong Wang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haiyan Sun
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Gong
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, China
| |
Collapse
|
26
|
Systemic Cancer Therapy Does Not Significantly Impact Early Vaccine-Elicited SARS-CoV-2 Immunity in Patients with Solid Tumors. Vaccines (Basel) 2022; 10:vaccines10050738. [PMID: 35632494 PMCID: PMC9144031 DOI: 10.3390/vaccines10050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
mRNA vaccines have been shown to be safe and effective in individuals with cancer. It is unclear, however, if systemic anti-cancer therapy impacts the coordinated cellular and humoral immune responses elicited by SARS-CoV-2 mRNA vaccines. To fill this knowledge gap, we assessed SARS-CoV-2 mRNA vaccine-elicited immunity in a cohort of patients with advanced solid tumors either under observation or receiving systemic anti-cancer therapy. This analysis revealed that SARS-CoV-2 mRNA vaccine-elicited cellular and humoral immunity was not significantly different in individuals with cancer receiving systemic anti-cancer therapy relative to individuals under observation. Furthermore, even though some patients exhibited suboptimal antibody titers after vaccination, SARS-CoV-2 specific cellular immune responses were still detected. These data suggest that antibody titers offer an incomplete picture of vaccine-elicited SARS-CoV-2 immunity in cancer patients undergoing active systemic anti-cancer therapy, and that vaccine-elicited cellular immunity exists even in the absence of significant quantities of SARS-CoV-2 specific antibodies.
Collapse
|
27
|
Chennamadhavuni A, Abushahin L, Jin N, Presley CJ, Manne A. Risk Factors and Biomarkers for Immune-Related Adverse Events: A Practical Guide to Identifying High-Risk Patients and Rechallenging Immune Checkpoint Inhibitors. Front Immunol 2022; 13:779691. [PMID: 35558065 PMCID: PMC9086893 DOI: 10.3389/fimmu.2022.779691] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/31/2022] [Indexed: 12/19/2022] Open
Abstract
Immune-related adverse events (irAEs) are a range of complications associated with the use of immune-checkpoint inhibitors (ICIs). Two major classes of ICIs widely used are Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) and Programmed Cell death-1 (PD-1)/Programmed death-ligand 1 (PD-L1) inhibitors. High-grade irAEs are life-threatening and often cause a severe decline in performance status in such that patients do not qualify for any further anticancer treatments. It is difficult to generalize the evidence in the current literature on risk factors or biomarkers for the entire class of ICIs as the studies so far are either disease-specific (e.g., lung cancer or melanoma) or ICI agent-specific (e.g., pembrolizumab, ipilimumab) or irAE-specific (e.g., pneumonitis or gastritis). In this review, risk factors and biomarkers to consider before initiating or monitoring ICI are listed with a practical purpose in day-to-day practice. Risk factors are grouped into demographics and social history, medical history, and medication history, tumor-specific and agent-specific risk factors. A higher risk of irAE is associated with age <60 years, high body mass index, women on CTLA4 and men on PD-1/PD-L1 agents, and chronic smokers. Patients with significant kidney (Stage IV-V), cardiac (heart failure, coronary artery disease, myocardial infarction, hypertension), and lung (asthma, pulmonary fibrosis, and chronic obstructive pulmonary disease) are at a higher risk of respective organ-specific irAEs. Pre-existing autoimmune disease and chronic use of certain drugs (proton pump inhibitors, diuretics, anti-inflammatory drugs) also increase the irAE-risk. Biomarkers are categorized into circulating blood counts, cytokines, autoantibodies, HLA genotypes, microRNA, gene expression profiling, and serum proteins. The blood counts and certain protein markers (albumin and thyroid-stimulating hormone) are readily accessible in current practice. High neutrophil-lymphocyte ratio, eosinophil/monocyte/lymphocyte counts; TSH and troponins at diagnosis and drop in the white count and lymphocyte count can predict irAE. Other biomarkers with limited evidence are cytokines, autoantibodies, HLA genotypes, microRNA, and gene expression profiling. With fast-expanding approvals for ICIs in various cancer types, knowledge on risk factors and biomarkers can help providers assess the irAE-risk of their patients. Prospective disease and agent-specific studies are needed to provide further insight on this essential aspect of ICI therapy.
Collapse
Affiliation(s)
- Adithya Chennamadhavuni
- University of Iowa Hospitals and Clinics, Holden Comprehensive Cancer Center, Iowa City, IA, United States
| | - Laith Abushahin
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Ning Jin
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Carolyn J. Presley
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
28
|
Kantarcioglu B, Iqbal O, Lewis J, Carter CA, Singh M, Lievano F, Ligocki M, Jeske W, Adiguzel C, Gerotziafas GT, Fareed J. An Update on the Status of Vaccine Development for SARS-CoV-2 Including Variants. Practical Considerations for COVID-19 Special Populations. Clin Appl Thromb Hemost 2022; 28:10760296211056648. [PMID: 35167393 PMCID: PMC8851053 DOI: 10.1177/10760296211056648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
The progress in the development of various vaccine platforms against SARS-CoV-2 have been rather remarkable owing to advancement in molecular and biologic sciences. Most of the current vaccines and those in development focus on targeting the viral spike proteins by generating antibodies of varying spectrum. These vaccines represent a variety of platforms including whole virus vaccines, viral vector vaccines, nucleic acid vaccines representing RNA, DNA, and their hybrid forms.The therapeutic efficacy of these vaccines varies owing to their pharmacodynamic individualities. COVID-19 variants are capable of inducing different pathologic responses and some of which may be resistant to antibodies generated by current vaccines. The current clinical use of these vaccines has been through emergency use authorization until recently. Moreover, the efficacy and safety of these vaccines have been tested in substantial numbers of individuals but studies in special populations that better reflect the global population are pending results. These specialized populations include young children, immunocompromised patients, pregnant individuals, and other specialized groups. Combination approaches, molecularly modified vaccination approaches, and vaccines conferring longer periods of immunity are being currently being investigated, as well as pharmacovigilance studies.The continual transformation of SARS-CoV-2 and its variants are of concern along with the breakthrough infections. These considerations pose new challenges for the development of vaccination platforms. For this purpose, booster doses, combination vaccine approaches, and other modalities are being discussed. This review provides an updated account of currently available vaccines and those in advanced development with reference to their composition and mechanisms of action.A discussion on the use of vaccines in special populations including immunocompromised patients, pregnant women and other specialized populations are also included.
Collapse
Affiliation(s)
- Bulent Kantarcioglu
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Omer Iqbal
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Joseph Lewis
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Charles A. Carter
- Campbell University College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, USA
| | - Meharvan Singh
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | | | | | - Walter Jeske
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | | | - Grigoris T. Gerotziafas
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Thrombosis Center, Service D’Hématologie Biologique Hôpital Tenon, Paris, France
| | - Jawed Fareed
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| |
Collapse
|
29
|
Hussain K, Kawsar A, Weir J, Au L, Turajlic S, Larkin J, Fearfield L. Severe cutaneous adverse reaction following COVID-19 vaccination and immunotherapy: a second hit? Clin Exp Dermatol 2022; 47:149-151. [PMID: 34260095 PMCID: PMC8444809 DOI: 10.1111/ced.14852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/01/2022]
Affiliation(s)
- K. Hussain
- Department of DermatologyChelsea and Westminster HospitalLondonUK
| | - A. Kawsar
- Department of DermatologyChelsea and Westminster HospitalLondonUK
| | - J. Weir
- Department of HistopathologyImperial College Healthcare NHS TrustLondonUK
| | - L. Au
- Skin and Melanoma UnitRoyal Marsden HospitalLondonUK
| | - S. Turajlic
- Skin and Melanoma UnitRoyal Marsden HospitalLondonUK
| | - J. Larkin
- Skin and Melanoma UnitRoyal Marsden HospitalLondonUK
| | - L. Fearfield
- Department of DermatologyChelsea and Westminster HospitalLondonUK
- Skin and Melanoma UnitRoyal Marsden HospitalLondonUK
| |
Collapse
|
30
|
Richard G, Princiotta MF, Bridon D, Martin WD, Steinberg GD, De Groot AS. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy. Expert Rev Vaccines 2021; 21:173-184. [PMID: 34882038 DOI: 10.1080/14760584.2022.2012456] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The field of cancer therapy has undergone a major transformation in less than a decade due to the introduction of checkpoint inhibitors, the advent of next generation sequencing and the discovery of neoantigens. The key observation that the breadth of each patient's immune response to the unique mutations or neoantigens present in their tumor is directly related to their survival has led oncologists to focus on driving immune responses to neoantigens through vaccination. Oncology has entered the era of precision immunotherapy, and cancer vaccine development is undergoing a paradigm shift. AREAS COVERED Neoantigens are short peptide sequences found in tumors, but not noncancerous tissues, the vast majority of which are unique to each patient. In addition to providing a description of the distinguishing features of neoantigen discovery platforms, this review will address cross-cutting personalized cancer vaccine design themes and developmental stumbling blocks. EXPERT OPINION Immunoinformatic pipelines that can rapidly scan cancer genomes and identify 'the best' neoantigens are in high demand. Despite the need for such tools, immunoinformatic methods for identifying neoepitopes in cancer genomes are diverse and have not been well-validated. Validation of 'personalized vaccine design pipelines' will bring about a revolution in neoantigen-based vaccine design and delivery.
Collapse
Affiliation(s)
| | | | | | | | - Gary D Steinberg
- EpiVax Therapeutics, Inc., Providence, RI, USA.,Perlmutter Cancer Center, Department of Urology at NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| |
Collapse
|
31
|
Kieber-Emmons T. Cancer Patients and COVID-19 Vaccination. Monoclon Antib Immunodiagn Immunother 2021; 40:233-236. [DOI: 10.1089/mab.2021.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas Kieber-Emmons
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
32
|
Vaccination against Cancer or Infectious Agents during Checkpoint Inhibitor Therapy. Vaccines (Basel) 2021; 9:vaccines9121396. [PMID: 34960142 PMCID: PMC8706349 DOI: 10.3390/vaccines9121396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The use of immune checkpoint inhibitors (ICI) has substantially increased the overall survival of cancer patients and has revolutionized the therapeutic situation in oncology. However, not all patients and cancer types respond to ICI, or become resistant over time. Combining ICIs with therapeutic cancer vaccines is a promising option as vaccination may help to overcome resistance to immunotherapies while immunotherapies may increase immune responses to the particular cancer vaccine by reinvigorating exhausted T cells. Thus, it would be possible to reprogram a response with appropriate vaccines, using a particular cancer antigen and a corresponding ICI. Target populations include currently untreatable cancer patients or those who receive treatment regimens with high risk of serious side effects. In addition, with the increased use of ICI in clinical practice, questions arise regarding safety and efficacy of administration of conventional vaccines, such as influenza or COVID-19 vaccines, during active ICI treatment. This review discusses the main principles of prophylactic and therapeutic cancer vaccines, the potential impact on combining therapeutic cancer vaccines with ICI, and briefly summarizes the current knowledge of safety and effectiveness of influenza and COVID-19 vaccines in ICI-treated patients.
Collapse
|
33
|
Ma Y, Liu N, Wang Y, Zeng J, Hu YY, Hao W, Shi H, Zhu P, Lv J, Fan W, Wang X. Immune checkpoint blocking impact and nomogram prediction of COVID-19 inactivated vaccine seroconversion in patients with cancer: a propensity-score matched analysis. J Immunother Cancer 2021; 9:jitc-2021-003712. [PMID: 34845005 PMCID: PMC8634011 DOI: 10.1136/jitc-2021-003712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Patients with cancer on active immune checkpoint inhibitors therapy were recommended to seek prophylaxis from COVID-19 by vaccination. There have been few reports to date to discuss the impact of progression cell death-1 blockers (PD-1B) on immune or vaccine-related outcomes, and what risk factors that contribute to the serological status remains to be elucidated. The study aims to find the impact of PD-1B on vaccination outcome and investigate other potential risk factors associated with the risk of seroconversion failure. METHODS Patients with active cancer treatment were retrospectively enrolled to investigate the interaction effects between PD-1B and vaccination. Through propensity score matching of demographic and clinical features, the seroconversion rates and immune/vaccination-related adverse events (irAE and vrAE) were compared in a head-to-head manner. Then, a nomogram predicting the failure risk was developed with variables significant in multivariate regression analysis and validated in an independent cohort. RESULTS Patients (n=454) receiving either PD-1B or COVID-19 vaccination, or both, were matched into three cohorts (vac+/PD-1B+, vac+/PD-1B-, and vac-/PD-1B+, respectively), with a non-concer control group of 206 participants. 68.1% (94/138), 71.3% (117/164), and 80.5% (166/206) were seropositive in vac+/PD-1B+cohort, vac+/PD-1B- cohort, and non-cancer control group, respectively. None of irAE or vrAE was observed to be escalated in PD-1B treatment except for low-grade rash.The vaccinated patients with cancer had a significantly lower rate of seroconversion rates than healthy control. A nomogram was thus built that encompassed age, pathology, and chemotherapy status to predict the seroconversion failure risk, which was validated in an independent cancer cohort of 196 patients. CONCLUSION Although patients with cancer had a generally decreased rate of seroconversion as compared with the healthy population, the COVID-19 vaccine was generally well tolerated, and seroconversion was not affected in patients receiving PD-1B. A nomogram predicting failure risk was developed, including age, chemotherapy status, pathology types, and rheumatic comorbidity.
Collapse
Affiliation(s)
- Yifei Ma
- Department of Orthopedics & Spine Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Nianqi Liu
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, People's Republic of China
- The Emotion & Cognition Lab, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, People's Republic of China
| | - Youlong Wang
- Department of General Surgery, Hainan Hospital of PLA General Hospital, Sanya City, Hainan Province, People's Republic of China
| | - Jiling Zeng
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Ying-Ying Hu
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Wu Hao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Huazheng Shi
- Department of Nuclear Medicine, Shanghai Universal Medical Imaging Center, Shanghai, People's Republic of China
| | - Pengfei Zhu
- Department of Clinical Laboratory, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, People's Republic of China
| | - Jun Lv
- Department of Infectious Diseases and Hepatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, People's Republic of China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Xinjia Wang
- Department of Orthopedics & Spine Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Department of Orthopedics, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
34
|
Blaise M, Rocher F, Spittler H, Sanchez A, Lanteri E, Coco L, Puma A, Martel A, Gonfrier G, Passeron T, Montaudié H. Severe necrotizing myopathy after COVID-19 vaccine with BNT162b2 and regimen with ipilimumab plus nivolumab in a patient with advanced melanoma. J Eur Acad Dermatol Venereol 2021; 36:e100-e102. [PMID: 34661938 PMCID: PMC8661524 DOI: 10.1111/jdv.17760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 12/01/2022]
Affiliation(s)
- M Blaise
- Department of Dermatology, Université Côte d'Azur, Nice, France
| | - F Rocher
- Department of Pharmacology and Toxicology, PharmacoVigilance Center, Université Côte d'Azur, Nice, France
| | - H Spittler
- Physical and Rehabilitation Medicine, Université Côte d'Azur, Nice, France
| | - A Sanchez
- Department of Dermatology, Université Côte d'Azur, Nice, France
| | - E Lanteri
- Laboratory of clinical and experimental pathology, Université Côte d'Azur, Nice, France
| | - L Coco
- Department of Radiology, Université Côte d'Azur, Nice, France
| | - A Puma
- Peripheral Nervous System & Muscle Department, Pasteur 2 Hospital, Université Côte d'Azur, Nice, France
| | - A Martel
- Department of Ophtalmology, Université Côte d'Azur, Nice, France
| | - G Gonfrier
- Department of Virology, Université Côte d'Azur, CHU Nice, Nice, France
| | - T Passeron
- Department of Dermatology, Université Côte d'Azur, Nice, France.,INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, Nice, France
| | - H Montaudié
- Department of Dermatology, Université Côte d'Azur, Nice, France.,INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, Nice, France
| |
Collapse
|
35
|
Emerging targets for anticancer vaccination: PD-1. ESMO Open 2021; 6:100278. [PMID: 34649221 PMCID: PMC8517287 DOI: 10.1016/j.esmoop.2021.100278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023] Open
Abstract
Among the mechanisms by which tumor cells escape the immune surveillance, one is the interaction between programmed cell death protein 1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1). Inhibition of the PD-1/PD-L1 pathway with monoclonal antibodies as immune checkpoint inhibitors targeting PD-1 or its ligand, PD-L1, represents a milestone in cancer therapy. The application of these antibodies, however, suffers from drawbacks including failure to show a response or benefit in a majority of patients following monotherapy or combination therapy, their frequent administration, and cost intensiveness. Small peptides capable of interfering with PD-1/PD-L1 interaction represent interesting alternatives to antibody-based immune checkpoint inhibitors. Moreover, peptides representing PD-1 or PD-L1 sequences can be used in active immunization approaches to induce antibodies that enhance antitumor immunity by effectively preventing PD-1-mediated inhibition in the host. Importantly, such peptides can readily be combined with peptides derived from cancer antigens to effectively induce an antitumor immune response. In this review, we have summarized the recent developments in the use of small molecules and peptides either to directly block PD-1/PD-L1 interaction, or in vaccination approaches to induce antibody responses stimulating anticancer immunity by blocking PD-1-mediated T-cell inhibition. Blockade of the PD-1/PD-L1 interaction by antibodies as immune checkpoint inhibitors (ICIs) is a milestone in immunotherapy. Treatment by ICIs has disadvantages, like frequent administration, low response in some patients, and cost intensiveness. Direct blockade by small compounds or vaccination by peptides are two promising alternatives to the treatments with ICIs. Such alternatives may pave the way to therapeutics which could be used as monotherapy, or in combination with ICIs.
Collapse
|
36
|
Peeters M, Verbruggen L, Teuwen L, Vanhoutte G, Vande Kerckhove S, Peeters B, Raats S, Van der Massen I, De Keersmaecker S, Debie Y, Huizing M, Pannus P, Neven K, Ariën KK, Martens GA, Van Den Bulcke M, Roelant E, Desombere I, Anguille S, Goossens M, Vandamme T, van Dam P. Reduced humoral immune response after BNT162b2 coronavirus disease 2019 messenger RNA vaccination in cancer patients under antineoplastic treatment. ESMO Open 2021; 6:100274. [PMID: 34597941 PMCID: PMC8423808 DOI: 10.1016/j.esmoop.2021.100274] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background Cancer patients are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). However, the safety and efficacy of COVID-19 vaccination in cancer patients undergoing treatment remain unclear. Patients and methods In this interventional prospective multicohort study, priming and booster doses of the BNT162b2 COVID-19 vaccine were administered 21 days apart to solid tumor patients receiving chemotherapy, immunotherapy, targeted or hormonal therapy, and patients with a hematologic malignancy receiving rituximab or after allogeneic hematopoietic stem cell transplantation. Vaccine safety and efficacy (until 3 months post-booster) were assessed. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD) antibody levels were followed over time (until 28 days after the booster) and in vitro SARS-CoV-2 50% neutralization titers (NT50) toward the wild-type Wuhan strain were analyzed 28 days after the booster. Results Local and systemic adverse events (AEs) were mostly mild to moderate (only 1%-3% of patients experienced severe AEs). Local, but not systemic, AEs occurred more frequently after the booster dose. Twenty-eight days after the booster vaccination of 197 cancer patients, RBD-binding antibody titers and NT50 were lower in the chemotherapy group {234.05 IU/ml [95% confidence interval (CI) 122.10-448.66] and 24.54 (95% CI 14.50-41.52), respectively} compared with healthy individuals [1844.93 IU/ml (95% CI 1383.57-2460.14) and 122.63 (95% CI 76.85-195.67), respectively], irrespective of timing of vaccination during chemotherapy cycles. Extremely low antibody responses were seen in hematology patients receiving rituximab; only two patients had RBD-binding antibody titers necessary for 50% protection against symptomatic SARS-CoV-2 infection (<200 IU/ml) and only one had NT50 above the limit of detection. During the study period, five cancer patients tested positive for SARS-CoV-2 infection, including a case of severe COVID-19 in a patient receiving rituximab, resulting in a 2-week hospital admission. Conclusion The BNT162b2 vaccine is well-tolerated in cancer patients under active treatment. However, the antibody response of immunized cancer patients was delayed and diminished, mainly in patients receiving chemotherapy or rituximab, resulting in breakthrough infections. The BNT162b2 vaccine is well-tolerated in cancer patients, including patients under immunotherapy. Full BNT162b2 vaccination results in a blunted humoral immune response in cancer patients under active treatment. The humoral immune response after BNT162b2 vaccination varies between different antineoplastic treatments. Two doses of BNT162b2 vaccination may insufficiently protect patients receiving chemotherapy or rituximab against SARS-CoV-2.
Collapse
Affiliation(s)
- M Peeters
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Edegem, Belgium.
| | - L Verbruggen
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - L Teuwen
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - G Vanhoutte
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - S Vande Kerckhove
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - B Peeters
- Department of Laboratory Medicine, Antwerp University Hospital, Edegem, Belgium
| | - S Raats
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - I Van der Massen
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - S De Keersmaecker
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Y Debie
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | | | - P Pannus
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - K Neven
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - K K Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Edegem, Belgium
| | - G A Martens
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | | | - E Roelant
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Edegem, Belgium; StatUa, Center for Statistics, University of Antwerp, Antwerp, Belgium
| | - I Desombere
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - S Anguille
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - M Goossens
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - T Vandamme
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - P van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
37
|
Blanchard E, Ozier A, Janssen C, Wyplosz B, Andrejak C. [COVID-19 vaccination in patients suffering from respiratory diseases. Update of 25th June 2021]. Rev Mal Respir 2021; 38:780-793. [PMID: 34362608 PMCID: PMC8330974 DOI: 10.1016/j.rmr.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Affiliation(s)
- E Blanchard
- Service de pneumologie CHU Bordeaux, 1, avenue de Magellan, 33604 Pessac cedex, France.
| | - A Ozier
- Cabinet de pneumologie, Clinique Saint-Augustin, Bordeaux, France
| | - C Janssen
- Service des maladies infectieuses et tropicales, CH Annecy-Genevois, Annecy, France
| | - B Wyplosz
- Service des maladies infectieuses et tropicales, Hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - C Andrejak
- Service de pneumologie, CHU Amiens, Amiens, France
| |
Collapse
|
38
|
Yazaki S, Yoshida T, Kojima Y, Yagishita S, Nakahama H, Okinaka K, Matsushita H, Shiotsuka M, Kobayashi O, Iwata S, Narita Y, Ohba A, Takahashi M, Iwasa S, Kobayashi K, Ohe Y, Yoshida T, Hamada A, Doi T, Yamamoto N. Difference in SARS-CoV-2 Antibody Status Between Patients With Cancer and Health Care Workers During the COVID-19 Pandemic in Japan. JAMA Oncol 2021; 7:1141-1148. [PMID: 34047762 DOI: 10.1001/jamaoncol.2021.2159] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Importance Patients with cancer and health care workers (HCWs) are at high risk of SARS-CoV-2 infection. Assessing the antibody status of patients with cancer and HCWs can help understand the spread of COVID-19 in cancer care. Objective To evaluate serum SARS-CoV-2 antibody status in patients with cancer and HCWs during the COVID-19 pandemic in Japan. Design, Setting, and Participants Participants were enrolled for this prospective cross-sectional study between August 3 and October 30, 2020, from 2 comprehensive cancer centers in the epidemic area around Tokyo, Japan. Patients with cancer aged 16 years or older and employees were enrolled. Participants with suspected COVID-19 infection at the time of enrollment were excluded. Exposures Cancer of any type and cancer treatment, including chemotherapy, surgery, immune checkpoint inhibitors, radiotherapy, and targeted molecular therapy. Main Outcomes and Measures Seroprevalence and antibody levels in patients with cancer and HCWs. Seropositivity was defined as positivity to nucleocapsid IgG (N-IgG) and/or spike IgG (S-IgG). Serum levels of SARS-CoV-2 IgM and IgG antibodies against the nucleocapsid and spike proteins were measured by chemiluminescent enzyme immunoassay. Results A total of 500 patients with cancer (median age, 62.5 years [range, 21-88 years]; 265 men [55.4%]) and 1190 HCWs (median age, 40 years [range, 20-70 years]; 382 men [25.4%]) were enrolled. In patients with cancer, 489 (97.8%) had solid tumors, and 355 (71.0%) had received anticancer treatment within 1 month. Among HCWs, 385 (32.3%) were nurses or assistant nurses, 266 (22.4%) were administrative officers, 197 (16.6%) were researchers, 179 (15.0%) were physicians, 113 (9.5%) were technicians, and 50 (4.2%) were pharmacists. The seroprevalence was 1.0% (95% CI, 0.33%-2.32%) in patients and 0.67% (95% CI, 0.29%-1.32%) in HCWs (P = .48). However, the N-IgG and S-IgG antibody levels were significantly lower in patients than in HCWs (N-IgG: β, -0.38; 95% CI, -0.55 to -0.21; P < .001; and S-IgG: β, -0.39; 95% CI, -0.54 to -0.23; P < .001). Additionally, among patients, N-IgG levels were significantly lower in those who received chemotherapy than in those who did not (median N-IgG levels, 0.1 [interquartile range (IQR), 0-0.3] vs 0.1 [IQR, 0-0.4], P = .04). In contrast, N-IgG and S-IgG levels were significantly higher in patients who received immune checkpoint inhibitors than in those who did not (median N-IgG levels: 0.2 [IQR, 0.1-0.5] vs 0.1 [IQR, 0-0.3], P = .02; S-IgG levels: 0.15 [IQR, 0-0.3] vs 0.1[IQR, 0-0.2], P = .02). Conclusions and Relevance In this cross-sectional study of Japanese patients with cancer and HCWs, the seroprevalence of SARS-CoV-2 antibodies did not differ between the 2 groups; however, findings suggest that comorbid cancer and treatment with systemic therapy, including chemotherapy and immune checkpoint inhibitors, may influence the immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Shu Yazaki
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.,Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.,Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Kojima
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Nakahama
- Department of Nursing, National Cancer Center Hospital, Tokyo, Japan
| | - Keiji Okinaka
- Department of General Internal Medicine, National Cancer Center Hospital East, Chiba, Japan
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Mika Shiotsuka
- Department of Infectious Diseases, National Cancer Center Hospital, Tokyo, Japan
| | - Osamu Kobayashi
- Department of Infectious Diseases, National Cancer Center Hospital, Tokyo, Japan
| | - Satoshi Iwata
- Department of Infectious Diseases, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiro Ohba
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoru Iwasa
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.,Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kenya Kobayashi
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Chiba, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
39
|
Zhou Q, Li K, Lai Y, Yao K, Wang Q, Zhan X, Peng S, Cai W, Yao W, Zang X, Xu K, Huang J, Huang H. B7 score and T cell infiltration stratify immune status in prostate cancer. J Immunother Cancer 2021; 9:jitc-2021-002455. [PMID: 34417325 PMCID: PMC8381330 DOI: 10.1136/jitc-2021-002455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs), especially programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) axis blockers, exhibit prominent antitumor effects against numerous malignancies, their benefit for patients with prostate cancer (PCa) has been somewhat marginal. This study aimed to assess the feasibility of B7-H3 or HHLA2 as alternative immunotherapeutic targets in PCa. METHODS Immunohistochemistry was performed to evaluate the expression pattern of PD-L1, B7-H3 and HHLA2 and the infiltration of CD8+ and Foxp3+ lymphocytes in 239 PCa tissues from two independent cohorts. The correlations between B7-H3 and HHLA2 and clinicopathological features, including the presence of CD8+ and Foxp3+ tumor-infiltrating lymphocytes (TILs), were explored. RESULTS HHLA2 expression was much higher than PD-L1 expression but lower than B7-H3 expression in PCa tissues. High expression of both B7-H3 and HHLA2 was significantly associated with higher Gleason score and tumor stage, lymph node metastasis and dismal overall survival (OS) and cancer-specific survival (CSS). Moreover, a high B7 score, defined as high B7-H3 expression and/or high HHLA2 expression, was an independent prognostic predictor for PCa. Of note, a high B7 score was negatively correlated with CD8+ TILs. Importantly, a new immune classification, based on the B7 score and CD8+ TILs, successfully stratified OS and CSS in PCa. CONCLUSIONS Both B7-H3 and HHLA2 have a critical impact on the immunosuppressive microenvironment, and the B7 score could be used as an independent prognostic factor for PCa. The B7 score combined with CD8+ TILs could be used as a new immune classification to stratify the risk of death, especially cancer-related death, for patients with PCa. These findings may provide insights that could improve response to immune-related comprehensive therapy for PCa in the future.
Collapse
Affiliation(s)
- Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kai Yao
- Department of urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiong Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangyu Zhan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenli Cai
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wei Yao
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xingxing Zang
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, china
| |
Collapse
|
40
|
Negahdaripour M, Shafiekhani M, Moezzi SMI, Amiri S, Rasekh S, Bagheri A, Mosaddeghi P, Vazin A. Administration of COVID-19 vaccines in immunocompromised patients. Int Immunopharmacol 2021; 99:108021. [PMID: 34352567 PMCID: PMC8316069 DOI: 10.1016/j.intimp.2021.108021] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
Since the beginning of vaccination programs against COVID-19 in different countries, several populations such as patients with specific immunological conditions have been considered as the priorities for immunization. In this regard, patients with autoimmune diseases or those receiving immunosuppressive agents and anti-cancer therapies, need special attention. However, no confirmed data is presently available regarding COVID-19 vaccines in these populations due to exclusion from the conducted clinical trials. Given the probable suppression or over-activation of the immune system in such patients, reaching a consensus for their vaccination is critical, besides gathering data and conducting trials, which could probably clarify this matter in the future. In this review, besides a brief on the available COVID-19 vaccines, considerations and available knowledge about administering similar vaccines in patients with cancer, hematopoietic stem cell transplantation, solid organ transplantation, multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatologic and dermatologic autoimmune disorders are summarized to help in decision making. As discussed, live-attenuated viruses, which should be avoided in these groups, are not employed in the present COVID-19 vaccines. Thus, the main concern regarding efficacy could be met using a potent COVID-19 vaccine. Moreover, the vaccination timing for maximum efficacy could be decided according to the patient’s condition, indicated medications, and the guides provided here. Post-vaccination monitoring is also advised to ensure an adequate immune response. Further studies in this area are urgently warranted.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shafiekhani
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouria Mosaddeghi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Clinical Pharmacy Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Mieczkowska K, Kaubisch A, McLellan BN. Exacerbation of psoriasis following COVID-19 vaccination in a patient previously treated with PD-1 inhibitor. Dermatol Ther 2021; 34:e15055. [PMID: 34231301 PMCID: PMC8420314 DOI: 10.1111/dth.15055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Karolina Mieczkowska
- Department of Medicine, Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andreas Kaubisch
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Beth N McLellan
- Department of Medicine, Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
42
|
Spagnolo F, Boutros A, Croce E, Cecchi F, Arecco L, Tanda E, Pronzato P, Lambertini M. Influenza vaccination in cancer patients receiving immune checkpoint inhibitors: A systematic review. Eur J Clin Invest 2021; 51:e13604. [PMID: 34021591 PMCID: PMC8365730 DOI: 10.1111/eci.13604] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is a concern that influenza vaccination may increase the incidence of immune-related adverse events in patients receiving immune checkpoint inhibitors (ICIs). The aim of this systematic review was to summarize the available data on the safety and efficacy of influenza vaccination in cancer patients receiving ICIs. METHODS Studies reporting safety and efficacy outcomes of influenza vaccination in cancer patients receiving ICIs were included. Only descriptive statistics were conducted to obtain a pooled rate of immune-related adverse events in vaccinated patients. RESULTS Ten studies assessing the safety and eight assessing the efficacy of influenza vaccination in cancer patients receiving ICIs were identified, for a total of 1124 and 986 vaccinated patients, respectively. Most patients had melanoma or lung cancer and received a single agent anti-PD-1, but also other tumour types and immunotherapy combinations were represented. No severe vaccination-related toxicities were reported. The pooled incidence of any grade immune checkpoint inhibitor-related adverse events was 28.9%. In the 6 studies specifying the incidence of grade 3-4 toxicities, the pooled incidence was 7.5%. No grade 5 toxicities were reported. No pooled descriptive analysis was conducted in studies reporting efficacy outcomes due to the heterogeneity of endpoints and data reporting. Nevertheless, among the eight studies included, seven reported positive efficacy outcomes of influenza vaccination. CONCLUSION The results of this systematic review support the safety and efficacy of influenza vaccination in cancer patients receiving ICIs. These results are particularly relevant in the context of the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Francesco Spagnolo
- Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Andrea Boutros
- Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Elena Croce
- Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Federica Cecchi
- Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy.,Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Enrica Tanda
- Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paolo Pronzato
- Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy.,Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
43
|
Rzeniewicz K, Larkin J, Menzies AM, Turajlic S. Immunotherapy use outside clinical trial populations: never say never? Ann Oncol 2021; 32:866-880. [PMID: 33771665 PMCID: PMC9246438 DOI: 10.1016/j.annonc.2021.03.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Based on favourable outcomes in clinical trials, immune checkpoint inhibitors (ICIs), most notably programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors, are now widely used across multiple cancer types. However, due to their strict inclusion and exclusion criteria, clinical studies often do not address challenges presented by non-trial populations. DESIGN This review summarises available data on the efficacy and safety of ICIs in trial-ineligible patients, including those with autoimmune disease, chronic viral infections, organ transplants, organ dysfunction, poor performance status, and brain metastases, as well as the elderly, children, and those who are pregnant. In addition, we review data concerning other real-world challenges with ICIs, including timing of therapy switch, relationships to radiotherapy or surgery, re-treatment after an immune-related toxicity, vaccinations in patients on ICIs, and current experience around ICI and coronavirus disease-19. Where possible, we provide recommendations to aid the often-difficult decision-making process in those settings. CONCLUSIONS Data suggest that ICIs are often active and have an acceptable safety profile in the populations described above, with the exception of PD-1 inhibitors in solid organ transplant recipients. Decisions about whether to treat with ICIs should be personalised and require multidisciplinary input and careful counselling of patients with respect to potential risks and benefits. Clinical judgements need to be carefully weighed, considering factors such as underlying cancer type, feasibility of alternative treatment options, or activity in trial-eligible patients.
Collapse
Affiliation(s)
- K Rzeniewicz
- Warwick Medical School, University of Warwick, Warwick, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - J Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - A M Menzies
- Melanoma Institute Australia and The University of Sydney, Sydney, Australia; Royal North Shore and Mater Hospitals, Sydney, Australia
| | - S Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK; Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
44
|
Luo B, Li J, Hou X, Yang Q, Zhou Y, Ye J, Wu X, Feng Y, Hu T, Xu Z, He Y, Sun J. Indications for and contraindications of immune checkpoint inhibitors in cancer patients with COVID-19 vaccination. Future Oncol 2021; 17:3477-3484. [PMID: 34189948 PMCID: PMC8244550 DOI: 10.2217/fon-2021-0288] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has lasted over 1 year and will not disappear in a short time. There is no specific remedy against the virus as yet. Vaccination is thus far one of the most important strategies for preventing COVID-19. Cancer patients with COVID-19 have a higher mortality because of immunosuppression. Immune checkpoint inhibitors (ICIs) are a novel anticancer strategy for blocking inhibitory pathways, which are related to the immune response. There is a question regarding whether COVID-19 vaccination and ICI treatment impact each other in cancer patients. This review explores both sides of the relationship between ICI treatment and COVID-19 vaccination and suggests good efficacy and safety of ICI treatment after COVID-19 vaccination as well as little impact on the virus protection and toxicity associated with COVID-19 vaccination during ICI treatment. The novel coronavirus disease 2019 (COVID-19) pandemic has lasted over 1 year. Vaccination is a promising strategy for preventing COVID-19. Cancer patients are prone to infection with COVID-19, and these patients have high mortality. Immune checkpoint inhibitors (ICIs) are a novel anticancer strategy. Whether COVID-19 vaccination and ICI treatment impact each other in cancer patients remains unknown. This review explores both sides of the relationship between ICI treatment and COVID-19 vaccination and suggests good efficacy and safety of ICI treatment after COVID-19 vaccination as well as little impact on the virus protection and toxicity associated with COVID-19 vaccination during ICI treatment.
Collapse
Affiliation(s)
- Bangyu Luo
- Cancer Institute, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jixi Li
- Cancer Institute, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xianhua Hou
- Department of Neurology, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qiao Yang
- Department of Ultrasound, 941 Hospital of The Chinese People's Liberation Army, Xining, China
| | - Yi Zhou
- Cancer Institute, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jun Ye
- Department of Gastroenterology, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaocheng Wu
- Department of Emergency, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yimei Feng
- Department of Hematology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Tianyu Hu
- Department of Nosocomial Infection Control, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhi Xu
- Institute of Respiratory Diseases, Key Laboratory of Respiratory Diseases Research, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Ying He
- Department of Neurology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jianguo Sun
- Cancer Institute, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
45
|
Bersanelli M, Giannarelli D, De Giorgi U, Pignata S, Di Maio M, Clemente A, Verzoni E, Giusti R, Di Napoli M, Aprile G, Ermacora P, Catino A, Scotti V, Mazzoni F, Guglielmini PF, Veccia A, Maruzzo M, Rossi E, Grossi F, Casadei C, Ficorella C, Montesarchio V, Verderame F, Rizzo M, Guaitoli G, Fratino L, Accettura C, Mencoboni M, Zustovich F, Baldessari C, Cinieri S, Camerini A, Laera L, Sorarù M, Zucali PA, Guadalupi V, Leonardi F, Tiseo M, Tognetto M, Di Costanzo F, Pinto C, Negrini G, Russo A, Migliorino MR, Filetti M, Buti S. INfluenza Vaccine Indication During therapy with Immune checkpoint inhibitors: a multicenter prospective observational study (INVIDIa-2). J Immunother Cancer 2021; 9:jitc-2021-002619. [PMID: 34016723 PMCID: PMC8141439 DOI: 10.1136/jitc-2021-002619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
Background Until now, no robust data supported the efficacy, safety and recommendation for influenza vaccination in patients with cancer receiving immune checkpoint inhibitors (ICIs). Methods The prospective multicenter observational INfluenza Vaccine Indication During therapy with Immune checkpoint inhibitors (INVIDIa-2) study investigated the clinical effectiveness of influenza vaccination in patients with advanced cancer receiving ICIs, enrolled in 82 Italian centers from October 2019 to January 2020. The primary endpoint was the time-adjusted incidence of influenza-like illness (ILI) until April 30, 2020. Secondary endpoints regarded ILI severity and vaccine safety. Results The study enrolled 1279 patients; 1188 patients were evaluable for the primary endpoint analysis. Of them, 48.9% (581) received influenza vaccination. The overall ILI incidence was 8.2% (98 patients). Vaccinated patients were significantly more frequently elderly (p<0.0001), males (p=0.004), with poor European Cooperative Oncology Group performance status (p=0.009), affected by lung cancer (p=0.01), and by other non-cancer comorbidities (p<0.0001) when compared with unvaccinated. ILI incidence was not different basing on influenza vaccination: the time-to-ILI was similar in vaccinated and unvaccinated patients (p=0.62). ILI complications were significantly less frequent for patients receiving the vaccination (11.8% vs 38.3% in unvaccinated, p=0.002). ILI-related intravenous therapies were significantly less frequent in vaccinated patients than in unvaccinated (11.8% vs 29.8%, p=0.027). ILI lethality was, respectively, 0% in vaccinated and 4.3% in unvaccinated patients. Vaccine-related adverse events were rare and mild (1.5%, grades 1–2). Conclusion The INVIDIa-2 study results support a positive recommendation for influenza vaccination in patients with advanced cancer receiving immunotherapy.
Collapse
Affiliation(s)
- Melissa Bersanelli
- Medicine and Surgery Department, University of Parma, Parma, Italy .,Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Diana Giannarelli
- Biostatistical Unit, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sandro Pignata
- UC Oncologia Medica Uro-Ginecologica, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Torino, Italy.,Medical Oncology, Azienda Ospedaliera Ordine Mauriziano di Torino, Torino, Italy
| | - Alberto Clemente
- Biostatistics and Clinical Research Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elena Verzoni
- SS.Oncologia Genitourinaria, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Marilena Di Napoli
- UC Oncologia Medica Uro-Ginecologica, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Paola Ermacora
- Dipartimento di Oncologia, Presidio Ospedaliero Universitario Santa Maria della Misericordia, Azienda sanitaria universitaria integrata Friuli Centrale, Udine, Italy
| | - Annamaria Catino
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Vieri Scotti
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | | | | | | | - Marco Maruzzo
- Oncologia Medica 1, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Grossi
- Medical Oncology Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Corrado Ficorella
- Department of Biotechnological and Applied Clinical Sciences, St Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Montesarchio
- UOC Oncologia, Azienda Ospedaliera Specialistica dei Colli, Ospedale Monaldi, Napoli, Italy
| | | | - Mimma Rizzo
- Oncologia Traslazionale, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Giorgia Guaitoli
- Medical Oncology Unit, Universita degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Lucia Fratino
- Medical Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | | | | - Fable Zustovich
- UOC Oncologia di Belluno, Dipartimento di Oncologia Clinica, AULSS 1 Dolomiti, Ospedale S.Martino, Belluno, Italy
| | - Cinzia Baldessari
- Medical Oncology Unit, Universita degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, Brindisi, Italy
| | - Andrea Camerini
- Oncologia Medica, Ospedale della Versilia, Lido di Camaiore, Italy
| | - Letizia Laera
- Medical Oncology, Ospedale Generale Regionale F Miulli, Acquaviva delle Fonti, Puglia, Italy
| | - Mariella Sorarù
- Medical Oncology, Camposampiero Hospital, ULSS 6 Euganea, Padova, Italy
| | - Paolo Andrea Zucali
- Department of Oncology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Valentina Guadalupi
- UC Oncologia Medica Uro-Ginecologica, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Marcello Tiseo
- Medicine and Surgery Department, University of Parma, Parma, Italy.,Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Michele Tognetto
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Carmine Pinto
- Medical Oncology Unit, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy.,Presidency of the Federation of Italian Cooperative Oncology Groups (FICOG), Milan, Italy
| | | | - Antonio Russo
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, Palermo, Italy
| | | | - Marco Filetti
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, Sapienza University of Rome, Roma, Italy
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | |
Collapse
|
46
|
Abid MB. Overlap of immunotherapy-related pneumonitis and COVID-19 pneumonia: diagnostic and vaccine considerations. J Immunother Cancer 2021; 9:jitc-2020-002307. [PMID: 33931473 PMCID: PMC8098953 DOI: 10.1136/jitc-2020-002307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The clinically indistinguishable overlap between pneumonitis caused due to immune checkpoint inhibition (ICI) and pneumonia associated with COVID-19 has posed considerable challenges for patients with cancer and oncologists alike. The cancer community continues to face the challenges that lay at the complex immunological intersection of immune-based cancer therapy and immune dysregulation that results from COVID-19. Is there compounded immune dysregulation that could lead to poor outcomes? Could ICIs, in fact, ameliorate SARS-CoV-2-driven T-cell exhaustion?A little more is known about the kinetics of the viral replication in immunocompromised patients now as compared with earlier during the pandemic. Working knowledge of the diagnostic and therapeutic nuances of SARS-CoV-2 infection in patients with active cancers, issues related to viability and replication potential of the virus, unclear role of corticosteroids among those with diminished or dysfunctional effector T-cell repertoire, and the type of immunotherapy with differential risk of pneumonitis will inform decision making related to immunotherapy choices and decision for ICI continuation in the era of COVID-19.
Collapse
Affiliation(s)
- Muhammad Bilal Abid
- Divisions of Hematology/Oncology & Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
47
|
Vandeborne L, Pantziarka P, Van Nuffel AMT, Bouche G. Repurposing Infectious Diseases Vaccines Against Cancer. Front Oncol 2021; 11:688755. [PMID: 34055652 PMCID: PMC8155725 DOI: 10.3389/fonc.2021.688755] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccines used to prevent infections have long been known to stimulate immune responses to cancer as illustrated by the approval of the Bacillus Calmette-Guérin (BCG) vaccine to treat bladder cancer since the 1970s. The recent approval of immunotherapies has rejuvenated this research area with reports of anti-tumor responses with existing infectious diseases vaccines used as such, either alone or in combination with immune checkpoint inhibitors. Here, we have reviewed and summarized research activities using approved vaccines to treat cancer. Data supporting a cancer therapeutic use was found for 16 vaccines. For 10 (BCG, diphtheria, tetanus, human papillomavirus, influenza, measles, pneumococcus, smallpox, typhoid and varicella-zoster), clinical trials have been conducted or are ongoing. Within the remaining 6, preclinical evidence supports further evaluation of the rotavirus, yellow fever and pertussis vaccine in carefully designed clinical trials. The mechanistic evidence for the cholera vaccine, combined with the observational data in colorectal cancer, is also supportive of clinical translation. There is limited data for the hepatitis B and mumps vaccine (without measles vaccine). Four findings are worth highlighting: the superiority of intravesical typhoid vaccine instillations over BCG in a preclinical bladder cancer model, which is now the subject of a phase I trial; the perioperative use of the influenza vaccine to limit and prevent the natural killer cell dysfunction induced by cancer surgery; objective responses following intratumoral injections of measles vaccine in cutaneous T-cell lymphoma; objective responses induced by human papillomavirus vaccine in cutaneous squamous cell carcinoma. All vaccines are intended to induce or improve an anti-tumor (immune) response. In addition to the biological and immunological mechanisms that vary between vaccines, the mode of administration and sequence with other (immuno-)therapies warrant more attention in future research.
Collapse
|
48
|
Infectious Challenges with Novel Antibody–Based Therapies. Curr Infect Dis Rep 2021. [DOI: 10.1007/s11908-021-00753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Cornberg M, Buti M, Eberhardt CS, Grossi PA, Shouval D. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients. J Hepatol 2021; 74:944-951. [PMID: 33563499 PMCID: PMC7867401 DOI: 10.1016/j.jhep.2021.01.032] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
According to a recent World Health Organization estimate, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, which originated in China in 2019, has spread globally, infecting nearly 100 million people worldwide by January 2021. Patients with chronic liver diseases (CLD), particularly cirrhosis, hepatobiliary malignancies, candidates for liver transplantation, and immunosuppressed individuals after liver transplantation appear to be at increased risk of infections in general, which in turn translates into increased mortality. This is also the case for SARS-CoV-2 infection, where patients with cirrhosis, in particular, are at high risk of a severe COVID-19 course. Therefore, vaccination against various pathogens including SARS-CoV-2, administered as early as possible in patients with CLD, is an important protective measure. However, due to impaired immune responses in these patients, the immediate and long-term protective response through immunisation may be incomplete. The current SARS-CoV-2 pandemic has led to the exceptionally fast development of several vaccine candidates. A small number of these SARS-CoV-2 vaccine candidates have already undergone phase III, placebo-controlled, clinical trials in healthy individuals with proof of short-term safety, immunogenicity and efficacy. However, although regulatory agencies in the US and Europe have already approved some of these vaccines for clinical use, information on immunogenicity, duration of protection and long-term safety in patients with CLD, cirrhosis, hepatobiliary cancer and liver transplant recipients has yet to be generated. This review summarises the data on vaccine safety, immunogenicity, and efficacy in this patient population in general and discusses the implications of this knowledge on the introduction of the new SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), a joint venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany.
| | - Maria Buti
- Liver Unit. Hospital Universitario Valle Hebron and Ciber-ehd del Instituto Carlos III, Barcelona, Spain
| | - Christiane S Eberhardt
- Center for Vaccinology, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, Switzerland and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Paolo Antonio Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery University of Insubria and ASST-Sette Laghi, Varese, Italy; Italian National Center for Transplantation, Rome, Italy
| | - Daniel Shouval
- Liver Unit, Department of Medicine, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
50
|
Kang CK, Kim HR, Song KH, Keam B, Choi SJ, Choe PG, Kim ES, Kim NJ, Kim YJ, Park WB, Kim HB, Oh MD. Cell-Mediated Immunogenicity of Influenza Vaccination in Patients With Cancer Receiving Immune Checkpoint Inhibitors. J Infect Dis 2021; 222:1902-1909. [PMID: 32479600 DOI: 10.1093/infdis/jiaa291] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We assessed cell-mediated immune (CMI) responses of influenza vaccination in patients with cancer receiving immune checkpoint inhibitors (ICIs), which remain elusive. METHODS Vaccine-elicited CMI responses in patients receiving ICIs or cytotoxic agents were investigated by flow cytometry. Polyfunctional cells were defined as T cells that express 2 or more of interleukin 2 (IL-2), interleukin 4 (IL-4), interferon gamma (IFN-γ), and CD107a. An adequate CMI response was defined as an increase of polyfunctional T cells against both H1N1 and H3N2 strains. RESULTS When comparing ICI (n = 11) and cytotoxic chemotherapy (n = 29) groups, H1N1-specific IL-4 or IFN-γ-expressing CD4+ T cells, IL-2, IL-4, IFN-γ, or CD107a-expressing CD8+ T cells, H3N2-specific IFN-γ-expressing CD4+ T cells, and CD107a-expressing CD8+ T cells were more frequent in the ICI group. Fold changes in polyfunctional H3N2-specific CD4+ (median, 156.0 vs 95.7; P = .005) and CD8+ (155.0 vs 103.4; P = .044) T cells were greater in the ICI group. ICI administration was strongly associated with an adequate CMI response for both CD4+ and CD8+ T cells (P = .003). CONCLUSIONS CMI responses following influenza vaccination were stronger in the ICI group than in the cytotoxic chemotherapy group. Influenza vaccination should be strongly recommended in patients with cancer receiving ICIs.
Collapse
Affiliation(s)
- Chang Kyung Kang
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|