1
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
2
|
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment. Adv Healthc Mater 2025; 14:e2400512. [PMID: 38657003 DOI: 10.1002/adhm.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Peptides exhibit various biological activities, including biorecognition, cell targeting, and tumor penetration, and can stimulate immune cells to elicit immune responses for tumor immunotherapy. Peptide self-assemblies and peptide-functionalized nanocarriers can reduce the effect of various biological barriers and the degradation by peptidases, enhancing the efficiency of peptide delivery and improving antitumor immune responses. To date, the design and development of peptides with various functionalities have been extensively reviewed for enhanced chemotherapy; however, peptide-mediated tumor immunotherapy using peptides acting on different immune cells, to the knowledge, has not yet been summarized. Thus, this work provides a review of this emerging subject of research, focusing on immunomodulatory anticancer peptides. This review introduces the role of peptides in the immunomodulation of innate and adaptive immune cells, followed by a link between peptides in the innate and adaptive immune systems. The peptides are discussed in detail, following a classification according to their effects on different innate and adaptive immune cells, as well as immune checkpoints. Subsequently, two delivery strategies for peptides as drugs are presented: peptide self-assemblies and peptide-functionalized nanocarriers. The concluding remarks regarding the challenges and potential solutions of peptides for tumor immunotherapy are presented.
Collapse
Affiliation(s)
- Yang Song
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xingyu Cai
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
3
|
Zhao Z, Fetse J, Mamani UF, Guo Y, Li Y, Patel P, Liu Y, Lin CY, Li Y, Mustafa B, Cheng K. Development of a peptide-based tumor-activated checkpoint inhibitor for cancer immunotherapy. Acta Biomater 2025; 193:484-497. [PMID: 39716541 PMCID: PMC11788053 DOI: 10.1016/j.actbio.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Antibody-based checkpoint inhibitors have achieved great success in cancer immunotherapy, but their uncontrollable immune-related adverse events remain a major challenge. In this study, we developed a tumor-activated nanoparticle that is specifically active in tumors but not in normal tissues. We discovered a short anti-PD-L1 peptide that blocks the PD-1/PD-L1 interaction. The peptide was modified with a PEG chain through a novel matrix metalloproteinase-2 (MMP-2)-specific cleavage linker. The modified TR3 peptide self-assembles into a micelle-like nanoparticle (TR3-M-NP), which remains inactive and unable to block the PD-1/PD-L1 interaction in its native form. However, upon cleavage by MMP-2 in tumors, it releases the active peptide. The TR3-M-NP5k nanoparticle was specifically activated in tumors through enzyme-mediated cleavage, leading to the inhibition of tumor growth and extended survival compared to control groups. In summary, TR3-M-NP shows great potential as a tumor-responsive immunotherapy agent with reduced toxicities. STATEMENT OF SIGNIFICANCE: In this study, we developed a bioactive peptide-based checkpoint inhibitor that is active only in tumors and not in normal tissues, thereby potentially avoiding immune-related adverse effects. We discovered a short anti-PD-L1 peptide, TR3, that blocks the PD-1/PD-L1 interaction. We chemically modified the TR3 peptide to self-assemble into a micelle-like nanoparticle (TR3-M-NP), which itself cannot block the PD-1/PD-L1 interaction but releases the active TR3 peptide in tumors upon cleavage by MMP-2. In contrast, the nanoparticle is randomly degraded in normal tissues into peptides fragments that cannot block the PD-1/PD-L1 interaction. Upon intraperitoneal injection, TR3-M-NP5k was activated specifically in tumors through enzyme cleavage, leading to the inhibition of tumor growth and extended survival compared to the control groups. In summary, TR3-M-NP holds significant promise as a tumor-responsive immunotherapy agent with reduced toxicities. The bioactive platform has the potential to be used for other types of checkpoint inhibitor.
Collapse
Affiliation(s)
- Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yuhan Guo
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yuanke Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratikkumar Patel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yongren Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Bahaa Mustafa
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
4
|
Arias AG, Tovar-Martinez L, Asciutto EK, Mann A, Põšnograjeva K, Gracia LS, Royo M, Haugas M, Teesalu T, Smulski C, Ruoslahti E, Scodeller P. A Cyclic Peptide Targets Glioblastoma by Binding to Aberrantly Exposed SNAP25. Mol Pharm 2025; 22:363-376. [PMID: 39575977 DOI: 10.1021/acs.molpharmaceut.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Disease-specific changes in tumors and other diseased tissues are an important target of research because they provide clues about the pathophysiology of the disease as well as uncover potentially useful markers for diagnosis and treatment. Here, we report a new cyclic peptide, CESPLLSEC (CES), that specifically accumulated (homed) in intracranial U87MG and the WT-GBM model of glioblastoma (GBM) from intravenous (IV) injection, and associated with the vasculature. Affinity chromatography of U87MG tumor extracts on insolubilized CES peptide identified Synaptosomal Associated Protein 25 (SNAP25) as a candidate target molecule (receptor) for CES. Several results supported the identification of SNAP25 as the CES receptor. IV-injected FAM-CES colocalized with SNAP25 in the tumors, and direct binding studies showed specific binding of the CES peptide to recombinant human SNAP25. A CES peptide-drug conjugate designed for photodynamic therapy showed selective cytotoxicity to SNAP25+ glioblastoma cell lines. Specific accumulation of systemically injected anti-SNAP25 antibody in U87MG glioblastoma and labeling of intact U87MG cells with anti-SNAP in flow cytometry showed that SNAP25 is available from the circulation but not in normal tissues and that it is present at the cell surface. Using an array of ECM proteins and surface plasmon resonance revealed that SNAP25 binds moderately to collagen V and strongly to collagen VI. Modeling studies suggested that CES and collagen VI compete for the same binding site on SNAP25. Our results introduce CES as a valuable targeting peptide for drug delivery and its receptor SNAP25 as a possible molecular marker of interest for glioblastoma.
Collapse
Affiliation(s)
- Alberto G Arias
- Medical Physics Department, Gerencia de Área Aplicaciones Nucleares a la Salud (GAANS)Centro Atómico Bariloche, Avenida Bustillo 9500, San Carlos de Bariloche R8402AGP, Argentina
| | - Laura Tovar-Martinez
- Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
- Doctorate in Biotechnology, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Eliana K Asciutto
- School of Science and Technology, National University of San Martin (UNSAM) and CONICET, Campus Migueletes, 25 de Mayo y Francia, San Martín 1650, Argentina
| | - Aman Mann
- Aivocode, Biolabs San Diego, 9276 Scranton Rd., San Diego, California 92121, United States
| | - Kristina Põšnograjeva
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia
| | - Lorena Simón Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia
| | - Miriam Royo
- Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Maarja Haugas
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia
| | - Cristian Smulski
- Medical Physics Department, Gerencia de Área Aplicaciones Nucleares a la Salud (GAANS)Centro Atómico Bariloche, Avenida Bustillo 9500, San Carlos de Bariloche R8402AGP, Argentina
| | - Erkki Ruoslahti
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, California 92037, United States
| | - Pablo Scodeller
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia
- Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
5
|
Yue H, Li Y, Yang T, Wang Y, Bao Q, Xu Y, Liu X, Miao Y, Yang M, Mao C. Filamentous phages as tumour-targeting immunotherapeutic bionanofibres. NATURE NANOTECHNOLOGY 2025; 20:167-176. [PMID: 39468354 DOI: 10.1038/s41565-024-01800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/04/2024] [Indexed: 10/30/2024]
Abstract
Programmed cell death-ligand 1 (PD-L1) blockers have advanced immunotherapy, but their lack of tumour homing capability represents a substantial challenge. Here we show that genetically engineered filamentous phages can be used as tumour-targeting immunotherapeutic agents that reduce the side effects caused by untargeted delivery of PD-L1 blockers. Specifically, we improved biopanning to discover a peptide binding the extracellular domain of PD-L1 and another targeting both melanoma tissues and cancer cells. The two peptides were genetically fused to the sidewall protein and tip protein of fd phages, respectively. The intravenously injected phages homed to tumours and bound PD-L1 on cancer cells, effectively blocking PD-1/PD-L1 recognition to trigger targeted immunotherapy without body weight loss, organ abnormalities and haematological aberrations. The phages, cost-effectively replicated by bacteria, are cancer-targeting immunotherapeutic nanofibres that can be flexibly designed to target different cancer types and immune checkpoints.
Collapse
Affiliation(s)
- Hui Yue
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yan Li
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, P. R. China
| | - Tao Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, P. R. China
| | - Yecheng Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yajing Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, P. R. China
| | - Xiangyu Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, P. R. China
| | - Yao Miao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, P. R. China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, P. R. China.
| |
Collapse
|
6
|
Zhang Q, Sun G, Yue F, Liu Z, Li P, Zhu Y, Zhu Y, Niu R, Sun Z, Wang X, Zhang G. Peptide-directed interference of PD-1/PD-L1 binding increases B lymphocyte function after infectious bursal disease viral infection. Poult Sci 2024; 103:104389. [PMID: 39427422 PMCID: PMC11533547 DOI: 10.1016/j.psj.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) binding contributes to immune evasion mechanisms responsible for B lymphocyte exhaustion and apoptosis. This facilitates immunosuppression in chronic viral infections, including infectious bursal disease virus (IBDV). Our previous study showed that PD-1 and PD-L1 expression increases in the peripheral blood mononuclear cells of chickens infected with IBDV. However, due to their high production costs and immune-related adverse events, monoclonal antibodies targeting PD-1 or PD-L1 are unsuitable therapeutic agents. Thus, in the current study, we designed peptides with optimized binding sites for PD-1 and investigated their ability to disrupt PD-1/PD-L1 binding and restore B lymphocyte function in vitro. The peptide gCK-16 exhibited a high affinity for PD-1 (KD: 3.37 nM) and effectively inhibited the PD-1/PD-L1 interaction in vitro. Moreover, gCK-16 significantly enhanced B lymphocyte proliferation. Remarkably, gCK-16 treatment abrogated the IBDV-induced upregulation of PD-1/PD-L1, NF-κB activation, and B lymphocyte apoptosis. Additionally, IBDV infection attenuated PI3K/AKT pathway activation in B lymphocytes, while gCK-16 treatment increased immunoglobulin M (IgM) production in IBDV-infected B lymphocytes. Together, these results demonstrate that gCK-16 treatment can potentially enhance B lymphocyte function against IBDV infection, guiding the development of vaccine adjuvants to effectively prevent IBDV-induced avian immunosuppression.
Collapse
Affiliation(s)
- Qiuyu Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Guopeng Sun
- College of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Feng Yue
- College of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Zhike Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Peng Li
- College of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Yanping Zhu
- College of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Yangzhao Zhu
- College of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xuannian Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Zhengzhou 450046, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Zhengzhou 450046, China
| |
Collapse
|
7
|
Mamani UF, Ibrahim MN, Liu Y, Fetse J, Lin CY, Kandel S, Nakhjiri M, Koirala S, Guo Y, Alahmari M, Cheng K. Exploring Multivalency in the Development of Anti-PD-L1 Peptides for Cancer Immunotherapy. Pharm Res 2024; 41:2275-2288. [PMID: 39681781 DOI: 10.1007/s11095-024-03803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE The PD-1/PD-L1 pathway is one of the most effective immune checkpoint pathways utilized for cancer immunotherapy. Despite the success of anti-PD-1/PD-L1 mAbs, there is growing interest in developing low molecular weight anti-PD-1/PD-1 agents, such as peptides, because of their improved tumor penetration. We recently developed a small anti-PD-L1 peptide and demonstrated its promising anti-tumor activity. In this study, we investigate multivalency as a strategy to increase the binding avidity and blocking efficiency of the anti-PD-L1 peptide. METHODS Multivalent peptide inhibitors are designed with multiple copies of a peptide inhibitor in a single molecule. We synthesized peptides with different valences and examined their activity. We also investigated how spacer length affects the activity of these multivalent peptides. RESULTS Using this strategy, we developed a multivalent peptide that demonstrated approximately 40 times higher blocking efficiency and improved stability compared to the original peptide. Increasing the valency enhanced the peptide's specificity, which is essential for minimizing side effects. CONCLUSIONS Multivalency approach represents a promising platform for improving the efficacy of peptide-based checkpoint inhibitors.
Collapse
Affiliation(s)
- Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Mohammed Nurudeen Ibrahim
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Sashi Kandel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Maryam Nakhjiri
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Sushil Koirala
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Yuhan Guo
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Mohammed Alahmari
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
8
|
Mao C, Deng F, Zhu W, Xie L, Wang Y, Li G, Huang X, Wang J, Song Y, Zeng P, He Z, Guo J, Suo Y, Liu Y, Chen Z, Yao M, Zhang L, Shen J. In situ editing of tumour cell membranes induces aggregation and capture of PD-L1 membrane proteins for enhanced cancer immunotherapy. Nat Commun 2024; 15:9723. [PMID: 39521768 PMCID: PMC11550832 DOI: 10.1038/s41467-024-54081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapy has emerged as a new therapeutic paradigm for a variety of advanced cancers, but wide clinical application is hindered by low response rate. Here we use a peptide-based, biomimetic, self-assembly strategy to generate a nanoparticle, TPM1, for binding PD-L1 on tumour cell surface. Upon binding with PD-L1, TPM1 transforms into fibrillar networks in situ to facilitate the aggregation of both bound and unbound PD-L1, thereby resulting in the blockade of the PD-1/PD-L1 pathway. Characterizations of TPM1 manifest a prolonged retention in tumour ( > 7 days) and anti-cancer effects associated with reinvigorating CD8+ T cells in multiple mice tumour models. Our results thus hint TPM1 as a potential strategy for enhancing the ICB efficacy.
Collapse
Affiliation(s)
- Chunping Mao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Fuan Deng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wanning Zhu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Leiming Xie
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yijun Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xingke Huang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yue Song
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ping Zeng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhenpeng He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingnan Guo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yao Suo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yujing Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhuo Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Mingxi Yao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Duan X, Zou H, Yang J, Liu S, Xu T, Ding J. Melittin-incorporated nanomedicines for enhanced cancer immunotherapy. J Control Release 2024; 375:285-299. [PMID: 39216597 DOI: 10.1016/j.jconrel.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy is a rapidly developing and effective strategy for cancer therapy. Among various immunotherapy approaches, peptides have garnered significant attention due to their potent immunomodulatory effects. In particular, melittin emerged as a promising candidate to enhance cancer immunotherapy by inducing immunogenic cell death, promoting the maturation of antigen-presenting cells, activating T cells, enhancing the infiltration and cytotoxicity of effector lymphocytes, and modulating macrophage phenotypes for relieving immunosuppression. However, the clinical application of melittin is limited by poor targeting and systemic toxicity. To overcome these challenges, melittin has been incorporated into biomaterials and related nanotechnologies, resulting in extended circulation time in vivo, improved targeting, reduced adverse effects, and enhanced anti-cancer immunological action. This review provides an in-depth analysis of the immunomodulatory effects of melittin-incorporated nanomedicines and examines their development and challenges for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Xuefeng Duan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Haoyang Zou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Jiazhen Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
10
|
Timilsina HP, Arya SP, Tan X. Biotechnological Advances Utilizing Aptamers and Peptides Refining PD-L1 Targeting. Front Biosci (Elite Ed) 2024; 16:28. [PMID: 39344385 DOI: 10.31083/j.fbe1603028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
While monoclonal antibodies have shown success in cancer immunotherapy, their limitations prompt exploration of alternative approaches such as aptamers and peptides targeting programmed death ligand 1 (PD-L1). Despite the significance of these biotechnological tools, a comprehensive review encompassing both aptamers and peptides for PD-L1 targeting is lacking. Addressing this gap is crucial for consolidating recent advancements and insights in this field. Biotechnological advances leveraging aptamers and peptides represent a cutting-edge approach in refining the targeting proteins. Our review aims to provide valuable guidance for researchers and clinicians, highlighting the biotechnological advances utilizing aptamers and peptides refining PD-L1 targeting.
Collapse
Affiliation(s)
- Hari Prasad Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
11
|
Roozitalab G, Abedi B, Imani S, Farghadani R, Jabbarzadeh Kaboli P. Comprehensive assessment of TECENTRIQ® and OPDIVO®: analyzing immunotherapy indications withdrawn in triple-negative breast cancer and hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:889-918. [PMID: 38409546 DOI: 10.1007/s10555-024-10174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Atezolizumab (TECENTRIQ®) and nivolumab (OPDIVO®) are both immunotherapeutic indications targeting programmed cell death 1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1), respectively. These inhibitors hold promise as therapies for triple-negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) and have demonstrated encouraging results in reducing the progression and spread of tumors. However, due to their adverse effects and low response rates, the US Food and Drug Administration (FDA) has withdrawn the approval of atezolizumab in TNBC and nivolumab in HCC treatment. The withdrawals of atezolizumab and nivolumab have raised concerns regarding their effectiveness and the ability to predict treatment responses. Therefore, the current study aims to investigate the immunotherapy withdrawal of PD-1/PD-L1 inhibitors, specifically atezolizumab for TNBC and nivolumab for HCC. This study will examine both the structural and clinical aspects. This review provides detailed insights into the structure of the PD-1 receptor and its ligands, the interactions between PD-1 and PD-L1, and their interactions with the withdrawn antibodies (atezolizumab and nivolumab) as well as PD-1 and PD-L1 modifications. In addition, this review further assesses these antibodies in the context of TNBC and HCC. It seeks to elucidate the factors that contribute to diverse responses to PD-1/PD-L1 therapy in different types of cancer and propose approaches for predicting responses, mitigating the potential risks linked to therapy withdrawals, and optimizing patient outcomes. By better understanding the mechanisms underlying responses to PD-1/PD-L1 therapy and developing strategies to predict these responses, it is possible to create more efficient treatments for TNBC and HCC.
Collapse
Affiliation(s)
- Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan.
| |
Collapse
|
12
|
Zhang X, Wu Y, Lin J, Lu S, Lu X, Cheng A, Chen H, Zhang W, Luan X. Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges. Acta Pharm Sin B 2024; 14:3818-3833. [PMID: 39309492 PMCID: PMC11413705 DOI: 10.1016/j.apsb.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapies hold immense potential for achieving durable potency and long-term survival opportunities in cancer therapy. As vital biological mediators, peptides with high tissue penetration and superior selectivity offer significant promise for enhancing cancer immunotherapies (CITs). However, physicochemical peptide features such as conformation and stability pose challenges to their on-target efficacy. This review provides a comprehensive overview of recent advancements in therapeutic peptides targeting key steps of the cancer-immunity cycle (CIC), including tumor antigen presentation, immune cell regulation, and immune checkpoint signaling. Particular attention is given to the opportunities and challenges associated with these peptides in boosting CIC within the context of clinical progress. Furthermore, possible future developments in this field are also discussed to provide insights into emerging CITs with robust efficacy and safety profiles.
Collapse
Affiliation(s)
- Xiaokun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Aoyu Cheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science &, Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
13
|
Hayward D, Goddard ZR, Cominetti MMD, Searcey M, Beekman AM. Light-activated azobenzene peptide inhibitor of the PD-1/PD-L1 interaction. Chem Commun (Camb) 2024; 60:8228-8231. [PMID: 39007209 PMCID: PMC11293026 DOI: 10.1039/d4cc01249f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Inhibiting the PD-1/PD-L1 protein-protein interaction is a key immunotherapy for cancer. Antibodies dominate the clinical space but are costly, with limited applicability and immune side effects. We developed a photo-controlled azobenzene peptide that selectively inhibits the PD-1/PD-L1 interaction when in the cis isomer only. Activity is demonstrated in in vitro and cellular assays.
Collapse
Affiliation(s)
- Deanne Hayward
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK.
| | - Zoë R Goddard
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK.
| | - Marco M D Cominetti
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK.
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK.
| | - Andrew M Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK.
| |
Collapse
|
14
|
Quintal Bojórquez NDC, Morales Mendoza LF, Hidalgo-Figueroa S, Hernández Álvarez AJ, Segura Campos MR. In silico analysis of the interaction of de novo peptides derived from Salvia hispanica with anticancer targetsEvaluation of the anticancer potential of de novo peptides derived from Salvia hispanica through molecular docking. J Biomol Struct Dyn 2024; 42:6119-6135. [PMID: 37453078 DOI: 10.1080/07391102.2023.2232045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Conventional cancer therapies are not selective to cancer cells resulting in serious side effects on patients. Thus, the need for complementary treatments that improve the patient's response to cancer therapy is highly important. To predict and evaluate the physicochemical characteristics and potential anticancer activity of the peptides identified from S. hispanica protein fraction <1 kDa through the use of in silico tools. Peptides derived from Salvia hispanica's protein fraction <1 kDa were identified and analyzed for the prediction of their physicochemical properties. The characterized peptide sequences were then submitted to a multi-criteria decision analysis to identify the peptides that possess the characteristics to potentially exert anticancer activity. Through molecular docking analysis, the potential anticancer activity of the Potentially Anticancer Peptide (PAP)-1, PAP-2, PAP-3, PAP-4, and PAP-5 was estimated by their binding interactions with cancer and apoptosis-related molecules. All five evaluated PAPs exhibited strong binding interactions (< -100 kcal/mol). However, PAP-3 showed the lowest binding free energies with several of the targets. Thus, PAP-3 shows potential to be used as a nutraceutical or ingredient for functional foods that adjuvate in cancer treatment. Conclusions: Through the molecular docking studies, the binding of the PAPs to target molecules of interest for cancer treatment was successfully simulated, from which PAP-3 exhibited the lowest binding free energies. Further in vitro and in vivo studies are required to validate the predictions obtained by the in silico analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Sergio Hidalgo-Figueroa
- CONAHCYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | | | | |
Collapse
|
15
|
Wang Y, Chen Y, Ji DK, Huang Y, Huang W, Dong X, Yao D, Wang D. Bio-orthogonal click chemistry strategy for PD-L1-targeted imaging and pyroptosis-mediated chemo-immunotherapy of triple-negative breast cancer. J Nanobiotechnology 2024; 22:461. [PMID: 39090622 PMCID: PMC11293135 DOI: 10.1186/s12951-024-02727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The combination of programmed cell death ligand-1 (PD-L1) immune checkpoint blockade (ICB) and immunogenic cell death (ICD)-inducing chemotherapy has shown promise in cancer immunotherapy. However, triple-negative breast cancer (TNBC) patients undergoing this treatment often face obstacles such as systemic toxicity and low response rates, primarily attributed to the immunosuppressive tumor microenvironment (TME). METHODS AND RESULTS In this study, PD-L1-targeted theranostic systems were developed utilizing anti-PD-L1 peptide (APP) conjugated with a bio-orthogonal click chemistry group. Initially, TNBC was treated with azide-modified sugar to introduce azide groups onto tumor cell surfaces through metabolic glycoengineering. A PD-L1-targeted probe was developed to evaluate the PD-L1 status of TNBC using magnetic resonance/near-infrared fluorescence imaging. Subsequently, an acidic pH-responsive prodrug was employed to enhance tumor accumulation via bio-orthogonal click chemistry, which enhances PD-L1-targeted ICB, the pH-responsive DOX release and induction of pyroptosis-mediated ICD of TNBC. Combined PD-L1-targeted chemo-immunotherapy effectively reversed the immune-tolerant TME and elicited robust tumor-specific immune responses, resulting in significant inhibition of tumor progression. CONCLUSIONS Our study has successfully engineered a bio-orthogonal multifunctional theranostic system, which employs bio-orthogonal click chemistry in conjunction with a PD-L1 targeting strategy. This innovative approach has been demonstrated to exhibit significant promise for both the targeted imaging and therapeutic intervention of TNBC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yanhong Chen
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Yuelin Huang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weixi Huang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xue Dong
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Zhong S(J, Liu X, Kaneko T, Feng Y, Hovey O, Yang K, Ezra S, Ha SD, Kim S, McCormick JK, Liu H, Li SSC. Peptide Blockers of PD-1-PD-L1 Interaction Reinvigorate PD-1-Suppressed T Cells and Curb Tumor Growth in Mice. Cells 2024; 13:1193. [PMID: 39056775 PMCID: PMC11274521 DOI: 10.3390/cells13141193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The programmed cell death protein 1 (PD-1) plays a critical role in cancer immune evasion. Blocking the PD-1-PD-L1 interaction by monoclonal antibodies has shown remarkable clinical efficacy in treating certain types of cancer. However, antibodies are costly to produce, and antibody-based therapies can cause immune-related adverse events. To address the limitations associated with current PD-1/PD-L1 blockade immunotherapy, we aimed to develop peptide-based inhibitors of the PD-1/PD-L1 interaction as an alternative means to PD-1/PD-L1 blockade antibodies for anti-cancer immunotherapy. Through the functional screening of peptide arrays encompassing the ectodomains of PD-1 and PD-L1, followed by the optimization of the hit peptides for solubility and stability, we have identified a 16-mer peptide, named mL7N, with a remarkable efficacy in blocking the PD-1/PD-L1 interaction both in vitro and in vivo. The mL7N peptide effectively rejuvenated PD-1-suppressed T cells in multiple cellular systems designed to recapitulate the PD-1/PD-L1 interaction in the context of T-cell receptor signaling. Furthermore, PA-mL7N, a chimera of the mL7N peptide coupled to albumin-binding palmitic acid (PA), significantly promoted breast cancer cell killing by peripheral blood mononuclear cells ex vivo and significantly curbed tumor growth in a syngeneic mouse model of breast cancer. Our work raises the prospect that mL7N may serve as a prototype for the development of a new line of peptide-based immunomodulators targeting the PD-1/PD-L1 immune checkpoint with potential applications in cancer treatment.
Collapse
Affiliation(s)
- Shanshan (Jenny) Zhong
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.Z.); (X.L.); (T.K.); (Y.F.); (O.H.); (K.Y.); (S.E.)
| | - Xiaoling Liu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.Z.); (X.L.); (T.K.); (Y.F.); (O.H.); (K.Y.); (S.E.)
| | - Tomonori Kaneko
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.Z.); (X.L.); (T.K.); (Y.F.); (O.H.); (K.Y.); (S.E.)
| | - Yan Feng
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.Z.); (X.L.); (T.K.); (Y.F.); (O.H.); (K.Y.); (S.E.)
| | - Owen Hovey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.Z.); (X.L.); (T.K.); (Y.F.); (O.H.); (K.Y.); (S.E.)
| | - Kyle Yang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.Z.); (X.L.); (T.K.); (Y.F.); (O.H.); (K.Y.); (S.E.)
| | - Sally Ezra
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.Z.); (X.L.); (T.K.); (Y.F.); (O.H.); (K.Y.); (S.E.)
| | - Soon-Duck Ha
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.-D.H.); (S.K.); (J.K.M.)
| | - Sung Kim
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.-D.H.); (S.K.); (J.K.M.)
| | - John K. McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.-D.H.); (S.K.); (J.K.M.)
| | - Huadong Liu
- School of Health and Life Sciences, Health and Rehabilitation University, 369 Dengyun Rd, Qingdao 266071, China;
| | - Shawn Shun-Cheng Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (S.Z.); (X.L.); (T.K.); (Y.F.); (O.H.); (K.Y.); (S.E.)
| |
Collapse
|
17
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Badenhorst M, Windhorst AD, Beaino W. Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities. Front Med (Lausanne) 2024; 11:1401515. [PMID: 38915766 PMCID: PMC11195831 DOI: 10.3389/fmed.2024.1401515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Immunotherapy targeted to immune checkpoint inhibitors, such as the program cell death receptor (PD-1) and its ligand (PD-L1), has revolutionized cancer treatment. However, it is now well-known that PD-1/PD-L1 immunotherapy response is inconsistent among patients. The current challenge is to customize treatment regimens per patient, which could be possible if the PD-1/PD-L1 expression and dynamic landscape are known. With positron emission tomography (PET) imaging, it is possible to image these immune targets non-invasively and system-wide during therapy. A successful PET imaging tracer should meet specific criteria concerning target affinity, specificity, clearance rate and target-specific uptake, to name a few. The structural profile of such a tracer will define its properties and can be used to optimize tracers in development and design new ones. Currently, a range of PD-1/PD-L1-targeting PET tracers are available from different molecular categories that have shown impressive preclinical and clinical results, each with its own advantages and disadvantages. This review will provide an overview of current PET tracers targeting the PD-1/PD-L1 axis. Antibody, peptide, and antibody fragment tracers will be discussed with respect to their molecular characteristics and binding properties and ways to optimize them.
Collapse
Affiliation(s)
- Melinda Badenhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Albert D. Windhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Wissam Beaino
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
19
|
Vulpetti A, Rondeau JM, Bellance MH, Blank J, Boesch R, Boettcher A, Bornancin F, Buhr S, Connor LE, Dumelin CE, Esser O, Hediger M, Hintermann S, Hommel U, Koch E, Lapointe G, Leder L, Lehmann S, Lehr P, Meier P, Muller L, Ostermeier D, Ramage P, Schiebel-Haddad S, Smith AB, Stojanovic A, Velcicky J, Yamamoto R, Hurth K. Ligandability Assessment of IL-1β by Integrated Hit Identification Approaches. J Med Chem 2024; 67:8141-8160. [PMID: 38728572 DOI: 10.1021/acs.jmedchem.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Human interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a critical role in the regulation of the immune response and the development of various inflammatory diseases. In this publication, we disclose our efforts toward the discovery of IL-1β binders that interfere with IL-1β signaling. To this end, several technologies were used in parallel, including fragment-based screening (FBS), DNA-encoded library (DEL) technology, peptide discovery platform (PDP), and virtual screening. The utilization of distinct technologies resulted in the identification of new chemical entities exploiting three different sites on IL-1β, all of them also inhibiting the interaction with the IL-1R1 receptor. Moreover, we identified lysine 103 of IL-1β as a target residue suitable for the development of covalent, low-molecular-weight IL-1β antagonists.
Collapse
Affiliation(s)
- Anna Vulpetti
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | | | - Jutta Blank
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Ralf Boesch
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | | | - Sylvia Buhr
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | | | - Oliver Esser
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | | | - Ulrich Hommel
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Elke Koch
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | - Lukas Leder
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Sylvie Lehmann
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Philipp Lehr
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Peter Meier
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Lionel Muller
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | - Paul Ramage
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | | | | | - Juraj Velcicky
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Rina Yamamoto
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | |
Collapse
|
20
|
Klebansky B, Backer M, Gorbatyuk V, Vinogradova O, Backer J. In Search of Better Peptide-(Derived from PD-L2)-Based Immune Checkpoint Inhibitors. Biomolecules 2024; 14:597. [PMID: 38786004 PMCID: PMC11118832 DOI: 10.3390/biom14050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Current anti-cancer immune checkpoint therapy relies on antibodies that primarily target the PD-1/PD-L1(-L2) negative regulatory pathway. Although very successful in some cases for certain cancers, these antibodies do not help most patients who, presumably, should benefit from this type of therapy. Therefore, an unmet clinical need for novel, more effective drugs targeting immune checkpoints remains. We have developed a series of high-potency peptide inhibitors interfering with PD-1/PD-L1(-L2) protein-protein interaction. Our best peptide inhibitors are 12 and 14 amino acids long and show sub-micromolar IC50 inhibitory activity in the in vitro assay. The positioning of the peptides within the PD-1 binding site is explored by extensive modeling. It is further supported by 2D NMR studies of PD-1/peptide complexes. These results reflect substantial progress in the development of immune checkpoint inhibitors using peptidomimetics.
Collapse
Affiliation(s)
| | - Marina Backer
- SibTech Inc., 115A Commerce Drive, Brookfield, CT 06804, USA
| | - Vitaliy Gorbatyuk
- Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT 06269-3060, USA
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Joseph Backer
- SibTech Inc., 115A Commerce Drive, Brookfield, CT 06804, USA
| |
Collapse
|
21
|
Sun B, Zhang L, Li M, Wang X, Wang W. Applications of peptide-based nanomaterials in targeting cancer therapy. Biomater Sci 2024; 12:1630-1642. [PMID: 38404259 DOI: 10.1039/d3bm02026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To meet the demand for precision medicine, researchers are committed to developing novel strategies to reduce systemic toxicity and side effects in cancer treatment. Targeting peptides are widely applied due to their affinity and specificity, and their ability to be high-throughput screened, chemically synthesized and modified. More importantly, peptides can form ordered self-assembled structures through non-covalent supramolecular interactions, which can form nanostructures with different morphologies and functions, playing crucial roles in targeted diagnosis and treatment. Among them, in targeted immunotherapy, utilizing targeting peptides to block the binding between immune checkpoints and ligands, thereby activating the immune system to eliminate cancer cells, is an advanced therapeutic strategy. In this mini-review, we summarize the screening, self-assembly, and biomedical applications of targeting peptide-based nanomaterials. Furthermore, this mini-review summarizes the potential and optimization strategies of targeting peptides.
Collapse
Affiliation(s)
- Beilei Sun
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
22
|
Liu Z, Hao X, Qian J, Zhang H, Bao H, Yang Q, Gu W, Huang X, Zhang Y. Enzyme/pH Dual-Responsive Engineered Nanoparticles for Improved Tumor Immuno-Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12951-12964. [PMID: 38422377 DOI: 10.1021/acsami.3c18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Combining immune checkpoint blockade (ICB) therapy with chemotherapy can enhance the efficacy of ICB and expand its indications. However, the limited tumor specificity of chemotherapy drugs results in severe adverse reactions. Additionally, the low tissue penetration and immune-related adverse events associated with monoclonal antibodies restrict their widespread application. To address challenges faced by traditional combination therapies, we design a dual-responsive engineered nanoparticle based on ferritin (denoted as CMFn@OXA), achieving tumor-targeted delivery and controlled release of the anti-PD-L1 peptide CLP002 and oxaliplatin (OXA). Our results demonstrate that CMFn@OXA not only exhibits tumor-specific accumulation but also responds to matrix metalloproteinase-2/9 (MMP-2/9), facilitating the controlled release of CLP002 to block PD-1/PD-L1 interaction. Simultaneously, it ensures the precise delivery of the OXA to tumor cells and its subsequent release within the acidic environment of lysosomes, thereby fostering a synergistic therapeutic effect. Compared to traditional combination therapies, CMFn@OXA demonstrates superior performance in inhibiting tumor growth, extending the survival of tumor-bearing mice, and exhibiting excellent biocompatibility. Collectively, our results highlight CMFn@OXA as a novel and promising strategy in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Zefeng Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaohan Hao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Jieying Qian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Hao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Hui Bao
- Department of Oncology, Nanhai People's hospital/the Sixth Affiliated Hospital of South China University of Technology, Foshan, Guangdong 528200, P. R. China
| | - Qiong Yang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Weiguang Gu
- Department of Oncology, Nanhai People's hospital/the Sixth Affiliated Hospital of South China University of Technology, Foshan, Guangdong 528200, P. R. China
| | - Xiaowan Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Yunjiao Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
23
|
Gobbo M, Caligiuri I, Giannetti M, Litti L, Mazzuca C, Rizzolio F, Palleschi A, Meneghetti M. SERS nanostructures with engineered active peptides against an immune checkpoint protein. NANOSCALE 2024; 16:5206-5214. [PMID: 38375540 DOI: 10.1039/d4nr00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The immune checkpoint programmed death ligand 1 (PD-L1) protein is expressed by tumor cells and it suppresses the killer activity of CD8+ T-lymphocyte cells binding to the programmed death 1 (PD-1) protein of these immune cells. Binding to either PD-L1 or PD1 is used for avoiding the inactivation of CD8+ T-lymphocyte cells. We report, for the first time, Au plasmonic nanostructures with surface-enhanced Raman scattering (SERS) properties (SERS nanostructures) and functionalized with an engineered peptide (CLP002: Trp-His-Arg-Ser-Tyr-Tyr-Thr-Trp-Asn-Leu-Asn-Thr), which targets PD-L1. Molecular dynamics calculations are used to describe the interaction of the targeting peptide with PD-L1 in the region where the interaction with PD-1 occurs, showing also the poor targeting activity of a peptide with the same amino acids, but a scrambled sequence. The results are confirmed experimentally since a very good targeting activity is observed against the MDA-MB-231 breast adenocarcinoma cancer cell line, which overexpresses PD-L1. A good activity is observed, in particular, for SERS nanostructures where the CLP002-engineered peptide is linked to the nanostructure surface with a short charged amino acid sequence and a long PEG chain. The results show that the functionalized SERS nanostructures show very good targeting of the immune checkpoint PD-L1.
Collapse
Affiliation(s)
- Marina Gobbo
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via F. Gallini 2, 33081 Aviano, PN, Italy
| | - Micaela Giannetti
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", and CSGI unit of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Lucio Litti
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy.
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", and CSGI unit of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via F. Gallini 2, 33081 Aviano, PN, Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155, 30172 Venice, Italy
| | - Antonio Palleschi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", and CSGI unit of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Moreno Meneghetti
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
24
|
Zhou X, Wang Y, Bao M, Chu Y, Liu R, Chen Q, Lin Y. Advanced detection of cervical cancer biomarkers using engineered filamentous phage nanofibers. Appl Microbiol Biotechnol 2024; 108:221. [PMID: 38372795 PMCID: PMC10876719 DOI: 10.1007/s00253-024-13058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Cervical cancer is a major global health concern, characterized by its high incidence and mortality rates. The detection of tumor markers is crucial for managing cancer, making treatment decisions, and monitoring disease progression. Vascular endothelial growth factor (VEGF) and programmed death-ligand 1 (PDL-1) are key targets in cervical cancer therapy and valuable biomarkers in predicting treatment response and prognosis. In this study, we found that combining the measurement of VEGF and soluble PDL-1 can be used for diagnosing and evaluating the progression of cervical cancer. To explore a more convenient approach for detecting and assessing cervical cancer, we designed and prepared an engineered fd bacteriophage, a human-safe viral nanofiber, equipped with two peptides targeting VEGF and PD-L1. The dual-display phage nanofiber specifically recognizes and binds to both proteins. Utilizing this nanofiber as a novel capture agent, we developed a new enzyme-linked immunosorbent assay (ELISA) method. This method shows significantly enhanced detection sensitivity compared to conventional ELISA methods, which use either anti-VEGF or anti-PD-L1 antibodies as capture agents. Therefore, the phage dual-display nanofiber presents significant potential in detecting cancer markers, evaluating medication efficacy, and advancing immunotherapy drug development. KEY POINTS: • The combined measurement of VEGF and soluble Programmed Death-Ligand 1(sPD-L1) demonstrates an additive effect in the diagnosis of cervical cancer. Fd phage nanofibers have been ingeniously engineered to display peptides that bind to VEGF and PD-L1, enabling the simultaneous detection of both proteins within a single assay • Genetically engineered phage nanofibers, adorned with two distinct peptides, can be utilized for the diagnosis and prognosis of cancer and can be mass-produced cost-effectively through bacterial infections • Employing dual-display fd phage nanofibers as capture probes, the phage ELISA method exhibited significantly enhanced detection sensitivity compared to traditional sandwich ELISA. Furthermore, phage ELISA facilitates the detection of a single protein or the simultaneous detection of multiple proteins, rendering them powerful tools for protein analysis and diagnosis across various fields, including cancer research.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China.
| | - Meijing Bao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yuqing Chu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Ruixue Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yang Lin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China.
| |
Collapse
|
25
|
Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307111. [PMID: 37806755 DOI: 10.1002/smll.202307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Nanodrug delivery systems have demonstrated a great potential for tumor therapy with the development of nanotechnology. Nonetheless, traditional drug delivery systems are faced with issues such as complex synthetic procedures, low reproducibility, nonspecific distribution, impenetrability of biological barrier, systemic toxicity, etc. In recent years, phage-based nanoplatforms have attracted increasing attention in tumor treatment for their regular structure, fantastic carrying property, high transduction efficiency and biosafety. Notably, therapeutic or targeting peptides can be expressed on the surface of the phages through phage display technology, enabling the phage vectors to possess multifunctions. As a result, the drug delivery efficiency on tumor will be vastly improved, thereby enhancing the therapeutic efficacy while reducing the side effects on normal tissues. Moreover, phages can overcome the hindrance of biofilm barrier to elicit antitumor effects, which exhibit great advantages compared with traditional synthetic drug delivery systems. Herein, this review not only summarizes the structure and biology of the phages, but also presents their potential as prominent nanoplatforms against tumor in different pathways to inspire the development of effective nanomedicine.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shu-Yi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shao-Mei Feng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting-Yu Bao
- Department of Clinical Medicine, the Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Zhang Li
- Department of Clinical Medicine, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
26
|
Fuchs N, Zhang L, Calvo-Barreiro L, Kuncewicz K, Gabr M. Inhibitors of Immune Checkpoints: Small Molecule- and Peptide-Based Approaches. J Pers Med 2024; 14:68. [PMID: 38248769 PMCID: PMC10817355 DOI: 10.3390/jpm14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The revolutionary progress in cancer immunotherapy, particularly the advent of immune checkpoint inhibitors, marks a significant milestone in the fight against malignancies. However, the majority of clinically employed immune checkpoint inhibitors are monoclonal antibodies (mAbs) with several limitations, such as poor oral bioavailability and immune-related adverse effects (irAEs). Another major limitation is the restriction of the efficacy of mAbs to a subset of cancer patients, which triggered extensive research efforts to identify alternative approaches in targeting immune checkpoints aiming to overcome the restricted efficacy of mAbs. This comprehensive review aims to explore the cutting-edge developments in targeting immune checkpoints, focusing on both small molecule- and peptide-based approaches. By delving into drug discovery platforms, we provide insights into the diverse strategies employed to identify and optimize small molecules and peptides as inhibitors of immune checkpoints. In addition, we discuss recent advances in nanomaterials as drug carriers, providing a basis for the development of small molecule- and peptide-based platforms for cancer immunotherapy. Ongoing research focused on the discovery of small molecules and peptide-inspired agents targeting immune checkpoints paves the way for developing orally bioavailable agents as the next-generation cancer immunotherapies.
Collapse
Affiliation(s)
- Natalie Fuchs
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Longfei Zhang
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Laura Calvo-Barreiro
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Katarzyna Kuncewicz
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Moustafa Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| |
Collapse
|
27
|
Chau B, Liivak K, Gao J. Construction of Nonnatural Cysteine-Cross-Linked Phage Libraries. Methods Mol Biol 2024; 2738:317-332. [PMID: 37966607 DOI: 10.1007/978-1-0716-3549-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Phage display is a powerful technique for rapid construction and screening of peptide libraries with over 109 sequence diversity. The M13 bacteriophage genome can be edited to incorporate randomized amino acids, which will be displayed on its minor coat protein (pIII). To enable screening of nonnatural cyclic peptides on phage, the minor coat protein can be modified with a chemical cross-linker. By taking advantage of the nucleophilicity and low abundance of free cysteines on phage, a variety of cysteine cross-linkers can be installed on the pIII protein. Here, we describe the construction of a chemically modified cyclic phage library through a cysteine cross-linking reagent, 1,3-dichloroacetone (DCA).
Collapse
Affiliation(s)
- Brittney Chau
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Kristi Liivak
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
28
|
Li CY, Chou TF, Lo YL. An innovative nanoformulation utilizing tumor microenvironment-responsive PEG-polyglutamic coating and dynamic charge adjustment for specific targeting of ER stress inducer, microRNA, and immunoadjuvant in pancreatic cancer: In vitro investigations. Int J Biol Macromol 2024; 254:127905. [PMID: 37939778 DOI: 10.1016/j.ijbiomac.2023.127905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant obstacle to lowering global cancer deaths. CB-5083, a novel valosin-containing protein (VCP)/p97 inhibitor that disrupts proteasomal degradation and induces endoplasmic reticulum stress (ERS) accumulation, was evaluated as an inducer of immunogenic cell death (ICD) in PDAC treatment. Furthermore, miR-142 enhances checkpoint blockade and promotes M1 repolarization, while Toll-like receptor 7/8 agonist resiquimod (R) acts as an immunoadjuvant to amplify the immune response to miR-142. This research signifies the first integration of CB, miR-142, and R in solid lipid nanoparticles (SLNs) modified with peptides targeting PD-L1, EGFR, and ER, which were shelled by the PEG-polyglutamic (PGA) coating that detaches in response to the acidic pH values in the tumor microenvironment (TME). The modified SLNs exhibited pH-sensitive cytotoxicity against Panc-02 cells, preserving normal cells and preventing hemolysis. The innovative approach simultaneously modulated pathways, including VCP/Bip/K48-Ub/ATF6, IRE1α/XBPs/LC3II, PD-L1/TGF-β/IL-10/CD206/MSR1/Arg1, and TNF-α/IFN-γ/IL-6/iNOS/COX-2. Combined treatment blocked VCP, arrested the cell cycle, inhibited EMT, triggered ERS-mediated autophagy/apoptosis, and stimulated robust ICD via the release of damage-associated molecular patterns. This adaptable nanoformulation, displaying pH-sensitive PEG-PGA de-coating and precisely targeting EGFR, PD-L1, and ER, serves to hinder EMT and immune evasion, subsequently amplifying ICD in PDAC cells and the TME.
Collapse
Affiliation(s)
- Ching-Yao Li
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, United States
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
29
|
Rui M, Zhang W, Mi K, Ni H, Ji W, Yu X, Qin J, Feng C. Design and evaluation of α-helix-based peptide inhibitors for blocking PD-1/PD-L1 interaction. Int J Biol Macromol 2023; 253:126811. [PMID: 37690647 DOI: 10.1016/j.ijbiomac.2023.126811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The current research in tumor immunotherapy indicates that blocking the protein-protein interaction (PPI) between PD-1 and its ligand, PD-L1, may be one of the most effective treatments for cancer patients. The α-helix is a common elements of protein secondary structure and is often involved in protein interaction. Thus, α-helix-based peptides could mimic proteins involved in such interactions and are also capable of modulating PPI in vivo. In this study, starting from a potential α-helix-rich protein, we designed a series of α-helix-based peptide candidates to block PD-1/PD-L1 interaction. These candidates were first screened using molecular docking and molecular dynamics simulations, and then their capacities to inhibit PD-1/PD-L1 interactions and to restore antitumor immune activities were investigated using the HTRF assay, SPR assay, cellular co-culture experiments and animal model experiments. Two peptides exhibited the best anti-tumor effects and the strong ability to restore the immunity of tumor-infiltrating T-cells. Further D-amino acid substitution was employed to improve the serum stability of peptide candidate, making the intravenous administration easier while maintaining the therapeutic efficacy. The resultant peptides showed promise as checkpoint inhibitors for application in tumor immunotherapy. These findings suggested that our strategy for developing peptides starting from an α-helical structure could be used in the design of bioactive inhibitors to potential block protein-protein interactions.
Collapse
Affiliation(s)
- Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Ke Mi
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Hairong Ni
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Wei Ji
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Xuefei Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Jiangjiang Qin
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, PR China
| | - Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, PR China.
| |
Collapse
|
30
|
Sui X, Niu X, Zhou X, Gao Y. Peptide drugs: a new direction in cancer immunotherapy. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0297. [PMID: 38062861 PMCID: PMC10976324 DOI: 10.20892/j.issn.2095-3941.2023.0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/28/2023] [Indexed: 09/19/2024] Open
Affiliation(s)
- Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
31
|
Qin Y, Meng X, Li L, Liu C, Gao F, Yuan X, Huang Y, Zhu Y. Develop a PD-1-blockade peptide to reinvigorate T-cell activity and inhibit tumor progress. Eur J Pharmacol 2023; 960:176144. [PMID: 37866745 DOI: 10.1016/j.ejphar.2023.176144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Immune checkpoint inhibitors, particularly monoclonal antibodies blocking the programmed cell death 1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway, have been successfully utilized in the clinic. However, certain drawbacks associated with antibodies, such as high immunogenicity and poor tissue penetration, need to be addressed for their broader clinical application. Peptides, as low molecular weight alternatives, have garnered increasing interest in this field. In this study, we employed bacterial surface display technology to identify a PD-1-binding peptide, PBP. The PBP peptide exhibited moderate affinity for human PD-1 (hPD-1) and displayed cross-reactivity with mouse PD-1 (mPD-1). Molecular docking analysis revealed that the interaction residues of the PBP peptide with PD-1 played crucial roles in the formation of the PD-1/PD-L1 complex. A competing binding assay demonstrated that the peptide could interfere the interaction of PD-1 and PD-L1. Moreover, in vitro experiments showed that the PBP peptide could reinvigorate T cells inhibited by PD-L1. In an in vivo mouse model of CT26, the PBP peptide effectively suppressed tumor growth by enhancing T cell function. In conclusion, our results suggest that the PBP peptide exerts an anti-tumor effect by impeding the interplay between PD-1 and PD-L1, highlighting its potential as an alternative for tumor immunotherapy.
Collapse
Affiliation(s)
- Yingzhou Qin
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiangzhou Meng
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lin Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Cuijuan Liu
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fan Gao
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xin Yuan
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ying Huang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yimin Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
32
|
Mustafa B, Fetse J, Kandel S, Lin CY, Adhikary P, Mamani UF, Liu Y, Ibrahim MN, Alahmari M, Cheng K. Discovery of Anti-CD47 Peptides as Innate Immune Checkpoint Inhibitors. ADVANCED THERAPEUTICS 2023; 6:2300114. [PMID: 38655206 PMCID: PMC11034909 DOI: 10.1002/adtp.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 04/26/2024]
Abstract
Cancer immunotherapy targeting adaptive immune cells has been attracting considerable interest due to its great success in treating multiple cancers. Recently, there is also increasing interest in agents that can stimulate innate immune cell activities. Immune checkpoint inhibitors targeting innate immune cells can block inhibitory interactions ('don't eat me' signals) between tumor cells and phagocytes. CD47 is a transmembrane protein overexpressed in various cancers and acts as a potent 'do not eat me' signal that contributes to the immune evasion of cancer cells. Anti-CD47 peptides that can bind to CD47 and block CD47/SIRPα interaction were discovered using a novel phage display biopanning strategy. Anti-CD47 peptides enhanced the macrophage-mediated phagocytosis of NCI-H82 tumor cells in vitro. Unlike anti-CD47 antibodies, these peptides do not induce the agglutination of RBCs. Moreover, anti-CD47 peptides exhibit high specificity for MC-38 cancer cells expressing CD47. CMP-22 peptide showed the ability to increase the antitumor activity of doxorubicin and extends the survival of CT26 tumor-bearing mice. The discovered anti-CD47 peptides can be considered potential candidates for cancer immunotherapy by blocking the CD47/SIRPα interaction, especially in combination with chemotherapy, to elicit synergistic effects.
Collapse
Affiliation(s)
- Bahaa Mustafa
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Sashi Kandel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratik Adhikary
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mohammed Nurudeen Ibrahim
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mohammed Alahmari
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
33
|
Lee YJ. Examining the functional space of gut microbiome-derived peptides. Microbiologyopen 2023; 12:e1393. [PMID: 38129980 PMCID: PMC10714122 DOI: 10.1002/mbo3.1393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The human gut microbiome contains thousands of small, novel peptides that could play a role in microbe-microbe and host-microbe interactions, contributing to human health and disease. Although these peptides have not yet been systematically characterized, computational tools can be used to elucidate the bioactivities they may have. This article proposes probing the functional space of gut microbiome-derived peptides (MDPs) using in silico approaches for three bioactivities: antimicrobial, anticancer, and nucleomodulins. Machine learning programs that support peptide and protein queries are provided for each bioactivity. Considering the biases of an activity-centric approach, activity-agnostic tools using structural and chemical similarity and target prediction are also described. Gut MDPs represent a vast functional space that can not only contribute to our understanding of microbiome interactions but potentially even serve as a source of life-changing therapeutics.
Collapse
Affiliation(s)
- Ying‐Chiang J. Lee
- Department of Molecular BiologyPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
34
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
35
|
Xiao D, Zeng T, Zhu W, Yu ZZ, Huang W, Yi H, Lu SS, Feng J, Feng XP, Wu D, Wen Q, Zhou JH, Yuan L, Zhuang W, Xiao ZQ. ANXA1 Promotes Tumor Immune Evasion by Binding PARP1 and Upregulating Stat3-Induced Expression of PD-L1 in Multiple Cancers. Cancer Immunol Res 2023; 11:1367-1383. [PMID: 37566399 DOI: 10.1158/2326-6066.cir-22-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The deregulation of Annexin A1 (ANXA1), a regulator of inflammation and immunity, leads to cancer growth and metastasis. However, whether ANXA1 is involved in cancer immunosuppression is still unclear. Here, we report that ANXA1 knockdown (i) dramatically downregulates programmed cell death-ligand 1 (PD-L1) expression in breast cancer, lung cancer, and melanoma cells; (ii) promotes T cell-mediated killing of cancer cells in vitro; and (iii) inhibits cancer immune escape in immune-competent mice via downregulating PD-L1 expression and increasing the number and killing activity of CD8+ T cells. Mechanistically, ANXA1 functioned as a sponge molecule for interaction of PARP1 and Stat3. Specifically, binding of ANXA1 to PARP1 decreased PARP1's binding to Stat3, which reduced poly(ADP-ribosyl)ation and dephosphorylation of Stat3 and thus, increased Stat3's transcriptional activity, leading to transcriptionally upregulated expression of PD-L1 in multiple cancer cells. In clinical samples, expression of ANXA1 and PD-L1 was significantly higher in breast cancer, non-small cell lung cancer, and skin cutaneous melanoma compared with corresponding normal tissues and positively correlated in cancer tissues. Moreover, using both ANXA1 and PD-L1 proteins for predicting efficacy of anti-PD-1 immunotherapy and patient prognosis was superior to using individual proteins. Our data suggest that ANXA1 promotes cancer immune escape via binding PARP1 and upregulating Stat3-induced expression of PD-L1, that ANXA1 is a potential new target for cancer immunotherapy, and combination of ANXA1 and PD-L1 expression is a potential marker for predicting efficacy of anti-PD-1 immunotherapy in multiple cancers.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zeng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Di Wu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Wen
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Hua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhuang
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Hu Z, Li W, Chen S, Chen D, Xu R, Zheng D, Yang X, Li S, Zhou X, Niu X, Xiao Y, He Z, Li H, Liu J, Sui X, Gao Y. Design of a novel chimeric peptide via dual blockade of CD47/SIRPα and PD-1/PD-L1 for cancer immunotherapy. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2310-2328. [PMID: 37115491 DOI: 10.1007/s11427-022-2285-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 04/29/2023]
Abstract
Although immune checkpoint inhibition has been shown to effectively activate antitumor immunity in various tumor types, only a small subset of patients can benefit from PD-1/PD-L1 blockade. CD47 expressed on tumor cells protects them from phagocytosis through interaction with SIRPα on macrophages, while PD-L1 dampens T cell-mediated tumor killing. Therefore, dual targeting PD-L1 and CD47 may improve the efficacy of cancer immunotherapy. A chimeric peptide Pal-DMPOP was designed by conjugating the double mutation of CD47/SIRPα blocking peptide (DMP) with the truncation of PD-1/PD-L1 blocking peptide OPBP-1(8-12) and was modified by a palmitic acid tail. Pal-DMPOP can significantly enhance macrophage-mediated phagocytosis of tumor cells and activate primary T cells to secret IFN-γ in vitro. Due to its superior hydrolysis-resistant activity as well as tumor tissue and lymph node targeting properties, Pal-DMPOP elicited stronger anti-tumor potency than Pal-DMP or OPBP-1(8-12) in immune-competent MC38 tumor-bearing mice. The in vivo anti-tumor activity was further validated in the colorectal CT26 tumor model. Furthermore, Pal-DMPOP mobilized macrophage and T-cell anti-tumor responses with minimal toxicity. Overall, the first bispecific CD47/SIRPα and PD-1/PD-L1 dual-blockade chimeric peptide was designed and exhibited synergistic anti-tumor efficacy via CD8+ T cell activation and macrophage-mediated immune response. The strategy could pave the way for designing effective therapeutic agents for cancer immunotherapy.
Collapse
Affiliation(s)
- Zheng Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shaomeng Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Danhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ran Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Danlu Zheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xin Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Youmei Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuoying He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Huihao Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Juan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
37
|
Zhang L, Zhang S, Wu J, Wang Y, Wu Y, Sun X, Wang X, Shen J, Xie L, Zhang Y, Zhang H, Hu K, Wang F, Wang R, Zhang MR. Linear Peptide-Based PET Tracers for Imaging PD-L1 in Tumors. Mol Pharm 2023; 20:4256-4267. [PMID: 37368947 DOI: 10.1021/acs.molpharmaceut.3c00382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Programmed cell death receptor 1 (PD-1) and its ligand PD-L1 are particularly interesting immune checkpoint proteins for human cancer treatment. Positron emission tomography (PET) imaging allows for the dynamic monitoring of PD-L1 status during tumor progression, thus informing patients' response index. Herein, we report the synthesis of two linear peptide-based radiotracers, [64Cu]/[68Ga]HKP2201 and [64Cu]/[68Ga]HKP2202, and validate their utility for PD-L1 visualization in preclinical models. The precursor peptide HKP2201 was derived from a linear peptide ligand, CLP002, which was previously identified by phage display and showed nanomolar affinity toward PD-L1. Appropriate modification of CLP002 via PEGylation and DOTA conjugation yielded HKP2201. The dimerization of HKP2201 generated HKP2202. The 64Cu and 68Ga radiolabeling of both precursors was studied and optimized. PD-L1 expression in mouse melanoma cell line B16F10, mouse colon cancer cell line MC38, and their allografts were assayed by immunofluorescence and immunohistochemistry staining. Cellular uptake and binding assays were conducted in both cell lines. PET imaging and ex vivo biodistribution studies were employed in tumor mouse models bearing B16F10 and MC38 allografts. [64Cu]/[68Ga]HKP2201 and [64Cu]/[68Ga]HKP2202 were obtained with satisfactory radiocharacteristics. They all showed lower liver accumulation compared to [64Cu]/[68Ga]WL12. B16F10 and MC38 cells and their tumor allografts sections were verified to express PD-L1. These tracers demonstrated a concentration-dependent cell affinity and a comparable half-maximal effect concentration (EC50) with radiolabeled WL12. Competitive binding and blocking studies demonstrated the specific target of these tracers to PD-L1. PET imaging and ex vivo biodistribution studies revealed notable tumor uptake in tumor-bearing mice and rapid clearance from blood and major organs. Importantly, [64Cu]/[68Ga]HKP2202 showed higher tumor uptake compared to [64Cu]/[68Ga]HKP2201. Of note, [64Cu] labeled tracers showed longer retention in tumors than [68Ga] labeled traces, indicating advantages in the long-term tracking of PD-L1 dynamics. In comparison, [68Ga]HKP2201 and [68Ga]HKP2202 showed lower liver accumulation, enabling its great potential in the fast detection of both primary and metastatic tumors, including hepatic carcinoma. [64Cu]/[68Ga]HKP2201 and [64Cu]/[68Ga]HKP2202 are promising PET tracers for visualizing PD-L1 status. Notably, their combination would cooperate in rapid diagnosis and subsequent treatment guidance. Future assessment of the radiotracers in patients is needed to fully evaluate their clinical value.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210008, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210008, China
| | - Yanrong Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210008, China
| | - Yuxuan Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaona Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jieting Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hailong Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210008, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
38
|
Sun M, Li Y, Zhang W, Gu X, Wen R, Zhang K, Mao J, Huang C, Zhang X, Nie M, Zhang Z, Qi C, Cai K, Liu G. Allomelanin-based biomimetic nanotherapeutics for orthotopic glioblastoma targeted photothermal immunotherapy. Acta Biomater 2023; 166:552-566. [PMID: 37236575 DOI: 10.1016/j.actbio.2023.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has shown great potential in the treatment of malignant tumors, but its therapeutic effect on glioblastoma (GBM) is unsatisfactory because of the low immunogenicity and T cell infiltration, as well as the presence of blood-brain barrier (BBB) that blocks most of ICB agents to the GBM tissues. Herein, we developed a biomimetic nanoplatform of AMNP@CLP@CCM for GBM-targeted photothermal therapy (PTT) and ICB synergistic therapy by loading immune checkpoint inhibitor CLP002 into the allomelanin nanoparticles (AMNPs) and followed by coating cancer cell membranes (CCM). The resulting AMNP@CLP@CCM can successfully cross the BBB and deliver CLP002 to GBM tissues due to the homing effect of CCM. As a natural photothermal conversion agent, AMNPs are used for tumor PTT. The increased local temperature by PTT not only enhances BBB penetration but also upregulates the PD-L1 level on GBM cells. Importantly, PTT can effectively stimulate immunogenic cell death to induce tumor-associated antigen exposure and promote T lymphocyte infiltration, which can further amplify the antitumor immune responses of GBM cells to CLP002-mediated ICB therapy, resulting in significant growth inhibition of the orthotopic GBM. Therefore, AMNP@CLP@CCM has great potential for the treatment of orthotopic GBM by PTT and ICB synergistic therapy. STATEMENT OF SIGNIFICANCE: The effect of ICB therapy on GBM is limited by the low immunogenicity and insufficient T-cell infiltration. Here we developed a biomimetic nanoplatform of AMNP@CLP@CCM for GBM-targeted PTT and ICB synergistic therapy. In this nanoplatform, AMNPs are used as both photothermal conversion agents for PTT and nanocarriers for CLP002 delivery. PTT not only enhances BBB penetration but also upregulates the PD-L1 level on GBM cells by increasing local temperature. Additionally, PTT also induces tumor-associated antigen exposure and promotes T lymphocyte infiltration to amplify the antitumor immune responses of GBM cells to CLP002-mediated ICB therapy, resulting in significant growth inhibition of the orthotopic GBM. Thus, this nanoplatform holds great potential for orthotopic GBM treatment.
Collapse
Affiliation(s)
- Maoyuan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wenli Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiang Gu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rong Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jinning Mao
- Health management center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Chengyao Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiong Zhang
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Mao Nie
- Department of Orthopedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhiwen Zhang
- School of Pharmacy & Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Chao Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
39
|
Fetse J, Kandel S, Mamani UF, Cheng K. Recent advances in the development of therapeutic peptides. Trends Pharmacol Sci 2023; 44:425-441. [PMID: 37246037 PMCID: PMC10330351 DOI: 10.1016/j.tips.2023.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/30/2023]
Abstract
Peptides have unique characteristics that make them highly desirable as therapeutic agents. The physicochemical and proteolytic stability profiles determine the therapeutic potential of peptides. Multiple strategies to enhance the therapeutic profile of peptides have emerged. They include chemical modifications, such as cyclization, substitution with d-amino acids, peptoid formation, N-methylation, and side-chain halogenation, and incorporation in delivery systems. There have been recent advances in approaches to discover peptides having these modifications to attain desirable therapeutic properties. We critically review these recent advancements in therapeutic peptide development.
Collapse
Affiliation(s)
- John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Sashi Kandel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
40
|
Chinnadurai RK, Khan N, Meghwanshi GK, Ponne S, Althobiti M, Kumar R. Current research status of anti-cancer peptides: Mechanism of action, production, and clinical applications. Biomed Pharmacother 2023; 164:114996. [PMID: 37311281 DOI: 10.1016/j.biopha.2023.114996] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
The escalating rate of cancer cases, together with treatment deficiencies and long-term side effects of currently used cancer drugs, has made this disease a global burden of the 21st century. The number of breast and lung cancer patients has sharply increased worldwide in the last few years. Presently, surgical treatment, radiotherapy, chemotherapy, and immunotherapy strategies are used to cure cancer, which cause severe side effects, toxicities, and drug resistance. In recent years, anti-cancer peptides have become an eminent therapeutic strategy for cancer treatment due to their high specificity and fewer side effects and toxicity. This review presents an updated overview of different anti-cancer peptides, their mechanisms of action and current production strategies employed for their manufacture. In addition, approved and under clinical trials anti-cancer peptides and their applications have been discussed. This review provides updated information on therapeutic anti-cancer peptides that hold great promise for cancer treatment in the near future.
Collapse
Affiliation(s)
- Raj Kumar Chinnadurai
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed-to-be-University), Pondicherry 607402, India
| | - Nazam Khan
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | | | - Saravanaraman Ponne
- Department of Biotechnology, Pondicherry University, Pondicherry 605014, India
| | - Maryam Althobiti
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
| | - Rajender Kumar
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden.
| |
Collapse
|
41
|
Vadevoo SMP, Gurung S, Lee HS, Gunassekaran GR, Lee SM, Yoon JW, Lee YK, Lee B. Peptides as multifunctional players in cancer therapy. Exp Mol Med 2023; 55:1099-1109. [PMID: 37258584 PMCID: PMC10318096 DOI: 10.1038/s12276-023-01016-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/02/2023] Open
Abstract
Peptides exhibit lower affinity and a shorter half-life in the body than antibodies. Conversely, peptides demonstrate higher efficiency in tissue penetration and cell internalization than antibodies. Regardless of the pros and cons of peptides, they have been used as tumor-homing ligands for delivering carriers (such as nanoparticles, extracellular vesicles, and cells) and cargoes (such as cytotoxic peptides and radioisotopes) to tumors. Additionally, tumor-homing peptides have been conjugated with cargoes such as small-molecule or chemotherapeutic drugs via linkers to synthesize peptide-drug conjugates. In addition, peptides selectively bind to cell surface receptors and proteins, such as immune checkpoints, receptor kinases, and hormone receptors, subsequently blocking their biological activity or serving as hormone analogs. Furthermore, peptides internalized into cells bind to intracellular proteins and interfere with protein-protein interactions. Thus, peptides demonstrate great application potential as multifunctional players in cancer therapy.
Collapse
Affiliation(s)
- Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Smriti Gurung
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Hyun-Su Lee
- Department of Physiology, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seok-Min Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Jae-Won Yoon
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Yun-Ki Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
42
|
Boisgerault N, Bertrand P. Inside PD-1/PD-L1,2 with their inhibitors. Eur J Med Chem 2023; 256:115465. [PMID: 37196547 DOI: 10.1016/j.ejmech.2023.115465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
This review summarizes current knowledge in the development of immune checkpoint inhibitors, including antibodies and small molecules.
Collapse
Affiliation(s)
- Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université D'Angers, CRCI2NA, LabEx IGO, F-44000, Nantes, France
| | - Philippe Bertrand
- University of Poitiers, IC2MP UMR 7285 CNRS, 4 Rue Michel Brunet B27, TSA 51106, 86073 Poitiers Cedex 9, France.
| |
Collapse
|
43
|
Awad RM, Breckpot K. Novel technologies for applying immune checkpoint blockers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:1-101. [PMID: 38225100 DOI: 10.1016/bs.ircmb.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
44
|
Aria H, Rezaei M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother 2023; 161:114503. [PMID: 36921539 DOI: 10.1016/j.biopha.2023.114503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Immunogenic Cell Death (ICD) is a type of cell death that kills tumor cells by stimulating the adaptive immune response against other tumor cells. ICD depends on the endoplasmic reticulum (ER) stress and the secretion of Damage-Associated Molecular Patterns (DAMP) by the dying tumor cell. DAMPs recruit innate immune cells such as Dendritic Cells (DC), triggering a cancer-specific immune response such as cytotoxic T lymphocytes (CTLs) to eliminate remaining cancer cells. ICD is accompanied by several hallmarks in dying cells, such as surface translocation of ER chaperones, calreticulin (CALR), and extracellular secretion of DAMPs such as high mobility group protein B1 (HMGB1) and adenosine triphosphate (ATP). Therapeutic peptides can kill bacteria and tumor cells thus affecting the immune system. They have high specificity and affinity for their targets, small size, appropriate cell membrane penetration, short half-life, and simple production processes. Peptides are interesting agents for immunomodulation since they may overcome the limitations of other therapeutics. Thus, the development of peptides affecting the TME and active antitumoral immunity has been actively pursued. On the other hand, several peptides have been recently identified to trigger ICD and anti-cancer responses. In the present review, we review previous studies on peptide-induced ICD, their mechanism, their targets, and markers. They include anti-microbial peptides (AMPs), cationic or mitochondrial targeting, checkpoint inhibitors, antiapoptotic inhibitors, and "don't eat me" inhibitor peptides. Also, peptides will be investigated potentially inducing ICD that is divided into ER stressors, ATPase inhibitors, and anti-microbial peptides.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
45
|
Zhang Y, Liu C, Wu C, Song L. Natural peptides for immunological regulation in cancer therapy: Mechanism, facts and perspectives. Biomed Pharmacother 2023; 159:114257. [PMID: 36689836 DOI: 10.1016/j.biopha.2023.114257] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Cancer incidence and mortality rates are increasing annually. Treatment with surgery, chemotherapy and radiation therapy (RT) is unsatisfactory because many patients have advanced disease at the initial diagnosis. However, the emergence of immunotherapy promises to be an effective strategy to improve the outcome of advanced tumors. Immune checkpoint antibodies, which are at the forefront of immunotherapy, have had significant success but still leave some cancer patients without benefit. For more cancer patients to benefit from immunotherapy, it is necessary to find new drugs and combination therapeutic strategies to improve the outcome of advanced cancer patients and achieve long-term tumor control or even eradication. Peptides are promising choices for tumor immunotherapy drugs because they have the advantages of low production cost, high sequence selectivity, high tissue permeability, low toxicity and low immunogenicity etc., and the adjuvant matching and technologies like nanotechnology can further optimize the effects of peptides. In this review, we present the current status and mechanisms of research on peptides targeting multiple immune cells (T cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), regulatory T cells (Tregs)) and immune checkpoints in tumor immunotherapy; and we summarize the current status of research on peptide-based tumor immunotherapy in combination with other therapies including RT, chemotherapy, surgery, targeted therapy, cytokine therapy, adoptive cell therapy (ACT) and cancer vaccines. Finally, we discuss the current status of peptide applications in mRNA vaccine delivery.
Collapse
Affiliation(s)
- Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chenxin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
46
|
Yu ZZ, Liu YY, Zhu W, Xiao D, Huang W, Lu SS, Yi H, Zeng T, Feng XP, Yuan L, Qiu JY, Wu D, Wen Q, Zhou JH, Zhuang W, Xiao ZQ. ANXA1-derived peptide for targeting PD-L1 degradation inhibits tumor immune evasion in multiple cancers. J Immunother Cancer 2023; 11:jitc-2022-006345. [PMID: 37001908 PMCID: PMC10069584 DOI: 10.1136/jitc-2022-006345] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundImmune checkpoint inhibitors (ICIs) therapy targeting programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) shows promising clinical benefits. However, the relatively low response rate highlights the need to develop an alternative strategy to target PD-1/PD-L1 immune checkpoint. Our study focuses on the role and mechanism of annexin A1 (ANXA1)-derived peptide A11 degrading PD-L1 and the effect of A11 on tumor immune evasion in multiple cancers.MethodsBinding of A11 to PD-L1 was identified by biotin pull-down coupled with mass spectrometry analysis. USP7 as PD-L1’s deubiquitinase was found by screening a human deubiquitinase cDNA library. The role and mechanism of A11 competing with USP7 to degrade PD-L1 were analyzed. The capability to enhance the T cell-mediated tumor cell killing activity and antitumor effect of A11 via suppressing tumor immune evasion were investigated. The synergistic antitumor effect of A11 and PD-L1 mAb (monoclonal antibody) via suppressing tumor immune evasion were also studied in mice. The expression and clinical significance of USP7 and PD-L1 in cancer tissues were evaluated by immunohistochemistry.ResultsA11 decreases PD-L1 protein stability and levels by ubiquitin proteasome pathway in breast cancer, lung cancer and melanoma cells. Mechanistically, A11 competes with PD-L1’s deubiquitinase USP7 for binding PD-L1, and then degrades PD-L1 by inhibiting USP7-mediated PD-L1 deubiquitination. Functionally, A11 promotes T cell ability of killing cancer cells in vitro, inhibits tumor immune evasion in mice via increasing the population and activation of CD8+T cells in tumor microenvironment, and A11 and PD-1 mAb possess synergistic antitumor effect in mice. Moreover, expression levels of both USP7 and PD-L1 are significantly higher in breast cancer, non-small cell lung cancer and skin melanoma tissues than those in their corresponding normal tissues and are positively correlated in cancer tissues, and both proteins for predicting efficacy of PD-1 mAb immunotherapy and patient prognosis are superior to individual protein.ConclusionOur results reveal that A11 competes with USP7 to bind and degrade PD-L1 in cancer cells, A11 exhibits obvious antitumor effects and synergistic antitumor activity with PD-1 mAb via inhibiting tumor immune evasion and A11 can serve as an alternative strategy for ICIs therapy in multiple cancers.
Collapse
Affiliation(s)
- Zheng-Zheng Yu
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yun-Ya Liu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ding Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ting Zeng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie-Ya Qiu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Wu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Wen
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian-Hua Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhi-Qiang Xiao
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
47
|
Huang Q, Zang X, Zhang Z, Yu H, Ding B, Li Z, Cheng S, Zhang X, Ali MRK, Qiu X, Lv Z. Study on endogenous inhibitors against PD-L1: cAMP as a potential candidate. Int J Biol Macromol 2023; 230:123266. [PMID: 36646351 DOI: 10.1016/j.ijbiomac.2023.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The discovery of new anti-cancer drugs targeting the PD-1/PD-L1 pathway has been a research hotspot in recent years. In this study, biological affinity ultrafiltration (BAU), UPLC-HRMS, molecular dynamic (MD) simulations and molecular docking methods were applied to search for endogenous active compounds that can inhibit the binding of PD-L1 to PD-1. We screened dozens of potential cancer related endogenous compounds. Surprisingly, cyclic adenosine monophosphate (cAMP) was found to have a direct inhibitory effect on the PD-1/PD-L1 binding with an in vitro IC50 value of about 36.4 ± 9.3 μM determined by homogeneous time-resolved fluorescence (HTRF) assay. cAMP could recover the proliferation of Jurkat T cells co-cultured with DU-145 cells and may suppress PD-L1 expression of DU-145 cells. cAMP was demonstrated to bind and induce PD-L1 dimerization by FRET assay, and also predicted by MD simulations and molecular docking. The finding of cAMP as a potential inhibitor directly targeting the PD-1/PD-L1 interaction could advance our understanding of the activity of endogenous compounds regulating PD-L1.
Collapse
Affiliation(s)
- Qiuyang Huang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, PR China.
| | - Zhiwei Zhang
- College of Physics, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Hang Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Baoyan Ding
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Zhuangzhuang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Simin Cheng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Xin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Mustafa R K Ali
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xue Qiu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, PR China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, PR China.
| |
Collapse
|
48
|
Huang J, Fu X, Xue Q, Ma P, Yin Y, Jiang M, Lu Y, Ying Q, Jiang J, He H, Wu D. Peptide ARHGEF9 Inhibits Glioma Progression via PI3K/AKT/mTOR Pathway. DISEASE MARKERS 2023; 2023:7146589. [PMID: 36852158 PMCID: PMC9966571 DOI: 10.1155/2023/7146589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 01/18/2023] [Indexed: 02/20/2023]
Abstract
Background The most prevalent malignant tumor in a human brain nervous system is called glioma. Peptide is a compound formed by the peptide bond of α-amino acids, and the development of polypeptide drugs has been widely used in many fields. We plan to investigate the underlying peptides with clinical value in glioma. Method Based on public databases, we targeted the common genes between glioma differentially expressed genes (DEGs) and peptide genes related to glioma prognosis. Then, these common genes were analyzed by LASSO-Cox analysis, prognostic risk model, and nomogram to identify key prognostic peptide genes and the target gene in this study. Next, the mechanism of target gene in glioma was explored by bioinformatics analysis and functional experiments. Results We obtained a total of 26 overlapping genes for the following study. After that, 6 independent prognostic factors (REPIN1, PSD3, RDX, CDK4, FANCI, and ARHGEF9) were obtained and applied to construct the prognostic nomogram, and ARHGEF9 was the target gene in the study. Next, peptide ARHGEF9 was found to inhibit glioma cell development. Through Spearman's correlation analysis, ARHGEF9 had a close relation with PI3K/AKT/mTOR pathway. In functional experiments, peptide ARHGEF9 could suppress the protein expressions of p-PIK3K, p-AKT and p-mTOR, while IGF-1 could reverse this effect. Conclusion This study identifies 6 new prognostic biomarkers for glioma patients. Among them, peptide ARHGEF9 gene is an inhibitory gene functioning by targeting PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jie Huang
- Department of Neurosurgery, Third Affiliated Hospital, Navy Medical University, Shanghai, China 200432
| | - Xiaoling Fu
- Department of Medical Psychology, The Fourth Medical Center of PLA General Hospital, 51 Fu Cheng Road, Beijing, China 100048
| | - Qiang Xue
- Department of Neurosurgery, Third Affiliated Hospital, Navy Medical University, Shanghai, China 200432
| | - Peng Ma
- Department of Neurosurgery, Third Affiliated Hospital, Navy Medical University, Shanghai, China 200432
| | - Yating Yin
- Department of Neurosurgery, Third Affiliated Hospital, Navy Medical University, Shanghai, China 200432
| | - Minjie Jiang
- Department of Neurosurgery, Yixing People's Hospital, Yixing, Jiangsu Province, China 214200
| | - Yunpeng Lu
- Department of Neurosurgery, Yixing People's Hospital, Yixing, Jiangsu Province, China 214200
| | - Qi Ying
- Department of Neurosurgery, Third Affiliated Hospital, Navy Medical University, Shanghai, China 200432
| | - Jun Jiang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Navy Medical University, Shanghai, China 200432
| | - Da Wu
- Department of Neurosurgery, Yixing People's Hospital, Yixing, Jiangsu Province, China 214200
| |
Collapse
|
49
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
50
|
Cheke RS, Bagwe P, Bhange S, Kharkar PS. Biologicals and small molecules as target-specific cancer chemotherapeutic agents. MEDICINAL CHEMISTRY OF CHEMOTHERAPEUTIC AGENTS 2023:615-646. [DOI: 10.1016/b978-0-323-90575-6.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|