1
|
Kim M, Bezprozvanny I. Biological function of Aβ peptides revealed by analysis of membrane-association properties: Implications for Azheimer's disease pathogenesis. Biochem Biophys Res Commun 2024; 734:150611. [PMID: 39222574 DOI: 10.1016/j.bbrc.2024.150611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Proteolytic processing of amyloid precursor protein (APP) plays a critical role in the pathogenesis of Azheimer's disease (AD). Sequential cleavage of APP by β and γ secretases leads to generation of Aβ40 (non-amyloidogenic) and Aβ42 (amyloidogenic) peptides. Despite intense studies, the biological function of these peptides and the mechanism of Aβ42 toxicity is poorly understood. In the previous publications we proposed that association of Aβ peptides with the endosomal membranes may have important implications for pathogenesis of AD (Kim and Bezprozvanny, IJMS, 2021, vol 22, 13600; Kim and Bezprozvanny, IJMS, 2023, vol 24, 2092). To understand potential biological importance of such interaction, we focused on the region of Aβ peptides involved in peri-membrane association (E682 to N698). We discovered that association of this region with the membranes is reminiscent of several known anti-microbial peptides (AMP) such as PA13, Aurein1.2 and BP100. Our analysis further revealed that energy of peri-membrane association of Aβ40 is significantly weaker than for Aβ42 or AMP peptides, but it can be increased in the presence of non-amyloidogenic FAD mutations or in the presence of cholesterol in the membrane. Based on similarity with established mechanism of action of AMP peptides, we propose that Aβ peptides affect the curvature of endosomal membranes and shift the balance between endosomal recycling to plasma membrane and late endosomal/lysosomal pathway. We further propose that these effects are enhanced as a result of non-amyloidogenic FAD mutations in the sequence of Aβ peptides or in the presence of cholesterol in the membrane. The proposed model provides potential mechanistic explanation to synaptic defects induced by increased levels of Aβ42, by non-amyloidogenic FAD mutations in APP and by age-related increase in the levels of cholesterol in the brain.
Collapse
Affiliation(s)
- Meewhi Kim
- Dept of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Ilya Bezprozvanny
- Dept of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Laboratory of Molecular Neurodegeneration, St Petersburg State Polytechnical Universty, St Petersburg, 195251, Russian Federation.
| |
Collapse
|
2
|
Zoltowska KM, Das U, Lismont S, Enzlein T, Maesako M, Houser MCQ, Franco ML, Özcan B, Gomes Moreira D, Karachentsev D, Becker A, Hopf C, Vilar M, Berezovska O, Mobley W, Chávez-Gutiérrez L. Alzheimer's disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. eLife 2024; 12:RP90690. [PMID: 39027984 PMCID: PMC11259434 DOI: 10.7554/elife.90690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.
Collapse
Affiliation(s)
| | - Utpal Das
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied SciencesMannheimGermany
| | - Masato Maesako
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - Mei CQ Houser
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - Maria Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de ValenciaValenciaSpain
| | - Burcu Özcan
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | | | - Dmitry Karachentsev
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Ann Becker
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied SciencesMannheimGermany
- Medical Faculty, Heidelberg UniversityHeidelbergGermany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityHeidelbergGermany
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de ValenciaValenciaSpain
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - William Mobley
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | | |
Collapse
|
3
|
Fukata Y, Fukata M, MacGillavry HD, Nair D, Hosy E. Celebrating the Birthday of AMPA Receptor Nanodomains: Illuminating the Nanoscale Organization of Excitatory Synapses with 10 Nanocandles. J Neurosci 2024; 44:e2104232024. [PMID: 38839340 PMCID: PMC11154862 DOI: 10.1523/jneurosci.2104-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/07/2024] Open
Abstract
A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR5297, Bordeaux F-33000, France
| |
Collapse
|
4
|
Chen H, Yan G, Wen MH, Brooks KN, Zhang Y, Huang PS, Chen TY. Advancements and Practical Considerations for Biophysical Research: Navigating the Challenges and Future of Super-resolution Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:331-344. [PMID: 38817319 PMCID: PMC11134610 DOI: 10.1021/cbmi.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The introduction of super-resolution microscopy (SRM) has significantly advanced our understanding of cellular and molecular dynamics, offering a detailed view previously beyond our reach. Implementing SRM in biophysical research, however, presents numerous challenges. This review addresses the crucial aspects of utilizing SRM effectively, from selecting appropriate fluorophores and preparing samples to analyzing complex data sets. We explore recent technological advancements and methodological improvements that enhance the capabilities of SRM. Emphasizing the integration of SRM with other analytical methods, we aim to overcome inherent limitations and expand the scope of biological insights achievable. By providing a comprehensive guide for choosing the most suitable SRM methods based on specific research objectives, we aim to empower researchers to explore complex biological processes with enhanced precision and clarity, thereby advancing the frontiers of biophysical research.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Guangjie Yan
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Kameron N. Brooks
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
5
|
Zoltowska KM, Das U, Lismont S, Enzlein T, Maesako M, Houser MCQ, Franco ML, Özcan B, Moreira DG, Karachentsev D, Becker A, Hopf C, Vilar M, Berezovska O, Mobley W, Chávez-Gutiérrez L. Alzheimer's disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551596. [PMID: 37577527 PMCID: PMC10418207 DOI: 10.1101/2023.08.02.551596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75 and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular -homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.
Collapse
Affiliation(s)
| | - Utpal Das
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Masato Maesako
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - Mei CQ Houser
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - María Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Burcu Özcan
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
| | | | - Dmitry Karachentsev
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - William Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | | |
Collapse
|
6
|
Johansson B, Oasa S, Muntsant Soria A, Tiiman A, Söderberg L, Amandius E, Möller C, Lannfelt L, Terenius L, Giménez-Llort L, Vukojević V. The interwoven fibril-like structure of amyloid-beta plaques in mouse brain tissue visualized using super-resolution STED microscopy. Cell Biosci 2023; 13:142. [PMID: 37542303 PMCID: PMC10403925 DOI: 10.1186/s13578-023-01086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Standard neuropathologic analysis of Alzheimer's brain relies on traditional fluorescence microscopy, which suffers from limited spatial resolution due to light diffraction. As a result, it fails to reveal intricate details of amyloid plaques. While electron microscopy (EM) offers higher resolution, its extensive sample preparation, involving fixation, dehydration, embedding, and sectioning, can introduce artifacts and distortions in the complex brain tissue. Moreover, EM lacks molecular specificity and has limited field of view and imaging depth. RESULTS In our study, we employed super-resolution Stimulated Emission Depletion (STED) microscopy in conjunction with the anti-human APP recombinant antibody 1C3 fluorescently labelled with DyLightTM633 (1C3-DyLight633). This combination allowed us to visualize amyloidogenic aggregates in vitro and in brain sections from a 17-month-old 3×Tg-AD mouse with sub-diffraction limited spatial resolution. Remarkably, we achieved a spatial resolution of 29 nm in vitro and 62 nm in brain tissue sections, surpassing the capabilities of conventional confocal microscopy by 5-10 times. Consequently, we could discern individual fibrils within plaques, an achievement previously only possible with EM. CONCLUSIONS The utilization of STED microscopy represents a groundbreaking advancement in the field, enabling researchers to delve into the characterization of local mechanisms that underlie Amyloid (Aβ) deposition into plaques and their subsequent clearance. This unprecedented level of detail is especially crucial for comprehending the etiology of Alzheimer's disease and developing the next generation of anti-amyloid treatments. By facilitating the evaluation of drug candidates and non-pharmacological interventions aiming to reduce amyloid burden, STED microscopy emerges as an indispensable tool for driving scientific progress in Alzheimer's research.
Collapse
Affiliation(s)
- Björn Johansson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Sho Oasa
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Aida Muntsant Soria
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Ann Tiiman
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | | | | | | | | | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden.
| |
Collapse
|
7
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Analysis of Non-Amyloidogenic Mutations in APP Supports Loss of Function Hypothesis of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24032092. [PMID: 36768421 PMCID: PMC9916408 DOI: 10.3390/ijms24032092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Proteolytic processing of amyloid precursor protein (APP) plays a critical role in pathogenesis of Azheimer's disease (AD). Sequential cleavage of APP by β- and γ-secretases leads to generation of Aβ40 (non-amyloidogenic) and Aβ42 (amyloidogenic) peptides. Presenilin-1 (PS1) or presenilin-2 (PS2) act as catalytic subunits of γ-secretase. Multiple familial AD (FAD) mutations in APP, PS1, or PS2 affect APP proteolysis by γ-secretase and influence levels of generated Aβ40 and Aβ42 peptides. The predominant idea in the field is the "amyloid hypothesis" that states that the resulting increase in Aβ42:Aβ40 ratio leads to "toxic gain of function" due to the accumulation of toxic Aβ42 plaques and oligomers. An alternative hypothesis based on analysis of PS1 conditional knockout mice is that "loss of function" of γ-secretase plays an important role in AD pathogenesis. In the present paper, we propose a mechanistic hypothesis that may potentially reconcile these divergent ideas and observations. We propose that the presence of soluble Aβ peptides in endosomal lumen (and secreted to the extracellular space) is essential for synaptic and neuronal function. Based on structural modeling of Aβ peptides, we concluded that Aβ42 peptides and Aβ40 peptides containing non-amyloidogenic FAD mutations in APP have increased the energy of association with the membranes, resulting in reduced levels of soluble Aβ in endosomal compartments. Analysis of PS1-FAD mutations also revealed that all of these mutations lead to significant reduction in both total levels of Aβ produced and in the Aβ40/Aβ42 ratio, suggesting that the concentration of soluble Aβ in the endosomal compartments is reduced as a result of these mutations. We further reasoned that similar changes in Aβ production may also occur as a result of age-related accumulation of cholesterol and lipid oxidation products in postsynaptic spines. Our analysis more easily reconciled with the "loss of γ-secretase function" hypothesis than with the "toxic gain of Aβ42 function" idea. These results may also explain why inhibitors of β- and γ- secretase failed in clinical trials, as these compounds are also expected to significantly reduce soluble Aβ levels in the endosomal compartments.
Collapse
|
10
|
Gerosa L, Mazzoleni S, Rusconi F, Longaretti A, Lewerissa E, Pelucchi S, Murru L, Giannelli SG, Broccoli V, Marcello E, Kasri NN, Battaglioli E, Passafaro M, Bassani S. The epilepsy-associated protein PCDH19 undergoes NMDA receptor-dependent proteolytic cleavage and regulates the expression of immediate-early genes. Cell Rep 2022; 39:110857. [PMID: 35613587 PMCID: PMC9152703 DOI: 10.1016/j.celrep.2022.110857] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 02/11/2022] [Accepted: 05/01/2022] [Indexed: 12/02/2022] Open
Abstract
Protocadherin-19 (PCDH19) is a synaptic cell-adhesion molecule encoded by X-linked PCDH19, a gene linked with epilepsy. Here, we report a synapse-to-nucleus signaling pathway through which PCDH19 bridges neuronal activity with gene expression. In particular, we describe the NMDA receptor (NMDAR)-dependent proteolytic cleavage of PCDH19, which leads to the generation of a PCDH19 C-terminal fragment (CTF) able to enter the nucleus. We demonstrate that PCDH19 CTF associates with chromatin and with the chromatin remodeler lysine-specific demethylase 1 (LSD1) and regulates expression of immediate-early genes (IEGs). Our results are consistent with a model whereby PCDH19 favors maintenance of neuronal homeostasis via negative feedback regulation of IEG expression and provide a key to interpreting PCDH19-related hyperexcitability. PCDH19 undergoes NMDAR-dependent cleavage by ADAM10 and possibly gamma secretase In the nucleus, PCDH19 C-terminal fragment (CTF) associates with the chromatin remodeler LSD1 PCDH19 CTF favors immediate-early gene (IEG) repression PCDH19 downregulation affects LSD1 splicing by NOVA1 and increases IEG expression
Collapse
Affiliation(s)
- Laura Gerosa
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Alessandra Longaretti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Elly Lewerissa
- Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy
| | - Luca Murru
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Serena Gea Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Vania Broccoli
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy
| | - Nael Nadif Kasri
- Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Elena Battaglioli
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
11
|
Shan H, Dai H, Chen X. Monitoring Various Bioactivities at the Molecular, Cellular, Tissue, and Organism Levels via Biological Lasers. SENSORS (BASEL, SWITZERLAND) 2022; 22:3149. [PMID: 35590841 PMCID: PMC9102053 DOI: 10.3390/s22093149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The laser is considered one of the greatest inventions of the 20th century. Biolasers employ high signal-to-noise ratio lasing emission rather than regular fluorescence as the sensing signal, directional out-coupling of lasing and excellent biocompatibility. Meanwhile, biolasers can also be micro-sized or smaller lasers with embedded/integrated biological materials. This article presents the progress in biolasers, focusing on the work done over the past years, including the molecular, cellular, tissue, and organism levels. Furthermore, biolasers have been utilized and explored for broad applications in biosensing, labeling, tracking, bioimaging, and biomedical development due to a number of unique advantages. Finally, we provide the possible directions of biolasers and their applications in the future.
Collapse
Affiliation(s)
- Hongrui Shan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Hailang Dai
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
12
|
Pelucchi S, Gardoni F, Di Luca M, Marcello E. Synaptic dysfunction in early phases of Alzheimer's Disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:417-438. [PMID: 35034752 DOI: 10.1016/b978-0-12-819410-2.00022-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synapse is the locus of plasticity where short-term alterations in synaptic strength are converted to long-lasting memories. In addition to the presynaptic terminal and the postsynaptic compartment, a more holistic view of the synapse includes the astrocytes and the extracellular matrix to form a tetrapartite synapse. All these four elements contribute to synapse health and are crucial for synaptic plasticity events and, thereby, for learning and memory processes. Synaptic dysfunction is a common pathogenic trait of several brain disorders. In Alzheimer's Disease, the degeneration of synapses can be detected at the early stages of pathology progression before neuronal degeneration, supporting the hypothesis that synaptic failure is a major determinant of the disease. The synapse is the place where amyloid-β peptides are generated and is the target of the toxic amyloid-β oligomers. All the elements constituting the tetrapartite synapse are altered in Alzheimer's Disease and can synergistically contribute to synaptic dysfunction. Moreover, the two main hallmarks of Alzheimer's Disease, i.e., amyloid-β and tau, act in concert to cause synaptic deficits. Deciphering the mechanisms underlying synaptic dysfunction is relevant for the development of the next-generation therapeutic strategies aimed at modifying the disease progression.
Collapse
Affiliation(s)
- Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
13
|
Kim M, Bezprozvanny I. Conformational Models of APP Processing by Gamma Secretase Based on Analysis of Pathogenic Mutations. Int J Mol Sci 2021; 22:13600. [PMID: 34948396 PMCID: PMC8709358 DOI: 10.3390/ijms222413600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022] Open
Abstract
Proteolytic processing of amyloid precursor protein (APP) plays a critical role in the pathogenesis of Alzheimer's disease (AD). Sequential cleavage of APP by β and γ secretases leads to the generation of Aβ40 (non-amyloidogenic) and Aβ42 (amyloidogenic) peptides. Presenilin-1 (PS1) or presenilin-2 (PS2) play the role of a catalytic subunit of γ-secretase. Multiple familial AD (FAD) mutations in APP, PS1, or PS2 result in an increased Aβ42:Aβ40 ratio and the accumulation of toxic Aβ42 oligomers and plaques in patient brains. In this study, we perform molecular modeling of the APP complex with γ-secretase and analyze potential effects of FAD mutations in APP and PS1. We noticed that all FAD mutations in the APP transmembrane domain are predicted to cause an increase in the local disorder of its secondary structure. Based on structural analysis of known γ-secretase structures, we propose that APP can form a complex with γ-secretase in 2 potential conformations-M1 and M2. In conformation, the M1 transmembrane domain of APP forms a contact with the perimembrane domain that follows transmembrane domain 6 (TM6) in the PS1 structure. In conformation, the M2 transmembrane domain of APP forms a contact with transmembrane domain 7 (TM7) in the PS1 structure. By analyzing the effects of PS1-FAD mutations on the local protein disorder index, we discovered that these mutations increase the conformational flexibility of M2 and reduce the conformational flexibility of M1. Based on these results, we propose that M2 conformation, but not M1 conformation, of the γ secretase complex with APP leads to the amyloidogenic (Aβ42-generating) processing of APP. Our model predicts that APP processing in M1 conformation is favored by curved membranes, such as the membranes of early endosomes. In contrast, APP processing in M2 conformation is likely to be favored by relatively flat membranes, such as membranes of late endosomes and plasma membranes. These predictions are consistent with published biochemical analyses of APP processing at different subcellular locations. Our results also suggest that specific inhibitors of Aβ42 production could be potentially developed by selectively targeting the M2 conformation of the γ secretase complex with APP.
Collapse
Affiliation(s)
- Meewhi Kim
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia
- Laboratory of Synaptic Biology, Southern Federal University, 344006 Rostov-on-Don, Russia
| |
Collapse
|
14
|
Gagliano G, Nelson T, Saliba N, Vargas-Hernández S, Gustavsson AK. Light Sheet Illumination for 3D Single-Molecule Super-Resolution Imaging of Neuronal Synapses. Front Synaptic Neurosci 2021; 13:761530. [PMID: 34899261 PMCID: PMC8651567 DOI: 10.3389/fnsyn.2021.761530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
The function of the neuronal synapse depends on the dynamics and interactions of individual molecules at the nanoscale. With the development of single-molecule super-resolution microscopy over the last decades, researchers now have a powerful and versatile imaging tool for mapping the molecular mechanisms behind the biological function. However, imaging of thicker samples, such as mammalian cells and tissue, in all three dimensions is still challenging due to increased fluorescence background and imaging volumes. The combination of single-molecule imaging with light sheet illumination is an emerging approach that allows for imaging of biological samples with reduced fluorescence background, photobleaching, and photodamage. In this review, we first present a brief overview of light sheet illumination and previous super-resolution techniques used for imaging of neurons and synapses. We then provide an in-depth technical review of the fundamental concepts and the current state of the art in the fields of three-dimensional single-molecule tracking and super-resolution imaging with light sheet illumination. We review how light sheet illumination can improve single-molecule tracking and super-resolution imaging in individual neurons and synapses, and we discuss emerging perspectives and new innovations that have the potential to enable and improve single-molecule imaging in brain tissue.
Collapse
Affiliation(s)
- Gabriella Gagliano
- Department of Chemistry, Rice University, Houston, TX, United States
- Applied Physics Program, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
| | - Tyler Nelson
- Department of Chemistry, Rice University, Houston, TX, United States
- Applied Physics Program, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
| | - Nahima Saliba
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Sofía Vargas-Hernández
- Department of Chemistry, Rice University, Houston, TX, United States
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States
- Institute of Biosciences & Bioengineering, Rice University, Houston, TX, United States
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
- Institute of Biosciences & Bioengineering, Rice University, Houston, TX, United States
- Department of Biosciences, Rice University, Houston, TX, United States
- Laboratory for Nanophotonics, Rice University, Houston, TX, United States
| |
Collapse
|
15
|
Radulović S, Sunkara S, Maurer C, Leitinger G. Digging Deeper: Advancements in Visualization of Inhibitory Synapses in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:12470. [PMID: 34830352 PMCID: PMC8623765 DOI: 10.3390/ijms222212470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Recent research has provided strong evidence that neurodegeneration may develop from an imbalance between synaptic structural components in the brain. Lately, inhibitory synapses communicating via the neurotransmitters GABA or glycine have come to the center of attention. Increasing evidence suggests that imbalance in the structural composition of inhibitory synapses affect deeply the ability of neurons to communicate effectively over synaptic connections. Progressive failure of synaptic plasticity and memory are thus hallmarks of neurodegenerative diseases. In order to prove that structural changes at synapses contribute to neurodegeneration, we need to visualize single-molecule interactions at synaptic sites in an exact spatial and time frame. This visualization has been restricted in terms of spatial and temporal resolution. New developments in electron microscopy and super-resolution microscopy have improved spatial and time resolution tremendously, opening up numerous possibilities. Here we critically review current and recently developed methods for high-resolution visualization of inhibitory synapses in the context of neurodegenerative diseases. We present advantages, strengths, weaknesses, and current limitations for selected methods in research, as well as present a future perspective. A range of new options has become available that will soon help understand the involvement of inhibitory synapses in neurodegenerative disorders.
Collapse
Affiliation(s)
- Snježana Radulović
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (S.S.)
| | - Sowmya Sunkara
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (S.S.)
| | - Christa Maurer
- Gottfried Schatz Research Center, Division of Macroscopic and Clinical Anatomy, Medical University of Graz, 8010 Graz, Austria;
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (S.S.)
| |
Collapse
|
16
|
Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nat Rev Neurosci 2021; 22:723-740. [PMID: 34725519 DOI: 10.1038/s41583-021-00531-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
The synapse has emerged as a critical neuronal structure in the degenerative process of Alzheimer disease (AD), in which the pathogenic signals of two key players - amyloid-β (Aβ) and tau - converge, thereby causing synaptic dysfunction and cognitive deficits. The synapse presents a dynamic, confined microenvironment in which to explore how key molecules travel, localize, interact and assume different levels of organizational complexity, thereby affecting neuronal function. However, owing to their small size and the diffraction-limited resolution of conventional light microscopic approaches, investigating synaptic structure and dynamics has been challenging. Super-resolution microscopy (SRM) techniques have overcome the resolution barrier and are revolutionizing our quantitative understanding of biological systems in unprecedented spatio-temporal detail. Here we review critical new insights provided by SRM into the molecular architecture and dynamic organization of the synapse and, in particular, the interactions between Aβ and tau in this compartment. We further highlight how SRM can transform our understanding of the molecular pathological mechanisms that underlie AD. The application of SRM for understanding the roles of synapses in AD pathology will provide a stepping stone towards a broader understanding of dysfunction in other subcellular compartments and at cellular and circuit levels in this disease.
Collapse
|
17
|
Kedia S, Mandal K, Netrakanti PR, Jose M, Sisodia SS, Nair D. Nanoscale organization of Nicastrin, the substrate receptor of the γ-secretase complex, as independent molecular domains. Mol Brain 2021; 14:158. [PMID: 34645511 PMCID: PMC8515736 DOI: 10.1186/s13041-021-00855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
Alterations in the canonical processing of Amyloid Precursor Protein generate proteoforms that contribute to the onset of Alzheimer’s Disease. Modified composition of γ-secretase or mutations in its subunits has been directly linked to altered generation of Amyloid beta. Despite biochemical evidence about the role of γ-secretase in the generation of APP, the molecular origin of how spatial heterogeneity in the generation of proteoforms arises is not well understood. Here, we evaluated the localization of Nicastrin, a γ-secretase subunit, at nanometer sized functional zones of the synapse. With the help of super resolution microscopy, we confirm that Nicastrin is organized into nanodomains of high molecular density within an excitatory synapse. A similar nanoorganization was also observed for APP and the catalytic subunit of γ-secretase, Presenilin 1, that were discretely associated with Nicastrin nanodomains. Though Nicastrin is a functional subunit of γ-secretase, the Nicastrin and Presenilin1 nanodomains were either colocalized or localized independent of each other. The Nicastrin and Presenilin domains highlight a potential independent regulation of these molecules different from their canonical secretase function. The collisions between secretases and substrate molecules decide the probability and rate of product formation for transmembrane proteolysis. Our observations of secretase nanodomains indicate a spatial difference in the confinement of substrate and secretases, affecting the local probability of product formation by increasing their molecular availability, resulting in differential generation of proteoforms even within single synapses.
Collapse
Affiliation(s)
- Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India
| | - Kousik Mandal
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India
| | | | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India
| | - Sangram S Sisodia
- Centre for Molecular Neurobiology, Department of Neurobiology, The University of Chicago, 60637, Chicago, IL, USA
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India.
| |
Collapse
|
18
|
Yu Y, Gao Y, Winblad B, Tjernberg LO, Schedin-Weiss S. A Super-Resolved View of the Alzheimer's Disease-Related Amyloidogenic Pathway in Hippocampal Neurons. J Alzheimers Dis 2021; 83:833-852. [PMID: 34366358 PMCID: PMC8543249 DOI: 10.3233/jad-215008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Processing of the amyloid-β protein precursor (AβPP) is neurophysiologically important due to the resulting fragments that regulate synapse biology, as well as potentially harmful due to generation of the 42 amino acid long amyloid β-peptide (Aβ42), which is a key player in Alzheimer's disease. OBJECTIVE Our aim was to clarify the subcellular locations of the fragments involved in the amyloidogenic pathway in primary neurons with a focus on Aβ42 and its immediate substrate AβPP C-terminal fragment (APP-CTF). To overcome the difficulties of resolving these compartments due to their small size, we used super-resolution microscopy. METHODS Mouse primary hippocampal neurons were immunolabelled and imaged by stimulated emission depletion (STED) microscopy, including three-dimensional three-channel imaging, and quantitative image analyses. RESULTS The first (β-secretase) and second (γ-secretase) cleavages of AβPP were localized to functionally and distally distinct compartments. The β-secretase cleavage was observed in early endosomes in soma, where we were able to show that the liberated N- and C-terminal fragments were sorted into distinct vesicles budding from the early endosomes. Lack of colocalization of Aβ42 and APP-CTF in soma suggested that γ-secretase cleavage occurs in neurites. Indeed, APP-CTF was, in line with Aβ42 in our previous study, enriched in the presynapse but absent from the postsynapse. In contrast, full-length AβPP was not detected in either the pre- or the postsynaptic side of the synapse. Furthermore, we observed that endogenously produced and endocytosed Aβ42 were localized in different compartments. CONCLUSION These findings provide critical super-resolved insight into amyloidogenic AβPP processing in primary neurons.
Collapse
Affiliation(s)
- Yang Yu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Yang Gao
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
19
|
Lin T, Tjernberg LO, Schedin-Weiss S. Neuronal Trafficking of the Amyloid Precursor Protein-What Do We Really Know? Biomedicines 2021; 9:801. [PMID: 34356865 PMCID: PMC8301342 DOI: 10.3390/biomedicines9070801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, contributing to 60-80% of cases. It is a neurodegenerative disease that usually starts symptomless in the first two to three decades and then propagates into a long-term, irreversible disease, resulting in the progressive loss of memory, reasoning, abstraction and language capabilities. It is a complex disease, involving a large number of entangled players, and there is no effective treatment to cure it or alter its progressive course. Therefore, a thorough understanding of the disease pathology and an early diagnosis are both necessary. AD has two significant pathological hallmarks: extracellular senile plaques composed of amyloid β-peptide (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein, and the aggregation of Aβ, which starts in earlier stages, is usually claimed to be the primary cause of AD. Secretases that cleave Aβ precursor protein (APP) and produce neurotoxic Aβ reside in distinct organelles of the cell, and current concepts suggest that APP moves between distinct intracellular compartments. Obviously, APP transport and processing are intimately related processes that cannot be dissociated from each other, and, thus, how and where APP is transported determines its processing fate. In this review, we summarize critical mechanisms underlying neuronal APP transport, which we divide into separate parts: (1) secretory pathways and (2) endocytic and autophagic pathways. We also include two lipoprotein receptors that play essential roles in APP transport: sorting-related receptor with A-type repeats and sortilin. Moreover, we consider here some major disruptions in the neuronal transport of APP that contribute to AD physiology and pathology. Lastly, we discuss current methods and technical difficulties in the studies of APP transport.
Collapse
Affiliation(s)
| | - Lars O. Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Stockholm, Sweden;
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Stockholm, Sweden;
| |
Collapse
|
20
|
Carvalhais LG, Martinho VC, Ferreiro E, Pinheiro PS. Unraveling the Nanoscopic Organization and Function of Central Mammalian Presynapses With Super-Resolution Microscopy. Front Neurosci 2021; 14:578409. [PMID: 33584169 PMCID: PMC7874199 DOI: 10.3389/fnins.2020.578409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
The complex, nanoscopic scale of neuronal function, taking place at dendritic spines, axon terminals, and other minuscule structures, cannot be adequately resolved using standard, diffraction-limited imaging techniques. The last couple of decades saw a rapid evolution of imaging methods that overcome the diffraction limit imposed by Abbe's principle. These techniques, including structured illumination microscopy (SIM), stimulated emission depletion (STED), photo-activated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM), among others, have revolutionized our understanding of synapse biology. By exploiting the stochastic nature of fluorophore light/dark states or non-linearities in the interaction of fluorophores with light, by using modified illumination strategies that limit the excitation area, these methods can achieve spatial resolutions down to just a few tens of nm or less. Here, we review how these advanced imaging techniques have contributed to unprecedented insight into the nanoscopic organization and function of mammalian neuronal presynapses, revealing new organizational principles or lending support to existing views, while raising many important new questions. We further discuss recent technical refinements and newly developed tools that will continue to expand our ability to delve deeper into how synaptic function is orchestrated at the nanoscopic level.
Collapse
Affiliation(s)
- Lia G Carvalhais
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Vera C Martinho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paulo S Pinheiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Kedia S, Ramakrishna P, Netrakanti PR, Singh N, Sisodia SS, Jose M, Kumar S, Mahadevan A, Ramanan N, Nadkarni S, Nair D. Alteration in synaptic nanoscale organization dictates amyloidogenic processing in Alzheimer's disease. iScience 2020; 24:101924. [PMID: 33409475 PMCID: PMC7773964 DOI: 10.1016/j.isci.2020.101924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Despite intuitive insights into differential proteolysis of amyloid precursor protein (APP), the stochasticity behind local product formation through amyloidogenic pathway at individual synapses remain unclear. Here, we show that the major components of amyloidogenic machinery namely, APP and secretases are discretely organized into nanodomains of high local concentration compared to their immediate environment in functional zones of the synapse. Additionally, with the aid of multiple models of Alzheimer's disease (AD), we confirm that this discrete nanoscale chemical map of amyloidogenic machinery is altered at excitatory synapses. Furthermore, we provide realistic models of amyloidogenic processing in unitary vesicles originating from the endocytic zone of excitatory synapses. Thus, we show how an alteration in the stochasticity of synaptic nanoscale organization contributes to the dynamic range of C-terminal fragments β (CTFβ) production, defining the heterogeneity of amyloidogenic processing at individual synapses, leading to long-term synaptic deficits as seen in AD. Components of amyloidogenic machinery are organized into nanodomains Assembly of nanodomains differs between functional zones of the synapse Stochasticity of nanoscale organization dictates dynamic range of APP proteolysis Variability in composition of amyloidogenic machinery is associated with AD
Collapse
Affiliation(s)
- Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Nivedita Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sangram S Sisodia
- Center for Molecular Neurobiology, Department of Neurobiology, The University of Chicago, IL 60637, USA
| | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sathish Kumar
- Department of Neurology, University of Bonn, Bonn 53127, Germany
| | - Anita Mahadevan
- Department of Neuropathology, NIMHANS, Bangalore 560029, India
| | | | - Suhita Nadkarni
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Abstract
Enzymes are a class of protein that catalyze a wide range of chemical reactions, including the cleavage of specific peptide bonds. They are expressed in all cell types, play vital roles in tissue development and homeostasis, and in many diseases, such as cancer. Enzymatic activity is tightly controlled through the use of inactive pro-enzymes, endogenous inhibitors and spatial localization. Since the presence of specific enzymes is often correlated with biological processes, and these proteins can directly modify biomolecules, they are an ideal biological input for cell-responsive biomaterials. These materials include both natural and synthetic polymers, cross-linked hydrogels and self-assembled peptide nanostructures. Within these systems enzymatic activity has been used to induce biodegradation, release therapeutic agents and for disease diagnosis. As technological advancements increase our ability to quantify the expression and nanoscale organization of proteins in cells and tissues, as well as the synthesis of increasingly complex and well-defined biomaterials, enzyme-responsive biomaterials are poised to play vital roles in the future of biomedicine.
Collapse
Affiliation(s)
- E. Thomas Pashuck
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Science, Lehigh University Bethlehem Pennsylvania USA
| |
Collapse
|
23
|
Parra-Damas A, Saura CA. Tissue Clearing and Expansion Methods for Imaging Brain Pathology in Neurodegeneration: From Circuits to Synapses and Beyond. Front Neurosci 2020; 14:914. [PMID: 33122983 PMCID: PMC7571329 DOI: 10.3389/fnins.2020.00914] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022] Open
Abstract
Studying the structural alterations occurring during diseases of the nervous system requires imaging heterogeneous cell populations at the circuit, cellular and subcellular levels. Recent advancements in brain tissue clearing and expansion methods allow unprecedented detailed imaging of the nervous system through its entire scale, from circuits to synapses, including neurovascular and brain lymphatics elements. Here, we review the state-of-the-art of brain tissue clearing and expansion methods, mentioning their main advantages and limitations, and suggest their parallel implementation for circuits-to-synapses brain imaging using conventional (diffraction-limited) light microscopy -such as confocal, two-photon and light-sheet microscopy- to interrogate the cellular and molecular basis of neurodegenerative diseases. We discuss recent studies in which clearing and expansion methods have been successfully applied to study neuropathological processes in mouse models and postmortem human brain tissue. Volumetric imaging of cleared intact mouse brains and large human brain samples has allowed unbiased assessment of neuropathological hallmarks. In contrast, nanoscale imaging of expanded cells and brain tissue has been used to study the effect of protein aggregates on specific subcellular structures. Therefore, these approaches can be readily applied to study a wide range of brain processes and pathological mechanisms with cellular and subcellular resolution in a time- and cost-efficient manner. We consider that a broader implementation of these technologies is necessary to reveal the full landscape of cellular and molecular mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos A Saura
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Lemon WC, McDole K. Live-cell imaging in the era of too many microscopes. Curr Opin Cell Biol 2020; 66:34-42. [PMID: 32470820 DOI: 10.1016/j.ceb.2020.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023]
Abstract
At the time of this writing, searching Google Scholar for 'light-sheet microscopy' returns almost 8500 results; over three-quarters of which were published in the last 5 years alone. Searching for other advanced imaging methods in the last 5 years yields similar results: 'super-resolution microscopy' (>16 000), 'single-molecule imaging' (almost 10 000), SPIM (Single Plane Illumination Microscopy, 5000), and 'lattice light-sheet' (1300). The explosion of new imaging methods has also produced a dizzying menagerie of acronyms, with over 100 different species of 'light-sheet' alone, from SPIM to UM (Ultra microscopy) to SiMView (Simultaneous MultiView) to iSPIM (inclined SPIM, not to be confused with iSPIM, inverted SPIM). How then is the average biologist, without an advanced degree in physics, optics, or computer science supposed to make heads or tails of which method is best suited for their needs? Let us also not forget the plight of the optical physicist, who at best might need help with obtaining healthy samples and keeping them that way, or at worst may not realize the impact their newest technique could have for biologists. This review will not attempt to solve all these problems, but instead highlight some of the most recent, successful mergers between biology and advanced imaging technologies, as well as hopefully provide some guidance for anyone interested in journeying into the world of live-cell imaging.
Collapse
Affiliation(s)
- William C Lemon
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
25
|
Barthet G, Mulle C. Presynaptic failure in Alzheimer's disease. Prog Neurobiol 2020; 194:101801. [PMID: 32428558 DOI: 10.1016/j.pneurobio.2020.101801] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Synaptic loss is the best correlate of cognitive deficits in Alzheimer's disease (AD). Extensive experimental evidence also indicates alterations of synaptic properties at the early stages of disease progression, before synapse loss and neuronal degeneration. A majority of studies in mouse models of AD have focused on post-synaptic mechanisms, including impairment of long-term plasticity, spine structure and glutamate receptor-mediated transmission. Here we review the literature indicating that the synaptic pathology in AD includes a strong presynaptic component. We describe the evidence indicating presynaptic physiological functions of the major molecular players in AD. These include the amyloid precursor protein (APP) and the two presenilin (PS) paralogs PS1 or PS2, genetically linked to the early-onset form of AD, in addition to tau which accumulates in a pathological form in the AD brain. Three main mechanisms participating in presynaptic functions are highlighted. APP fragments bind to presynaptic receptors (e.g. nAChRs and GABAB receptors), presenilins control Ca2+ homeostasis and Ca2+-sensors, and tau regulates the localization of presynaptic molecules and synaptic vesicles. We then discuss how impairment of these presynaptic physiological functions can explain or forecast the hallmarks of synaptic impairment and associated dysfunction of neuronal circuits in AD. Beyond the physiological roles of the AD-related proteins, studies in AD brains also support preferential presynaptic alteration. This review features presynaptic failure as a strong component of pathological mechanisms in AD.
Collapse
Affiliation(s)
- Gael Barthet
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, France.
| |
Collapse
|
26
|
Proximity ligation assay reveals both pre- and postsynaptic localization of the APP-processing enzymes ADAM10 and BACE1 in rat and human adult brain. BMC Neurosci 2020; 21:6. [PMID: 32019490 PMCID: PMC7001251 DOI: 10.1186/s12868-020-0554-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/27/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Synaptic degeneration and accumulation of amyloid β-peptides (Aβ) are hallmarks of the Alzheimer diseased brain. Aβ is synaptotoxic and produced by sequential cleavage of the amyloid precursor protein (APP) by the β-secretase BACE1 and by γ-secretase. If APP is instead cleaved by the α-secretase ADAM10, Aβ will not be generated. Although BACE1 is considered to be a presynaptic protein and ADAM10 has been reported to mainly localize to the postsynaptic density, we have previously shown that both ADAM10 and BACE1 are highly enriched in synaptic vesicles of rat brain and mouse primary hippocampal neurons. RESULTS Here, using brightfield proximity ligation assay, we expanded our previous result in primary neurons and investigated the in situ synaptic localization of ADAM10 and BACE1 in rat and human adult brain using both pre- and postsynaptic markers. We found that ADAM10 and BACE1 were in close proximity with both the presynaptic marker synaptophysin and the postsynaptic marker PSD-95. The substrate APP was also detected both pre- and postsynaptically. Subcellular fractionation confirmed that ADAM10 and BACE1 are enriched to a similar degree in synaptic vesicles and as well as in the postsynaptic density. CONCLUSIONS We show that the α-secretase ADAM10 and the β-secretase BACE1 are located in both the pre- and postsynaptic compartments in intact brain sections. These findings increase our understanding of the regulation of APP processing, thereby facilitating development of more specific treatment strategies.
Collapse
|
27
|
Abstract
The gut microbiota is a central regulator of host metabolism. The composition and function of the gut microbiota is dynamic and affected by diet properties such as the amount and composition of lipids. Hence, dietary lipids may influence host physiology through interaction with the gut microbiota. Lipids affect the gut microbiota both as substrates for bacterial metabolic processes, and by inhibiting bacterial growth by toxic influence. The gut microbiota has been shown to affect lipid metabolism and lipid levels in blood and tissues, both in mice and humans. Furthermore, diseases linked to dyslipidemia, such as non-alcoholic liver disease and atherosclerosis, are associated with changes in gut microbiota profile. The influence of the gut microbiota on host lipid metabolism may be mediated through metabolites produced by the gut microbiota such as short-chain fatty acids, secondary bile acids and trimethylamine and by pro-inflammatory bacterially derived factors such as lipopolysaccharide. Here we will review the association between gut microbiota, dietary lipids and lipid metabolism.
Collapse
Affiliation(s)
- Marc Schoeler
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345, Gothenburg, Sweden.
| |
Collapse
|
28
|
Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2019; 22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.
Collapse
Affiliation(s)
- Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore.,Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
29
|
Cosentino M, Canale C, Bianchini P, Diaspro A. AFM-STED correlative nanoscopy reveals a dark side in fluorescence microscopy imaging. SCIENCE ADVANCES 2019; 5:eaav8062. [PMID: 31223651 PMCID: PMC6584704 DOI: 10.1126/sciadv.aav8062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
It is known that the presence of fluorophores can influence the dynamics of molecular processes. Despite this, an affordable technique to control the fluorophore distribution within the sample, as well as the rise of unpredictable anomalous processes induced by the fluorophore itself, is missing. We coupled a stimulated emission depletion (STED) microscope with an atomic force microscope to investigate the formation of amyloid aggregates. In particular, we studied the in vitro aggregation of insulin and two alloforms of β amyloid peptides. We followed standard methods to induce the aggregation and to label the molecules at different dye-to-protein ratios. Only a fraction of the fibrillar aggregates was displayed in STED images, indicating that the labeled molecules did not participate indistinctly to the aggregation process. This finding demonstrates that labeled molecules follow only selected pathways of aggregation, among the multiple that are present in the aggregation reaction.
Collapse
Affiliation(s)
- Michela Cosentino
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
- DIBRIS Department, University of Genova, Genova, Italy
| | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Physics, University of Genova, Genova, Italy
| | - Paolo Bianchini
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Physics, University of Genova, Genova, Italy
| |
Collapse
|
30
|
Martinsson I, Capetillo-Zarate E, Faideau M, Willén K, Esteras N, Frykman S, Tjernberg LO, Gouras GK. APP depletion alters selective pre- and post-synaptic proteins. Mol Cell Neurosci 2019; 95:86-95. [PMID: 30763689 DOI: 10.1016/j.mcn.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 12/30/2022] Open
Abstract
The normal role of Alzheimer's disease (AD)-linked amyloid precursor protein (APP) in the brain remains incompletely understood. Previous studies have reported that lack of APP has detrimental effects on spines and electrophysiological parameters. APP has been described to be important in synaptic pruning during development. The effect of APP knockout on mature synapses is complicated by this role in development. We previously reported on differential changes in synaptic proteins and receptors in APP mutant AD transgenic compared to wild-type neurons, which revealed selective decreases in levels of pre- and post-synaptic proteins, including of surface glutamate receptors. In the present study, we undertook a similar analysis of synaptic composition but now in APP knockout compared to wild-type mouse neurons. Here we demonstrate alterations in levels of selective pre- and post-synaptic proteins and receptors in APP knockout compared to wild-type mouse primary neurons in culture and brains of mice in youth and adulthood. Remarkably, we demonstrate selective increases in levels of synaptic proteins, such as GluA1, in neurons with APP knockout and with RNAi knockdown, which tended to be opposite to the reductions seen in AD transgenic APP mutant compared to wild-type neurons. These data reinforce that APP is important for the normal composition of synapses.
Collapse
Affiliation(s)
- Isak Martinsson
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Estibaliz Capetillo-Zarate
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY, USA; Achucarro Basque Center for Neuroscience, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco. Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mathilde Faideau
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Katarina Willén
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Noemi Esteras
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY, USA
| | - Susanne Frykman
- Karolinska Institute, Dept. of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Lars O Tjernberg
- Karolinska Institute, Dept. of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
31
|
Brodin L, Shupliakov O. Retromer in Synaptic Function and Pathology. Front Synaptic Neurosci 2018; 10:37. [PMID: 30405388 PMCID: PMC6207580 DOI: 10.3389/fnsyn.2018.00037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
The retromer complex mediates export of select transmembrane proteins from endosomes to the trans-Golgi network (TGN) or to the plasma membrane. Dysfunction of retromer has been linked with slowly progressing neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease (AD and PD). As these disorders affect synapses it is of key importance to clarify the function of retromer-dependent protein trafficking pathways in pre- and postsynaptic compartments. Here we discuss recent insights into the roles of retromer in the trafficking of synaptic vesicle proteins, neurotransmitter receptors and other synaptic proteins. We also consider evidence that implies synapses as sites of early pathology in neurodegenerative disorders, pointing to a possible role of synaptic retromer dysfunction in the initiation of disease.
Collapse
Affiliation(s)
- Lennart Brodin
- Department of Neuroscience, Karolinska Institutet (KI), Stockholm, Sweden
| | - Oleg Shupliakov
- Department of Neuroscience, Karolinska Institutet (KI), Stockholm, Sweden.,Institute of Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia
| |
Collapse
|
32
|
Yu Y, Jans DC, Winblad B, Tjernberg LO, Schedin-Weiss S. Neuronal Aβ42 is enriched in small vesicles at the presynaptic side of synapses. Life Sci Alliance 2018; 1:e201800028. [PMID: 30456353 PMCID: PMC6238618 DOI: 10.26508/lsa.201800028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022] Open
Abstract
Super-resolution microscopy reveals that Aβ42 is mainly present at the presynaptic side of the synapse. The amyloid β-peptide (Aβ) is a physiological ubiquitously expressed peptide suggested to be involved in synaptic function, long-term potentiation, and memory function. The 42 amino acid-long variant (Aβ42) forms neurotoxic oligomers and amyloid plaques and plays a key role in the loss of synapses and other pathogenic events of Alzheimer disease. Still, the exact localization of Aβ42 in neurons and at synapses has not been reported. Here, we used super-resolution microscopy and show that Aβ42 was present in small vesicles in presynaptic compartments, but not in postsynaptic compartments, in the neurites of hippocampal neurons. Some of these vesicles appeared to lack synaptophysin, indicating that they differ from the synaptic vesicles responsible for neurotransmitter release. The Aβ42-containing vesicles existed in presynapses connected to stubby spines and mushroom spines, and were also present in immature presynapses. These vesicles were scarce in other parts of the neurites, where Aβ42 was instead present in large, around 200–600 nm, vesicular structures. Three-dimensional super-resolution microscopy confirmed that Aβ42 was present in the presynapse and absent in the postsynapse.
Collapse
Affiliation(s)
- Yang Yu
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Huddinge, Sweden
| | - Daniel C Jans
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Bengt Winblad
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Huddinge, Sweden
| | - Lars O Tjernberg
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Huddinge, Sweden
| | - Sophia Schedin-Weiss
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
33
|
Raab M, Jusuk I, Molle J, Buhr E, Bodermann B, Bergmann D, Bosse H, Tinnefeld P. Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures. Sci Rep 2018; 8:1780. [PMID: 29379061 PMCID: PMC5789094 DOI: 10.1038/s41598-018-19905-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022] Open
Abstract
In recent years, DNA origami nanorulers for superresolution (SR) fluorescence microscopy have been developed from fundamental proof-of-principle experiments to commercially available test structures. The self-assembled nanostructures allow placing a defined number of fluorescent dye molecules in defined geometries in the nanometer range. Besides the unprecedented control over matter on the nanoscale, robust DNA origami nanorulers are reproducibly obtained in high yields. The distances between their fluorescent marks can be easily analysed yielding intermark distance histograms from many identical structures. Thus, DNA origami nanorulers have become excellent reference and training structures for superresolution microscopy. In this work, we go one step further and develop a calibration process for the measured distances between the fluorescent marks on DNA origami nanorulers. The superresolution technique DNA-PAINT is used to achieve nanometrological traceability of nanoruler distances following the guide to the expression of uncertainty in measurement (GUM). We further show two examples how these nanorulers are used to evaluate the performance of TIRF microscopes that are capable of single-molecule localization microscopy (SMLM).
Collapse
Affiliation(s)
- Mario Raab
- Institute for Physical & Theoretical Chemistry, and Braunschweig, Integrated Centre of Systems Biology (BRICS) and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, Rebenring 56, 38106, Braunschweig, Germany.,Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstr, 5-13, 81377, Muenchen, Germany
| | - Ija Jusuk
- Institute for Physical & Theoretical Chemistry, and Braunschweig, Integrated Centre of Systems Biology (BRICS) and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, Rebenring 56, 38106, Braunschweig, Germany.,Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstr, 5-13, 81377, Muenchen, Germany
| | - Julia Molle
- Institute for Physical & Theoretical Chemistry, and Braunschweig, Integrated Centre of Systems Biology (BRICS) and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, Rebenring 56, 38106, Braunschweig, Germany
| | - Egbert Buhr
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Bernd Bodermann
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Detlef Bergmann
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Harald Bosse
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Philip Tinnefeld
- Institute for Physical & Theoretical Chemistry, and Braunschweig, Integrated Centre of Systems Biology (BRICS) and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, Rebenring 56, 38106, Braunschweig, Germany. .,Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstr, 5-13, 81377, Muenchen, Germany.
| |
Collapse
|
34
|
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat Rev Neurol 2017; 14:22-39. [DOI: 10.1038/nrneurol.2017.162] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Heller JP, Rusakov DA. The Nanoworld of the Tripartite Synapse: Insights from Super-Resolution Microscopy. Front Cell Neurosci 2017; 11:374. [PMID: 29225567 PMCID: PMC5705901 DOI: 10.3389/fncel.2017.00374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Synaptic connections between individual nerve cells are fundamental to the process of information transfer and storage in the brain. Over the past decades a third key partner of the synaptic machinery has been unveiled: ultrathin processes of electrically passive astroglia which often surround pre- and postsynaptic structures. The recent advent of super-resolution (SR) microscopy has begun to uncover the dynamic nanoworld of synapses and their astroglial environment. Here we overview and discuss the current progress in our understanding of the synaptic nanoenvironment, as gleaned from the imaging methods that go beyond the diffraction limit of conventional light microscopy. We argue that such methods are essential to achieve a new level of comprehension pertinent to the principles of signal integration in the brain.
Collapse
Affiliation(s)
- Janosch P Heller
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, United Kingdom.,Institute of Neuroscience, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
36
|
Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, Bogdanovic N, Winblad B, Sandebring-Matton A, Frykman S, Tjernberg LO. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. ALZHEIMERS RESEARCH & THERAPY 2017; 9:57. [PMID: 28764767 PMCID: PMC5540560 DOI: 10.1186/s13195-017-0279-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/21/2017] [Indexed: 01/03/2023]
Abstract
Background Increased levels of the pathogenic amyloid β-peptide (Aβ), released from its precursor by the transmembrane protease γ-secretase, are found in Alzheimer disease (AD) brains. Interestingly, monoamine oxidase B (MAO-B) activity is also increased in AD brain, but its role in AD pathogenesis is not known. Recent neuroimaging studies have shown that the increased MAO-B expression in AD brain starts several years before the onset of the disease. Here, we show a potential connection between MAO-B, γ-secretase and Aβ in neurons. Methods MAO-B immunohistochemistry was performed on postmortem human brain. Affinity purification of γ-secretase followed by mass spectrometry was used for unbiased identification of γ-secretase-associated proteins. The association of MAO-B with γ-secretase was studied by coimmunoprecipitation from brain homogenate, and by in-situ proximity ligation assay (PLA) in neurons as well as mouse and human brain sections. The effect of MAO-B on Aβ production and Notch processing in cell cultures was analyzed by siRNA silencing or overexpression experiments followed by ELISA, western blot or FRET analysis. Methodology for measuring relative intraneuronal MAO-B and Aβ42 levels in single cells was developed by combining immunocytochemistry and confocal microscopy with quantitative image analysis. Results Immunohistochemistry revealed MAO-B staining in neurons in the frontal cortex, hippocampus CA1 and entorhinal cortex in postmortem human brain. Interestingly, the neuronal staining intensity was higher in AD brain than in control brain in these regions. Mass spectrometric data from affinity purified γ-secretase suggested that MAO-B is a γ-secretase-associated protein, which was confirmed by immunoprecipitation and PLA, and a neuronal location of the interaction was shown. Strikingly, intraneuronal Aβ42 levels correlated with MAO-B levels, and siRNA silencing of MAO-B resulted in significantly reduced levels of intraneuronal Aβ42. Furthermore, overexpression of MAO-B enhanced Aβ production. Conclusions This study shows that MAO-B levels are increased not only in astrocytes but also in pyramidal neurons in AD brain. The study also suggests that MAO-B regulates Aβ production in neurons via γ-secretase and thereby provides a key to understanding the relationship between MAO-B and AD pathogenesis. Potentially, the γ-secretase/MAO-B association may be a target for reducing Aβ levels using protein–protein interaction breakers. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0279-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophia Schedin-Weiss
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden.
| | - Mitsuhiro Inoue
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden.,Present address: Dainippon Sumitomo Pharma Co., Ltd, Drug Development Research Laboratories, Osaka, Japan
| | - Lenka Hromadkova
- National Institute of Mental Health, Klecany, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Yasuhiro Teranishi
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden.,Present address: Dainippon Sumitomo Pharma Co., Ltd, Drug Development Research Laboratories, Osaka, Japan
| | - Natsuko Goto Yamamoto
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden.,Present address: Dainippon Sumitomo Pharma Co., Ltd, Drug Development Research Laboratories, Osaka, Japan
| | - Birgitta Wiehager
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Nenad Bogdanovic
- Department of Geriatric Medicine, University in Oslo, Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Bengt Winblad
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Anna Sandebring-Matton
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Susanne Frykman
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Lars O Tjernberg
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| |
Collapse
|
37
|
Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM. Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony. Trends Neurosci 2017; 40:347-357. [PMID: 28494972 DOI: 10.1016/j.tins.2017.04.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by memory loss, cognitive decline, and devastating neurodegeneration, not only as a result of the extracellular accumulation of beta-amyloid peptide (Aβ) and intracellular accumulation of tau, but also as a consequence of the dysfunction and loss of synapses. Although significant advances have been made in our understanding of the relationship of the pathological role of Aβ and tau in synapse dysfunction, several questions remain as to how Aβ and tau interdependently cause impairments in synaptic function in AD. Overall, more insight into these questions should enable researchers in this field to develop novel therapeutic targets to mitigate or delay the cognitive deficits associated with this devastating disease.
Collapse
Affiliation(s)
- Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Alessandra C Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
38
|
Zoltowska KM, Maesako M, Lushnikova I, Takeda S, Keller LJ, Skibo G, Hyman BT, Berezovska O. Dynamic presenilin 1 and synaptotagmin 1 interaction modulates exocytosis and amyloid β production. Mol Neurodegener 2017; 12:15. [PMID: 28193235 PMCID: PMC5307796 DOI: 10.1186/s13024-017-0159-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background Alzheimer’s disease (AD)-linked protein, presenilin 1 (PS1), is present at the synapse, and the knock-out of presenilin in mice leads to synaptic dysfunction. On the other hand, synaptic activity was shown to influence PS1-dependent generation of distinct amyloid β (Aβ) species. However, the precise nature of these regulations remains unclear. The current study reveals novel role of PS1 at the synapse, and deciphers how PS1 and synaptic vesicle-associated protein, synaptotagmin 1 (Syt1) modulate each other functions in neurons via direct activity-triggered interaction. Additionally, the therapeutic potential of fostering PS1-Syt1 binding is investigated as a synapse-specific strategy for AD prevention. Methods PS1-based cell-permeable peptide targeting PS1-Syt1 binding site was designed to inhibit PS1-Syt1 interaction in neurons. PS1 conformation, synaptic vesicle exocytosis and trafficking were assayed by fluorescence lifetime imaging microscopy (FLIM), glutamate release/synaptopHluorin assay, and fluorescence recovery after photobleaching, respectively. Syt1 level and interaction with PS1 in control and sporadic AD brains were determined by immunohistochemistry and FLIM. AAV-mediated delivery of Syt1 into mouse hippocampi was used to investigate the therapeutic potential of strengthening PS1-Syt1 binding in vivo. Statistical significance was determined using two-tailed unpaired Student’s t-test, Mann-Whitney’s U-test or two-way ANOVA followed by a Bonferroni’s post-test. Results We demonstrate that targeted inhibition of the PS1-Syt1 binding in neurons, without changing the proteins’ expression level, triggers “pathogenic” conformational shift of PS1, and consequent increase in the Aβ42/40 ratio. Moreover, our data indicate that PS1, by binding directly to Syt1, regulates synaptic vesicle trafficking and facilitates exocytosis and neurotransmitter release. Analysis of human brain tissue revealed that not only Syt1 levels but also interactions between remaining Syt1 and PS1 are diminished in sporadic AD. On the other hand, overexpression of Syt1 in mouse hippocampi was found to potentiate PS1-Syt1 binding and promote “protective” PS1 conformation. Conclusions The study reports novel functions of PS1 and Syt1 at the synapse, and demonstrates the importance of PS1-Syt1 binding for exocytosis and safeguarding PS1 conformation. It suggests that reduction in the Syt1 level and PS1-Syt1 interactions in AD brain may present molecular underpinning of the pathogenic PS1 conformation, increased Aβ42/40 ratio, and impaired exocytosis. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0159-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Marta Zoltowska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Masato Maesako
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Iryna Lushnikova
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024, Kyiv, Ukraine
| | - Shuko Takeda
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Laura J Keller
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Galina Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024, Kyiv, Ukraine
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Oksana Berezovska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA.
| |
Collapse
|
39
|
Superresolution Imaging of Clinical Formalin Fixed Paraffin Embedded Breast Cancer with Single Molecule Localization Microscopy. Sci Rep 2017; 7:40766. [PMID: 28098202 PMCID: PMC5241681 DOI: 10.1038/srep40766] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
Millions of archived formalin-fixed, paraffin-embedded (FFPE) specimens contain valuable molecular insight into healthy and diseased states persevered in their native ultrastructure. To diagnose and treat diseases in tissue on the nanoscopic scale, pathology traditionally employs electron microscopy (EM), but this platform has significant limitations including cost and painstaking sample preparation. The invention of single molecule localization microscopy (SMLM) optically overcame the diffraction limit of light to resolve fluorescently labeled molecules on the nanoscale, leading to many exciting biological discoveries. However, applications of SMLM in preserved tissues has been limited. Through adaptation of the immunofluorescence workflow on FFPE sections milled at histological thickness, cellular architecture can now be visualized on the nanoscale using SMLM including individual mitochondria, undulations in the nuclear lamina, and the HER2 receptor on membrane protrusions in human breast cancer specimens. Using astigmatism imaging, these structures can also be resolved in three dimensions to a depth of ~800 nm. These results demonstrate the utility of SMLM in efficiently uncovering ultrastructural information of archived clinical samples, which may offer molecular insights into the physiopathology of tissues to assist in disease diagnosis and treatment using conventional sample preparation methods.
Collapse
|
40
|
Schieweck R, Popper B, Kiebler MA. Co-Translational Folding: A Novel Modulator of Local Protein Expression in Mammalian Neurons? Trends Genet 2016; 32:788-800. [DOI: 10.1016/j.tig.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023]
|