1
|
Chen LY, Wu DS, Shen YA. Fatty acid synthase inhibitor cerulenin hinders liver cancer stem cell properties through FASN/APP axis as novel therapeutic strategies. J Lipid Res 2024; 65:100660. [PMID: 39332525 PMCID: PMC11539133 DOI: 10.1016/j.jlr.2024.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) poses significant treatment challenges due to high postoperative recurrence rates and the limited effectiveness of targeted medications. Researchers have identified the unique metabolic profiles of cancer stem cells (CSCs) as the primary drivers of cancer recurrence, metastasis, and drug resistance. Therefore, to address the therapeutic conundrum, this study focused on rewinding metabolic reprogramming of CSCs as a novel therapeutic strategy. HCC CSCs exhibited elevated fatty acid (FA) metabolism compared with parental cells. To specifically target FA metabolism in CSCs, we utilized cerulenin, a fatty acid synthase (FASN) inhibitor. Surprisingly, cerulenin can diminish CSC-like characteristics, including stemness gene expression, spherogenicity, tumorigenicity, and metastatic potential. In addition, sorafenib, a multikinase inhibitor used as targeted therapy for advanced HCC, was employed in combination with cerulenin, demonstrating a great synergistic effect, particularly in CSCs. Importantly, our RNA sequencing analysis disclosed that the amyloid protein precursor (APP) is a crucial downstream effector of FASN in regulating CSC properties. We found that APP plays a crucial role in CSCs' characteristics that can be inhibited by cerulenin. By focusing on FA metabolism, this study identified the FASN/APP axis as a viable target to develop a more potent therapy strategy for advanced HCC.
Collapse
Affiliation(s)
- Liang-Yun Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Dao-Sian Wu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. SCIENCE ADVANCES 2024; 10:eadl4694. [PMID: 39047090 PMCID: PMC11268418 DOI: 10.1126/sciadv.adl4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine filamentous actin (F-actin) structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of myocardin-related transcription factor, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G protein-coupled receptor Smog, G protein αq subunit, Rho1 guanosine triphosphatase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand folded gastrulation to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, an NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mahekta R. Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wei Yung Ding
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiawen Huang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiang Teng
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Low Siok Lan Christine
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
3
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584337. [PMID: 38903085 PMCID: PMC11188063 DOI: 10.1101/2024.03.11.584337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine F-actin structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of Mrtf, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G-protein-coupled receptor (GPCR) Smog, G-protein αq subunit, Rho1 GTPase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand Fog to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, a NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
|
4
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Pederick DT, Perry-Hauser NA, Meng H, He Z, Javitch JA, Luo L. Context-dependent requirement of G protein coupling for Latrophilin-2 in target selection of hippocampal axons. eLife 2023; 12:e83529. [PMID: 36939320 PMCID: PMC10118387 DOI: 10.7554/elife.83529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/16/2023] [Indexed: 03/21/2023] Open
Abstract
The formation of neural circuits requires extensive interactions of cell-surface proteins to guide axons to their correct target neurons. Trans-cellular interactions of the adhesion G protein-coupled receptor latrophilin-2 (Lphn2) with its partner teneurin-3 instruct the precise assembly of hippocampal networks by reciprocal repulsion. Lphn2 acts as a repulsive receptor in distal CA1 neurons to direct their axons to the proximal subiculum, and as a repulsive ligand in the proximal subiculum to direct proximal CA1 axons to the distal subiculum. It remains unclear if Lphn2-mediated intracellular signaling is required for its role in either context. Here, we show that Lphn2 couples to Gα12/13 in heterologous cells; this coupling is increased by constitutive exposure of the tethered agonist. Specific mutations of Lphn2's tethered agonist region disrupt its G protein coupling and autoproteolytic cleavage, whereas mutating the autoproteolytic cleavage site alone prevents cleavage but preserves a functional tethered agonist. Using an in vivo misexpression assay, we demonstrate that wild-type Lphn2 misdirects proximal CA1 axons to the proximal subiculum and that Lphn2 tethered agonist activity is required for its role as a repulsive receptor in axons. By contrast, neither tethered agonist activity nor autoproteolysis were necessary for Lphn2's role as a repulsive ligand in the subiculum target neurons. Thus, tethered agonist activity is required for Lphn2-mediated neural circuit assembly in a context-dependent manner.
Collapse
Affiliation(s)
- Daniel T Pederick
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Nicole A Perry-Hauser
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
6
|
MacKinnon MJ, Wang TWW, Shih YYI. Mouse Brain MRI: Including In Vivo, Ex Vivo, and fcMRI for the Study of Microcephaly. Methods Mol Biol 2023; 2583:129-148. [PMID: 36418731 DOI: 10.1007/978-1-0716-2752-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With its sensitivity to soft tissue, MRI is a powerful tool for the study of the neuroanatomical manifestations of a variety of conditions, such as microcephaly-related morbidities that are not easily visualized by other imaging techniques, such as CT. In addition to structural imaging, more recently, researchers have found changes in brain function in a wide range of neurological conditions-highlighting the utility of MRI for the study of microcephaly.In this methods chapter, basic mouse preparation and the acquisition of data for in vivo anatomical MRI will be discussed. Additionally, we will provide our protocol for the perfusion and fixation of brain tissue with gadolinium contrast agent. Following that, the process of optimization of system parameters will be shown for anatomical imaging of in vivo and ex vivo brain tissue. Lastly, the chapter will detail a protocol for fcMRI along with a discussion of considerations specific to functional imaging.
Collapse
Affiliation(s)
- Martin J MacKinnon
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen W Wang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu I Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
8
|
Matta J, Dobrino D, Yeboah D, Howard S, EL-Manzalawy Y, Obafemi-Ajayi T. Connecting phenotype to genotype: PheWAS-inspired analysis of autism spectrum disorder. Front Hum Neurosci 2022; 16:960991. [PMID: 36310845 PMCID: PMC9605200 DOI: 10.3389/fnhum.2022.960991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/14/2022] [Indexed: 04/13/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is extremely heterogeneous clinically and genetically. There is a pressing need for a better understanding of the heterogeneity of ASD based on scientifically rigorous approaches centered on systematic evaluation of the clinical and research utility of both phenotype and genotype markers. This paper presents a holistic PheWAS-inspired method to identify meaningful associations between ASD phenotypes and genotypes. We generate two types of phenotype-phenotype (p-p) graphs: a direct graph that utilizes only phenotype data, and an indirect graph that incorporates genotype as well as phenotype data. We introduce a novel methodology for fusing the direct and indirect p-p networks in which the genotype data is incorporated into the phenotype data in varying degrees. The hypothesis is that the heterogeneity of ASD can be distinguished by clustering the p-p graph. The obtained graphs are clustered using network-oriented clustering techniques, and results are evaluated. The most promising clusterings are subsequently analyzed for biological and domain-based relevance. Clusters obtained delineated different aspects of ASD, including differentiating ASD-specific symptoms, cognitive, adaptive, language and communication functions, and behavioral problems. Some of the important genes associated with the clusters have previous known associations to ASD. We found that clusters based on integrated genetic and phenotype data were more effective at identifying relevant genes than clusters constructed from phenotype information alone. These genes included five with suggestive evidence of ASD association and one known to be a strong candidate.
Collapse
Affiliation(s)
- John Matta
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Daniel Dobrino
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Dacosta Yeboah
- Department of Computer Science, Missouri State University, Springfield, MO, United States
| | - Swade Howard
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Yasser EL-Manzalawy
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, United States
| | - Tayo Obafemi-Ajayi
- Engineering Program, Missouri State University, Springfield, MO, United States
| |
Collapse
|
9
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
10
|
ADGRL1 haploinsufficiency causes a variable spectrum of neurodevelopmental disorders in humans and alters synaptic activity and behavior in a mouse model. Am J Hum Genet 2022; 109:1436-1457. [PMID: 35907405 PMCID: PMC9388395 DOI: 10.1016/j.ajhg.2022.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
ADGRL1 (latrophilin 1), a well-characterized adhesion G protein-coupled receptor, has been implicated in synaptic development, maturation, and activity. However, the role of ADGRL1 in human disease has been elusive. Here, we describe ten individuals with variable neurodevelopmental features including developmental delay, intellectual disability, attention deficit hyperactivity and autism spectrum disorders, and epilepsy, all heterozygous for variants in ADGRL1. In vitro, human ADGRL1 variants expressed in neuroblastoma cells showed faulty ligand-induced regulation of intracellular Ca2+ influx, consistent with haploinsufficiency. In vivo, Adgrl1 was knocked out in mice and studied on two genetic backgrounds. On a non-permissive background, mice carrying a heterozygous Adgrl1 null allele exhibited neurological and developmental abnormalities, while homozygous mice were non-viable. On a permissive background, knockout animals were also born at sub-Mendelian ratios, but many Adgrl1 null mice survived gestation and reached adulthood. Adgrl1-/- mice demonstrated stereotypic behaviors, sexual dysfunction, bimodal extremes of locomotion, augmented startle reflex, and attenuated pre-pulse inhibition, which responded to risperidone. Ex vivo synaptic preparations displayed increased spontaneous exocytosis of dopamine, acetylcholine, and glutamate, but Adgrl1-/- neurons formed synapses in vitro poorly. Overall, our findings demonstrate that ADGRL1 haploinsufficiency leads to consistent developmental, neurological, and behavioral abnormalities in mice and humans.
Collapse
|
11
|
DNA Methylation Signature for JARID2-Neurodevelopmental Syndrome. Int J Mol Sci 2022; 23:ijms23148001. [PMID: 35887345 PMCID: PMC9322505 DOI: 10.3390/ijms23148001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
JARID2 (Jumonji, AT Rich Interactive Domain 2) pathogenic variants cause a neurodevelopmental syndrome, that is characterized by developmental delay, cognitive impairment, hypotonia, autistic features, behavior abnormalities and dysmorphic facial features. JARID2 encodes a transcriptional repressor protein that regulates the activity of various histone methyltransferase complexes. However, the molecular etiology is not fully understood, and JARID2-neurodevelopmental syndrome may vary in its typical clinical phenotype. In addition, the detection of variants of uncertain significance (VUSs) often results in a delay of final diagnosis which could hamper the appropriate care. In this study we aim to detect a specific and sensitive DNA methylation signature for JARID2-neurodevelopmental syndrome. Peripheral blood DNA methylation profiles from 56 control subjects, 8 patients with (likely) pathogenic JARID2 variants and 3 patients with JARID2 VUSs were analyzed. DNA methylation analysis indicated a clear and robust separation between patients with (likely) pathogenic variants and controls. A binary model capable of classifying patients with the JARID2-neurodevelopmental syndrome was constructed on the basis of the identified episignature. Patients carrying VUSs clustered with the control group. We identified a distinct DNA methylation signature associated with JARID2-neurodevelopmental syndrome, establishing its utility as a biomarker for this syndrome and expanding the EpiSign diagnostic test.
Collapse
|
12
|
陈 曦, 王 斯, 薛 恩, 王 雪, 彭 和, 范 梦, 王 梦, 武 轶, 秦 雪, 李 劲, 吴 涛, 朱 洪, 李 静, 周 治, 陈 大, 胡 永. [Exploring the association between de novo mutations and non-syndromic cleft lip with or without palate based on whole exome sequencing of case-parent trios]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:387-393. [PMID: 35701113 PMCID: PMC9197716 DOI: 10.19723/j.issn.1671-167x.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To explore the association between de novo mutations (DNM) and non-syndromic cleft lip with or without palate (NSCL/P) using case-parent trio design. METHODS Whole-exome sequencing was conducted for twenty-two NSCL/P trios and Genome Analysis ToolKit (GATK) was used to identify DNM by comparing the alleles of the cases and their parents. Information of predictable functions was annotated to the locus with SnpEff. Enrichment analysis for DNM was conducted to test the difference between the actual number and the expected number of DNM, and to explore whether there were genes with more DNM than expected. NSCL/P-related genes indicated by previous studies with solid evidence were selected by literature reviewing. Protein-protein interactions analysis was conducted among the genes with protein-altering DNM and NSCL/P-related genes. R package "denovolyzeR" was used for the enrichment analysis (Bonferroni correction: P=0.05/n, n is the number of genes in the whole genome range). Protein-protein interactions among genes with DNM and genes with solid evidence on the risk factors of NSCL/P were predicted depending on the information provided by STRING database. RESULTS A total of 339 908 SNPs were qualified for the subsequent analysis after quality control. The number of high confident DNM identified by GATK was 345. Among those DNM, forty-four DNM were missense mutations, one DNM was nonsense mutation, two DNM were splicing site mutations, twenty DNM were synonymous mutations and others were located in intron or intergenic regions. The results of enrichment analysis showed that the number of protein-altering DNM on the exome regions was larger than expected (P < 0.05), and five genes (KRTCAP2, HMCN2, ANKRD36C, ADGRL2 and DIPK2A) had more DNM than expected (P < 0.05/(2×19 618)). Protein-protein interaction analysis was conducted among forty-six genes with protein-altering DNM and thirteen genes associated with NSCL/P selected by literature reviewing. Six pairs of interactions occurred between the genes with DNM and known NSCL/P-related genes. The score measuring the confidence level of the predicted interaction between RGPD4 and SUMO1 was 0.868, which was higher than the scores for other pairs of genes. CONCLUSION Our study provided novel insights into the development of NSCL/P and demonstrated that functional analyses of genes carrying DNM were warranted to understand the genetic architecture of complex diseases.
Collapse
Affiliation(s)
- 曦 陈
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 斯悦 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 恩慈 薛
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 雪珩 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 和香 彭
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 梦 范
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 梦莹 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 轶群 武
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 雪英 秦
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 劲 李
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 涛 吴
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 洪平 朱
- 北京大学口腔医学院·口腔医院口腔颌面外科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 静 李
- 北京大学口腔医学院·口腔医院儿童口腔科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 治波 周
- 北京大学口腔医学院·口腔医院口腔颌面外科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 大方 陈
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 永华 胡
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
13
|
Matúš D, Post WB, Horn S, Schöneberg T, Prömel S. Latrophilin-1 drives neuron morphogenesis and shapes chemo- and mechanosensation-dependent behavior in C. elegans via a trans function. Biochem Biophys Res Commun 2021; 589:152-158. [PMID: 34922196 DOI: 10.1016/j.bbrc.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
Latrophilins are highly conserved Adhesion GPCRs playing essential roles in the mammalian nervous system and are associated with severe neurological disorders. Recently, it has been shown that murine Latrophilins mediate classical G-protein signals to drive synaptogenesis. However, there is evidence that Latrophilins in the nematode Caenorhabditis elegans can also function independently of their seven-transmembrane domain and C terminus (trans function). Here, we show that Latrophilin-1 acts in trans to mediate morphogenesis of sensory structures in the C. elegans nervous system. This trans function is physiologically relevant in copulation behavior. Detailed expression and RNA-Seq analyses revealed specific LAT-1-positive neurons and first insights into the genetic network that is modulated by the receptor function. We conclude that 7TM-independent functions of Latrophilins are essential for neuronal physiology, possibly complementing canonical functions via G protein-mediated signaling.
Collapse
Affiliation(s)
- Daniel Matúš
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Willem Berend Post
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany; Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
14
|
Genetic Analysis Reveals Rare Variants in T-Cell Response Gene MR1 Associated with Poor Overall Survival after Urothelial Cancer Diagnosis. Cancers (Basel) 2021; 13:cancers13081864. [PMID: 33919687 PMCID: PMC8069815 DOI: 10.3390/cancers13081864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Urothelial carcinoma of the bladder (UC) is the fifth most common cancer in the United States. Germline variants, especially rare germline variants, may account for a portion of the disparity seen among patients in terms of UC incidence, presentation, and outcomes. The objectives of this study were to identify rare germline variant associations in UC incidence and to determine its association with clinical outcomes. Using exome sequencing data from the DiscovEHR UC cohort (n = 446), a European-ancestry, North American population, the complex influence of germline variants on known clinical phenotypes were analyzed using dispersion and burden metrics with regression tests. Outcomes measured were derived from the electronic health record (EHR) and included UC incidence, age at diagnosis, and overall survival (OS). Consequently, key rare variant association genes were implicated in MR1 and ADGRL2. The Kaplan-Meier survival analysis reveals that individuals with MR1 germline variants had significantly worse OS than those without any (log-rank p-value = 3.46 × 10-7). Those with ADGRL2 variants were found to be slightly more likely to have UC compared to a matched control cohort (FDR q-value = 0.116). These associations highlight several candidate genes that have the potential to explain clinical disparities in UC and predict UC outcomes.
Collapse
|
15
|
Kobow K, Jabari S, Pieper T, Kudernatsch M, Polster T, Woermann FG, Kalbhenn T, Hamer H, Rössler K, Mühlebner A, Spliet WGM, Feucht M, Hou Y, Stichel D, Korshunov A, Sahm F, Coras R, Blümcke I, von Deimling A. Mosaic trisomy of chromosome 1q in human brain tissue associates with unilateral polymicrogyria, very early-onset focal epilepsy, and severe developmental delay. Acta Neuropathol 2020; 140:881-891. [PMID: 32979071 PMCID: PMC7666281 DOI: 10.1007/s00401-020-02228-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Polymicrogyria (PMG) is a developmental cortical malformation characterized by an excess of small and frustrane gyration and abnormal cortical lamination. PMG frequently associates with seizures. The molecular pathomechanisms underlying PMG development are not yet understood. About 40 genes have been associated with PMG, and small copy number variations have also been described in selected patients. We recently provided evidence that epilepsy-associated structural brain lesions can be classified based on genomic DNA methylation patterns. Here, we analyzed 26 PMG patients employing array-based DNA methylation profiling on formalin-fixed paraffin-embedded material. A series of 62 well-characterized non-PMG cortical malformations (focal cortical dysplasia type 2a/b and hemimegalencephaly), temporal lobe epilepsy, and non-epilepsy autopsy controls was used as reference cohort. Unsupervised dimensionality reduction and hierarchical cluster analysis of DNA methylation profiles showed that PMG formed a distinct DNA methylation class. Copy number profiling from DNA methylation data identified a uniform duplication spanning the entire long arm of chromosome 1 in 7 out of 26 PMG patients, which was verified by additional fluorescence in situ hybridization analysis. In respective cases, about 50% of nuclei in the center of the PMG lesion were 1q triploid. No chromosomal imbalance was seen in adjacent, architecturally normal-appearing tissue indicating mosaicism. Clinically, PMG 1q patients presented with a unilateral frontal or hemispheric PMG without hemimegalencephaly, a severe form of intractable epilepsy with seizure onset in the first months of life, and severe developmental delay. Our results show that PMG can be classified among other structural brain lesions according to their DNA methylation profile. One subset of PMG with distinct clinical features exhibits a duplication of chromosomal arm 1q.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Samir Jabari
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tom Pieper
- Department of Neurology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Manfred Kudernatsch
- Department of Neurosurgery and Epilepsy Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
- Research Institute "Rehabilitation, Transition, Palliation", PMU Salzburg, Salzburg, Austria
| | - Tilman Polster
- Epilepsy Center Bethel, Krankenhaus Mara, Bielefeld, Germany
| | | | - Thilo Kalbhenn
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Hajo Hamer
- Department of Neurology, Epilepsy Center, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Affiliated Partner of the ERN EpiCARE, Medical University Vienna, Vienna, Austria
| | - Yanghao Hou
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Coras
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
17
|
Mak CCY, Doherty D, Lin AE, Vegas N, Cho MT, Viot G, Dimartino C, Weisfeld-Adams JD, Lessel D, Joss S, Li C, Gonzaga-Jauregui C, Zarate YA, Ehmke N, Horn D, Troyer C, Kant SG, Lee Y, Ishak GE, Leung G, Barone Pritchard A, Yang S, Bend EG, Filippini F, Roadhouse C, Lebrun N, Mehaffey MG, Martin PM, Apple B, Millan F, Puk O, Hoffer MJV, Henderson LB, McGowan R, Wentzensen IM, Pei S, Zahir FR, Yu M, Gibson WT, Seman A, Steeves M, Murrell JR, Luettgen S, Francisco E, Strom TM, Amlie-Wolf L, Kaindl AM, Wilson WG, Halbach S, Basel-Salmon L, Lev-El N, Denecke J, Vissers LELM, Radtke K, Chelly J, Zackai E, Friedman JM, Bamshad MJ, Nickerson DA, Reid RR, Devriendt K, Chae JH, Stolerman E, McDougall C, Powis Z, Bienvenu T, Tan TY, Orenstein N, Dobyns WB, Shieh JT, Choi M, Waggoner D, Gripp KW, Parker MJ, Stoler J, Lyonnet S, Cormier-Daire V, Viskochil D, Hoffman TL, Amiel J, Chung BHY, Gordon CT. MN1 C-terminal truncation syndrome is a novel neurodevelopmental and craniofacial disorder with partial rhombencephalosynapsis. Brain 2020; 143:55-68. [PMID: 31834374 DOI: 10.1093/brain/awz379] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 11/12/2022] Open
Abstract
MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.
Collapse
Affiliation(s)
- Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Angela E Lin
- Medical Genetics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Nancy Vegas
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | | | - Géraldine Viot
- Gynécologie Obstétrique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Clémantine Dimartino
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - James D Weisfeld-Adams
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Chumei Li
- McMaster University Medical Center, Hamilton, Ontario, Canada
| | | | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Nadja Ehmke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Denise Horn
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Caitlin Troyer
- Pediatrics and Medical Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Youngha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gisele E Ishak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Radiology, University of Washington, Seattle, WA, USA
| | - Gordon Leung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | - Eric G Bend
- Greenwood Genetic Center, Greenwood, SC, USA.,PreventionGenetics, Marshfield, WI, USA
| | - Francesca Filippini
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | | | - Nicolas Lebrun
- Institut Cochin, INSERM U1016, CNRS UMR, Paris Descartes University, Paris, France
| | | | - Pierre-Marie Martin
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin Apple
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | | | - Oliver Puk
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, RC Leiden, The Netherlands
| | | | - Ruth McGowan
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Steven Pei
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Farah R Zahir
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Mullin Yu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ann Seman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Marcie Steeves
- Medical Genetics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Jill R Murrell
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sabine Luettgen
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Louise Amlie-Wolf
- Division of Medical Genetics, A I duPont Hospital for Children/Nemours, Wilmington, DE, USA
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Institute of Neuroanatomy and Cell Biology, Department of Pediatric Neurology and Center for Chronically Sick Children, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - William G Wilson
- Pediatrics and Medical Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - Sara Halbach
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel.,Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Noa Lev-El
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - Kelly Radtke
- Clinical Genomics Department, Ambry Genetics, Aliso Viejo, CA, USA
| | - Jamel Chelly
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA.,University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | | | - Russell R Reid
- Department of Surgery, Section of Plastic Surgery, University of Chicago, Chicago, IL, USA
| | - Koenraad Devriendt
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Carey McDougall
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zöe Powis
- Clinical Genomics Department, Ambry Genetics, Aliso Viejo, CA, USA
| | - Thierry Bienvenu
- Institut Cochin, INSERM U1016, CNRS UMR, Paris Descartes University, Paris, France.,Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, 75014 Paris, France
| | - Tiong Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, 3052, Australia
| | - Naama Orenstein
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - William B Dobyns
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Joseph T Shieh
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Darrel Waggoner
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Karen W Gripp
- Division of Medical Genetics, A I duPont Hospital for Children/Nemours, Wilmington, DE, USA
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield S10 2TH, UK
| | - Joan Stoler
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Valérie Cormier-Daire
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - David Viskochil
- Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA
| | - Trevor L Hoffman
- Southern California Kaiser Permanente Medical Group, Anaheim, CA, USA
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| |
Collapse
|
18
|
Vizurraga A, Adhikari R, Yeung J, Yu M, Tall GG. Mechanisms of adhesion G protein-coupled receptor activation. J Biol Chem 2020; 295:14065-14083. [PMID: 32763969 DOI: 10.1074/jbc.rev120.007423] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a thirty-three-member subfamily of Class B GPCRs that control a wide array of physiological processes and are implicated in disease. AGPCRs uniquely contain large, self-proteolyzing extracellular regions that range from hundreds to thousands of residues in length. AGPCR autoproteolysis occurs within the extracellular GPCR autoproteolysis-inducing (GAIN) domain that is proximal to the N terminus of the G protein-coupling seven-transmembrane-spanning bundle. GAIN domain-mediated self-cleavage is constitutive and produces two-fragment holoreceptors that remain bound at the cell surface. It has been of recent interest to understand how AGPCRs are activated in relation to their two-fragment topologies. Dissociation of the AGPCR fragments stimulates G protein signaling through the action of the tethered-peptide agonist stalk that is occluded within the GAIN domain in the holoreceptor form. AGPCRs can also signal independently of fragment dissociation, and a few receptors possess GAIN domains incapable of self-proteolysis. This has resulted in complex theories as to how these receptors are activated in vivo, complicating pharmacological advances. Currently, there is no existing structure of an activated AGPCR to support any of the theories. Further confounding AGPCR research is that many of the receptors remain orphans and lack identified activating ligands. In this review, we provide a detailed layout of the current theorized modes of AGPCR activation with discussion of potential parallels to mechanisms used by other GPCR classes. We provide a classification means for the ligands that have been identified and discuss how these ligands may activate AGPCRs in physiological contexts.
Collapse
Affiliation(s)
- Alexander Vizurraga
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Rashmi Adhikari
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jennifer Yeung
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Pontocerebellar hypoplasia with rhombencephalosynapsis and microlissencephaly expands the spectrum of PCH type 1B. Eur J Med Genet 2019; 63:103814. [PMID: 31770597 DOI: 10.1016/j.ejmg.2019.103814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 11/20/2022]
Abstract
Rhombencephalosynapsis is a rare cerebellar malformation developing during embryogenesis defined by vermian agenesis or hypogenesis with fusion of the cerebellar hemispheres. It occurs either alone or in association with other cerebral and/or extracerebral anomalies. Its association with microlissencephaly is exceedingly rare and to date, only a heterozygous de novo missense variant in ADGRL2, a gene encoding Adhesion G-Protein-Coupled Receptor L2, has been identified. We report on two siblings of Roma origin presenting with severe growth retardation, fetal akinesia, microlissencephaly and small cerebellum with vermian agenesis. Neuropathological studies revealed extreme paucity in pontine transverse fibres, rudimentary olivary nuclei and rhombencephalosynapsis with vanishing spinal motoneurons in both fetuses. Comparative fetus-parent exome sequencing revealed in both fetuses a homozygous variant in exon 1 of the EXOSC3 gene encoding a core component of the RNA exosome, c.92G > C; p.(Gly31Ala). EXOSC3 accounts for 40%-75% of patients affected by ponto-cerebellar hypoplasia with spinal muscular atrophy (PCH1B). The c.92G > C variant is a founder mutation in the Roma population and has been reported in severe PCH1B. PCH1B is characterized by a broad phenotypic spectrum, ranging from mild phenotypes with spasticity, mild to moderate intellectual disability, pronounced distal muscular and cerebellar atrophy/hypoplasia, to severe phenotypes with profound global developmental delay, progressive microcephaly and atrophy of the cerebellar hemispheres. In PCH1B, the usual cerebellar lesions affect mainly the hemispheres with relative sparing of vermis that radically differs from rhombencephalosynapsis. This unusual foetal presentation expands the spectrum of PCH1B and highlights the diversity of rhombencephalosynapsis etiologies.
Collapse
|
20
|
Burbach JPH, Meijer DH. Latrophilin's Social Protein Network. Front Neurosci 2019; 13:643. [PMID: 31297045 PMCID: PMC6608557 DOI: 10.3389/fnins.2019.00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion GPCRs that are originally discovered as spider's toxin receptors, but are now known to be involved in brain development and linked to several neuronal and non-neuronal disorders. Latrophilins act in conjunction with other cell adhesion molecules and may play a leading role in its network organization. Here, we focus on the main protein partners of latrophilins, namely teneurins, FLRTs and contactins and summarize their respective temporal and spatial expression patterns, links to neurodevelopmental disorders as well as their structural characteristics. We discuss how more recent insights into the separate cell biological functions of these proteins shed light on the central role of latrophilins in this network. We postulate that latrophilins control the refinement of synaptic properties of specific subtypes of neurons, requiring discrete combinations of proteins.
Collapse
Affiliation(s)
- J Peter H Burbach
- Department of Translational Neuroscience, UMCU Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dimphna H Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
21
|
Moreno-Salinas AL, Avila-Zozaya M, Ugalde-Silva P, Hernández-Guzmán DA, Missirlis F, Boucard AA. Latrophilins: A Neuro-Centric View of an Evolutionary Conserved Adhesion G Protein-Coupled Receptor Subfamily. Front Neurosci 2019; 13:700. [PMID: 31354411 PMCID: PMC6629964 DOI: 10.3389/fnins.2019.00700] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
The adhesion G protein-coupled receptors latrophilins have been in the limelight for more than 20 years since their discovery as calcium-independent receptors for α-latrotoxin, a spider venom toxin with potent activity directed at neurotransmitter release from a variety of synapse types. Latrophilins are highly expressed in the nervous system. Although a substantial amount of studies has been conducted to describe the role of latrophilins in the toxin-mediated action, the recent identification of endogenous ligands for these receptors helped confirm their function as mediators of adhesion events. Here we hypothesize a role for latrophilins in inter-neuronal contacts and the formation of neuronal networks and we review the most recent information on their role in neurons. We explore molecular, cellular and behavioral aspects related to latrophilin adhesion function in mice, zebrafish, Drosophila melanogaster and Caenorhabditis elegans, in physiological and pathophysiological conditions, including autism spectrum, bipolar, attention deficit and hyperactivity and substance use disorders.
Collapse
Affiliation(s)
- Ana L. Moreno-Salinas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Monserrat Avila-Zozaya
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - David A. Hernández-Guzmán
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Antony A. Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|